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Abstract This study addresses intuitionistic fuzzymulti-objective linear programming prob-
lems using triangular intuitionistic fuzzy numbers with mixed constraints. We convert the
problem into single objective fuzzy programming problem. Then using different types of
membership functions (linear and nonlinear), we transform the problem into crisp linear/non-
linear programming problem, which is solved by suitable crisp programming approaches.
The methodology is demonstrated with the help of a numerical example and the usefulness
of various membership functions is discussed.
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1 Introduction

Multi-objective linear programming problem (MOLPP) has important applications in many
areas of engineering and management. A list of such applications can be viewed in Wu
et al. (2016) and Xidonas et al. (2016). In applications, one of the major issues faced by
experts and decision makers (DMs) is to determine the values of parameters. Since real
world problems are very complex, experts and DMs frequently do not know the values of
parameters precisely. So, considering the uncertainty, characterizing basic parameters of the
model, which are the coefficients of objective functions and technical coefficients, might be
more applicable. Therefore, it may be more realistic to take the descriptive knowledge of
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experts or DMs about the parameters, which can be represented as fuzzy data. Thus the fuzzy
multi-objective linear programming problems (FMOLPPs) with fuzzy parameters would be
viewed as more effective than the conventional one in solving real physical problems. Even,
in most of the cases of judgements, evaluation is done by human beings, i.e., by DMs where
certainly there are limitations on availabilities and exactness of data. Naturally, every DM
hesitates more or less on every evaluation activity. This gives the concept of intuitionistic
fuzzy set (IFS) theory (Atanassov 1986). Themajor advantage of IFS over fuzzy set is that IFS
separates the degree of acceptance and the degree of non-acceptance of a decision. Because
of this advantage IFS theory has much wider scope of applicability than the usual fuzzy set
theory in solving various kinds of real physical problems. The IFS theory is generalization of
fuzzy theory, so any method for IFS theory is automatically applicable in fuzzy theory as a
particular case. So, developing a method for IFS theory is more applicable than for ordinary
fuzzy set theory and that is our intention for writing this paper.

It has been proposed by Bellman and Zadeh (1970) that a fuzzy decision might be defined
as the fuzzy set formed by the intersection of fuzzy objective and constraint goals. From
this point of view, Tanaka and Asai (1984) and Zimmermann (1978) introduced fuzzy lin-
ear programming problem (FLPP). Tong (1994) and Gasimov and Yenilmez (2002) among
others, considered single objective mathematical programming with all fuzzy parameters.
Tong (1994) considered the FLPP with fuzzy constraints. He solved the defuzzified prob-
lem by fuzzy decisive set method proposed by Sakawa and Yano (1985). Gasimov and
Yenilmez (2002) considered single objective FLPP with constraints of less than type only
with fuzzy parameters and solved it by fuzzy decisive set method and modified sub-gradient
method. Ganesan andVeeramani (2006) studied fuzzy linear programswith trapezoidal fuzzy
numbers. Lai and Hawng (1992) considered MOLPP with all parameters having triangular
possibility distribution. They used an auxiliary model and it was solved byMOLPPmethods.
Chanas (1989) proposed a fuzzy programming problem as MOLPP and it was solved by
parametric approach. Zimmermann (1978) proposed a fuzzy multi-criteria decision making
(FMCDM) set which is defined as the intersection of all fuzzy goals and constraints. Singh
and Yadav (2015a, c, 2016) developed the mathematical background for IFLPP and applied
to transportation and manufacturing problems. There are many more literatures where fuzzy
and IF theory have been applied successfully (Asuncin et al. 2007; Bit et al. 1992, 1993;
Cascetta et al. 2006; Das et al. 1999; De and Sana 2015; Xu 1988). Although, literature is
very rich for crisp MOLPP, a comprehensive review of such articles can be found in Wiecek
et al. (2016) but there are few literatures for MOLPP in uncertain environment (Jana and Roy
2005, 2007).

In this paper, IFMOLPP with mixed constraints is proposed in which the coefficients of
objective as well as constraint functions and right hand sides of constraints are TIFNs. Then
accuracy is utilized to transfer the IFMOLPP into equivalent crisp MOLPP. There is broad
literature for ranking the TIFNs with different recommendation levels. However, we use
the accuracy function for convenience. Using Bellman and Zadeh’s (1970) fuzzy decision-
making process, the MOLPP is converted into an equivalent crisp convex programming
problem using various types of linear and non-linear membership functions. A linear mem-
bership function is most commonly used because it is simple and it is defined by fixing two
points: the upper and lower levels of acceptability. However, a linear membership function
is not a suitable representation in many practical situations. Furthermore, if the membership
function is interpreted as the fuzzy utility of the decision maker, used for describing levels
of indifference, preference or aversion towards uncertainty, then a nonlinear membership
function provides a better representation than a linear membership function. Moreover, it
should be emphasized that unlike linear membership functions, for nonlinear membership
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functions the marginal rate of increase (or decrease) of membership values as a function
of model parameters is not constant and hence this technique reflects reality better than the
linear case (Bector and Chandra 2002; Gupta and Mehlawat 2009).

The paper is organized as follows: In Sect. 2, some basic definitions are provided from
literature (Singh and Yadav 2015c, 2016). In Sect. 3, the IFMOLPP model has been formu-
lated. Section 4 is the most important section, here we have developed state of the art of the
solution method. In Sect. 5, the entire solution procedure is summarized as an algorithm. In
Sect. 6, we have provided a numerical example for justification followed by conclusion in
Sect. 7.

2 Preliminaries

Definition 1 Let X be a universe of discourse. Then an IFS ÃI in X is defined by a set of
ordered triples ÃI = {< x, μ ÃI (x), ν ÃI (x) >: x ∈ X}, where μ ÃI , ν ÃI : X → [0, 1] are
functions such that 0 ≤ μ ÃI (x) + ν ÃI (x) ≤ 1,∀x ∈ X . The value μ ÃI (x) represents the
degree of membership and ν ÃI (x) represents the degree of non- membership of the element
x ∈ X being in ÃI . h(x) = 1 − μ ÃI (x) − ν ÃI (x) represents the degree of hesitation for the
element x being in ÃI .

Definition 2 A TIFN ÃI is an IFS with the membership function μ ÃI and non-membership
function ν ÃI given by

μ ÃI (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x − a1
a2 − a1

, a1 < x ≤ a2

1, x = a2
a3 − x

a3 − a2
, a2 ≤ x < a3

0, otherwise,

and

ν ÃI (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a2 − x

a2 − a
′
1

, a
′
1 < x ≤ a2

0, x = a2
x − a2
a

′
3 − a2

, a2 ≤ x < a
′
3

1, otherwise.

where a
′
1 ≤ a1 ≤ a2 ≤ a3 ≤ a

′
3. This TIFN is denoted by ÃI = (a1, a2, a3; a′

1, a2, a
′
3). The

set of all TIFNs is denoted by I F(R).

Definition 3 Arithmetic operations on TIFNs
Let ÃI = (a1, a2, a3; a′

1, a2, a
′
3) and B̃ I = (b1, b2, b3; b′

1, b2, b
′
3) then

Addition: ÃI ⊕ B̃ I = (a1 + b1, a2 + b2, a3 + b3; a′
1 + b

′
1, a2 + b2, a

′
3 + b

′
3).

Subtraction: ÃI � B̃ I = (a1 − b3, a2 − b2, a3 − b1; a′
1 − b

′
3, a2 − b2, a

′
3 − b

′
1).

Multiplication: ÃI ⊗ B̃ I = (l1, l2, l3; l ′1, l2, l
′
3)

where l1 = min{a1b1, a1b3, a3b1, a3b3}, l3 = max{a1b1, a1b3, a3b1, a3b3}
l
′
1 = min{a′

1b
′
1, a

′
1b

′
3, a

′
3b

′
1, a

′
3b

′
3}, l

′
3 = max{a′

1b
′
1, a

′
1b

′
3, a

′
3b

′
1, a

′
3b

′
3}, l2 = a2b2.
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Scalar multiplication:

1. k ÃI = (ka1, ka2, ka3; ka′
1, ka2, ka

′
3), k > 0.

2. k ÃI = (ka3, ka2, ka1; ka′
3, ka2, ka

′
1), k < 0.

Definition 4 (Accuracy function) The concept of Yager (1981) for defuzzifying a TFN is
extended to defuzzify a TIFN. Yager (1981) considered the expected value for member-
ship function by finding the expected interval for a TFN. In the same fashion, we also
have considered the expected value for non-membership function. The expected values are
called score functions in this paper, as also in some recent articles. Then the two expected
values are forming an expected interval again to represent a single quantity and so consid-
ered the average to get a better approximation as a single quantity for comparison purpose
following the process of Yager (1981) for finding an expected value from an expected inter-
val.
Let ÃI = (a1, a2, a3; a′

1, a2, a
′
3) be a TIFN. The score function for the membership

function μ ÃI is denoted by S(μ ÃI ) and is defined by S(μ ÃI ) = a1+2a2+a3
4 . The score

function for the non-membership function ν ÃI is denoted by S(ν ÃI ) and is defined by

S(ν ÃI ) = a
′
1+2a2+a

′
3

4 . The accuracy function of ÃI is denoted by f ( ÃI ) and defined by

f ( ÃI ) = S(μ ÃI )+S(ν ÃI )

2 = (a1+2a2+a3)+(a
′
1+2a2+a

′
3)

8 .

Theorem 1 (Singh and Yadav 2016) The accuracy function f : I F(R) → R is a linear
function.

Definition 5 (Ordering of TIFNs) Let ÃI = (a1, a2, a3; a′
1, a2, a

′
3) and B̃ I = (b1, b2, b3;

b
′
1, b2, b

′
3). Then

(i) f ( ÃI ) ≥ f (B̃ I ) ⇒ ÃI ≥ B̃ I

(ii) f ( ÃI ) ≤ f (B̃ I ) ⇒ ÃI ≤ B̃ I

(iii) f ( ÃI ) = f (B̃ I ) ⇒ ÃI ≈ B̃ I (Numerically equivalent)
(iv) min( ÃI , B̃ I ) = ÃI , If ÃI ≤ B̃ I or B̃ I ≥ ÃI

Theorem 2 Let g : S → R,S ⊆ R
n be a real valued function. If g is a convex function,

then {x : g(x) ≤ c,∀c ∈ R} is a convex set and if g is a concave function, then {x : g(x) ≥
c,∀c ∈ R} is a convex set.

Remark It is clear that if g is a convex function, then {x : g(x) ≥ c,∀c ∈ R} need not be a
convex set and if g is a concave function, then {x : g(x) ≤ c,∀c ∈ R} need not be a convex
set.

3 Problem formulation

The general multi-objective linear programming problem (MOLPP) with mixed constraints
can be described by:
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Min Z = [Z1, Z2, Z3, ..., ZK ]

s.t.
n∑

j=1

ai j x j ≥ bi , i = 1, 2, 3, ...,m1,

n∑

j=1

ai j x j ≤ bi , i = m1 + 1,m1 + 2,m1 + 3, ...,m2,

n∑

j=1

ai j x j = bi , i = m2 + 1,m2 + 2,m2 + 3, ...,m,

x j ≥ 0, j = 1, 2, 3, ..., n,

(3.1)

where Z p = ∑n
j=1 cpj x j , p = 1, 2, 3, ..., K .

Definition 6 Let SF be the feasible region for (3.1). A point x̄ is said to be efficient or Pareto
optimal solution of (3.1) if there does not exist any x ∈ SF such that, Z p(x̄) ≥ Z p(x) ∀p
and Z p(x̄) > Z p(x) for at least one p.

Definition 7 A point x̄ ∈ SF is said to be weak Pareto optimal solution of (3.1) if there does
not exist any x ∈ SF such that Z p(x̄) ≥ Z p(x) ∀p, p = 1, 2, ..., K .

If the coefficients of the objective functions, decision variables and right hand sides of con-
straints are uncertain, which are represented by TIFNs in particular, then (3.1) becomes fully
IFMOLPP as:

MinZ̃ I = [Z̃1
I
, Z̃2

I
, Z̃3

I
, ..., Z̃K

I ]

s.t.
n∑

j=1

ãi j
I x j ≥ b̃i

I
, i = 1, 2, 3, ...,m1,

n∑

j=1

ãi j
I x j ≤ b̃i

I
, i = m1 + 1,m1 + 2,m1 + 3, ...,m2,

n∑

j=1

ãi j
I x j = b̃i

I
, i = m2 + 1,m2 + 2,m2 + 3, ...,m,

x j ≥ 0, j = 1, 2, 3, ..., n,

(3.2)

where Z̃ p
I = ∑n

j=1( ˜cpj )I x j , p = 1, 2, 3, ..., K .

Let us assume that b̃i
I
, i = 1, 2, 3, ...,m is of the following form:

The left TIFN b̃i
I = (bli , bi , bi ; bl

′
i , bi , bi ), i = 1, 2, 3, ...,m1, as in constraints hav-

ing inequalities of “≥” type the fuzziness is only on left side. The right TIFN b̃i
I =

(bi , bi , bri ; bi , bi , br
′

i ), i = m1 + 1,m1 + 2,m1 + 3, ...,m2, as in constraints having

inequalities of “≤” type the fuzziness is only on right side and b̃i
I = (bli , bi , b

r
i ; bl

′
i , bi , br

′
i ),

i = m2 + 1,m2 + 2,m2 + 3, ...,m, because in equality type constraints the fuzziness may
be on both sides.
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Using accuracy function which is linear, Problem 3.2 is transformed to the following crisp
MOLPP:

Min Z
′ = [Z ′

1, Z
′
2, Z

′
3, ..., Z

′
K ]

s.t
n∑

j=1

a
′
i j x j ≥ b

′
i , i = 1, 2, 3, ...,m1,

n∑

j=1

a
′
i j x j ≤ b

′
i , i = m1 + 1,m1 + 2,m1 + 3, ...,m2,

n∑

j=1

a
′
i j x j = b

′
i , i = m2 + 1,m2 + 2,m2 + 3, ...,m,

x j ≥ 0, j = 1, 2, 3, ..., n,

(3.3)

where Z
′
p = f (Z̃ p

I
), p = 1, 2, 3, ..., K ; b

′
i = f (b̃i

I
) and a

′
i j = f (ãi j

I ), i =
1, 2, 3, ...,m, j = 1, 2, ..., n.

Theorem 3 (Singh and Yadav 2015b) An efficient solution for (3.3) is an efficient solution
for (3.2).

Thus solving the IFMOLPP model (3.2) is equivalent to solve the crisp MOLPP model (3.3).

3.1 IFLPP

Note that a single objective IFLPP is given by

Min Z̃ I ,

s.t.
n∑

j=1

ãi j
I x j ≥ b̃i

I
, i = 1, 2, 3, ...,m1,

n∑

j=1

ãi j
I x j ≤ b̃i

I
, i = m1 + 1,m1 + 2,m1 + 3, ...,m2,

n∑

j=1

ãi j
I x j = b̃i

I
, i = m2 + 1,m2 + 2,m2 + 3, ...,m,

x j ≥ 0, j = 1, 2, 3, ..., n,

(3.4)

Using accuracy function which is linear, Problem 3.4 is transformed to the following crisp
LPP:
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Min Z
′
,

s.t
n∑

j=1

a
′
i j x j ≥ b

′
i , i = 1, 2, 3, ...,m1,

n∑

j=1

a
′
i j x j ≤ b

′
i , i = m1 + 1,m1 + 2,m1 + 3, ...,m2,

n∑

j=1

a
′
i j x j = b

′
i , i = m2 + 1,m2 + 2,m2 + 3, ...,m,

x j ≥ 0, j = 1, 2, 3, ..., n,

(3.5)

Theorem 4 An optimal solution for (3.5) is an optimal solution for (3.4).

Thus the optimal solution for an IFLPP can be easily obtained by transforming the IFLPP
into crisp LPP by using accuracy function. So, we focus on solving IFMOLPP which is the
important aspects for this paper.

4 Solution method

There are various methods to solve a MOLPP. These methods are classified into two general
classes: scalarization methods and nonscalarization methods. These approaches convert the
MOLPP into a single objective programming program (SOPP), a sequence of SOPPs, or
another MOLPP. Under some assumptions, solution sets of these new programs yield solu-
tions of the original problem. Scalarization methods explicitly employ a scalarizing function
to accomplish the conversion while nonscalarizing methods use other means. Solving the
SOPP typically yields one solution of the MOLPP so that a repetitive solution scheme is
needed to obtain a subset of solutions of the MOLPP. A comprehensive review of such
methods can be found in Wiecek et al. (2016).
Here, we apply the scalarization technique which involves formulating a MOLPP related
SOPPbymeans of a real-valued scalarizing function typically being a functionof the objective
functions of the MOLPP. First of all, we assign a suitable goal for individual objective
functions. The best way to assign a goal is to find the optimal value of each objective function
subject to the same set of constraints and call it the desired or themost acceptable level denoted
by L p . In this way, we find k different solutions for k SOLPPs say S = {X1, X2, ..., Xk}.
Find the values of each objective for all elements of S. Find the maximum of each objective
Z

′
p on S. Let Up = max{Z ′

p(X); X ∈ S, p = 1, 2, ..., K }. Up is the worst acceptable
level of achievement for the pth objective function. Then Model (3.3) transformed to a goal
programming problem, where the goal is to attain the individual optimum L p for the pth
objective function. However, some tolerance is allowed and that tolerance level is given by
the maximum value Up . The obtained fuzzy goal programming (FGP) model is given by:

Find {x j , j = 1, 2, 3, ..., n},
s.t. Z

′
p ∼ L p, p = 1, 2, 3, ..., K
n∑

j=1

a
′
i j x j ≥ b

′
i , i = 1, 2, 3, ...,m1,
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n∑

j=1

a
′
i j x j ≤ b

′
i , i = m1 + 1,m1 + 2,m1 + 3, ...,m2, (4.1)

n∑

j=1

a
′
i j x j = b

′
i , i = m2 + 1,m2 + 2,m2 + 3, ...,m,

x j ≥ 0, j = 1, 2, 3, ..., n,

where “∼” is fuzzy goal, which means some deviation or tolerance is allowed in strict goal.
To change the FGP model (4.1) into a crisp programming model, we define different types
of linear and non-linear membership functions.

In the literature, one of themajor assumptions in solving fuzzymathematical programming
problem involves the use of linearmembership functions for all fuzzy sets utilized in a decision
making process. A linear approximation is most commonly used because of its simplicity.
It is defined by fixing two points, the upper and lower levels of acceptability of the decision
variable. If general fuzzy set theory is considered, then such type of assumption is not justified
always. Thus a justification in the assumption is desirable according to fuzziness of the data.
If fuzzy set theory is used to model real decision making processes and an assertion is made
that the resulting models are the real models, then some kind of empirical justification for this
assumption is necessary. From this point of view, we have considered several linear/nonlinear
shapes for membership functions.

4.1 Linear membership function

A linear membership function μL (Zangiabadi and Maleki 2013) can be defined as follows
(Fig. 1).

μL (Z p(x)) =

⎧
⎪⎨

⎪⎩

1, i f Z p ≤ L p,
Up−Z p
Up−L p

, i f L p ≤ Z p < Up,

0, i f Z p ≥ Up.

This function is a strictly decreasing concave and convex function for Z p(x).

Fig. 1 Linear membership
function

Lp Up
0

1

Zp(x)

L(
Z p

(x
))
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Fig. 2 Hyperbolic membership
function

Lp Up

1

0

Z
p
(x)

H
(Z

p(
x)
)

4.2 Hyperbolic membership function

The hyperbolic membership function (Jana and Roy 2007; Zangiabadi and Maleki 2013) is a
convex function over a part of the objective function values and is concave over the remaining
part. When the DM is worse off with respect to a goal, he/she tends to have a higher marginal
rate of satisfaction with respect to that goal. A convex shape captures this behavior in the
membership function. On the other hand, when the DM is better off with respect to a goal,
he/she tends to have a smaller marginal rate of satisfaction. Such behavior is modeled using
the concave portion of the membership function. The complete function is as follows:

μH (Z p(x)) =

⎧
⎪⎨

⎪⎩

1, i f Z p ≤ L p,
1
2 tanh

((
Up+L p

2 − Z p(x)
)

αp

)
+ 1

2 , i f L p ≤ Z p < Up,

0, i f Z p ≥ Up.

where αp = 6
Up−L p

The possible figure of hyperbolic membership function may be as in Fig. 2. This membership
function has the following properties:

• μH is strictly monotonically decreasing function of Z p(x);
• μH (Z p(x)) = 1/2 ⇔ Z p(x) = 1

2 (Up + L p);
• μH is strictly convex function of Z p(x) for Z p(x) ≥ 1

2 (Up + L p) and strictly concave
function of Z p(x) for Z p(x) ≤ 1

2 (Up + L p);
• μH (Z p(x)) satisfies the condition that 0 < μH (Z p(x)) < 1 for L p < Z p(x) < Up and

approaches asymptotically 0 and 1 as Z p(x) → ∞ and −∞ respectively.

4.3 Parabolic membership function

The parabolic membership function (Jana and Roy 2007; Tiwari et al. 2013) μP can be
defined as follows (Fig. 3):

μP (Z p(x)) =

⎧
⎪⎨

⎪⎩

1, i f Z p ≤ L p,

1 − (Z p−L p)
2

(Up−L p)2
, i f L p ≤ Z p < Up,

0, i f Z p ≥ Up.

Lemma 1 The function μP (Z p(x)) is a concave function.
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Lp Up

1

0

Zp(x)

P(
Z p

(x
))

Fig. 3 Parabolic membership function

Proof Since Z p(x) is a linear function, let us assume that Z p(x) = ax +by in two variables.

Then the Hessianmatrix ofμP (Z p(x)) is, H(μP ) = −2 Z p−L p
Up−L p

(
a2 ab
ab b2

)

, which is negative

semidefinite. This shows μP (Z p(x)) is a concave function. Similarly, it can be proved for
higher number of variables. ��

Consequently, the problem (4.1) may be described as how to make a reasonable plan so
that the DM is most satisfied with fuzzy goals. That is, there should be the highest degree of
balance among fuzzy goals. Let λ = min{μ(Z p(X)), p = 1, 2, ..., K }. Then according to
Zimmermann (1978), this can be expressed as:

Max λ

s.t. μ(Z
′
p(X)) ≥ λ,

μ(Z
′
p(X)) ≤ 1,

n∑

j=1

a
′
i j x j ≥ b

′
i , i = 1, 2, 3, ...,m1,

n∑

j=1

a
′
i j x j ≤ b

′
i , i = m1 + 1,m1 + 2,m1 + 3, ...,m2,

n∑

j=1

a
′
i j x j = b

′
i , i = m2 + 1,m2 + 2,m2 + 3, ...,m,

x j ≥ 0, j = 1, 2, 3, ..., n; λ ≥ 0.

(4.2)

From Theorem 2, Lemma 1 and properties of hyperbolic membership function, we con-
clude the following corollary.

Corollary 1 The sets {X : μL(Z
′
p(X)) ≥ λ}, {X : μH (Z

′
p(X)) ≥ λ, Z

′
p(X) ≤ 1

2 (Up+L p)}
and {X : μP (Z

′
p(X)) ≥ λ} are convex sets.
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Zimmermann (1978) proved that if the convex model (4.2) has unique optimal solution at
some point X∗, then X∗ is an efficient solution for (3.3). Now, using various membership
functions, Problem (4.2) is transformed to the following crisp convex programming problems.

• Using linear membership function:

Max λ

s.t. Up − Z
′
p ≥ λ(Up − L p), p = 1, 2, 3, ..., K ,

n∑

j=1

a
′
i j x j ≥ b

′
i , i = 1, 2, 3, ...,m1,

n∑

j=1

a
′
i j x j ≤ b

′
i , i = m1 + 1,m1 + 2,m1 + 3, ...,m2,

n∑

j=1

a
′
i j x j = b

′
i , i = m2 + 1,m2 + 2,m2 + 3, ...,m,

Z
′
p ≥ L p, λ ≥ 0,

x j ≥ 0, j = 1, 2, 3, ..., n.

(4.3)

• Using hyperbolic membership function:

Max λ

s.t. Z
′
pαp + β = Up + L p

2
αp, p = 1, 2, 3, ..., K ,

n∑

j=1

a
′
i j x j ≥ b

′
i , i = 1, 2, 3, ...,m1,

n∑

j=1

a
′
i j x j ≤ b

′
i , i = m1 + 1,m1 + 2,m1 + 3, ...,m2,

n∑

j=1

a
′
i j x j = b

′
i , i = m2 + 1,m2 + 2,m2 + 3, ...,m,

tanhβ ≥ 2λ − 1, tanhβ ≤ 1,

Z
′
p ≤ 1/2(Up + L p),

x j ≥ 0, j = 1, 2, 3, ..., n; λ ≥ 0.

(4.4)

• Using parabolic membership function:

Max λ

s.t.
(
Z

′
p − L p

)2 + λ
((
Up − L p

)2
)

≤ (
Up − L p

)2
, p = 1, 2, 3, ..., K ,

n∑

j=1

a
′
i j x j ≥ b

′
i , i = 1, 2, 3, ...,m1,

n∑

j=1

a
′
i j x j ≤ b

′
i , i = m1 + 1,m1 + 2,m1 + 3, ...,m2, (4.5)
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n∑

j=1

a
′
i j x j = b

′
i , i = m2 + 1,m2 + 2,m2 + 3, ...,m,

(
Z

′
p

)2 ≥ (
L p

)2
, λ ≥ 0,

x j ≥ 0, j = 1, 2, 3, ..., n.

Models (4.3)–(4.5) are convex programming problems, which can be solved by suitable
algorithms or software packages.

5 Algorithm

The whole solution procedure developed in Sect. 4 has been summarized as an algorithm in
this section.

• Step 1 Model the uncertain MOLPP using TIFNs.
• Step 2 Transform the IFMOLPP into MOLPP by using the accuracy function.
• Step 3 Find optimal solution of each SOLPP. Let the solution set be S.
• Step 4 Find the values of all objective functions at all points of S.
• |it Step 5 Choose the optimum value L p of the pth objective function as the goal value

for the pth objective function.
• Step 6 Find the maximum value Up for the pth objective function over S, i.e., Up =

max{Z ′
p(X); X ∈ S, p = 1, 2, ..., K }.

• Step 7 Determine the goal programming model as in (4.1).
• Step 8Use suitable membership function and transform the FGPmodel to crisp program-

ming model for various membership functions as in (4.3)–(4.5) accordingly.
• Step 9Solve the crisp convex programming problemusing suitable techniques or software

packages.

6 Numerical example

Let us consider the following IFMOLPP.

Min Z̃1
I = 5̃I x1 ⊕ 3̃I x2

Min Z̃2
I = 2̃a

I
x1 ⊕ 7̃I x2

s.t. 2̃b
I
x1 ⊕ 4̃I x2 ≥ 2̃5

I
,

1̃a
I
x1 ⊕ 1̃b

I
x2 ≥ 1̃0

I
,

4̃I x1 ⊕ 5̃I x2 ≤ 5̃0
I
,

x1, x2 ≥ 0,

(6.1)

Here the estimated parameters by the DM are as follows:

2̃5
I = (22, 25, 25; 18, 25, 25), 1̃0I = (9, 10, 10; 8, 10, 10), 5̃0I = (50, 50, 55; 50, 50, 60),

5̃I = (4, 5, 6; 4, 5, 7), 3̃I = (3, 3, 4; 3, 3, 4.5), 2̃a I = (2, 2, 3; 2, 2, 4), 7̃I = (7, 7, 7.5;
6, 7, 8), 2̃b

I = (1.5, 2, 2; 1, 2, 2), 1̃a I = (0.5, 1, 1; 0.2, 1, 1.5), 1̃b I = (1, 1, 1; 0.5, 1, 2),
4̃I = (3, 4, 4; 2, 4, 4).
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Using accuracy function (Definition 4), Problem (6.1) is equivalent to the following crisp
MOLPP:

Min Z
′
1 = 5.125x1 + 3.33x2

Min Z
′
2 = 2.37x1 + 6.2x2

s.t. 1.8x1 + 3.62x2 ≥ 23.75,

0.9x1 + 1.06x2 ≥ 9.6,

3.62x1 + 5.125x2 ≤ 51.8,

x1, x2 ≥ 0.

(6.2)

Solving Problem (6.2) as an SOLPPs, we have the following solutions:
X1 = (0, 9.056), X2 = (13.19, 0), L1 = 30.15,U1 = 67.59, L2 = 31.26 and U2 = 56.14.
Problem (6.1) is now equivalent to the following FGP model:

Find {x j : j = 1, 2}
s. t. 5.125x1 + 3.33x2 ∼ 30.15,

2.37x1 + 6.2x2 ∼ 31.26,

1.8x1 + 3.62x2 ≥ 23.75,

0.9x1 + 1.06x2 ≥ 9.6,

3.62x1 + 5.125x2 ≤ 51.8,

x1, x2 ≥ 0.

(6.3)

Applying models (4.3)–(4.5) and solving by LINGO, the solution of (6.1) is summarized in
Table 1.

7 Conclusion

This research proposed IFMOLPP and a method for its solution has been developed. The
IFMOLPP is transformed to MOLPP by using the accuracy function and by applying the
scalarization technique it is transformed to FGP problem. After that, we have introduced
various membership functions to solve the FGP model. Introduction of various membership
functions provides the flexibility to the DM for choosing the membership function which
fits better for the problem. We observed from Table 1 that for the given numerical problem,
solutions are better in case of hyperbolic membership function. Thus the efficiency of the
models in terms of satisfaction level or achievement level of the DM can be ordered as
Hyperbolic > Parabolic > Linear. Here, the other flexibility is that the solution can be
chosen according to the priority of the objectives. That is, the DM can adopt the membership
function, which is giving better solution for the objective function having higher priority.

Table 1 Solutions

Membership
functions

Solutions Objective
values

Deviations from
(L1, L2)

λ

Linear x1 = 4.94, x2 = 4.1 (38.97, 37.12) (8.82, 5.86) 0.76

Hyperbolic x1 = 4.97, x2 = 4.31 (39.82, 38.5) (9.67, 7.24) 1

Parabolic x1 = 5.62, x2 = 4.27 (43.02, 39.79) (12.87, 8.53) 0.88
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Jana and Roy (2005) decomposed the problem into eight sub-objectives, which increases
the dimension of the problem eight times and that increases the complexity of the problem
a lot. In Gupta and Mehlawat (2009), Jana and Roy (2007) and Zangiabadi and Maleki
(2013), authors have applied hyperbolic and exponential membership functions, which are
not concave in whole domain. So, the resulting problem need not be convex and hence there
is no guarantee for the obtained solution to be global. The proposed approach overcomes
these deficiencies and provides the global solution.

Our research opensmany possible avenues for future research. First, from a practical point
of view, there is value to implement the approach developed in this paper on a complete real
life problem from industry such as in manufacturing, scheduling, planning, transportation
etc., which can be a challenging work. Second, from a methodological viewpoint, there is
value to develop faster heuristic methods to solve large scale problems.
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