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Abstract In this paper, we study risk-averse models for multicriteria optimization problems
under uncertainty. We use a weighted sum-based scalarization and take a robust approach
by considering a set of scalarization vectors to address the ambiguity and inconsistency in
the relative weights of each criterion. We model the risk aversion of the decision makers via
the concept of multivariate conditional value-at-risk (CVaR). First, we introduce a model
that optimizes the worst-case multivariate CVaR and show that its optimal solution lies on
a particular type of stochastic efficient frontier. To solve this model, we develop a finitely
convergent delayed cut generation algorithm for finite probability spaces. We also show
that the proposed model can be reformulated as a compact linear program under certain
assumptions. In addition, for the cut generation problem, which is in general a mixed-integer
program, we give a stronger formulation than the existing ones for the equiprobable case.
Next, we observe that similar polyhedral enhancements are also useful for a related class of
multivariate CVaR-constrained optimization problems that has attracted attention recently. In
our computational study, we use a budget allocation application to benchmark our proposed
maximin type risk-averse model against its risk-neutral counterpart and a related multivariate
CVaR-constrained model. Finally, we illustrate the effectiveness of the proposed solution
methods for both classes of models.
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1 Introduction

For many decision making problems under uncertainty, it may be essential to consider mul-
tiple possibly conflicting stochastic performance criteria. Stochastic multicriteria decision
making problems arise in a wide range of areas, including financial portfolio optimiza-
tion, humanitarian relief network design, production scheduling, public debt management,
and homeland security budget allocation (see, e.g., Balibek and Köksalan 2010; Hu et al.
2011; Köksalan and Şakar 2016; Noyan 2012; Noyan et al. 2016). In such problems, we
can represent the stochastic outcomes of interest by a random vector, each dimension of
which corresponds to a particular decision criterion. Then, comparing the potential decisions
requires specifying preference relations among random vectors. It is also crucial to compare
the random outcomes based on the decision makers’ risk preferences. These concerns call
for optimization models that incorporate multivariate risk-averse preference relations into
constraints and/or objectives. The class of models, which incorporates the multivariate risk
preferences into the constraints using benchmarking relations, has received some attention
in the recent literature. Alternatively, in this study, we introduce a new class of models with
an objective of optimizing a multivariate risk measure.

First, we review the existing literature on risk-averse multicriteria optimization models
that feature benchmarking preference relations. In this line of research initiated byDentcheva
and Ruszczyński (2009), two types of benchmarking relations are modeled as constraints:
multivariate risk-averse relations based on second-order stochastic dominance (SSD) and
conditional value-at-risk (CVaR). These models assume that a benchmark random outcome
vector is available and extend univariate (scalar-based) preference rules to the multivariate
(vector-based) case by using linear scalarization functions. The linear scalarization corre-
sponds to the weighted-sum approach, which is widely used in multicriteria decision making
(Steuer 1986; Ehrgott 2005); the scalarization coefficients are interpreted as the weights
representing the relative (subjective) importance of each decision criterion.

In many decision making situations, especially those involving multiple decision makers,
it can be difficult to determine a single weight vector. There are many alternative methods to
elicit relative weights of each criterion, including multiattribute weighting, swing weighting
and the analytic hierarchy process (for a review, see von Winterfeldt and Edwards 1986;
Saaty 2000). However, the relative weights of even a single expert could be very different
depending on which elicitation approach is used as shown in Schoemaker and Waid (1982)
and Borcherding et al. (1991). The problem of choosing a single weight vector is further
exacerbated if multiple experts are involved. To address these ambiguity and inconsistency
issues, a so-called robust approach considers a collection of weight vectors within a pre-
scribed scalarization set instead of a single weight vector. Various scalarization sets are
considered in the literature such as the set of all non-negative coefficients, arbitrary polyhe-
dral and arbitrary convex sets (see, e.g.,Dentcheva and Ruszczyński 2009; Homem-de-Mello
and Mehrotra 2009; Hu et al. 2012, respectively).

While the majority of existing studies focuses on enforcing multivariate SSD relations
(see, e.g., Dentcheva and Ruszczyński 2009; Homem-de-Mello andMehrotra 2009; Hu et al.
2012; Dentcheva and Wolfhagen 2013), this modeling approach can be overly conservative
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in practice and leads to very demanding constraints that sometimes cannot be satisfied. For
example, due to this infeasibility issue, Hu et al. (2011) solve such an optimization problem
with relaxed SSD constraints. As an alternative, Noyan and Rudolf (2013) propose to use a
multivariate preference relation based on CVaR; their approach is motivated by the fact that
the univariate SSD relation is equivalent to a continuum of CVaR inequalities (Dentcheva and
Ruszczyński 2006). The authors consider polyhedral scalarization sets and show that their
CVaR-basedmethodology can be extended to optimization problems featuring benchmarking
constraints based on awider class of coherent riskmeasures. In our study,we follow the line of
research of Noyan and Rudolf (2013), which provides sufficient flexibility to obtain feasible
problem formulations and capture a wide range of risk preferences, including risk-neutral
and worst-case approaches.

Optimization models under both types of multivariate preference relations (SSD and
CVaR) are challenging, since they require introducing infinitely many univariate risk con-
straints associated with all possible weight vectors in the scalarization set. For polyhedral
scalarization sets, Homem-de-Mello and Mehrotra (2009) and Noyan and Rudolf (2013)
show that enforcing the corresponding univariate risk constraint for a finite (exponential)
subset of weight vectors is sufficient to model the multivariate SSD and CVaR relations,
respectively. These finite representation results allow them to develop finitely convergent
delayed cut generation algorithms, where each cut is obtained by solving a mixed-integer
programming (MIP) problem. Since solving these MIP formulations is the main computa-
tional bottleneck, Küçükyavuz and Noyan (2016) develop computationally effective solution
methods for the cut generation problems arising in both types of optimization models.

As outlined earlier, the existing literature on risk-averse multicriteria optimization prob-
lems mainly focuses on multivariate risk-constrained models, where a benchmark random
vector is available and the goal is to find a solution with a multivariate outcome vector that
is preferable to the benchmark (with respect to the multivariate SSD or CVaR relation). In
this paper, we propose a novel model which does not require a given benchmark and aims
to optimize the risk associated with the decision-based random vector of outcomes. In this
sense, the problem we consider can be seen as a risk-averse stochastic multiobjective opti-
mization. There are, in general, two types of approaches to solve stochastic multiobjective
problems: (1) to eliminate the stochastic nature of the problem by replacing each random
objective functionwith one of its summary statistics; (2) to eliminate themultiobjective struc-
ture of the problem by aggregating the multiple objectives and obtaining a single random
objective function. For recent surveys on these two types of approaches we refer to Gutjahr
and Pichler (2016) and Ben Abdelaziz (2012). The first (non-aggregation based) approach
results in a traditional deterministic multiobjective problem and requires the identification
of multiple (typically exponential) non-dominated solutions in the efficient frontier. Ulti-
mately, however, the decision makers need to specify the weights for each criterion to choose
among the non-dominated solutions. In the second (aggregation-based) approach, one can
consider a weighted sum of the multiple objectives and solve the resulting stochastic problem
to obtain a solution. However, the weights to be used in either approach can be ambiguous
and inconsistent due to the presence of conflicting criteria and lack of consensus among
multiple experts. Alternatively, in the second approach of aggregating multiple objectives
into one, one can use an aggregated (but non-scalarized) single objective using stochastic
goal programming. This approach considers random and/or deterministic goals (benchmark
values) for the different objectives and constructs a single objective based on a function of
the deviations from the goals. However, a benchmark goal may not be immediately available
in all practical applications. For problems where the relative importance of the criteria is
ambiguous and a benchmark performance vector is not available, we propose to focus on the
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worst-case CVaR with respect to the prescribed scalarization set and employ a recent notion
of CVaR robustness in the context of stochastic multicriteria optimization.

In a related line of work, to address the ambiguity and inconsistency in the weights used
to scalarize the multiple criteria in the objective function of a deterministic optimization
problem, Ogryczak (2010) and Hu and Mehrotra (2012) consider minimax type robustness
with respect to a given weight set. Note that such existing robust weighted-sum models
assume that either the problem parameters are deterministic or the decision makers are risk-
neutral. For an overview on minimax robustness for multiobjective optimization problems
we refer to Ehrgott et al. (2014). However, some multicriteria decision-making problems of
recent interest, such as disaster preparedness (Hu andMehrotra 2012) and homeland security
(Hu et al. 2011), involve uncertain events with small probabilities but dire consequences.
Therefore, it is crucial to incorporate risk aversion into multicriteria optimization models,
which is the main focus of our study. Note that the risk-averse model we propose in this paper
features the risk-neutral version as a special case.

In the recent literature, another type of CVaR robustness appears in the univariate case
stemming from the distributional robustness. Zhu and Fukushima (2009) andWozabal (2014)
consider optimizing the worst-case CVaR and a wider class of convex risk measures (of a
scalar-based random variable), respectively. However, this line of work assumes that there is
ambiguity in the underlying probability distribution and express the worst-case with respect
to a specified set of distributions. In contrast, we assume that the underlying probability dis-
tribution is known but there is ambiguity in the scalarization vector (i.e., relative importance
of multiple criteria) within a polyhedral set; this leads to a worst-case multivariate CVaR
measure. For robust optimization in general, the interested reader may refer to Ben-Tal et al.
(2009) and Bertsimas et al. (2011).

1.1 Our contributions

We incorporate risk aversion into multicriteria optimization models using the concept of
multivariate CVaR. We propose a maximin type model optimizing the worst-case CVaR over
a scalarization set. While the worst-case multivariate CVaRmeasure was recently introduced
in the finance literature to assess the risk of given portfolio vectors (see, e.g., Rüschendorf
2013), to the best of our knowledge, there is no model or method to assist decision makers
in choosing a portfolio vector that optimizes this risk measure. In this paper, we fill this
gap, and give an optimization model that maximizes the worst-case multivariate CVaR. To
demonstrate the adequacy of the proposed model, we show that the risk measure of interest
is coherent in an appropriate multivariate sense, and an optimal solution of the model is not
dominated in an appropriate stochastic sense. These two properties are highly desirable in
risk-averse optimization and multicriteria optimization, respectively.

Unlike the risk-neutral version with a polyhedral weight set, in the risk-averse case, the
inner optimization problem involves a concave minimization. Hence, the problem in gen-
eral can no longer be solved as a compact linear program (as in Hu and Mehrotra 2012).
Therefore, we propose a delayed cut generation-based solution algorithm and show that
the cut generation problem can be modeled as a bilinear program that contains the mul-
tiplication of the scalarization variables and some binary variables used for representing
CVaR. We demonstrate that the assumptions on the scalarization set allow us to employ the
reformulation-linearization technique (RLT) (Sherali and Adams 1994; Sherali et al. 1998)
to strengthen the resulting MIP formulations of the cut generation problem. We observe that
the cut generation subproblems in the proposed algorithm have similar structure with those
encountered in solving the related multivariate CVaR-constrained optimization model. The

123



Ann Oper Res (2017) 259:259–294 263

cut generation problem for this related model has been identified as the major bottleneck
in earlier work and progress has been made in strengthening the corresponding formula-
tions under the general probability case. Recognizing the importance of reducing the cut
generation solution times, we utilize the RLT technique to obtain further stronger and com-
putationally more efficient cut generation formulations for optimization under multivariate
CVaR constraints, especially for the equal probability case. Note that the equiprobable case
is of particular importance for theMonte Carlo sampling-based stochastic optimization mod-
els. While similar bilinear formulations and their weak linearizations exist in the literature
for the CVaR-constrained optimization model, our work is a first in observing that these for-
mulations are amenable to significant strengthening using the RLT reformulations and other
polyhedral developments we provide. This observation in turn speeds up the overall solution
time considerably as we show in our extensive computational study.

1.2 Outline

The rest of the paper is organized as follows. In Sect. 2,we introduce the newworst-caseCVaR
optimization model and provide some analytical results to highlight the appropriateness of
the proposed modeling approach. This section also presents a cut generation algorithm and
effective mathematical programming formulations of the original optimization problem and
the corresponding cut generation problems for some special cases. We describe how to apply
some of these algorithmic features to the multivariate CVaR-constrained models in Sect. 3.
Section 4 gives a hybrid model that includes both the multivariate CVaR-based constraints
and objective. We give a unified methodology that solves the hybrid model, integrating the
algorithmic developments in Sects. 2 and 3. Section 5 is dedicated to the computational study,
while Sect. 6 contains concluding remarks.

2 Worst-case CVaR optimization model

In our study, we consider a multicriteria decision making problem where d random per-
formance measures of interest associated with the decision vector z are represented by the
random outcome vector G(z) = (G1(z), . . . ,Gd(z)). All random variables in this paper
are assumed to be defined on some finite probability spaces; we simplify our exposition
accordingly. Let (Ω, 2Ω,P) be a finite probability space with Ω = {ω1, . . . , ωn} and
P(ωi ) = pi , i = 1, . . . , n. In particular, denoting the set of feasible decisions by Z , the
random outcomes are determined according to the outcome mapping G:Z × Ω → Rd , and
the random outcome vector G(z):Ω → Rd is defined by G(z)(ω) = G(z, ω) for all ω ∈ Ω .
For a given elementary event ωi the mapping gi :Z → Rd is defined by gi (z) = G(z, ωi ).
LetC ⊂ Rd+ be a polyhedron of scalarization vectors, each component of which corresponds
to the relative importance of each criterion. We naturally assume, without loss of generality,
that C is a subset of the unit simplex, C f , i.e., C ⊆ C f := {c ∈ Rd+ | ∑i∈[d] ci = 1}.

Before proceeding to give our definitions and models, we need to make a note of some
conventions used throughout this paper, and recall a basic definition. The set of the first
n positive integers is denoted by [n] = {1, . . . , n}, while the positive part of a number
x ∈ R is denoted by [x]+ = max(x, 0). We assume that larger values of random variables
are preferred. We quantify the risk associated with a random variable via a risk measure
(specifically, CVaR) where higher values correspond to less risky random outcomes. In this
context, risk measures are often referred to as acceptability functionals. Our presentation
follows along the lines of Pflug and Römisch (2007) and Noyan and Rudolf (2013). Recall
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that for a univariate random variable X with (not necessarily distinct) realizations x1, . . . , xn
and corresponding probabilities p1, . . . , pn , the conditional value-at-risk at confidence level
α ∈ (0, 1] is given by (Rockafellar and Uryasev 2000)

CVaRα(X) = max

{

η − 1

α
E ([η − X ]+) : η ∈ R

}

(1)

= max

⎧
⎨

⎩
η − 1

α

∑

i∈[n]
piwi :wi ≥ η − xi , ∀ i ∈ [n], w ∈ Rn+, η ∈ R

⎫
⎬

⎭

(2)

= max
k∈[n]

⎧
⎨

⎩
xk − 1

α

∑

i∈[n]
pi [xk − xi ]+

⎫
⎬

⎭
, (3)

where the last equality follows from the well known result that the maximum in definition (2)
is attained at the α-quantile, which is known as the value-at-risk (VaR) at confidence level
α (denoted by VaRα(X)) and that VaRα(X) = xk for at least one k ∈ [n]. For risk-averse
decision makers typical choices for the confidence level are small values such as α = 0.05.
Note that CVaRα(X), as defined in (1), is concave in X . For example, suppose that the random
variable X represents the return of an investment and its realizations are equally likely. In
this context, larger values are preferred, and VaRα(X) provides a lower bound on the return
that is exceeded with a high probability of 1 − α while CVaRα(X) measures the severity of
the return if it is no larger than VaRα(X). When α = k/n for some k ∈ [n], VaRα(X) is
equal to the kth smallest realization and CVaRα(X) is the average of the k smallest (least
favorable) realizations no larger than VaRα(X).

The significance of modeling robustness against the ambiguity and inconsistency in rel-
ative weights motivates us to introduce a new robust optimization model for the stochastic
multicriteria decision making problem of interest. To model the risk aversion of the decision
makers, we use CVaR as the acceptability functional. In particular, we focus on the recently
introduced worst-case multivariate CVaR (Rüschendorf 2013) with respect to the specified
scalarization set C , which we review next.

Definition 2.1 (Worst-casemultivariate polyhedralCVaR)LetXbe ad-dimensional random
vector and C ⊆ C f a set of scalarization vectors. The worst-case multivariate polyhedral
CVaR (WCVaR) at confidence level α ∈ (0, 1] with respect to C is defined as

WCVaRC,α(X) = min
c∈C CVaRα

(
c�X

)
. (4)

Following a risk-averse approach, we propose to optimizeWCVaRC,α for a given confidence
level α ∈ (0, 1] and a scalarization set C , and introduce a new class of robust multicriteria
optimization problems of the general form

(W-CVaR) : max
z∈Z min

c∈C CVaRα

(
c�G(z)

)
. (5)

We note that the proposed risk-averse (W-CVaR) problem features the risk-neutral ver-
sion, proposed in Hu and Mehrotra (2012), as a special case when α = 1. Another special
case appears in the literature (Ehrgott 2005) for a sufficiently small value of α (corresponding
to the worst-case); it optimizes the worst value of a particular weighted sum over the set of
scenarios. This robust version of the weighted sum scalarization problem is clearly a special
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case of (W-CVaR) if we assume that all scenarios are equally likely, α = 1/n, and there is
a single scalarization vector in the scalarization set C .

It is important to note that the major difficulty of the proposed optimization prob-
lem (W-CVaR), and the related models in the literature, stems from the presence of
the joint acceptability functional CVaRα(c�G(z)). One might wonder why an alternative
model that maximizes the scalarization of component-wise acceptability functionals, i.e.,
maxz∈Z minc∈C

∑
i∈[d] ci CVaRα(Gi (z)) is not preferred. After all, this approachwould lead

to more tractable reformulations; for example, the alternative model can be formulated as
a linear program when there is no integrality restriction on the decision vector z, Z is a
polyhedral set, and the mapping gi (z) is linear in z for all i ∈ [n]. However, such a model
completely ignores the correlation between the random variables Gi (z), i ∈ [d]. The worst
α proportion of scenarios with respect to one criterion would most likely not coincide with
the worst α proportion of scenarios with respect to the other criteria, except for the very
trivial case when Gi (z), i ∈ [d], are comonotone random variables. Therefore, using the
aforementioned alternative modeling approach could only be justified to capture the multi-
variate risk in the trivial case when the worst-case scenarios of the multiple random outcomes
coincide, which does not appear to be the typical situation in optimization with conflicting
criteria. In all other cases, it would be a conservative approximation. In this paper, we are
interested in exact models and methods that optimize a multivariate risk measure based on
the joint behavior of the random outcomes of interest.

In the remainder of this section, we first provide some analytical results to highlight the
appropriateness of the proposed model (Sect. 2.1). Then, in Sect. 2.2, we develop methods
to solve this new class of problems.

2.1 Coherence and stochastic Pareto optimality

We first analyze the properties ofWCVaRC,α as a risk measure and then show that an optimal
solution of (W-CVaR) is Pareto optimal according to a certain stochastic dominance relation.

Desirable properties of risk measures have been axiomatized starting with the work of
Artzner et al. (1999), inwhich the concept of coherent riskmeasures for scalar-valued random
variables is introduced. There are several approaches to define the concept of coherency for
the vector-valued random variables (see, e.g., Jouini et al. 2004; Burgert and Rüschendorf
2006; Rüschendorf 2013; Hamel et al. 2013). For example, Hamel et al. (2013) introduce
set-valued conditional value-at-risk for multivariate random variables; using such set-valued
functionals as risk measures is appropriate for financial market models with transaction
costs (see, e.g., Jouini et al. 2004). Our approach is more aligned with the studies which
consider multivariate risk measures that map a random vector to a scalar value; in particular,
we consider the following definition of coherence in the multivariate case (Ekeland and
Schachermayer 2011).

We say that a functional ρ: L∞(Ω, 2Ω,P;Rd) → R mapping a d-dimensional random
vector to a real number is coherent in dimension d (in otherwords,ρ is a coherent acceptability
functional in dimension d , equivalently, that −ρ is a coherent risk measure in dimension d),
if ρ has the following properties (for all d-dimensional random vectors V, V1, V2):

(i) Normalized ρ(0) = 0.
(ii) Monotone V1 ≤ V2 ⇒ ρ(V1) ≤ ρ(V2).
(iii) Positive homogeneous ρ(λV) = λρ(V) for all λ > 0.
(iv) Superadditive ρ(V1 + V2) ≥ ρ(V1) + ρ(V2).
(v) Translation invariant (equivariant) ρ(V + λe) = ρ(V) + λ for all λ ∈ R.
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The constant vector e denotes the vector of ones (1, 1, . . . , 1). It is easy to see that for
d = 1 the definition coincideswith the notion of coherence for scalar-valued randomvariables
(Artzner et al. 1999); we remind the reader that we provide the definition for acceptability
functionals, along the lines of Pflug and Römisch (2007). In the monotonicity property (ii),
we consider the usual component-wise ordering; i.e., V1 ≤ V2 if V1( j) ≤ V2( j) for all
j ∈ [d].

The next result indicates that the proposed risk measure is of particular importance since
it satisfies the desirable properties axiomatized in the above definition of coherence.

Proposition 2.1 Consider a one-dimensional mapping ρ and a scalarization set C ⊆ C f ,
and let ρC (X) = min

c∈C ρ(c�X) for a d-dimensional random vector X. If ρ is a coherent

acceptability functional (−ρ is a coherent risk measure), then ρC (X) denoting the worst-
case functional in dimension d (with respect to C) is also coherent.

Proof It is easy to verify that ρC is normalized, monotone, and positive homogeneous.
To show that ρC is superadditive, let us consider two d-dimensional random vectors V1

and V2. Then, by the supperadditivity of ρ and the minimum operator, we have ρC (V1 +
V2) = minc∈C ρ(c�(V1 + V2)) ≥ minc∈C (ρ(c�V1) + ρ(c�V2)) ≥ minc∈C ρ(c�V1) +
minc∈C ρ(c�V2) = ρC (V1) + ρC (V2). The translation invariance of ρC follows from the
assumptions that

∑
j∈[d] c j = 1 and ρ is translation invariant: for any constant λ, ρC (V +

λe) = minc∈C ρ(c�(V +λe)) = minc∈C ρ(c�V +λ) = minc∈C ρ(c�V)+λ = ρC (V)+λ.
�

We note that one can also consider a stronger notion of translation invariance in condition
(v) of the above definition of coherence; for example, Burgert and Rüschendorf (2006) state it
as follows: ρ(V +λe j ) = ρ(V)+λ for all j ∈ [d] and λ ∈ R, where e j is the standard basis
vector (1 in the j th component, 0 elsewhere). Rüschendorf (2013) claims that ρC (X) is coher-
ent when ρ is a coherent acceptability functional, even with the above mentioned stronger
translation invariance property. However, this claim is not correct even for the unit simplex
(C = C f ), as we explain next. Since ρ(c�V) is concave in c, the minimum in the definition
of ρC (V) is attained at an extreme point of C , i.e., ρC (V) = min{ρ(V1), ρ(V2), . . . , ρ(Vd)}
if C is a unit simplex. Suppose that ρ(Vj ), j ∈ [d], are not all equal, which implies
that there exists an index j∗ ∈ [d] such that ρC (V) < ρ(Vj∗). Then, for any λ > 0, by
the monotonicity of ρ, we have ρ(V + λe j∗) = min{min j∈[d]\{ j∗} ρ(Vj ), ρ(Vj∗ + λ)} =
min j∈[d]\{ j∗} ρ(Vj ) = ρC (V) < ρ(Vj∗) < ρ(Vj∗ + λ) = ρ(Vj∗) + λ. This provides an
example where ρC (V + λe j ) �= ρC (V) + λ for all j ∈ [d] and λ ∈ R.

We next discuss the Pareto efficiency/optimality of the solutions of (W-CVaR). For
deterministicmultiobjective optimization problems, the concept of Pareto optimality is well-
known and it defines a dominance relation to compare the solutions with respect to the
multiple criteria. It is natural to consider the “non-dominated” solutions as potentially good
solutions. Here, we recall two widely-used Pareto optimality concepts:

• A point z∗ ∈ Z is called Pareto optimal if there exists no point z ∈ Z such that

G j (z) ≥ G j (z∗) for all j ∈ [d] and G j (z) > G j (z∗) for at least one index j ∈ [d].
(6)

• A point z∗ ∈ Z is called weakly Pareto optimal if there exists no point z ∈ Z such that

G j (z) > G j (z∗) for all j ∈ [d]. (7)

In contrast to the deterministic case, in a stochastic context there is no single widely-
adopted concept of Pareto optimality. The challenge stems from the stochasticity of the
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criteria; G1(z), . . . ,Gd(z) are in general random variables for any decision vector z ∈ Z ,
and one should specify how to compare solutions in terms of these random objective criteria.
To this end, in this paper, we use the stochastic dominance rules and introduce stochastic
dominance-based Pareto optimality concepts below for stochastic multiobjective optimiza-
tion problems. For k ∈ N0 = {0, 1, . . .}, let us denote the kth degree stochastic dominance
(kSD) relation by�(k); we refer the reader to Appendix A for a brief review of these relations
(see, also, Ogryczak and Ruszczyński 2001).

Definition 2.2 (Stochastic dominance-based Pareto optimality) A point z∗ ∈ Z is called
kSD-based Pareto optimal for some k ∈ N0 if there exists no point z ∈ Z such that

G j (z) �(k) G j (z∗) for all j ∈ [d] and G j (z) �(k) G j (z∗) for at least one index j ∈ [d].
(8)

Definition 2.3 (Stochastic dominance-based weak Pareto optimality) A point z∗ ∈ Z is
called weakly kSD-based Pareto optimal for some k ∈ N0 if there exists no point z ∈ Z such
that

G j (z) �(k) G j (z∗) for all j ∈ [d]. (9)

These stochastic Pareto optimality concepts are based on comparing the random variables
G j (z) and G j (z∗) [in relations (6) and (7)] using a univariate stochastic dominance rule for
each criterion j ∈ [d]. Such a component-wise dominance relation provides a natural and an
intuitive approach for extending the concept of traditional Pareto optimality to the stochastic
case. A closely related but slightly different notion of efficiency based on the realizations
under each scenario is presented in Ben Abdelaziz (2012). Alternatively, one can consider
a multivariate stochastic dominance relation as in Ben Abdelaziz et al. (1995). However,
multivariate stochastic dominance relations are very restrictive (see, e.g., Müller and Stoyan
2002) and finding a non-dominated solution according to such amultivariate relationmay not
even be possible. For other generalizations of the Pareto efficiency concept to multiobjective
stochastic problems we refer to Ben Abdelaziz (2012).

We next focus on the zeroth-order stochastic dominance (ZSD) rule (also known as state-
wise dominance) defined in Appendix A, and present a close analogue of Theorem 2.2 in
Hu and Mehrotra (2012), which provides some managerial insights about our new model
(W-CVaR).

Proposition 2.2 Let C ⊆ C f and z∗ be an optimal solution of (W-CVaR).

(i) z∗ is a weakly ZSD-based Pareto optimal solution of (W-CVaR).
(ii) If for every c ∈ C we have c j > 0 for all j ∈ [d], then z∗ is a ZSD-based Pareto

optimal solution of (W-CVaR).
(iii) If z∗ is a unique optimal solution of (W-CVaR), then it is a ZSD-based Pareto optimal

solution of (W-CVaR).

Proof Let us assume for contradiction that z∗ is not a weakly ZSD-based Pareto optimal
solution of (W-CVaR). Then there exists ẑ ∈ Z such that G j (ẑ, ωi ) > G j (z∗, ωi ) for all
i ∈ [n] and j ∈ [d]. By the non-negativity of c ∈ C and the observation that ck > 0 for at least
one index k ∈ [d] for every c ∈ C , we have

∑
j∈[d] c jG j (ẑ, ωi ) >

∑
j∈[d] c jG j (z∗, ωi )

for all i ∈ [n] and c ∈ C . Then, by the monotonicity of CVaR it is easy to see that
CVaRα

(
c�G(ẑ)

)
> CVaRα

(
c�G(z∗)

)
holds for any α ∈ (0, 1] and c ∈ C . Therefore,

the following inequalities hold and result in a contradiction:
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max
z∈Z min

c∈C CVaRα

(
c�G(z)

)
≥ min

c∈C CVaRα

(
c�G(ẑ)

)

> min
c∈C CVaRα

(
c�G(z∗)

)
= max

z∈Z min
c∈C CVaRα

(
c�G(z)

)
.

This completes the proof of part (i). The proofs of parts (ii) and (iii) follow from similar
arguments. �

We would like to emphasize that the (W-CVaR) model keeps the stochastic nature of the
weighted-sum, and is novel in terms of incorporating the risk associated with the inherent
randomness. Therefore, it calls for the development of stochastic Pareto efficiency concepts
discussed above. In contrast, in some of the existing stochastic multiobjective optimization
models, summary statistics such as expected value, CVaR or variance are used as the multiple
criteria (see, for example, Köksalan and Şakar 2016 for a stochastic portfolio optimization
problem with three criteria: expected return, CVaR and a liquidity measure). Using these
summary statistics, the resulting problem becomes a deterministic multicriteria optimiza-
tion problem for which the well-defined deterministic Pareto optimality concepts can be
applied. One method of obtaining Pareto optimal solutions is to scalarize these multiple
criteria using a single weight vector in the scalarization set C . By heuristically searching
over C using the weighted Tchebycheff program, multiple solutions in the deterministic
efficient frontier are generated, and then an interactive method is employed for the decision
makers to choose among these solutions. To illustrate this approach, consider a modifica-
tion of the portfolio optimization problem in Köksalan and Şakar (2016), where G1(z) is
the uncertain return of the portfolio and G2(z) is a random liquidity measure. Suppose that
two criteria are considered: CVaRα(G1(z)) and CVaRα(G2(z)). Thus, for a fixed c ∈ C ,
the objective is to maximize the scalarization of the component-wise acceptability func-
tionals, leading to the following problem: maxz∈Z {c1 CVaRα(G1(z)) + c2 CVaRα(G2(z))}.
In contrast, in our model, we search over c ∈ C , such that the worst-case multivariate
CVaR is maximized while considering the joint behavior of the random outcomes of interest:
maxz∈Z minc∈C {CVaRα(c1G1(z) + c2G2(z))}. First, note that the term in the minimization
in the (W-CVaR) model is different from the objective of the interactive approach, because
the order of CVaR and scalarization operations cannot be changed. Only for the special case
that the decision makers are risk-neutral (i.e., α = 1), the order of CVaR (expectation) and
scalarization operations can be changed. The stochastic multiobjective modeling approaches
based on component-wise risk measures (or acceptability functionals), such as the one pro-
posed by Köksalan and Şakar (2016), have the advantage of providing a set of non-dominated
solutions to choose from. In cases when there is a conflict or ambiguity in the decision mak-
ers’ preferences and the joint behavior of the random performance measures is of particular
interest, our model can be used to directly determine a single solution which optimizes the
worst-case CVaR performance of the scalarized random outcomes with respect to all the
possible choices of the preference weights; this set of possible preference weights of the
multiple criteria is closely related to the well-known uncertainty set in robust optimization
(see, e.g., Ben-Tal et al. 2009). The resulting single solution could be seen as a worst-case
compromise decision that could be used as a benchmark or an additional input to support the
decision making process.

2.2 Solution methods

In this section, we give reformulations and solutionmethods for (W-CVaR).We also provide
improved formulations for the important special case when each scenario has an equal prob-
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ability. Before proceeding to describe the solution methods we first show that (W-CVaR) is
a convex program under certain conditions.

Proposition 2.3 If Z is a convex set and G j (z) is concave in z ∈ Z for all j ∈ [d], then
(W-CVaR) is a convex program.

Proof It is sufficient to prove that the mapping z �→ min
c∈C CVaRα(c�G(z)) is concave. Recall

that by our assumptions c j is non-negative and G j (z) is concave in z ∈ Z for all j ∈ [d]
and c ∈ C . Since any non-negative combination of concave functions is also concave, the
mapping z �→ c�G(z) is concave for any c ∈ C . Then, by the monotonicity and concavity
of CVaR, the mapping z �→ CVaRα(c�G(z)) is concave, and the claim follows from the
superadditivity of the minimum operator. �

2.2.1 General probability case

We first observe that, for the concave outcomemappingsG j , j ∈ [d], the inner optimization
problem in (5) is a concave minimization over a convex set, which implies that an optimal
solution of the inner problem occurs at an extreme point of C . Let ĉ1, . . . , ĉN be the extreme
points ofC . Then, using the definition of CVaR given in (2), we can formulate (5) as follows:

max ψ (10a)

s.t. ψ ≤ η	 − 1

α

∑

i∈[n]
piw	i , ∀ 	 ∈ [N ] (10b)

w	i ≥ η	 − (ĉ	)�gi (z), ∀ 	 ∈ [N ], i ∈ [n] (10c)

z ∈ Z , w ∈ RN×n+ , η ∈ RN , ψ ∈ R. (10d)

Note that if the mapping gi (z) is linear in z for all i ∈ [n], Z is a polyhedral set, and z is
a continuous decision vector, then the formulation (10) is a linear program. Under certain
assumptions on the scalarization set, the number of extreme points of C may be polynomial
(we will discuss these cases in Sect. 2.2.2), and hence the resulting formulation (10) is
compact. However, in general, the number of extreme points, N , is exponential. Therefore,
we propose a delayed cut generation algorithm to solve (10). We start with an initial subset of
scalarization vectors ĉ1, . . . , ĉL and solve an intermediate relaxed master problem (RMP),
which is obtained by replacing N with L in (10). Solving the RMP provides us with a
candidate solution denoted by (z∗, ψ∗, w∗, η∗). At each iteration, we solve a cut generation
problem:

(CutGen − Robust) : min
c∈C CVaR

(
c�G(z∗)

)
.

If the optimal objective function value of the cut generation problem is not smaller than ψ∗,
then the current solution (z∗, ψ∗, w∗, η∗) is optimal. Otherwise, the optimal solution ct at
iteration t gives a violated inequality of the form ψ ≤ CVaRα((ct )�G(z)). We augment the
RMP by setting L ← L + 1, and ĉL+1 ← ct .

Observe that in the multivariate CVaR-constrained problems studied in Noyan and Rudolf
(2013) and Küçükyavuz and Noyan (2016), given a random benchmark vector Y, the cut
generation problems are given byminc∈C CVaR(c�G(z∗))−CVaR(c�Y) (wewill revisit this
cut generation problem in Sect. 3). Due to the similar structure, we can use the formulations
and enhancements given in Noyan and Rudolf (2013) and Küçükyavuz and Noyan (2016) to
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formulate the cut generation problem (CutGen − Robust) as a mixed-integer program. Let
X = G(z∗) with the realizations x1, . . . , xn (i.e., xi = gi (z), i ∈ [n]). The representation of
CVaR in (3) leads to the following formulation of (CutGen − Robust):

min μ (11a)

s.t. μ ≥ c�xk − 1

α

∑

i∈[n]
pi
[
c�xk − c�xi

]

+ , ∀ k ∈ [n] (11b)

c ∈ C, μ ∈ R. (11c)

The shortfall terms [c�xk−c�xi ]+ in inequalities (11b) present a computational challenge.
Introducing additional variables and constraints, we can linearize these terms using big-M
type of constraints, and obtain an equivalent MIP formulation similar to the one proposed
by Noyan and Rudolf (2013) for the cut generation problems arising in optimization under
multivariate polyhedral CVaR constraints. However, the big-M type constraints may lead
to weak LP relaxation bounds and computational difficulties. In order to deal with these
difficulties, Küçükyavuz and Noyan (2016) propose an improved model based on a new
representation of VaRα , which we describe next. Let

Mik = max

{

max
c∈C

{
c�xk − c�xi

}
, 0

}

and Mki = max

{

max
c∈C

{
c�xi − c�xk

}
, 0

}

.

Also let Mi∗ = maxk∈[n] Mik and M∗i = maxk∈[n] Mki for i ∈ [n], and M̃ j = max{c j :
c ∈ C} for j ∈ [d]. Then, the following inequalities hold for any c ∈ C :

z ≤ c�xi + βi Mi∗, ∀ i ∈ [n] (12a)

z ≥ c�xi − (1 − βi )M∗i , ∀ i ∈ [n] (12b)

z =
∑

i∈[n]
ξ�
i xi , (12c)

ξi j ≤ M̃ j ui , ∀ i ∈ [n], j ∈ [d] (12d)
∑

i∈[n]
ξi j = c j , ∀ j ∈ [d] (12e)

∑

i∈[n]
piβi ≥ α, (12f)

∑

i∈[n]
piβi −

∑

i∈[n]
piui ≤ α − ε, (12g)

∑

i∈[n]
ui = 1, (12h)

ui ≤ βi , ∀ i ∈ [n] (12i)

β, u ∈ {0, 1}n, ξ ∈ Rn×d+ , z ∈ R, (12j)

if and only if z = VaRα(c�X). Here ε is a sufficiently small positive constant to
ensure that the constraint (12g) is equivalent to the strict inequality

∑
i∈[n] piβi −∑

i∈[n] piui < α. Denoting the finite set of all non-zero probabilities of events by K =
{
P(S): S ∈ 2Ω, P(S) > 0

}
it is easy to see that ε can be taken as any number that satisfies

0 < ε < min {α − κ: κ ∈ K ∪ {0}, κ < α}. For example, for the equiprobable case and
α = k/n for some k ∈ [n], we let 0 < ε < 1

n . The logical variable ui = 1 only if the i-th
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scenario corresponds to VaRα(c�X), the logical variable βi = 1 only if c�xi ≤ VaRα(c�X),
and the variable ξi j = c j only when ui = 1 for all i ∈ [n] and j ∈ [d].

Based on the representation of VaRα(c�X) given in (12), we propose an alternative for-
mulation for (CutGen − Robust):

min z − 1

α

∑

i∈[n]
pivi (13a)

s.t. (12a)−(12i), (13b)

vi − δi = z − c�xi , ∀ i ∈ [n] (13c)

vi ≤ Mi∗βi , ∀ i ∈ [n] (13d)

δi ≤ M∗i (1 − βi ), ∀ i ∈ [n] (13e)

β, u ∈ {0, 1}n, ξ ∈ Rn×d+ , z ∈ R, (13f)

c ∈ C, v, δ ∈ Rn+. (13g)

In this formulation, it is guaranteed that vi = [z − c�xi ]+ and δi = [c�xi − z]+ for i ∈ [n].

2.2.2 Equal probability case

To keep our exposition simple, we consider confidence levels of the form α = k/n for some
k ∈ [n], and refer to Noyan and Rudolf (2013) for an extended MIP formulation with an
arbitrary confidence level. In this case, an alternative formulation of (CutGen − Robust),
adapted from Noyan and Rudolf (2013), is given by the bilinear program

min
1

k

∑

i∈[n]

∑

j∈[d]
xi j c jβi

s.t.
∑

i∈[n]
βi = k,

β ∈ [0, 1]n, c ∈ C.

Note that we can relax the integrality of β in this formulation, which follows from the obser-
vation that in the special case of equal probabilities and α = k/n, CVaRα(c�X) corresponds
to the weighted sum of the smallest k out of n realizations (c�xi , i ∈ [n]). UsingMcCormick
envelopes (McCormick 1976), we can linearize the bilinear terms c jβi in the objective func-
tion. Introducing the additional variables γi j = c jβi , for all i ∈ [n] and j ∈ [d], an equivalent
MIP formulation is stated as:

min
1

k

∑

i∈[n]

∑

j∈[d]
xi jγi j (14a)

s.t. γi j ≤ c j , ∀ i ∈ [n], j ∈ [d] (14b)

γi j ≥ c j − M̃ j (1 − βi ), ∀ i ∈ [n], j ∈ [d] (14c)

γi j ≤ M̃ jβi , ∀ i ∈ [n], j ∈ [d] (14d)
∑

i∈[n]
βi = k, (14e)

β ∈ {0, 1}n, γ ∈ Rn×d+ , c ∈ C. (14f)
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For i ∈ [n], if βi = 1, then constraint (14b) together with (14c) enforces that γi j = c j , for
all j ∈ [d]. For i ∈ [n], if βi = 0, then constraint (14d) enforces γi j to be 0.

Let P := {(γ ,β, c) ∈ Rn×d+ × {0, 1}n × C | γ = βc�,
∑

i∈[n] βi = k}. Then we have
minc∈C CVaRα(c�X) = min(γ,β,c)∈P

∑
i∈[n]

∑
j∈[d] xi jγi j . Note that the structure of P

also appears in pooling problems (c.f., Gupte et al. 2017). The next proposition gives the
convex hull of P for a special choice of C using the reformulation-linearization technique
(RLT) (Sherali and Adams 1994).

Proposition 2.4 (Sherali et al. 1998; Gupte et al. 2017) If C is a unit simplex (i.e., C = C f ),
then the convex hull of P is described by:

conv(P) =
{
(γ ,β, c) ∈ Rn×d+ × [0, 1]n × C | γi j ≤ c j , i ∈ [n], j ∈ [d],

∑

j∈[d]
γi j = βi , iε[n],

∑

i∈[n]
γi j = kc j , jε[d]

⎫
⎬

⎭
.

Using the fact that C ⊆ C f and Proposition 2.4, we can strengthen the formulation (14)
as follows:

min
1

k

∑

i∈[n]

∑

j∈[d]
xi jγi j (15a)

s.t. γi j ≤ c j , ∀ i ∈ [n], j ∈ [d] (15b)
∑

j∈[d]
γi j = βi , ∀ i ∈ [n] (15c)

∑

i∈[n]
γi j = kc j , ∀ j ∈ [d] (15d)

(14c)−(14d), (15e)

c ∈ C, β ∈ {0, 1}n, γ ∈ Rn×d+ . (15f)

Note also that if C is the unit simplex (C = C f ), then the integrality restrictions on β can be
relaxed in (15) and the cut generation problem is an LP. However, recall that if C is the unit
simplex, then the extreme points of C are polynomial, given by ĉ	 = e	 for 	 ∈ [d]. Hence,
in this case, the overall problem formulation (10) itself is a compact LP when the mapping
gi (z) is linear in z for all i ∈ [n], and Z is a polyhedral set without integrality restrictions,
even under general probabilities.

Furthermore, using the additional information on the structure of the scalarization polytope
C and the RLT technique, we can obtain stronger formulations. Suppose that C = {c ∈
Rd+ |Bc ≥ b}, for a given r × d matrix B and b = (b1, . . . , br ). Let B	 be the 	th row of B.
Then, we can strengthen the formulation (14) as follows:

min
1

k

∑

i∈[n]

∑

j∈[d]
xi jγi j (16a)

s.t.
∑

j∈[d]
B	jγi j − b	βi ≤ B	c − b	, ∀ i ∈ [n], 	 ∈ [r ] (16b)

∑

j∈[d]

∑

j∈[d]
B	jγi j − b	βi ≥ 0, ∀ i ∈ [n], 	 ∈ [r ] (16c)

123



Ann Oper Res (2017) 259:259–294 273

∑

i∈[n]
(
∑

j∈[d]
B	jγi j − b	βi ) = k(B	c − b	), ∀ 	 ∈ [r ] (16d)

c ∈ C, β ∈ {0, 1}n, γ ∈ Rn×d+ . (16e)

It is known that if C = {c ∈ Rd+ |Bc ≥ b} is a d-simplex, then conv(P) = {(γ ,β, c) ∈
Rn×d+ × [0, 1]n ×C |(16b)−(16d)} (Gupte et al. 2017). Therefore, the LP relaxation of (16)
is integral in this case.

Remark 2.1 Note that if M̃ j = 1 for all j ∈ [d] (as is the casewhenC is the unit simplex), then
constraints (14c)–(14d) are implied by (15c)–(15d), and can be dropped from the formulation.
However, for the situations where M̃ j < 1 for some j ∈ [d], the constraints (14c)–(14d),
obtained by applying the RLT technique to the constraints c j ≤ M̃ j , j ∈ [d], can be useful
to reduce the solution time.

Remark 2.2 It is also possible to obtain stronger formulations of (12) by applying the RLT
technique for the general probability case. In particular, the RLT procedure based on the
constraint

∑
i∈[d] ci = 1 provides the following valid inequality

∑

j∈[d]
ξi j = ui , (17)

which can be added to the formulation (12).

Next we consider an important special case of C that applies to multicriteria optimization
when certain criteria are deemed more important than others. In particular, we study the case
where C contains ordered preference constraints that take the form

C =
⎧
⎨

⎩
c ∈ Rd+ |

∑

j∈[d]
c j = 1, c j ≥ c j+1, ∀ j ∈ [d − 1]

⎫
⎬

⎭
. (18)

If the setC has the ordered preference structure (18), then we are able to obtain the convex
hull of P , which is stated in the following result.

Proposition 2.5 If C is given by (18), then the convex hull of P is described by:

conv(P) =
{
(γ ,β, c) ∈ Rn×d+ × [0, 1]n × C | (15c), (15d), γi j ≥ γi j+1,

γi j − γi j+1 ≤ c j − c j+1, i ∈ [n], j ∈ [d − 1]} .

Proof First, we show that the extreme points of C are given by

ĉ1 = (1, 0, 0, . . . , 0)

ĉ2 =
(
1

2
,
1

2
, 0, . . . , 0

)

ĉ3 =
(
1

3
,
1

3
,
1

3
, . . . , 0

)

...

ĉd =
(
1

d
,
1

d
,
1

d
, . . . ,

1

d

)

.
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Let c̃ = (c̃1, c̃2, . . . , c̃d) be a feasible point of C , by definition, we have c̃1 ≥ c̃2 ≥ · · · ≥
c̃d . First, we show that c̃ j ≤ 1

j , for all j ∈ [d]. Suppose that there exists j ∈ [d] such that

c̃ j > 1
j , then we have

∑ j
i=1 c̃i ≥ j c̃ j > 1 since c̃i ≥ c j , for all i ∈ [ j − 1]; this results

in a contradiction. Hence, for any feasible point, we have c̃ j ≤ 1
j , for all j ∈ [d]. Next, let

λ j = j (c̃ j − c̃ j+1), for all j ∈ [d], where c̃d+1 = 0. Note that 0 ≤ λ j ≤ 1, for all j ∈ [d],
and

∑d
j=1 λ j = 1. We have c̃ = ∑d

j=1 λ j ĉ j , which indicates that any feasible point c̃ can

be represented as a convex combination of the points ĉ j , for all j ∈ [d]. As a result, C is a
(d − 1)-simplex, and the proposition follows similarly from Gupte et al. (2017). �
2.3 Finite convergence

In this section, we study the convergence of the proposed cut generation algorithm.

Proposition 2.6 The delayed cut generation algorithm described in Sect. 2.2 to solve
(W-CVaR) is finitely convergent.

Proof We show that given a solution to RMP we can find an optimal solution to the cut gen-
eration subproblem, which is an extreme point of C . As a result, the proposed cut generation
algorithm is finitely convergent, because there are finitely many extreme points of C . For the
general probability case, we can obtain such a vertex optimal solution by using the following
method: suppose that we solve one of the MIP formulations of (CutGen − Robust) and
obtain an optimal solution c∗. Let π be a permutation describing a non-decreasing ordering
of the realizations of the random vector c∗�X, i.e., c∗�xπ(1) ≤ · · · ≤ c∗�xπ(n), and define

k∗ = min

⎧
⎨

⎩
k ∈ [n]:

∑

i∈[k]
pπ(i) ≥ α

⎫
⎬

⎭
and K ∗ = {π(1), . . . , π(k∗ − 1)}.

Then, we can obtain the desired vertex solution ĉ by finding a vertex optimal solution of the
following linear program:

min
c∈C

1

α

[
∑

i∈K ∗
pic�xi +

(

α −
∑

i∈K ∗
pi

)

c�xπ(k∗)

]

.

This LP relies on the subset-based representation of CVaR (Theorem 1, Noyan and Rudolf
2013). The feasible set is the polytope C , so there exists a vertex optimal solution ĉ. It is easy
to show that ĉ is also an optimal solution of (CutGen − Robust). �

Furthermore, when equal probability is assumed, by solving the alternative cut generation
formulation (16) using a branch-and-bound (B&B) method, we are guaranteed to obtain a
desired vertex optimal solution c without solving an additional LP. To see this, note that once
the LP relaxation at a B&B node results in an integral β, the only remaining constraints
enforce c ∈ C .

3 Multivariate CVaR-constrained optimization model

In this section, we consider a related class of multicriteria decision making problems, where
the decision vector z is selected from a feasible set Z and associated random outcomes
are determined by the outcome mapping G : Z × Ω → Rd . We consider an arbitrary
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objective function f : Z �→ R and assume that a d-dimensional benchmark random vector
Y is available. We aim to find the best decision vector z for which the random outcome
vector G(z) is preferable to the benchmark Y with respect to the multivariate polyhedral
CVaR preference relation. Such multivariate CVaR-constrained optimization problems are
introduced in Noyan and Rudolf (2013). Given a polyhedron of scalarization vectorsC ⊆ C f

and a confidence level α ∈ (0, 1], the problem is of the general form:

max f (z) (19a)

s.t. CVaRα

(
c�G(z)

)
≥ CVaRα

(
c�Y

)
, ∀ c ∈ C (19b)

z ∈ Z . (19c)

The benchmark random vector can be defined on a different probability space, but in practical
applications it often takes the form Y = G(z̄), where z̄ is a benchmark decision.

Observe that (19b) contains infinitely many inequalities. Noyan and Rudolf (2013) show
that these inequalities can be replaced with those for a finite subset of scalarization vectors
corresponding to the vertices of a higher dimensional polyhedron. The authors propose a
delayed cut generation algorithm, which involves the solution of a relaxed master problem
(RMP-B) to obtain a candidate solution ẑ ∈ Z , and the following cut generation subproblem:

(CutGen − Benchmark) : min
c∈C CVaRα

(
c�X

)
− CVaRα

(
c�Y

)
, (20)

whereX = G(ẑ). If the optimal objective function value of (CutGen − Benchmark) is non-
negative, then ẑ is optimal, otherwise we obtain a solution c∗ ∈ C such that the corresponding
CVaR inequality in (19b) is violated. We augment RMP-B by adding this violated CVaR
constraint and resolve it. According to Noyan and Rudolf (2013), the main bottleneck of
this delayed cut generation algorithm is solving the cut-generation problem (20), since it is
generally nonconvex. Therefore, the main focus of this section is the cut generation problem.
Throughout the rest of this paper, we assume that Y is a random vector with (not necessarily
distinct) realizations y1, . . . , ym and corresponding probabilities q1, . . . , qm . As before, we
let gi (ẑ) = xi = (xi1, . . . , xid) for all i ∈ [n].

To solve (20), we first need to represent CVaRα(c�X) and CVaRα(c�Y) appropri-
ately. Using the LP representation (2) for CVaRα(c�Y), we can reformulate (CutGen−
Benchmark) as

min CVaRα

(
c�X

)
− η + 1

α

∑

l∈[m]
qlwl

s.t. wl ≥ η − c�yl , ∀ l ∈ [m] (21a)

w ∈ Rm+, η ∈ R, c ∈ C. (21b)

The minimization of the concave term CVaRα(c�X) causes computational difficulties. For
this cut generation problem, Küçükyavuz and Noyan (2016) introduce a MIP formulation
based on the VaR representation of CVaR (see (12)), which is given by

min z − 1

α

∑

i∈[n]
pivi − η + 1

α

∑

l∈[m]
qlwl (22a)

s.t. (13b)−(13e), (21a), (22b)

β, u ∈ {0, 1}n, ξ ∈ Rn×d+ , z, η ∈ R, (22c)

c ∈ C, v, δ ∈ Rn+, w ∈ Rm+. (22d)
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The authors demonstrate that this formulation,whichwe refer to as (MIP − CVaR), along
with computational enhancements, outperforms existingmodels for (CutGen − Benchmark)

under general probabilities. In this section, we consider the special case of equal probabilities,
and propose strengthened MIP formulations for the cut generation problems using the RLT
technique.

As in Sect. 2.2.2, to keep our exposition simple, we consider confidence levels of the
form α = k/n and assume that all the outcomes of X are equally likely. For this special
case, similar to the development in Sect. 2.2.2, Noyan and Rudolf (2013) give the equivalent
formulation below:

min
1

k

∑

i∈[n]
γ �
i xi − η + 1

α

∑

l∈[m]
qlwl (23a)

s.t. (14b)−(14e), (21a), (23b)

β ∈ {0, 1}n, γ ∈ Rn×d+ , c ∈ C, w ∈ Rm+, η ∈ R. (23c)

As before, M̃ j = max{c j : c ∈ C}. Suppose that the vertices of the polytope C is known
and given as {ĉ1, . . . , ĉN }. Then, we can simply set M̃ j = max

	∈[N ] ĉ	j . Furthermore, we can use

the RLT-based strengthening for (14b)–(14e) and obtain the following MIP formulation:

(MIP − Special) : min
1

k

∑

i∈[n]
γ �
i xi − η + 1

α

∑

l∈[m]
qlwl (24a)

s.t. (15b)−(15e), (21a), (24b)

β ∈ {0, 1}n, γ ∈ Rn×d+ , c ∈ C, w ∈ Rm+, η ∈ R.

(24c)

In addition, we can use the RLT technique to further strengthen this formulation using any
additional constraints in C as in (16); we provide some numerical results on the performance
of such strengthened versions in the computational study (Sect. 5.2).

From Proposition 2.4, we can obtain the minimum of CVaRα(c�X) by solving a linear
programwhenC is ad-simplex.However, even for the special case of unit simplex, constraints
(15b)–(15d) are not sufficient to describe the convex hull of the set of feasible solutions to
(24), due to the additional constraints (21a)–(21b) representing CVaRα(c�Y). To show this
and develop potentially stronger MIP formulations, we derive a class of valid inequalities
that describes facets of the convex hull of feasible solutions to (24c). Let

S :=
{

(γ , c,β, η, w) ∈ Rn×d+ × Rd+ × {0, 1}n × R × Rm+ |γ = βc�,
∑

j∈[d]
c j = 1,

∑

i∈[n]
βi = k, c�yl ≥ η − wl , ∀ l ∈ [m]

}

.

Proposition 3.1 For any i ∈ [n], s ∈ [m], and t ∈ [m]\{s}, the inequality
c�ys −

∑

j∈[d]

(
ys j − yt j

)
γi j ≥ η − ws − wt , (25)

is valid for S. In addition, inequality (25) defines a facet of conv(S) if and only if s ∈ [m], t ∈
[m]\{s} are such that ys j < yt j and ysi > yti for some i, j ∈ [d].
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Proof Suppose that βi = 0, then γi j = 0 for all j ∈ [d]. Hence, inequality (25) reduces to

c�ys ≥ η − ws − wt ,

which is valid since wt ≥ 0. Otherwise, suppose that βi = 1, then γi j = c j for all j ∈ [d],
and inequality (25) reduces to

c�yt ≥ η − wt − ws,

which is valid, because ws ≥ 0, for all s ∈ [m]. We provide the facet proof in Appendix B
(see Proposition B.2). �

Note that applying the RLT procedure directly to the additional constraints

c�yl ≥ η − wl , ∀ l ∈ [m], (26)

in the setS, would lead to additional bilinear terms ηβi andwlβi that will need to be linearized
by introducing additional variables and big-M constraints. The proposed inequalities (25) can
also be obtained by an indirect application of the RLT procedure as follows. Given i ∈ [n],
s ∈ [m], and t ∈ [m]\{s}, multiply constraint (26) for l = s with (1 − βi ), constraint (26)
for l = t with βi , constraint 0 ≥ −ws with βi and constraint 0 ≥ −wt with (1 − βi ), and
sum the resulting inequalities up to obtain inequality (25) (the undesirable nonlinear terms
cancel out with this selection of multipliers). It is interesting to note that such an application
of RLT yields facet-defining inequalities as claimed in Proposition 3.1.

Alternative VaR-based formulations. Here, without loss of generality, we assume that all
the realizations of c�X are non-negative (or equivalently, xi is non-negative for all i ∈ [n]).
Then, it is easy to show that (CutGen − Benchmark) can be formulated as follows:

min
1

k

∑

i∈[n]
θi − η + 1

α

∑

l∈[m]
qlwl

s.t θi ≥ c�xi − (1 − βi )Mi , ∀ i ∈ [n] (27a)
∑

i∈[n]
βi = k, (27b)

(21a), (27c)

c ∈ C, β ∈ {0, 1}n, θ ∈ Rn+, w ∈ Rm+, η ∈ R. (27d)

In this formulation, Mi is the largest possible value of θi (e.g., Mi = max
c∈C c�xi ). This new

formulation again follows from the observation that in the special case of equal probabilities
and α = k/n, CVaRα(c�X) corresponds to the weighted sum of the smallest k realizations
of c�X. In this special case, VaRα(c�X) corresponds to the kth smallest realization, and the
model guarantees that θi = c�xi if c�xi ≤ VaRα(c�X), and θi = 0 otherwise. However, this
MIP formulation is weak due to the big-M constraints (27a). Hence, we can take advantage
of the new representation of VaR given in (12) to develop a stronger MIP formulation:
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(MIP_VaR_Special) : min
1

k

∑

i∈[n]
θi − η + 1

α

∑

l∈[m]
qlwl (28a)

s.t. z ≤ c�xi + βi Mi∗, ∀ i ∈ [n]
(28b)

θi ≥ c�xi − (1 − βi )Mi , ∀ i ∈ [n]
(28c)

z ≥ θi , ∀ i ∈ [n]
(28d)

z =
∑

i∈[n]
ξ�
i xi , (28e)

∑

i∈[n]
ξi j = c j , ∀ j ∈ [d]

(28f)
∑

j∈[d]
ξi j = ui , ∀ i ∈ [n]

(28g)
∑

i∈[n]
βi = k, (28h)

(12d), (12h)−(12i), (21a), (28i)

c ∈ C, β, u ∈ {0, 1}n, w ∈ Rm+, η, z ∈ R, (28j)

ξ ∈ Rn×d+ , θ ∈ Rn+. (28k)

In this formulation, the variable z = VaRα(c�X) is represented by
∑

i∈[n]
ξ�
i xi = ∑

i∈[n]
uic�xi ,

and it is guaranteed that ξi j = c j ui for all i ∈ [n] and j ∈ [d]. These bilinear terms are
linearized by using the McCormick envelopes and their RLT strengthening based on only the
information that C is a subset of the unit simplex. Additional constraints on the scalarization
setC can be used to further strengthen the above formulation. Notice that different from (12),
this formulation includes the RLT strengthening equality (17) [or (28g)].

Finally, we note that (MIP_VaR_Special) can also be applied to solve (CutGen−
Robust) by dropping the variables and constraints associated with CVaRα(c�Y); leading to
enhanced versions of (13) for the equal probability case. We test its computational perfor-
mance in Sect. 5.2.

4 Hybrid model

In this section,we present a hybridmodel that includes both themultivariate CVaR constraints
and the robust objective based on theworst-caseCVaR.We show that the algorithms inSects. 2
and 3 can be integrated into a unified methodology to solve the hybrid model of the form

(Hybrid) : max
z∈Z min

c∈C CVaRα

(
c�X

)

s.t. CVaRα

(
c�G(z)

)
≥ CVaRα

(
c�Y

)
, ∀ c ∈ C. (29)
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For a given subset of scalarization vectors C̃ := {c̃1, · · · , c̃L̃ } ⊂ C a relaxed master
problem (RMP-H) is given by

max
z∈Z min

c∈C CVaRα

(
c�X

)
(30a)

s.t. CVaRα

((
c̃	
)�

G(z)
)

≥ CVaRα

((
c̃	
)�

Y
)

, ∀ 	 ∈ [L̃]. (30b)

We can represent the constraints (30b) by linear inequalities, leading to the following
equivalent reformulation of RMP-H:

max min
c∈C CVaRα

(
c�X

)

s.t. η̃r − 1

α

∑

i∈[n]
pi w̃ri ≥ CVaRα

((
c̃r
)� Y

)
, ∀ r ∈ [L̃]

w̃ri ≥ η̃r − (
c̃r
)� gi (z), ∀ r ∈

[
L̃
]
, i ∈ [n]

w̃ ∈ RL̃×n+ , η̃ ∈ RL̃+, z ∈ Z .

As discussed in Sect. 2.2, we can handle the maximin type objective function of interest
using a finitely convergent delayed cut generation algorithm. In this spirit, suppose now that
Ĉ = {ĉ1, . . . , ĉL } ⊂ C is a given subset of scalarization vectors used to calculate the worst-
case CVaR. In line with the formulation given in (10), RMP-H takes the following form:

max ψ (31a)

s.t. η̃r − 1

α

∑

i∈[n]
p̃i w̃ri ≥ CVaRα

((
c̃r
)� Y

)
, ∀ r ∈

[
L̃
]

(31b)

w̃ri ≥ η̃r − (
c̃r
)� gi (z), ∀ r ∈

[
L̃
]
, i ∈ [n] (31c)

ψ ≤ η	 − 1

α

∑

i∈[n]
piw	i , ∀ 	 ∈ [L], i ∈ [n] (31d)

w	i ≥ η	 −
(

ĉ	
)�

gi (z), ∀ 	 ∈ [L], i ∈ [n] (31e)

w̃ ∈ RL̃×n+ , w ∈ RL×n+ , η̃ ∈ RL̃+, ψ ∈ R, z ∈ Z . (31f)

Given a solution to the RMP-H (31), two types of cut generation problems are solved to
identify if the current solution is optimal or if there is a scalarization vector c ∈ C for which
at least one of the following constraints is violated: (10b) and (29). As discussed in Sect. 2.2,
for minimizing the worst-case CVaR, it is sufficient to consider the extreme points of C . On
the other hand, for the multivariate CVaR relation, it is sufficient to consider the finitely many
c vectors obtained as the projections of the vertices of the higher dimensional polyhedron
P(C, Y) given by (Noyan and Rudolf 2013)

P(C, Y) =
{
(c, η, w) ∈ C × R × Rm+:wl ≥ η − c�yl , l ∈ [m]

}
. (32)

Thus, generating the violated constraints associated with those particular vertex scalarization
vectors at each iteration guarantees the finite convergence of the delayed cut generation
algorithm of (Hybrid). In other words, the provable finite convergence depends on finding a
solution to the cut generation problems (CutGen − Robust) and (CutGen − Benchmark),
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which is an extreme point of C and the projection of a vertex of P(C, Y), respectively.
In Sect. 2.3, we discuss how to obtain a vertex optimal solution of (CutGen − Robust)
from an optimal solution obtained by solving one of its MIP formulations [such as (13)].
For obtaining the desired vertex optimal solution of (CutGen − Benchmark), we refer to
Noyan and Rudolf (2013).

Remark 4.1 The finitely convergent delayed cut generation algorithms for (W-CVaR) and
(Hybrid) are also valid even if we relax the assumption thatG j (z) is concave in z ∈ Z for all
j ∈ [d]. Under the more general setting, the claim that it is sufficient to consider the extreme
points of C for minimizing the worst-case CVaR follows from the finite representation of the
multivariate CVaR relation [see (32)] with Y ≡ 0. In this special case, it is easy to see that
the projections of the vertices of the polyhedron P(C, Y) in (32) coincide with the vertices
of the set C , as desired.

5 Computational study

In the first part of our computational study, we investigate the value of the proposed
(W-CVaR) model with respect a robust risk-neutral model and a multivariate CVaR-
constrained model. We also report on the performance of the cut generation algorithm for
the (W-CVaR) model. In the second part, we demonstrate the computational effectiveness
of the MIP formulations developed (in Sect. 3) for the cut generation problem arising in
multivariate CVaR-constrained optimization models.

5.1 Worst-case multivariate CVaR optimization

We explore the effectiveness of the proposed (W-CVaR) model by applying it to a home-
land security budget allocation (HSBA) problem (Hu et al. 2011). This problem studies the
allocation of a fixed budget to ten urban areas, which are classified in three groups: (1)
higher risk: New York; (2) medium risk: Chicago, San Francisco Bay Area, Washington
DC-MD-VA-WV, and Los Angeles-Long Beach; (3) lower risk: Philadelphia PA-NJ, Boston
MA-NH, Houston, Newark, and Seattle-Bellevue-Everett. The risk share of each area is
measured based on four criteria: (1) property losses, (2) fatalities, (3) air departures and
(4) average daily bridge traffic. To represent the inherent randomness a random risk share
matrix A : Ω → R4×10+ is considered, where Ai j denotes the proportion of losses in urban
area j relative to the total losses for criterion i . The set Z = {z ∈ R10+ : ∑ j∈[10] z j = 1}
represents all the feasible allocations and the associated random performance measures of
interest are specified based on a particular type of penalty function for allocations under the
risk share. The negatives of these budget misallocations associated with each criterion are
used to construct the random outcome vector G(z) = (G1(z), . . . ,G4(z)), as given below,
in order to be consistent with our setup where the larger values of the random variables are
preferred:

Gi (z) = −
∑

j∈[10]

[
Ai j − z j

]
+ , i ∈ [4].

Hu et al. (2011) model this HSBA problem using optimization under multivariate poly-
hedral SSD constraints based on two benchmarks: one based on average government
allocations (Department of Homeland Security’s Urban Areas Security Initiative)—
denoted by G(zG), and one based on the suggestions in the RAND report (Willis et al.
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2005)—denoted by G(zR). On the other hand, Noyan and Rudolf (2013) replace the
SSD constraints with CVaR-based ones, leading to the following optimization model:

max min
c∈C E

(
c�G(z)

)
(33a)

s.t. CVaRα

(
c�G(z)

)
≥ CVaRα

(
c�G(zR)

)
, ∀ c ∈ C (33b)

CVaRα

(
c�G(z)

)
≥ CVaRα

(
c�G(zG)

)
, ∀ c ∈ C (33c)

z ∈ Z . (33d)

We benchmark our model (W-CVaR), defined in (5), against two relevant existing models:
the first one, which we refer to as (B-CVaR) , is obtained from (33) by dropping (33c) (the
government benchmark is ignored for simplicity), and the second one is the risk-neutral
counterpart of our model (Hu and Mehrotra 2012):

(W-Exp) : max
z∈Z min

c∈C E
(

c�G(z)
)

.

We follow the data generation scheme described in Noyan and Rudolf (2013) and consider
their “base case” scalarization set given by C = CBase := {c ∈ R4+ : ∑

i∈[4] c j =
1, c j ≥ c∗

j − θ
3 , j ∈ [4]}, where c∗ = (1/4, 1/4, 1/4, 1/4) and θ = 0.25. Additionally,

we also consider a second choice of C , which involves the so-called ordered preferences
as follows: C = COrd := {c ∈ R4+ : ∑

i∈[4] c j = 1, c2 ≥ c1 ≥ c3 ≥ c4}. This
choice relies on the assumption that the second criterion (based on fatalities) is the most
important one, followed by the first criterion (based on property losses), the third criterion
(based on air departures) and the fourth criterion (based on average daily bridge traffic).
For further details on data generation, we refer to Hu et al. (2011) and Noyan and Rudolf
(2013).

In our benchmarking analysis, we consider the equal probability case, set n = 500 and
obtain the results for three models (W-CVaR) , (W-Exp) , and (B-CVaR) under each value
of α ∈ {0.05, 0.1, 0.15}. The results on allocation decisions—averaged over ten randomly
generated instances—are reported in Table 1. As seen from these results, for each setting,
(B-CVaR) provides solutions that allocate most of the budget (at least 51%) to the area
with the highest risk (New York). This is primarily due to that fact that New York has a
large (58.61%) allocation in the RAND benchmark. On the other hand, the budget percent-
age allocated to the five urban areas with lower risk cities is less than 20 and 12 for the
scalarization sets CBase and COrd, respectively. Since the set COrd involves the scalariza-
tion vectors giving more priority to the second criterion (based on fatalities), (B-CVaR)

suggests to allocate even more budget to New York, the most populated area with a sig-
nificantly higher risk share associated with fatalities; for the raw data for fatalities and the
remaining three criterion see Table 1 in Hu et al. (2011). As expected, the allocation deci-
sions obtained by (B-CVaR) with benchmarking constraints are sensitive to the particular
benchmark allocations. On the other hand, the robust risk-neutral model (W-Exp) provides
a more “averaged” solution compared to (B-CVaR) and (W-CVaR) . For both choices of
the scalarization set, (W-Exp) always allocates more budget to the areas with medium risk
compared to the other models. For example, for the instances with COrd and α = 0.05, it
allocates over five percent more budget to such areas than (W-CVaR) , and this behavior
is also observed under the other settings. The results of (W-Exp) are consistent with its
“risk-neutral” nature.
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Table 1 Model benchmarking results for the HSBA data with n = 500

Allocations (%) for areas with Allocations (%) for areas with

Higher risk Medium risk Lower risk Higher risk Medium risk Lower risk

Base polytope (CBase) Ordered preferences (COrd)

α = 0.05 (W-CVaR) 31.49 36.31 32.20 52.72 28.71 18.57

(B-CVaR) 51.50 29.00 19.50 56.92 31.29 11.79

α = 0.10 (W-CVaR) 31.01 36.58 32.41 51.71 30.02 18.27

(B-CVaR) 51.98 30.30 17.72 56.89 31.44 11.67

α = 0.15 (W-CVaR) 32.20 34.24 33.56 51.50 30.68 17.82

(B-CVaR) 51.50 31.16 17.34 56.82 31.35 11.83

(W-Exp) 32.15 37.82 30.03 49.18 34.15 16.67

RAND benchmark 58.61 34.31 7.07 58.61 34.31 7.07

Finally, we would like to emphasize that (W-CVaR) allocates more budget to the areas
with lower risk compared to the other models. In particular, for the instances with the scalar-
ization set CBase, (W-CVaR) allocates on average close to three percent more budget to
such areas than (W-Exp). These results are consistent with the risk-averse perspective of
(W-CVaR). Moreover, it is much less conservative than (B-CVaR) with respect to its allo-
cation to New York.

In summary, in the presence of multiple criteria with ambiguous weights, we recommend
the use of the risk-neutral model (W-Exp) if the decision makers are interested in the average
performance. This expectation-based decision making approach is justified if the uncertain
environment does not feature extreme events, or by the Law of Large Numbers if the same
decisions are made repeatedly under similar conditions. Otherwise, when it is essential to
hedge against a potentially high level of random variability, we recommend that the deci-
sion makers use (B-CVaR) or (W-CVaR) depending on the availability of a reasonable
benchmark random outcome vector—often based on a benchmark decision. More specifi-
cally, (B-CVaR) should be used in the presence of a benchmark to be outperformed, while
(W-CVaR) is the model of preference if the decision makers do not have an alternative
decision to benchmark against.

We next provide some insights about the solution times of our model (W-CVaR) for
the instances under consideration. All computations in this study are performed on a 64-bit
Windows Server 2012 R2 Datacenter with 2.40GHz Intel Xeon CPU E5-2630 processor
with 32 GB RAM, unless otherwise stated. The vertices of both types of scalarization sets
are known and there are only four of them. Thus, we could easily solve (W-CVaR) using the
compact LP formulation (10). For the HSBA instances with CBase, α = 0.1, and n = 500,
it takes at most 20 s to obtain an optimal solution; even for n = 5000 it takes at most
60 s. We observe that while the cut generation algorithm we propose is only essential for
cases where the number of extreme points of C is exponential, it could also be useful in
cases where the number of extreme points is small. For example, for CBase, the compact
LP takes 200 s on average for the three hardest instances with n = 5000 and α = 0.15,
whereas the cut generation algorithm takes on average 20 s, and generates only three extreme
points of CBase. This difference in solution times can be due to the large number of scenario
dependent constraints and variables introduced in (10b)–(10c) for each extreme point of
C .
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5.2 Multivariate polyhedral CVaR-constrained optimization

In this section, we perform a detailed analysis on comparing the computational performance
of the alternative MIP formulations of (CutGen − Benchmark) under equal probabilities.
Note that for the HSBA instances, Y is already well-defined since the benchmark allocations
are given. To obtain the realizations of the random vector X, we solve the corresponding
RMP-B once, and use its optimal solution to calculate the realizations of the associated
4-dimensional random vector X.

All the optimization problems are modeled with the AMPL mathematical programming
language. All runs were executed on four threads of a Lenovo(R) workstation with two Intel®
Xeon®2.30GHzCE5-2630CPUs and 64GBmemory running onMicrosoftWindowsServer
8.1 Pro x64 Edition. All reported times are elapsed times, and the time limit is set to 3600 s
unless otherwise stated. CPLEX 12.2 is invoked with its default set of options and parameters.
If optimality is not proven within the time allotted, we record both the best lower bound on
the optimal objective value (retrieved from CPLEX and denoted by LB) and the best available
objective value (denoted by UB). Since the optimal objective function can take any value
including 0, we report the following relative optimality gap: ROG = |LB−UB |/(|LB |).
We report the results averaged over two instances with different benchmarks (based on
Government and RAND benchmarks) for each combination of α and n. In all the tables in
this section, the “Time” column reports the average solution time and the “B&B Nodes”
column collects the average number of nodes used during the branch-and-cut process.

One can obtain slightly different versions of the presented MIP formulations by applying
the RLT techniques for different types of available information (such as the valid lower and
upper bounds on the scalarization vectors). We next provide the alternativeMIP formulations
of (CutGen − Benchmark) for which we report results in Tables 2 and 3.

• (MIP − CVaR) The best available benchmark model proposed by Küçükyavuz and
Noyan (2016); it is based on the VaR representation (12) and its formulation is given by
(22). For further computational enhancements, we added the valid inequality (17), and
deleted the set of big-M constraints (12d).

• (MIP_VaR_Special) This new formulation is also based on the VaR representation (12)
but it is valid for the case of equal probabilities. Its formulation is given in (28); (12d) is
deleted as in (MIP − CVaR).

• (MIP − Special) This new model is obtained by using the RLT-based strengthening
for (23). The formulation (24) involves the inequalities obtained by applying the RLT
procedure based on the unit simplex condition and the upper bounding constraints. We
also apply the RLT procedure based on the lower bounding information (c j ≥ Lc

j , j ∈
[d]), which provides the following valid inequalities:

γi j ≥Lc
jβi , ∀ i ∈ [n], j ∈ [d], (34)

−γi j + c j ≥Lc
j (1 − βi ), ∀ i ∈ [n], j ∈ [d]. (35)

Unless stated otherwise, (MIP − Special) refers to the formulation obtained by adding
the constraints (34)–(35) to (24).

From Remark 2.1 for the unit simplex case, we drop the redundant constraints (those
obtained from the upper and lower bounding information). In Table 4, “Base Special” refers
to the model obtained from (MIP − Special) by deleting the constraints (14c)–(14d) and
(34)–(35); it only involves the most effective constraints (obtained from the unit simplex
condition).
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Table 2 Computational performance of the alternativeMIPs for (CutGen − CVaR) under equal probabilities

n (MIP − CVaR) (MIP_VaR_Special) (MIP − Special)

Time B&B Time B&B Time B&B
[ROG] Nodes [ROG] Nodes [ROG] Nodes

Base polytope and α = 0.01

1500 705.8 1524.2 447.1 1781.9 3.1 0.1

2000 1225.1 3095.9 †1840 [50] 3510.0 6.4 0.0

2500 †2313 [50] 5439.5 †1846 [50] 2995.9 9.1 0.0

3000 †2275 [50.5] 3712.3 †1970 [50] 2658.1 10.1 0.0

5000 †[1415.8] 4594.0 †[56.2] 6170.4 34.7 0.0

Base polytope and α = 0.05

500 109.5 1422.6 109.6 1514.2 0.7 0.0

1000 1667.5 11,976.4 †1829 [50] 8823.9 2.9 0.0

1500 †[100.3] 14,627.9 †2316 [50] 7430.1 9.2 0.5

2000 †[451.9] 9696.0 †3071 [50] 8230.4 8.5 1.3

2500 †[174] 5998.7 †[57.2] 6928.7 †1837 [50] 2028.8

3000 � 1008.0 �[21.4] 4073.8 95.6 18.7

5000 †[145.5] 2901.7 †[77] 1332.6 †[50.2] 1047.9

Unit simplex and α = 0.01

500 96.1 546.5 60.5 441.8 4.7 73.9

1000 1122.2 4388.1 1130.6 4139.8 †2048 [42.6] 26,341.8

1500 †[129.6] 6424.9 †3245 [50] 7059.8 †[81.3] 29,985.7

2000 †[108.5] 5910.1 †[159.7] 5327.7 †[215.9] 22,330.7

2500 †[106.2] 1704.0 †[118.2] 4784.6 †[188] 19,352.6

Unit simplex and α = 0.05

300 211.4 2796.1 186.3 2833.4 †2001 [42.2] 71,177.5

500 †2425 [145.3] 17,459.6 1854.4 15,871.0 †[125.1] 54,251.9

† Time limit with integer feasible solution
� Time limit with no integer feasible solution
B&B nodes are reported in hundreds

From Table 2, we can see that (MIP − Special) solves a majority of the test instances in
the shortest amount of time. However, there are some instances (for example, for HSBA data,
unit simplex, α = 0.01, n = 1000, 1500) for which (MIP − Special) only solves one out
of the four instances within the time limit as opposed to (MIP_VaR_Special) which solves
three of the instances within the limit. In addition, both of the new formulations we propose
significantly outperform the existing formulation (MIP − CVaR) for the equal probability
case.

Furthermore, we can apply the computational enhancements proposed in Küçükyavuz and
Noyan (2016) to the proposed formulations, namely variable fixing, bounding and a class of
valid inequalities referred to as the ordering inequalities (on the β variables). The variable
fixing method recognizes scenarios which are guaranteed to be larger than VaR, and fixes the
corresponding β variables to zero. In particular, for each k ∈ [n], a set Lk := {i ∈ [n]\k :
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maxc∈C {c�(xi − xk)} < 0} (resp., Hk := {i ∈ [n]\k : maxc∈C {c�(xk − xi )} < 0}) is
defined to denote the scenarios that are guaranteed to return lower (resp., higher) scalarized
outcomes than scenario k. Note the correction in the definition of the set Lk (resp., Hk)
compared to that in Küçükyavuz and Noyan (2016), where we exclude scenario i with
maxc∈C {c�(xi − xk)} = 0 (resp., maxc∈C {c�(xk − xi )} = 0) from the set Lk (resp., Hk).
In addition, for the existing MIP (23) and (MIP − Special), we introduce upper and lower
bounds on CVaRα(c�X), for the others which involve the z decision variable (representing
the VaR) we introduce upper and lower bounds on VaRα(c�X). Table 3 summarizes our
computational experience with using these enhancements. The ‘Remaining Binary Var.’
column reports remaining percentage of binary variables after the preprocessing, and the ‘# of
Order. Ineq.’ column represents the number of ordering inequalities added to the formulations.
Observe that there is a significant reduction in the number of binary variables. Furthermore,
many ordering inequalities are added to strengthen the formulation. As a result, instances
that were not solvable to optimality by any of the methods (reported in Table 2) can now be
solved to optimality with at least one of the new formulations. We would also like to note that
the total time spent on preprocessing (for calculating the big-M coefficients and handling all
the enhancements—fixing, bounding, and ordering inequalities), which is not included in the
times reported, is negligible.

Next, we use the additional information on C to obtain stronger RLT formulations. Our
experiments are reported in Table 4, for the scalarization setsCBase andCOrd.We observe that
the RLT-based strengthening using only the unit simplex information (15b)–(15d), reported
in the column titled Base Simplex, is not very effective. Recall (Remark 2.1) that when there
exists an index j ∈ [d] such that M̃ j = max{c j : c ∈ C} < 1, the constraints (14c)–(14d)
are not redundant for (MIP − Special). In fact, for the HSBA instances, including these
inequalities in (MIP − Special) leads to a significant reduction in the computational time as
reported in the second column of Table 4. It is surprising to observe that (MIP − Special)
could solve some instances in very short CPU time, while it reaches the time limit when
(14c)–(14d) are dropped.

When we have the extreme points of C , we can easily obtain the upper and lower bounds
on the components of c. For COrd including the ordered preference constraints c j ≥ c j+1,
we obtain the corresponding inequalities obtained by using the RLT (see Proposition 2.5):

γi j ≥ γi j+1, ∀ i ∈ [n], j ∈ [d − 1], (36)

γi j − γi j+1 ≤ c j − c j+1, ∀ i ∈ [n], j ∈ [d − 1]. (37)

In addition, for this case, M̃ = (1, 1/2, 1/3, 1/4) and Lc = (1/4, 0, 0, 0). In our computa-
tional experiments reported in Table 4, we use the RLT strengthening of the upper bounding
inequalities and the ordered preference constraints defining CBase.

Table 4 demonstrates that the most effective solution method for cut generation under
equal probabilities is to use the formulation (MIP − Special) with all enhancements: fixing,
bounding, ordering inequalities on β, and the RLT-based strengthening using the additional
inequalities defining C .

6 Conclusions

In this paper, we study risk-averse models for multicriteria optimization problems under
uncertainty. First, we introduce amodel that optimizes theworst-case multivariate CVaR, and
develop a finitely convergent delayed cut generation algorithm for finite probability spaces.
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In addition, for the cut generation problem, which is in general a mixed-integer program, we
give a stronger formulation for the equiprobable case using the reformulation linearization
technique. Next, we observe that similar polyhedral enhancements are also useful for a related
class of multivariate CVaR-constrained optimization problems that has attracted attention
recently. Our computational study demonstrates the effectiveness of the proposed solution
methods for both classes of models.
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Appendix A: Stochastic dominance

In this section, we review the well-known stochastic dominance relations, which are essential
for the stochastic Pareto optimality definitions presented in Sect. 2.

The stochastic dominance relations are fundamental concepts in comparing random vari-
ables (Mann and Whitney 1947; Lehmann 1955) and have been widely used in economics
and finance (see, e.g., Levy 1992). Different from the approaches based on risk measures, in
a stochastic dominance based approach, the random variables are compared by a point-wise
comparison of some performance functions (constructed from their distribution functions
when the order is greater than zero). We note that the lower order dominance relations
(k = 0, 1, and 2) are the most common ones (referred to as ZSD, FSD, and SSD, respec-
tively). We provide the formal definitions below and refer the reader to Müller and Stoyan
(2002) and Shaked and Shanthikumar (1994) for further details.

• We say that a random variable X dominates another random variable Y in the zeroth
order if X ≥ Y everywhere, i.e., X (ω) ≥ Y (ω) for all ω ∈ Ω .

• An integrable random variable X dominates another integrable Y in the first order (or X
is stochastically larger than Y ) if F1(X, η) := P(X ≤ η) ≤ F1(Y, η) := P(Y ≤ η) for
all η ∈ R.

• For k ≥ 2 we say that a k-integrable random variable X (i.e., ∈ Lk) dominates another
k-integrable random variable Y in the kth order if Fk(X, η) ≤ Fk(Y, η) for all η ∈ R,
where Fk(X, η) = ∫ η

−∞ Fk−1(X, t) dt for all η ∈ R.
• For k = 0, if X (ω) > Y (ω) for all ω ∈ Ω , we will refer to the relation as “strong

ZSD” and denote it by X �(0) Y . For k ≥ 1, if all the inequalities Fk(X, η) ≤ Fk(Y, η)

are strict, then we refer to the relation as “strong kSD” and denote it by X �(k) Y . We
remark that the notion of “strong kSD” is not analogous to the notion of strict kSD, which
requires that at least one of the inequalities defining the dominance relation is strict.

Appendix B: A class of facets of conv(S)

Recall that

S :=
{

(γ , c,β, η, w) ∈ Rn×d+ × Rd+ × {0, 1}n × R × Rm+ | γ = βc�,
∑

j∈[d]
c j = 1,

∑

i∈[n]
βi = k, c�yl ≥ η − wl , ∀ l ∈ [m]

}

.
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Before we study the facets of conv(S), we first need to establish its dimension.

Proposition B.1 Conv(S) is a polyhedron with dimension n + d + m − 1.

Proof Note that conv(S) is a polyhedron, because β ∈ {0, 1}n . Next, we show that the
dimension of conv(S) is n + d +m − 1. Clearly, in the original constraints defining S, there
are two linearly independent equalities:

∑
j∈[d] c j = 1,

∑
i∈[n] βi = k. In addition, there are

nd equalities: γi j = c jβi , for all i ∈ [n] and j ∈ [d]. Hence, dim(conv(S)) ≤ n+m+d−1.
Consider the following set of points:

(
uve�

1 , e1, uv, 0, 0
)

∀ v ∈ [n],
(

u1e�
j , e j , u1, 0, 0

)
∀ j ∈ [d]\{1},

(
u1e�

1 , e1, u1, 0, el
)

∀ l ∈ [m],
(

u1e�
1 , e1, u1,−1, 0

)
,

where uv , for all v ∈ [n] are any affinely independent vectors with k elements equal to 1
and the remaining elements equal to 0. These vectors exist because the dimension of the
following system:

β ∈ {0, 1}n,
∑

i∈[n]
βi = k, (38)

is n − 1. Clearly, this set of points is feasible and affinely independent. In addition, the
cardinality of this set is n+m+d . Hence, dim(conv(S)) ≥ n+m+d−1, which completes
the proof.

Proposition B.2 For any i ∈ [n], s ∈ [m], and t ∈ [m]\{s}, inequality (25) is facet-defining
for conv(S) if and only if s ∈ [m], t ∈ [m]\{s} are such that ys j < yt j and ysi > yti for
some i, j ∈ [d].
Proof To show the necessity, we first note that if there exists a pair s ∈ [m], t ∈ [m]\{s}
such that ys j ≥ yt j or ys j ≤ yt j for all j ∈ [d], in other words, when the realizations under
a scenario are dominated by the realizations under another scenario, then the corresponding
inequality (25) is dominated. To see this, suppose that ys j ≤ yt j for all j ∈ [d] for some
pair ∀ s ∈ [m],∀ t ∈ [m]\{s}. Then the corresponding inequality (25) is dominated by
the original inequality c�ys ≥ η − ws , because the coefficients of γi j are yt j − ys j ≥ 0,
and γi j , wt ≥ 0. Now consider the case that ys j ≥ yt j for all j ∈ [d] for some pair
∀ s ∈ [m],∀ t ∈ [m]\{s}. Then the corresponding inequality (25) is dominated by the
original inequality c�yt ≥ η − wt . To see this, observe that we can rewrite inequality (25)
for this choice of s and t as, c�yt +∑

j∈[d](ys j − yt j )(c j − γi j ) ≥ η − wt − ws . It is now
easy to see that the inequality is dominated, because ys j − yt j ≥ 0, c j ≥ γi j and ws ≥ 0.

To show sufficiency, we need to show that for any given i ∈ [n], s ∈ [m], and t ∈ [m]\{s},
there are n + m + d − 1 affinely independent points that satisfy (25) at equality. From
the necessity condition, we only need to consider the cases for which there exists an index
j1 ∈ [d], such that ys j1 < yt j1 , and there exists an index j2 ∈ [d], such that ys j2 > yt j2 . In
order to simplify the notation, and without loss of generality, throughout the rest of the proof,
we let j1 = 1, and j2 = 2, or equivalently, ys1 < yt1, and ys2 > yt2.

First, we construct a set of points:

PT1
v =

(
uv ẽ�

v , ẽv, uv, ρ
1
v , ξ1v

)
, ∀ v ∈ [n], (39)
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where if uvi = 0, then ẽv = e1 and ρ1
v = ys1, else if uvi = 1, then ẽv = e2 and ρ1

v = yt2. In
addition, ξ1vs = ξ1vt = 0, and ξ1vl = max{M̃s, M̃t } for all v ∈ [n] and l ∈ [m]\{s, t}. Clearly,
the set of points defined in (39) are affinely independent feasible points, and satisfy (25) at
equality. Next, we construct a set of points:

PT2
j =

(
ũ je�

j , e j , ũ j , ρ
2
j , ξ

2
j

)
, ∀ j ∈ [d]\{1, 2}, (40)

where ũ j is any feasible point of (38) with ũ j i = 0 if ys j ≤ yt j , and ũ j i = 1 otherwise
(i.e., if ys j ≥ yt j ), for all j ∈ [d]\{1, 2}. In addition, ρ2

j = min{ys j , yt j }, for all j ∈
[d]\{1, 2}. Furthermore, ξ2js = ξ2j t = 0, and ξ2jl = max{M̃s, M̃t } for all j ∈ [d]\{1, 2} and
l ∈ [m]\{s, t}. It is easy to see that the set of points defined in (40) are feasible, affinely
independent from (39), and satisfy (25) at equality.

Furthermore, we construct the following set of points:

PT3
s =

(
ū1e�

1 , e1, ū1, yt1, ξ
3
s

)
(41a)

PT3
t =

(
ū2e�

2 , e2, ū2, ys2, ξ
3
t

)
(41b)

PT3
l = PT3

s + (0, 0, 0, 0, el) , ∀ l ∈ [m]\{s, t}, (41c)

where ū1 is any feasible point of (38) with ū1i = 0, and ū2 is any feasible point of (38) with
ū2i = 1. In addition, ξ3ss = yt1 − ys1, ξ3st = 0, and ξ3sl = max{M̃s, M̃t } for all l ∈ [m]\{s, t}.
Similarly, ξ3ts = 0, ξ3t t = ys2 − yt2, and ξ3tl = max{M̃s, M̃t } for all l ∈ [m]\{s, t}. Clearly,
the set of points defined by (41) are affinely independent feasible points which satisfy (25)
at equality.

Finally, we construct the single point:

PT4 =
(

u1c∗�
, c∗, u1, η

∗, ξ4
)

, (42)

where c∗ = (c∗
1, c

∗
2, 0, . . . , 0), and the parameters (c∗

1, c
∗
2, η

∗) are uniquely defined by the
following linear system:

c∗
1 + c∗

2 = 1

ys1c
∗
1 + ys2c

∗
2 = η∗

yt1c
∗
1 + yt2c

∗
2 = η∗,

or equivalently, c∗
1 = ys2−yt2

ys2−yt2+yt1−ys1
, c∗

2 = 1 − c∗
1, and 0 < c∗

1, c
∗
2 < 1. In addition,

ξ4s = ξ4t = 0, and ξ4l = max{M̃s, M̃t }, for all l ∈ [m]\{s, t}.
Clearly, PT4 is affinely independent from the points defined by (39), since the following

matrix:
⎡

⎣
1 0 ys1
0 1 yt2
c∗
1 c∗

2 η∗ = ys1c∗
1 + ys2c∗

2

⎤

⎦ , (43)

has full rank (due to yt2 < ys2). In addition, it is easy to check that (42) is affinely independent
from the points defined by (40) and (41). Furthermore, it is also a feasible point which satisfies
(25) at equality.

From (39)–(42), we obtain n + m + d − 1 affinely independent feasible points which
satisfy (25) at equality. Hence, inequalities (25) are facet defining. �
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