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Abstract The classic economic order quantitymodel assumes that purchasing cost should be
paid immediately after the delivery time. In practice, sometimes the vendors ask the buyers to
prepay the entire or a percentage of the purchasing cost before delivery time. In this paper the
buyer’s inventory control system for a decaying item under full prepayment scheme based on
various conditions consisting of (1) no shortage, (2) full backordering shortage is allowed and
(3) partial lost sale is permitted, are developed. Numerical analysis is provided to show the
performance of the model and some managerial insights are presented based on the proposed
solution technique and sensitivity analysis.

Keywords Inventory control · Economic order quantity · Decaying · Shortage ·
Full prepayment

1 Introduction and literature review

Managing the inventory is one of the most important and challenging decisions for any firm.
In the classic inventory models like classic EOQ model is implicitly assumed that the item
is non-decaying and the payments of purchasing cost are settled at receiving time (Harris
1990). Optimal order quantity is affected by two factors: (1) timing of the payment, (2)
customer’s reactions when the vendor faces shortage. Timing the payment of the purchasing
cost influences the strategies of inventory management. We have three possible different
situations with respect to paying time: (1) advanced payment, (2) payment at receiving time,
and (3) delayed payment. We can expect that advanced payment strategy is suggested by
vendors in exclusivemarkets and delayed or postponed payment can be offered in competitive
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markets. Advanced payment is one of the most secure and riskless methods of trading for
exporters and, consequently the least attractive one for buyers. The powerful vendors for
controlling the cash flow risks are interested to receive all of the payments in advance from
the buyers. This strategy is used for financing the procurement of parts used in production
or mitigating risk of canceling an order. In Iranian automobile industries, the full advanced
payment strategy iswidely used in practice in all sections (sale, service, spare part and survey)
and the customers should prepay the entire payment to manufactures before delivery time.
To persuade the buyers for full advanced payment, sometimes the vendors offer them a price
discount. Indian brick and tile industry and steel factories in Iran are as the examples of this
situation. Also many researchers studied the deterioration effects because of its importance
and significant influences on costs of inventory and management.

Here an EOQ model for decaying item when the entire purchasing cost is paid before
receiving the items is studied. For this problem, we can mention a distributer of drugs or
other deteriorating materials who wants to import them from a foreign country. In this case,
its exporter asks the distributer to pay the entire purchasing cost in advance prior to goods
are being shipped.

Many studies investigated the inventory control models of deteriorating products. Ghare
and Schrader (1963) developed the first model for perishable product with constant deterio-
rating rate and the ordering cost was paid at delivery time. Also for this purchasing payment
strategy, Covert and Philip (1973), developed a model for perishable products in which the
deterioration rate follows the Weibull function. Afterwards, the topic of deterioration has
widely been developed and investigated in the literature. Wee and Yu (1997), studied an
inventory model of perishable products by considering an impermanent discount from the
vendor to the buyer. Liao et al. (2012) considered lot-sizing decision strategies with two
warehouses under linked to order trade credit. Taleizadeh et al. (2013a) extended a lot sizing
model for perishable item under special sale and shortage. Yu (2013) developed a collabora-
tive inventory management model of decaying and defective items. Taleizadeh et al. (2013d)
proposed a Bees Colony Optimization (BCO) algorithm for solving a fuzzy rough economic
order quantity model for perishable items considering quantity discount and advance pay-
ment. Das et al. (2015) investigated an inventorymodel withmulti items andmulti warehouse
for deteriorating items with price dependent demand and permissible delay in payment.

In the studies related to partial backlogging, Wee (1995) introduced an ordering strategy
of decaying item under partial backlogging of unfilled demand and order cancelations. Yu
et al. (2005) developed a model in an inventory-production environment for a deteriorating
item with considering defective products and partial backordering. Lo et al. (2007) extended
a two-level integrated production-inventory model for a decaying item under inflation, partial
backlogging, multiple deliveries and imperfect manufacturing process. Ghosh et al. (2011)
extended a lot sizingmodel for a decaying item in which demand depends onwhole sale price
and partial backordering rate depends on the lead time. Pentico and Drake (2011) presented
a comprehensive survey on partial backordering in 2011. Taleizadeh et al. (2012) extended a
lot sizing model with considering special sale and partial backordering, moreover this work
later is developed under considering known price increase (Taleizadeh and Pentico 2013). In
another work, Taleizadeh et al. (2015) studied the EOQ models with incremental discounts
and considered both full and partial backordering cases for the first time. Wang et al. (2015)
extended an EOQ model for imperfect quality items with partial backlogging and screening
constraint. San-José et al. (2015) studied an EOQ model with partial backordering where
the unit holding cost includes two important elements. Wee et al. (2014) developed an EPQ
model with partial backlogging considering linear and fixed backordering costs. They also
derived a critical backlogging rate to find the feasible optimal solution.
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Some papers have considered combination of inventory control models with credit-
financing strategies. Jaggi and Aggarwal (1994) investigated an EOQ model for decaying
items without shortage. Sarker et al. (2000) developed an inventory control system for decay-
ing itemswith backordering, inflation and trade credit. Sarkar et al. (2015) investigated a trade
policy in a two echelon supply chain in which the vendor offers full trade-credit to the buyer
but the buyer offers partial trade-credit to their customers. Chang (2004) developed an inven-
tory model where the vendor offers a permissible delay in payment to the buyer, if orders
become large. He discussed about the effect of inflation and deterioration rates and delayed
payment tactic on total inventory cost.Wu et al. (2015) extended a three echelons supply chain
model under both full upstream and partial downstream trade credits. Ouyang et al. (2015)
studied an inventory control system with capacity constraint and linked to order permissible
delay in payment.

In the field of advanced payment, Maiti et al. (2009) exerts the prepayment scheme and
studied the effect of prepayment on inventory policies and total profit. Gupta et al. (2009)
extended an inventory control system including partial lost sale and imprecise information
of the cost and used a Meta heuristic algorithm to optimize the model and find solutions.
Taleizadeh et al. (2011) developed an inventory management system for importing rawmate-
rials, where the buyer must pay a proportion of purchasing cost before receiving goods.
Taleizadeh et al. (2013c) developed a mathematical model for an inventory system with mul-
tiple advanced payments and permitted shortage. Thangam (2012) developed an EOQmodel
for decaying item in a supply chain including a supplier, retailers and customers under both
advanced and delayed payments. He assumed that the supplier offer a full trade credit to
his retailers whereas the retailer provide the customers a partial trade credit. Also he con-
sidered that the retailer offers price discount to the customers who prepay the purchasing
cost. Taleizadeh (2014a) extended an inventory management model for a decaying item in
two cases: (1) no shortages and (2) shortages are allowed, under consecutive prepayments.
Taleizadeh (2014b) introduced a lot-sizing model for an evaporating product with partial
consecutive advanced payment and partial backordering. Zhang et al. (2014) considered an
EOQmodel without shortage with two types of prepayment including full and partial prepay-
ments and derived the optimal inventory policies. In their model shortage and deterioration
was not allowed. Our work is an extension of their work by considering deterioration and
different shortage modes under full advanced payment. Moreover some related researches
can be found in Taleizadeh et al. (2009, 2010, 2011, 2013b). The studies described above
are briefly summarized in Table 1.

According to Table 1, our paper is the first one which presents a comprehensive
study on EOQ model with considering different shortage situations and full prepayment
for deteriorating product. Advanced payment with multiple payments is another interest-
ing area and there are a few studies in this field. In the case of deterioration, there are
only three papers having been already studied advanced payment scheme for perishable
products.

Here an EOQ model for a decaying item is extended in which ordering cost must be
fully prepaid. Three different possible cases consisting of (1) shortage is not permitted, (2)
backordering shortage is allowed and (3) partial backordering shortage is permitted, are
developed. In this paper, the problem in hand and its assumptions are defined in Sect. 2.
The notations with mathematical models and the solution algorithm are presented in Sect. 3.
Numerical examples are performed in Sect. 4 and sensitivity analysis is done in Sect. 5,
and at the end, in Sect. 6 the conclusions and suggested future research directions are
discussed.
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Offer price discount for items Request a loan from the bank

Exporter Buyer Bank Exporter Buyer Bank 

Fig. 1 The example of interactions in advanced payment scheme

2 Problem description

Assume a vendor asks the buyers to pay the entire contract amount in advanced before
delivering the goods. Moreover the retailer considers discount if the buyers prepay entire of
purchasing cost in advanced. In order to supply the purchasing cost, the buyer requests loan
from a financing instruments to finance their account and pay the retailer as the advanced
payment. The example of these interactions in advanced payment scheme is presented in
Fig. 1. In a full advanced payment system there is an increase in the capital cost of the buyer
because of ordering cost of those products which are not delivered. In the next section, EOQ
models for a decaying product with full advanced payment under different conditions are
extended. Moreover the following assumptions are made.

(1) Time horizon is infinite.
(2) Complete and partial backlogging of shortages is allowed.
(3) Demand for item is constant with elapsing time.
(4) Replenishments are instantaneous.
(5) The vendor offers price discount linked to advance payment to the buyer.
(6) The buyer’s unit sell price is not as same as his purchasing price.

3 Model development

The notations are used to model and solve the problem at hand are presented in the following
subsection.

3.1 Notation

Parameters

d Demand rate per period (unit)
h Unit carrying cost (capital cost is not included) ($/unit/period)
π Unit backordering cost ($/unit)
P Unit purchasing price ($)
P ′ The marginal cost of purchasing (capital cost of advanced payment in $ included)
g The lost sale goodwill cost ($)
π ′ The cost of lost sale π ′ = P − P ′ + g ($)
Ps Unit selling price ($)
β Price discount factor for prepayment
A Fixed ordering cost ($/order)
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Fig. 2 Time-weighted inventory with full prepayment when shortage is not allowed

t0 Length of prepayment (time)
θ The constant deterioration rate
α The fraction of backordering
Ic Interest charges rate per year ($/unit/period)

Decision variables

T Time interval between successive orders (time)
k The proportion of inventory cycle with positive inventory level
Q The order size (unit)
B The backordered quantity (unit)
I (t) The inventory level at time t (unit)
B(t) The backordered level at time t (unit)
CTC The total cost in each period ($)
ATC Average annual total cost ($)

3.2 Model development

In this section an EOQ model with full prepayment for a deteriorating item under different
cases is developed. In the first case the model without any shortage is developed. In case 2
we assume that the entire shortages will be backordered and finally in case 3 a proportion of
shortages will be backordered.

Case 1: Without shortages

Assume a situation where the buyer exerts a classic inventory model for a perishable item
when shortages are forbidden. The inventory diagram is presented in Fig. 2.

The following differential equation shows the inventory level changes during the period
length:

d I (t)

dt
= −θ I (t) − d; 0 ≤ t ≤ T (1)

Using the boundary condition, I (T ) = 0, gives;

I (t) = d

θ
(eθ(T−t) − 1); 0 ≤ t ≤ T (2)

Moreover the order quantity can be derived as follows:

Q = I (0) = d

θ
(eθT − 1). (3)
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It should be mentioned that when θ approaches zero by applying l’Hopital’s rule, it gives
I (0) = dT . In practice, usually the deterioration rate is not too large. So, using the Taylor
expansion for eθT we have eθT = 1 + θT + 1

2 (θT )2 and the amount of order quantity can
be approximated as follows:

Q∗ = dT

(
1 + 1

2
θT

)
. (4)

The holding cost in each period is h
∫ T
0

d
θ
(eθ(T−t) − 1)dt = 1

2hdT
2, ordering cost is

A and also the cost of purchasing of items is P βdT (1 + 1
2θT ). The buyer in order to

pay the purchasing cost P βdT (1 + 1
2θT ) must pay interest charge at rate of Ic, which is

P βdt0 IcT (1 + 1
2θT ). Therefore:

CTC =
Fixed cost︷︸︸︷

A +

Holding cost︷ ︸︸ ︷
1

2
hdT 2 +

Purchasing cost︷ ︸︸ ︷
P βdT

(
1 + 1

2
θT

)
+

Interes charges in prepayment︷ ︸︸ ︷
P βdt0 IcT

(
1 + 1

2
θT

)
(5)

ATC = 1

T
× CTC =

Fixed cost︷︸︸︷
A

T
+

Holding cost︷ ︸︸ ︷
1

2
hdT +

Purchasing cost︷ ︸︸ ︷
P βd

(
1 + 1

2
θT

)

+

Interes charges in prepayment︷ ︸︸ ︷
P βdt0 Ic

(
1 + 1

2
θT

)
(6)

We take the first and also the second derivations of cost function respect to T as follows.

∂ATC

∂T
= −A

T 2 + 1

2
hd + 1

2
θ P βd + 1

2
θ P βdt0 Ic (7)

∂ATC

∂T
= 2A

T 3 ≥ 0 (8)

From Eq. (8) one can conclude that the second derivative is always positive (T > 0). So
the convexity of objective function is proved and we can find the optimal solution, as shown
in Eq. (9).

T ∗ =
√

2A

hd + θ P βd(1 + t0 Ic)
(9)

Case2: Full prepayment with deterioration and shortage

Assume a situation where the buyer exerts a classic inventory model for a perishable item in
which the shortage items is fully backlogged. This situation is presented in Fig. 3.
The following differential equations show the inventory level changes during the period
length:

I (t) = d

θ
(eθ(KT−t) − 1); 0 ≤ t ≤ kT (10)

B(t) = dt; kT ≤ t ≤ T (11)

Applying the boundary condition, I (kT ) = 0, for Eqs. (10) and (11), gives:

I = d

θ
(eθkT − 1) (12)

B = d(1 − k)T ; (13)
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Fig. 3 Time-weighted inventory
with full prepayment and full
backordering

Thus, the optimal order size will be:

Q = I + B = d

θ
(eθkT − 1) + d(1 − k)T (14)

With exerting a brief Taylor series expansion, the following equation is derived:

Q = d

(
kT + 1

2
θk2T 2

)
+ d(1 − K )T = dT

(
1 + 1

2
θk2T

)
(15)

The holding cost in each period is h
∫ kT
0

d
θ
(eθ(kT−t) − 1)dt = 1

2hdk
2T 2, the ordering

cost is A and the purchasing cost is P βdT (1 + 1
2θk

2T ). So the interest charge at rate Ic,
is P βdt0 IcT (1+ 1

2θk
2T ). The backordering cost is 0.5πd(1− k)2T 2, therefore, the cyclic

and annual total costs are respectively:

CTC =
Fixed cost︷︸︸︷

A +

Holding cost︷ ︸︸ ︷
1

2
hdk2T 2 +

Purchasing cost︷ ︸︸ ︷
P βdT

(
1 + 1

2
θk2T

)

+

Interes charges in prepayment︷ ︸︸ ︷
P βdt0 IcT

(
1 + 1

2
θk2T

)
+

Backordering cost︷ ︸︸ ︷
1

2
πd(1 − k)2T 2 (16)

ATC = 1

T
× CTC =

Fixed cost︷︸︸︷
A

T
+

Holding cost︷ ︸︸ ︷
1

2
hdk2T +

Purchasing cost︷ ︸︸ ︷
P βd

(
1 + 1

2
θk2T

)

+

Interes charges in prepayment︷ ︸︸ ︷
P βdt0 Ic

(
1 + 1

2
θk2T

)
+

Backordering cost︷ ︸︸ ︷
1

2
πd(1 − k)2T (17)

The objective function, represented in Eq. (17), can be rewritten as follows;

�1(K , T ) = ψ1

T
+ (ψ2k

2 − 2ψ3k + ψ3)T + ψ4 (18)
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where,

ψ1 = A > 0, (19)

ψ2 = (h + π + p βθ + P βt0 Icθ)d

2
> 0, (20)

ψ3 = πd

2
> 0, (21)

ψ4 = P βd + P βdt0 Ic > 0. (22)

Moreover Eq. (18) can be rewritten as;

�1(K , T ) = ψ1

T
+ T γ (k) + ψ4, (23)

where γ (k) = ψ2k2 − 2ψ3k + ψ3 . The goal is to implement a condition in order to have
a specific interior minimizer for Eq. (23). Differentiating �1(k, T ) with respect to T yields:

∂�1(k, T )

∂T
= −ψ1

T 2 + γ (k). (24)

This equation equals to zero if T satisfies Eq. (25):

T ∗ = T ∗(k) =
√

ψ1

γ (k)
. (25)

The discriminate of γ (k), 4ψ2
3 − 4ψ2ψ3 = 4( πd

2 )2 − 4( (h+π+P βθ+P βt0 Icθ)d
2 )( πd

2 ) =
−hπd2 − P βθπd2 − P βt0 Icπθd2 is negative, therefore γ (k) has no root. Since γ (0) =
ψ3 = πd

2 > 0, γ (k) is more than zero within [0, 1], therefore Eq. (17) gives, for each k, a
unique T ∗ = T ∗(k) that minimizes the total cost in Eq. (23). So,

�̂1(k) = �1(k, T (k)) = ψ1√
ψ1

γ (k)

+
√

ψ1

γ (k)
γ (k) + ψ4 = 2

√
ψ1γ (k) + ψ4. (26)

This expresses show the minimum cost for each value of k. �̂1(k) is continuous and has at
least one local minimumwithin [0,1], and its smallest one is the optimal value. To investigate
these minimums, calculate the derivatives of �̂1(k) with respect to k. So we have:

d�̂1(k)

dk
= √

ψ1
γ ′(k)√
γ (k)

, (27)

d2�̂1(k)

dk2
= √

ψ1

[
2γ ′′(k)γ (k) − (γ ′(k))2

]
2(γ (k))

3
2

, (28)

After some manipulations, it gives:

d2�̂1(k)

dk2
= √

ψ1

[
2γ ′′(k)γ (k) − (γ ′(k))2

]
2(γ (k))

3
2

= √
ψ1

[
ψ2
2 k

2 − 2ψ2ψ3k + ψ2ψ3 − ψ2
3

]
(γ (k))

3
2

= √
ψ1

[
(ψ2k − ψ3)

2 + ψ2ψ3
]

(γ (k))
3
2

> 0, (29)

Since ψ1, ψ2, ψ3, γ (k), (ψ2k − ψ3)
2 are all positive. So �̂1(k) is convex and we find

the global minimum with setting its first derivative equal to zero. Since
√

ψ1 and γ (k) are
always positive, γ ′(k) = 2ψ2k − 2ψ3 should be equal to zero. Therefore, we have:
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Fig. 4 Time-weighted inventory with full prepayment and partial backordering

k∗ = ψ3

ψ2
= π

h + π + P βθ(1 + t0 Ic)
(30)

Substituting Eq. (30) into T ∗ = T ∗(k), after some manipulations we have:

T ∗ = T ∗(k) =
√
2A(h + π + P βθ(1 + t0 Ic))

πd(h + P βθ(1 + t0 Ic))
(31)

Case 3: Full advanced payment with partial backordering
Assume that a buyer applies an EOQmodel for a decaying product when shortage is partially
being backordered. The diagram of inventory system is presented in Fig. 4. The inventory
level at time t decreases because of both decaying and demand rates. So the inventory level
changes at time t , can be presented as below:

I (t) = d

θ
(eθ(KT−t) − 1); 0 ≤ t ≤ kT (32)

B(t) = αdt; kT ≤ t ≤ T (33)

Solving Eqs. (32) and (33) yield to:

I = d

θ
(eθkT − 1) (34)

B = αd(1 − k)T ; (35)

And finally,

Q = I + B = d

θ
(eθkT − 1) + αd(1 − k)T (36)

using the Taylor series expansion, we have:

Q = dT

(
k + 1

2
θk2T + α(1 − k)

)
(37)

The holding cost per cycle is h
∫ kT
0

d
θ
(eθ(kT−t) − 1)dt = 1

2hdk
2T 2, the ordering cost

is A and the purchasing cost of product is P βdT (k + 1
2θk

2T + α(1 − k)). So because
of borrowing the purchasing cost from a financial instrument the interest charge at rate
Ic, is P βdt0 IcT (k + 1

2θk
2T + α(1 − k)). The backordering and the lost sale costs are
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1
2παd(1 − k)2T 2 and π ′d(1 − α)(1 − k)T respectively. Therefore, the cyclic and annual
total costs are, respectively:

CTC =
Fixed cost︷︸︸︷

A +

Holding cost︷ ︸︸ ︷
1

2
hdk2T 2 +

Purchasing cost︷ ︸︸ ︷
P βdT

(
k + 1

2
θk2T + α(1 − k)

)

+

Interest charged in prepayment︷ ︸︸ ︷
P βdt0 IcT

(
k + 1

2
θk2T + α(1 − k)

)

+

Backordering cost︷ ︸︸ ︷
1

2
παd(1 − k)2T 2 +

Lost sale cost︷ ︸︸ ︷
π ′d(1 − α)(1 − k)T (38)

ATC = 1

T
× CTC =

Fixed cost︷︸︸︷
A

T
+

Holding cost︷ ︸︸ ︷
1

2
hdk2T +

Purchasing cost︷ ︸︸ ︷
P βd

(
k + 1

2
θk2T + α(1 − k)

)

+

Interest charged in prepayment︷ ︸︸ ︷
P βdt0 Ic

(
k + 1

2
θk2T + α(1 − k)

)

+

Backordering cost︷ ︸︸ ︷
1

2
παd(1 − k)2T +

Lost sale cost︷ ︸︸ ︷
π ′d(1 − α)(1 − k) (39)

We can rewrite the objective function, represented in Eq. (39), as follows;

η(k, T ) = ψ1

T
+ (ψ2k

2 − 2ψ3k + ψ3)T − ψ4k + ψ5 (40)

where,

ψ1 = A > 0, (41)

ψ2 = (h + πα + p′θ)d

2
> 0, (42)

ψ3 = παd

2
> 0, (43)

ψ4 = (1 − α)d(π ′ − P ′), (44)

ψ5 = π ′(1 − α)d + P βdα + P βdt0 Icα > 0. (45)

P ′ = P β(1 + t0 Ic) (46)

Equation (40) can be rewritten as;

η(k, T ) = ψ1

T
+ T γ1(k) + γ2(k) (47)

where γ1(k) = ψ2k2 − 2ψ3k + ψ3 and γ2(k) = −ψ4k + ψ5. The aim is to implement
the condition in order to Eq. (47) has a specific interior minimizer. With differentiate from
η1(k, T ) respect to T , we have:

∂η(k, T )

∂T
= −ψ1

T 2 + γ1(k). (48)
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So,

T ∗ = T ∗(k) =
√

ψ1

γ1(k)
. (49)

The discriminate of γ1(k), 4ψ2
3 −4ψ2ψ3 = 4( παd

2 )2−4( (h+πα+P βθ+P βt0 Icθ)d
2 )( παd

2 ) =
−d(h + P βθ(1 + t0 Ic))(παd) is negative, thus γ1(k) has no roots. Since γ1(0) = ψ3 =
πd
2 > 0, γ1(k) is more than zero within [0,1]. Therefore, Eq. (49) gives, for each k, a unique
T ∗ = T ∗(k) that aims to minimize the cost in Eq. (47). We Substitute the expression for
T ∗(k) [Eq. (49)] into Eq. (47). So we have:

μ̂1(k) = μ1(k, T (k)) = ψ1√
ψ1

γ1(k)

+
√

ψ1

γ1(k)
γ1(k) + γ2(k) = 2

√
ψ1γ1(k) + γ2(k). (50)

This equation expresses the minimum cost for each value of k. μ̂1(k) is continues and
has at least one minimum within [0,1], which the global minimum of the cost function is the
smallest one. To investigate these minimums, calculate the derivatives of μ̂1(k) respect to k,
as below:

dμ̂1(k)

dk
= √

ψ1
γ ′
1(k)√
γ1(k)

+ γ ′
2(k), (51)

d2μ̂1(k)

dk2
= √

ψ1

[
2γ ′′

1 (k)γ1(k) − (γ ′
1(k))

2
]

2(γ1(k))
3
2

+ γ ′′
2 (k), (52)

After some manipulations we have:

d2μ̂1(k)

dk2
= √

ψ1

[
2γ ′′

1 (k)γ1(k) − (γ ′
1(k))

2
]

2(γ1(k))
3
2

= √
ψ1

[
2(ψ2

2 k
2 − 2ψ2ψ3k + ψ2ψ3) − 2(ψ2

2 k
2 − 2ψ2ψ3k + ψ2

3 )
]

(γ1(k))
3
2

= 2ψ3
√

ψ1
[(ψ2 − ψ3)]

(γ1(k))
3
2

> 0, (53)

Since ψ1, ψ2, ψ3, γ1(k), are all positive and ψ2 − ψ3 = ( d2 )(h + P βθ(1 + t0 Ic)) > 0.
Thus μ̂1(k) is convex, so we set the first derivative of expression equal to zero and find the
global minimum.
Therefore, we have:

k = (1 − α)(π ′ − P ′) + παT ∗

(h + πα + P ′θ)T ∗ (54)

T ∗ =
√

2A

hdk2 + παd(1 − k)2 + P ′θdk2
(55)

Substituting Eq. (54) into Eq. (55) and after some simplification we have;

T ∗ =
√
2A(P ′θ + h + πα)

παd(h + P ′θ)
− [(1 − α)(π ′ − P ′)]2

πα(h + P ′θ)
(56)
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It should be mentioned that when the shortages cost tends to infinity, Eq. (56) reduces to
Eq. (57) which is equal to Eq. (9) and rewritten in Eq. (57).

T ∗ = lim
π,π ′→∞

√
2A(P ′θ + h + πα)

παd(h + P ′θ)
− [(1 − α)(π ′ − P ′)]2

πα(h + P ′θ)
=

√
2A

hd + θ P βd(1 + t0 Ic)
(57)

T ∗ = lim
π,π ′→∞

√
2A(P ′θ+h+πα)

παd(h+P ′θ)
− [(1−α)(π ′−P ′)]2

πα(h+P ′θ)
=

√
2A

hd+θ P βd(1+t0 Ic)
Since T ∗ in par-

tial backordering case must be larger than T ∗ in the basic EOQ model, according to Eq. (9)
and Eq. (56) we have:√

2A(P ′θ + h + πα)

παd(h + P ′θ)
− [(1 − α)(π ′ − P ′)]2

πα(h + P ′θ)
>

√
2A

d(h + P βθ(1 + t0 Ic))
(58)

After some simplification we have:

α > α∗ = 1 −
√
2A(P ′θ + h)

d(π ′ − P ′)2
(59)

If α > α∗ is met and α∗ > 0, so this solution is selected as the optimal one. If α > α∗ and
α∗ < 0, wemust compare the cost of the not stocking and cost of optimal partial backordering
in order to derive the optimal solution.

Solution method

The subsequent method can be applied to find the optimal values of decision variables:

1. calculate π ′ = P − P ′ + g, α∗ = 1 −
√

2A(P ′θ+h)

d(π ′−P ′)2 and P ′ = P β(1 + t0 Ic).

2. If α > α∗ > 0, go to step 3. Otherwise, if α < α∗, calculate the cost of no backlogging
and compare it withπ ′d , to clarify either it is optimal to allow all backlogs or no backlogs.

If π ′d ≥ √
2Ad(h + P ′θ) then k∗ = 1, T ∗ =

√
2A

(d(h+P ′θ)
, Q∗ = dT ∗ and B∗ = 0. If

π ′d <
√
2Ad(h + P ′θ) then T ∗ = ∞, k∗ = Q∗ = 0 and stop the algorithm.

3. Calculate T ∗ and k∗ using Eqs. (54) and (56). If α∗ < 0, determine η(k∗, T ∗); if
η(k∗, T ∗) < π ′d , go to step 4. If η(k∗, T ∗) ≥ π ′d then T ∗ = ∞, k∗ = Q∗ = 0
and stop the algorithm.

4. Calculate the order and shortage quantities optimal values, respectively:

Q∗ = d

θ
(eθk∗T ∗ − 1) + αd(1 − k∗)T ∗

B∗ = αd(1 − k∗)T ∗

4 Computational and practical results

Our suggested model is supported on this idea that the vendor requests his buyers to pay the
entire contract amount before receiving the purchased goods. Also the vendor suggests price
discount if the buyers prepay the entire purchasing cost. The advanced payment mechanism
is exerted for many unique items which are used and ordered by suppliers, manufacturers,
distributers, retailers and customers. Usually, to order books, newspapers and periodicals
items, including special items for trade and professional publications, this strategy is widely
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exerted. Moreover, in international trades, many exporters expected the full payment, prior
the goods being shipped. All these examples show the necessity of investigating the full
advance payment scheme.

To show the performance and usages of the proposed solution procedure and to investigate
the impacts of model parameters on decision variables, we will use a numerical example.
We set d = 1000, A = 100, h = 10, π = 5 (in case 2 and 3), P = 30, β = 0.9, t0 = 0.2,
Ic = 0.25 and θ = 0.1.

Case 1: Without shortage
Using Eq. (9) we have;

T ∗ =
√

2(100)

10(1000) + 0.1(30)(0.9)(1000)(1 + (0.2)(0.25))
= 0.12483

And with exerting Eq. (3) we have;

Q∗ = dT

(
1 + 1

2
θT

)
= 125.608

Case 2: Full backordered with shortage
With exerting Eq. (30) we have;

k∗ = 5

10 + 5 + 30(0.9)(0.1)(1 + (0.2)(0.25))
= 0.2803

By using Eq. (31) we have;

T ∗ =
√
2(100)(10 + 5 + 30(0.9)(0.1)(1 + 0.2(0.25)))

5(1000)(10 + 30(0.9)(0.1)(1 + 0.2(0.25)))
= 0.2357

Respect to Eqs. (13) and (15) the order and backordered quantities are:

Q = dT

(
1 + 1

2
θk2T

)
= 1000(0.2357)(1 + 0.5(0.1)(0.28032)(0.2357)) = 235.977

B = d(1 − k)T = 1000(1 − 0.2803)0.2357 = 169.664;

Case 3: Partial backordering case
Let α = 0.9 and g = 30. The solution steps in this case are:
Step 1

P ′ = P β(1 + t0 Ic) = 30(0.9)(1 + 0.2(0.25)) = 28.35

π ′ = P − P ′ + g = 30 − 28.35 + 30 = 31.65

α∗ = 1 −
√
2A(P ′θ + h)

d(π ′ − P ′)2
= 1 −

√
2(100)(28.35(0.1) + 10)

1000(31.65 − 28.35)2
= 0.5144

Step 2 since α = 0.9 is more than α∗ = 0.5144, move to step 3.
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Table 2 Numerical analysis results of the case 1

Parameter %Changes Value %Changes in

T ∗ Q∗ ATC∗ T ∗ Q∗ ATC∗

β −50 0.1324 133.228 15686.13 6.03 6.07 −47.63

−33.3 0.1298 130.641 20251.85 3.98 4.01 −32.39

−25 0.1284 129.250 22819.82 2.88 2.90 −23.81

−10 0.1262 127.028 27099.39 1.12 1.13 −9.52

Ic −50 0.1252 125.942 29272.97 0.26 0.27 −2.27

−25 0.1250 125.775 29612.58 0.13 0.13 −1.13

+25 0.1247 125.443 30291.79 −0.13 −0.13 1.13

+50 0.1245 125.278 30631.39 −0.26 −0.26 2.27

θ −50 0.1324 132.790 29861.13 6.03 5.72 −0.30

−25 0.1284 129.044 29907.32 2.88 2.74 −0.15

+25 0.1215 122.442 29995.83 −2.65 −2.52 0.15

+50 0.1185 119.512 30038.34 −5.10 −4.85 0.29

t0 −50 0.1252 125.942 29272.97 0.26 0.27 −2.27

−25 0.1250 125.775 29612.58 0.13 0.13 −1.13

+25 0.1247 125.443 30291.79 −0.13 −0.13 1.13

+50 0.1245 125.278 30631.39 −0.26 −0.26 2.27

Step 3

T ∗ =
√
2A(P ′θ + h + πα)

παd(h + P ′θ)
− [(1 − α)(π ′ − P ′)]2

πα(h + P ′θ)

=
√
2(100)(28.35(0.1) + 10 + 5(0.9))

5(0.9)(1000)(10 + 28.35(0.1))
− ((0.1)(31.65 − 28.35))2

5(0.9)(10 + 28.35(0.1))
= 0.241

k = (1 − α)(π ′ − P ′) + παT ∗

(h + πα + P ′θ)T ∗ = (1 − 0.9)(31.65 − 28.35) + 5(0.9)(0.241)

(10 + 5(0.9) + 28.35(0.1))(0.241)
= 0.339

Step 4

Q = dT

(
k + 1

2
θk2T + α(1 − k)

)

= 1000(0.241)(0.339 + 0.5(0.1)(0.339)2(0.241) + 0.9(1 − 0.339)) = 225.51

B = αd(1 − k)T = 0.9(1000)(1 − 0.339)(0.241) = 143.55

Also the average annual cost in this case is 29589.98.

5 Numerical analysis and insights

To investigate the impacts of changing in parameters on derived optimal values, a numerical
analysis for each case is performed. The results of numerical analysis of the first case are
presented in Table 2.

These conclusions can be drawn based on Table 2.
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• T ∗, Q∗ and ATC∗ are moderately sensitive respect to β. When β is decreased, T ∗ and
Q∗ increase, while ATC∗ is reduced and vice versa.

• T ∗, Q∗ and ATC∗ are a little sensitive respect to Ic. When Ic is decreased, T ∗ and Q∗
increase, while ATC∗ start to decrease and vice versa.

• T ∗, Q∗ are moderately sensitive to the shifts in parameter θ , while ATC∗ is a little
sensitive to the changes in θ . When θ starts to decrease, T ∗ and Q∗ increase, but ATC∗
is reduced and vice versa.

• T ∗, Q∗ and ATC∗ are a little sensitive respect to t0. When t0 is decreased, both T ∗ and
Q∗ increases, while ATC∗ decreases and vice versa.

Table 3 presents the outcomes of sensitivity analysis of the second case. Also an analysis
is done on shortages and holding costs per unit which is shown in Table 4. The following
notes can be understood from Tables 3 and 4.

• Q∗, T ∗, B∗ are slightly and ATC∗ is moderately sensitive respect to β. When β is
reduced, both T ∗ and Q∗ increases, while ATC∗ and B∗ decrease and vice versa.

• T ∗, Q∗, B∗ and ATC∗ are a little sensitive respect to Ic. When Ic start to decrease, T ∗
and Q∗ increase, while ATC∗ and B∗ decrease and vice versa.

• T ∗, Q∗, B∗ and ATC∗ are a little sensitive respect to θ . When θ starts to decrease, T ∗
and Q∗ increase, while ATC∗ and B∗ decrease and vice versa.

• T ∗, Q∗, B∗ and ATC∗ are a little sensitive respect to t0. When t0 is decreased, T ∗ and
Q∗ increase, while ATC∗ and B∗ decrease and vice versa.

• T ∗, Q∗, B∗ are gently sensitive to π , while ATC∗ is a little sensitive to the changes in
π . When π starts to decrease, T ∗, Q∗ and B∗ increase, but ATC∗ decreases and vice
versa.

Table 5 shows the numerical analysis results related to the third case. The subsequent
results can be drawn from Table 5.

• T ∗, Q∗, B∗, k and ATC∗ are moderately sensitive to the changes in parameter β. When
β is decreased, T ∗, Q∗, B∗ and ATC∗ decrease but k rises and vice versa.

• T ∗, Q∗, B∗, ATC∗ and k are gently sensitive to Ic. When Ic is reduced, T ∗, Q∗, B∗ and
ATC∗ decrease but k rises and vice versa.

• T ∗, Q∗, B∗ and k are sensitive respect to θ . When θ start to decrease, T ∗, Q∗ and k
increase while B∗ decreases and vice versa. ATC∗ is a little sensitive to the changes in
θ . When θ start to decrease, ATC∗ reduces and vice versa.

• T ∗, Q∗, B∗, k and ATC∗ are a little sensitive to t0. When t0 is decreased, T ∗, Q∗, B∗
and ATC∗ decrease but k increases and vice versa.

We can conclude from the performed sensitivity analysis that with increasing in the length
of advanced payment, the buyers’ total cost increases. Thus, choosing the smallest length of
prepayment is recommended to the buyers. Also, with decreasing in price discount factor, the
buyers’ total cost decreases. Therefore, discount policy can act as an incentive mechanism
to persuade the buyers for full advance payment. Furthermore, perishable items with lower
deterioration rate decreases the total cost of the buyers. With increasing in the capital cost,
the buyers’ total cost increases. Thus, in advance payment scheme, it’s recommended to the
buyers to choose the suppliers with lower capital cost rate.

In summary, according to all cases, the optimum situation of the buyer happens with
the highest value of price discount for advanced payment, the lowest value of the length of
prepayment, the least deterioration and capital cost rates.
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6 Conclusion

Advanced payment scheme is an effective strategy widely used by firms especially in less
developed countries. The advanced payment scheme is a reliable method for exporters and
decreases the risk of cancelling orders from the international buyers. Although this strategy
is not very interesting for buyers because of the capital cost, but in some cases the buyers
don’t have any of other choices. To persuade the buyers to participate in this mechanism the
vendors usually offer them a price discount related to full advanced payment.

In this paper three EOQ models for decaying products under full advanced payment and
different conditions including; (1) without shortage, (2) full backordering, and (3) partial
backordering. We considered that the decaying rate is fixed and the entire purchasing cost
is paid before delivery time. Moreover, the vendor offered a price discount to persuade the
buyer to participate in this payment scheme. We showed that the objective functions are
convex and the closed form solutions are derived.

Numerical examples represented the performance of the models. Also sensitivity analyses
investigate the impacts of changing in parameters on the decision variables and also the entire
cost. The results show that the length of prepayment, the price discount linked to advance
payment, the decaying rate and the capital cost rate influence the buyers’ decision variables
and total costs. This paper can help the vendors and buyers to offer and select the best full
advanced payment scheme.

For future directions, we suggest considering time dependent demand rate or consider-
ing partial advance-partial delayed payment scheme for perishable products. Furthermore,
Involving inflation rates and uncertainty of some parameters, such as demand or perishable
rate can make the problem more realistic. Also considering different conditional discount
like linked to order quantity discount or more incentive mechanism for cooperation between
members can be interesting which we left for future researches.
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