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Abstract We investigate a two-warehouse inventory model for non-instantaneous dete-
riorating items with partial backlogging and stock-dependent demand under inflationary
conditions. Shortages are allowed. The backlogging rate is variable and depends on the wait-
ing time for the next replenishment. This paper seeks to determine an optimal replenishment
policy that minimizes the present value of the total cost per unit time. The necessary and
sufficient conditions for the existence and uniqueness of the optimal solution are found.
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1 Introduction and literature review

It is common practice for sellers to lower the price of their products either to stimulate
demand or to clear products that have begun to deteriorate. The intent of our paper is to look
at the second phenomenon and gather analytic insights into how replenishments policies can
be better designed to minimse lost sales. Deterioration can be viewed as damage, spoilage,
decay, obsolescence, or evaporation that leads to a shorter than expected useful product life.
Products such as steel, glassware, and furniture have a slow deterioration rate, so there is
little need to consider deteriorationwhen determining their economic lot size. However, items
such as food, pharmaceuticals, and blood deteriorate rapidly over time. Thus, the loss from
deterioration is significant. The inventory problem of deteriorating items has been widely
studied under different assumptions. Ghare and Schrader (1963) first presented an EOQ
model for deteriorating items under exponential decay. Covert and Philip (1973) extended
this model by assuming a Weibull distribution for deterioration.

The extant literature has assumed that items deteriorate as soon as they enter the system.
In reality, there are many items that do not deteriorate immediately. Jaggi et al. (2017a) term
this phenomenon as non-instantaneous deterioration and the items of concern are labelled as
non-instantaneous deteriorating items. Wu et al. (2006) first studied this phenomenon and
established an optimal replenishment policy for non-instantaneous deteriorating items with
stock dependent demand and partial backlogging. Subsequently, others such as Ouyang et al.
(2006, 2008), Wu et al. (2009), Jaggi and Verma (2010), Jaggi and Tiwari (2014b), and Jaggi
et al. (2015a, 2017b) studied inventory models for non-instantaneous deteriorating items
under a variety of conditions. At the same time, most of the relevant studies have assumed
an uncapacitated warehouse, which may not be practicable.

Further, the two-warehouse sub-problem has been studied under different assumptions. In
this vein, Hartley (1976) first assumed that the holding cost for a rented warehouse (RW) is
greater than that in a owned warehouse (OW). Therefore, items in the RW are first transferred
to the OW to satisfy the demand until the stock in RW depletes to zero, and then the items
in the OW are released. Sarma (1987) developed a model which assumes a capacitated OW
and additional warehousing space can be obtained by renting RW. Yang (2004) studied an
inventory system which has capacity constraints, constant demand rate, and shortages are
completely backlogged. The item’s lifetime follows an exponential distribution. In a follow-
up study, Yang (2006) then developed a similar model with partial backlogging. Wee et al.
(2005) formed a model for partial backlogging in which the product lifetime is based on the
two-parameter Weibull distribution. Pal et al. (2005) studied deteriorating items in a two-
warehouse system under time-dependent demand and the demand is partially backlogged in
the case of shortages. Lee (2006) developed a FIFO production inventory model with a finite
production rate. The assumptions in our model are similar to Yang (2004). Similar work
in this domain though not exhaustive can be found in Lo et al. (2007), Wee et al. (2008),
Chung and Wee (2008), Taleizadeh et al. (2010), Gao et al. (2011), Sana (2015), Bhunia
and Shaikh (2011a, b), Cárdenas-Barrón et al. (2014), Bhunia et al. (2013, 2015b, c, 2016),
Tiwari et al. (2016), Bhunia and Shaikh (2014b), Cárdenas-Barrón and Sana (2015), Sana
and Goyal (2015), Sana (2010), Jaggi et al. (2014a, 2015b, 2017a, b), Das et al. (2015) and
Saxena et al. (2016).

Taking stock of these research endeavours, our paper investigates a two warehouse
inventory model for non-instantaneous deteriorating items with partial backlogging and
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stock-dependent demand under inflationary conditions. In our model, shortages are allowed
and the backlogging rate is variable and depends on the waiting time for the next replenish-
ment. We seek to find a replenishment policy that minimizes the Present value of the total
cost per unit time. The necessary and sufficient conditions of the existence and uniqueness of
the optimal solution are established. The corresponding problems are formulated and solved
using particle swarm optimization (PSO). A numerical example is presented to demonstrate
the developed model, followed by a post-optimality analysis on the key parameters of the
inventory system to assess the robustness of the model.

This paper is structured as follows. Section 2 describes the problem assumptions and the
notations used. Section 3 analyses the model formulation. Section 4 presents an algorithm
to find the optimal solutions. In Sect. 5, a numerical experiment is performed to validate the
model, and the robustness of our model is illustrated through a sensitivity analysis. Section 6
concludes the paper with some new research directions.

2 Assumption and notations

The model of the two-warehouse inventory problem assumes the following:

1. The own warehouse (OW) has a fixed capacity of W units; the rented warehouse (RW)
has unlimited capacity.

2. The inventory costs (including holding cost and deterioration cost) in RW are higher than
those in OW.

3. The replenishment rate is instantaneous.
4. The lead-time is negligible.
5 The demand rate D (t) is a function of stock level I (t) at time t i.e.

D (t) =
{
a + bI (t) ; I (t) > 0
a; I (t) < 0

, where a, b are positive constants.

6. The planning horizon of the inventory system is infinite.
7. Unsatisfied demand/shortages are allowed. Unsatisfied demand is partially backlogged

and the fraction of shortages backlogged is a differentiable and decreasing function of
time t, denoted by g(t), where t is the waiting time up to the next replenishment. We
define the partial backlogging rate as g(t) = e−δt , where δ is a positive constant.

In addition, the following notations are used throughout this paper.

A Replenishment cost per order
c Purchasing cost per unit
W Capacity of OW
Q Order quantity per cycle
Z Maximum inventory level per cycle.
H Holding cost per unit per unit time in OW.
F Holding cost per unit per unit time in RW, with F > H
s The backlogging cost per unit per unit time, if shortage is backlogged
c1 Unit opportunity cost due to lost sale, if the shortage is lost
R Inflation rate
α Deterioration rate in OW, where 0 ≤ α < 1
β Deterioration rate in RW, where 0 ≤ β < 1; β < α.

td Period in which no deterioration occurs.
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tr Time at which the inventory level reaches zero in RW.
tw Time at which the inventory level reaches zero in OW.
T Length of the replenishment cycle in a year.
I0(t) Inventory level in the OW at any time t, 0 ≤ t ≤ T
Ir (t) Inventory level in the RW at any time t, 0 ≤ t ≤ T
TCi Present value of total relevant cost per unit time for case i (i = I, II)
B(t) Backlogged level at any time t where tw ≤ t ≤ T
L(t) Number of lost sales at any time t where tw ≤ t ≤ T
p_size Population size
m_gen Maximum number of generations
χ Constriction factor or coefficient
c1 (>0) Cognitive learning rate
c2 (>0) Social learning rate
r1, r2 Uniformly-distributed random numbers in the interval [0, 1].
vi

(k) Velocity of i-th particle at k-th generation/iteration
xi (k) Position of i-th particle of population at k-th generation
p(k)
i Best previous position of i-th particle at k-th generation

p(k)
g Position of the best particle among all particles

3 Model formulation

We formulate the replenishment problem of a two warehousing inventory model for a single
non-instantaneous deteriorating item with complete backlogging. A lot size of Q units enters
the system. After satisfying the backorders, Z units are left in stock. Of these Z units, W
units are kept in the OW and the remaining (Z − W ) units are kept in the RW. As the
deterioration of the items is non-instantaneous, the units do not deteriorate in period td .
Thereafter, deterioration begins. We consider two cases: Case I - when the time during which
no deterioration occurs is less than the time during which the inventory in RW becomes zero
i.e. td < tr and Case II - when td ≥ tr.

3.1 Case I—when td < tr

As there is no deterioration in the interval [0, td ] , the inventory in RW is depleted only due
to demand while in OW the inventory level remains unchanged. In the interval [td , tr ] the
inventory level inRWreduces to zero due to the combined effects of demand anddeterioration,
and in OW, the inventory is depleted through deterioration only. Further, in the interval
[tr , tw], the depletion of inventory occurs in OW due to the combined effects of demand and
deterioration until it reaches zero at time tw . Moreover, in the interval [tw, T ], the demand
is backlogged. Figure 1 shows the behavior of the model behavior over the cycle [0, T ].

The differential equations that describe the inventory level in RW and OW at time t over
period (0, T ) are given by:

d Ir (t)

dt
= − (a + bIr (t)) , 0 ≤ t ≤ td (1)

d Ir (t)

dt
+ β Ir (t) = − (a + bIr (t)) , td < t ≤ tr (2)

d I0 (t)

dt
+ α I0 (t) = 0, td < t ≤ tr (3)

123



Ann Oper Res (2017) 254:401–423 405

T
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0 td tr tw
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Fig. 1 Two-warehouse inventory system when td < tr

d I0 (t)

dt
+ α I0 (t) = − (a + bI0 (t)) , tr < t ≤ tw (4)

dB (t)

dt
= ae−δ(T−t), tw < t ≤ T (5)

The solutions to Eqs. (1)–(5) with boundary conditions Ir (0) = Z −W, Ir (tr ) = 0, I0(td) =
W, I0(tw) = 0&B(tw) = 0 respectively are

Ir (t) = (Z − W ) e−bt + a

b

(
e−bt − 1

)
, 0 ≤ t ≤ td (6)

Ir (t) = a

β + b

(
e(β+b)(tr−t) − 1

)
, td < t ≤ tr (7)

I0 (t) = Weα(td−t), td < t ≤ tr (8)

I0 (t) = a

α + b

(
e(α+b)(tw−t) − 1

)
, tr < t ≤ tw (9)

B (t) = a

δ

{
e−δ(T−t) − e−δ(T−tw)

}
, tw < t ≤ T (10)

The number of lost sales at time t is

L(t) =
t∫

tw

a
{
1 − e−δ(T−t)

}
dt; tw < t ≤ T

= a

[
(t − tw) − 1

δ

{
e−δ(T−t) − e−δ(T−tw)

}]
(11)

Considering the continuity of Ir (t) at t = td , it follows from Eqs. (6) and (7) that

(Z − W ) e−btd + a

b

(
e−btd − 1

)
= a

β + b

(
e(β+b)(tr−td ) − 1

)
(12)

which leads us to the maximum inventory level per cycle as

Z = W + a

β + b

(
e(β+b)(tr−td ) − 1

)
ebtd − a

b

(
1 − ebtd

)
(13)
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Considering the continuity of I0 (t) at t = tr it follows from Eqs. (8) and (9) that

Weα(td−tr ) = a

α + b

(
e(α+b)(tw−tr ) − 1

)

tw = tr + 1

α + b
ln

(
a + (α + b)Weα(td−tr )

a

)
(14)

Putting t = T in Eq. (10), the maximum amount of demand backlogged per cycle is

B (T ) = a

δ

(
1 − e−δ(T−tw)

)
(15)

Therefore, the order quantity over the replenishment cycle can be expressed as

Q = Z + B(T ) (from Eqs. 13 and 15)

= W + a

β + b

(
e(β+b)(tr−td ) − 1

)
ebtd − a

b

(
1 − ebtd

)
+ a

δ

(
1 − e−δ(T−tw)

)
(16)

The total cost per cycle consists of the following elements:

1. Present value of the replenishment cost = A
2. Present value of the inventory holding cost in RW

= F

⎛
⎝

td∫
0

e−Rt Ir (t) dt +
tr∫

td

e−Rt Ir (t) dt

⎞
⎠

= F

[
1

(R + b)

(
Z − W + a

b

) {
1 − e−(R+b)td

}
+ a

bR

{
e−Rtd − 1

}

+ ae−Rtr

(β + b)

{
1

(β + b + R)

{
e(β+b+R)(tr−td ) − 1

}
− 1

R

{
eR(tr−td ) − 1

}}]

3. Present value of the inventory holding cost in OW

= H

⎛
⎝

td∫
0

We−Rtdt +
tr∫

td

e−Rt I0 (t) dt +
tW∫
tr

e−Rt I0 (t) dt

⎞
⎠

= H

[
W

R

{
1 − e−Rtd

}
+ We−Rtd

α + R

{
1 − e(α+R)(td−tr )

}

+ae−Rtw

α + b

{
1

α + b + R

{
e(α+b+R)(tw−tr ) − 1

}

− 1

R

{
eR(tw−tr ) − 1

}}]

4. Present value of the backlogging cost is s
T∫
tW

B (t) e−Rtdt

= sa

δ
e−δT

[
1

δ − R

{
e(δ−R)T − e(δ−R)tw

}
+ eδtw

R

{
e−RT − e−Rtw

}]

5. Present value of the opportunity cost due to lost sales is

= c1e
−RT

T∫
tw

{
1 − e−δ(T−t)

}
adt = c1ae

−RT
[
T − tw − 1

δ

{
1 − e−δ(T−tw)

}]
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6. Present value of the deterioration cost is

= c

⎡
⎣β

tr∫
td

Ir (t)e
−Rtdt + α

tw∫
tr

e−Rt I0(t)dt

⎤
⎦

= ca

[
e−Rtr

(β + b)

{
1

(β + b + R)

(
e(β+b+R)(tr−td ) − 1

)
− 1

R

(
eR(tr−td ) − 1

)}

+e−Rtw

α + b

{
1

α + b + R

(
e(α+b+R)(tw−tr ) − 1

)
− 1

R

(
eR(tw−tr ) − 1

)}]

Hence, using the above elements, the present value of the total relevant cost per unit time is
given by

TC1 (tr , T ) = 1

T

[
A + F

[
1

(R + b)

(
Z − W + a

b

) {
1 − e−(R+b)td

}
+ a

bR

{
e−Rtd − 1

}

+ ae−Rtr

(β + b)

{
1

(β + b + R)

{
e(β+b+R)(tr−td ) − 1

}
− 1

R

{
eR(tr−td ) − 1

}}]

+H

[
W

R

{
1 − e−Rtd

}
+ We−Rtd

α + R

{
1 − e(α+R)(td−tr )

}

+ae−Rtw

α + b

{
1

α + b + R

{
e(α+b+R)(tw−tr ) − 1

}
− 1

R

{
eR(tw−tr ) − 1

}}]

+ sa

δ
e−δT

{
1

δ − R

(
e(δ−R)T − e(δ−R)tw

)
+ eδtw

R

(
e−RT − e−Rtw

)}

+c1ae
−RT

{
T − tw − 1

δ

(
1 − e−δ(T−tw)

)}

+ca

[
e−Rtr

(β + b)

{
1

(β + b + R)

(
e(β+b+R)(tr−td ) − 1

)
− 1

R

(
eR(tr−td ) − 1

)}

+e−Rtw

α + b

{
1

α + b + R

(
e(α+b+R)(tw−tr ) − 1

)
− 1

R

(
eR(tw−tr ) − 1

)}]]
(17)

where

Z = W + a

β + b

(
e(β+b)(tr−td ) − 1

)
ebtd − a

b

(
1 − ebtd

)
, tw

= tr + 1

α + b
ln

(
a + (α + b)Weα(td−tr )

a

)

3.2 Case II—when td ≥ tr

Now, the time in which no deterioration occurs is longer than the time during which inventory
in RW becomes zero and the behavior of the model over the cycle [0, T ] is depicted in Fig. 2

The differential equations that describe the inventory level in RW and OW at time t in
period (0, T ) are given by:

d Ir (t)

dt
= − (a + bIr (t)) , 0 ≤ t ≤ tr (18)

d I0 (t)

dt
= − (a + bI0 (t)) , tr < t ≤ td (19)
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tdtr tw

T

W

Z-W

ZQ

0

Fig. 2 Two-warehouse inventory system when td > tr

d I0 (t)

dt
+ α I0 (t) = − (a + bI0 (t)) , td < t ≤ tw (20)

dB (t)

dt
= ae−δ(T−t), tw < t ≤ T (21)

The solutions of the above four differential Eqs. (18), (19), (20), and (21) with boundary
conditions Ir (tr ) = 0, I0 (tr ) = W, I0 (tW ) = 0, B (tW ) = 0 respectively are

Ir (t) = a

b

(
eb(tr−t) − 1

)
, 0 ≤ t ≤ tr (22)

I0 (t) =
(
W + a

b

)
eb(tr−t) − a

b
, tr < t ≤ td (23)

I0 (t) = a

α + b

(
e(α+b)(tw−t) − 1

)
, td < t ≤ tw (24)

B (t) = a

δ

{
e−δ(T−t) − e−δ(T−tw)

}
, tw < t ≤ T (25)

The number of lost sales at time t is

L(t) =
t∫

tw

a
{
1 − e−δ(T−t)

}
dt; tw < t ≤ T

= a

[
(t − tw) − 1

δ

{
e−δ(T−t) − e−δ(T−tw)

}]
(26)

Considering the continuity of I0(t) at t = td , it follows from Eqs. (23) and (24) that
(
W + a

b

)
eb(tr−td ) − a

b
= a

α + b

(
e(α+b)(tw−td ) − 1

)
(27)

tw = td + 1

α + b
ln

∣∣∣∣1 + α + b

a

{(
W + a

b

)
eb(tr−td ) − a

b

}∣∣∣∣ (28)

Now, at t = 0, when Ir (t) = Z − W and solving Eq. (22) yields the maximum inventory as

Z = W + a

b

(
ebtr − 1

)
(29)
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Putting t = T in Eq. (25), the maximum amount of demand backlogged per cycle is

B (T ) = a

δ

(
1 − e−δ(T−tw)

)
(30)

Therefore, the order quantity is Q = Z + B(T )

= W + a

b

(
ebtr − 1

)
+ a

δ

(
1 − e−δ(T−tw)

)
(from Eqs. 29 and 30) (31)

Again, the total cost per cycle consists of the following elements:

1. Present value of the replenishment cost = A

2. Present value of the inventory holding cost in RW = F
tr∫
0
e−Rt Ir (t) dt

= Fa

b

{
1

(R + b)

(
ebtr − e−Rtr

)
+ 1

R

(
e−Rtr − 1

)}

3. Present value of the inventory holding cost in OW

= H

⎛
⎝

tr∫
0

e−RtWdt +
td∫

tr

e−Rt I0 (t) dt +
tw∫

td

e−Rt I0 (t) dt

⎞
⎠

= H

[
W

R

(
1 − e−Rtr

)
+ e−Rtr

R + b

(
W + a

b

) (
1 − e(R+b)(tr−td )

)

+ae−Rtr

bR

(
eR(tr−td ) − 1

)

+ae−Rtw

α + b

{
1

α + b + R

(
e(α+b+R)(tw−td ) − 1

)
+ 1

R

(
1 − eR(tw−td )

)}]

4. Present value of the backlogging cost = s
T∫
tW

B (t) e−Rtdt

= sa

δ
e−δT

[
1

δ − R

{
e(δ−R)T − e(δ−R)tw

}
+ eδtw

R

{
e−RT − e−Rtw

}]

5. Present value of opportunity cost due to lost sales = c1e−RT
T∫
tw

{
1 − e−δ(T−t)

}
Ddt

= c1ae
−RT

[
T − tw − 1

δ

{
1 − e−δ(T−tw)

}]

6. Present value of the cost of the deteriorated items = cα
tw∫
td
e−Rt I0(t)dt

= c
ae−Rtw

α + b

{
1

α + b + R

(
e(α+b+R)(tw−td ) − 1

)
+ 1

R

(
1 − eR(tw−td )

)}

Hence, the present value of the total relevant cost per unit time during the cycle (0, T ) is
given by

TC2 (tr , T ) = 1

T

[
A + Fa

b

{
1

(R + b)

(
ebtr − e−Rtr

)
+ 1

R

(
e−Rtr − 1

)}
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+H

{
W

R

(
1 − e−Rtr

)
+ e−Rtr

R + b

(
W + a

b

) (
1 − e(R+b)(tr−td )

)

+ae−Rtr

bR

(
eR(tr−td ) − 1

)

+ae−Rtw

α + b

{
1

α + b + R

(
e(α+b+R)(tw−td ) − 1

)
+ 1

R

(
1 − eR(tw−td )

)}}

+ sa

δ
e−δT

{
e(δ−R)tw

δ − R

{
e(δ−R)(T−tw) − 1

}
+ eδtw

R

{
e−RT − e−Rtw

}}

+c1ae
−RT

{
T − tw − 1

δ

{
1 − e−δ(T−tw)

}}

+c
ae−Rtw

α + b

{
1

α + b + R

(
e(α+b+R)(tw−td ) − 1

)
+ 1

R

(
1 − eR(tw−td )

)}]

(32)

where Z = W + a
b

(
ebtr − 1

)
and tw = td + 1

α+b ln
∣∣1 + α+b

a

{(
W + a

b

)
eb(tr−td ) − a

b

}∣∣.
Therefore, the present value of the total relevant cost per unit time during the cycle (0, T )

is given by

TC (tr , T ) =
{
TC1 (tr , T ) i f td ≤ tr
TC2 (tr , T ) i f td ≥ tr

(33)

which is a function of the continuous variables tr and T .

Optimality
Wenow determine the optimumvalues of tr and T whichminimizes TC(tr, T ). The necessary
conditions for minimizing the total cost function given by Eq. (33) are

∂TCi (tr , T )

∂tr
= 0, and

∂TCi (tr , T )

∂T
= 0 for i = 1, 2 (34)

Eq. (34) can be solved simultaneously for the optimal values of tri and Ti (say tri ∗ and Ti ∗)
for i = 1, 2 provided it also satisfies the following sufficient conditions.

∂2TCi (tr , T )

∂t2r
> 0,

∂2TCi (tr , T )

∂T 2 > 0 and

[(
∂2TCi

∂t2r
× ∂2TCi

∂T 2

)
−

(
∂2TCi

∂T ∂tr
× ∂2TCi

∂tr∂T

)]
> 0 for i = 1, 2

4 Implementation of particle swarm optimization

Many studies have successfully used soft-computing methods to solve highly nonlinear opti-
mization problems. Some of the algorithms used include simulated annealing, differential
evolution, tabu search, genetic algorithm, ant colony optimization, and particle swarm opti-
mization (PSO). We now turn our attention to PSO.

PSO is a population based meta-heuristic global search algorithm based on the social
interaction and individual experience. It was first proposed by Eberhart and Kennedy (1995),
and Kennedy and Eberhart (1995). It has widely been applied to find the optimal solutions
to nonlinear optimization problems. This algorithm is inspired by the social behavior of bird
flocking or fish schooling. In PSO, the potential solutions (called particles), fly through the
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search space of the problem by following the current optimum particles. PSO is initialized
with a population of random particles positions (solutions) and PSO then searches for the
optimum from generation to generation. At every iteration, each particle is updated with two
best positions (solutions). The first one is the best position (solution) reached thus far by the
particle and this best position is said to be the personal best position p(k)

i . The other one is
the current best position (solution), obtained thus far by any particle in the population. This
best value is a global best position p(k)

g .
In each generation, the velocity and position of particle i (i = 1, 2, . . . , p_si ze) are

updated by the following rules:

v
(k+1)
i = wv

(k)
i + c1r1

(
p(k)
i − x (k)

i

)
+ c2r2

(
p(k)
g − x (k)

i

)
(35)

and
x (k+1)
i = x (k)

i + v
(k+1)
i (36)

where w is the inertia weight, and k (= 1, 2, . . . ,m-gen) indicates the iterations (gen-
erations). The cognitive learning and social learning rates c1 (> 0) and c2 (> 0) are the
acceleration constants responsible for varying the particle velocity towards p(k)

i and p(k)
g

respectively.
FromEq. (35), the updated velocity of particle i is found by considering three components:

(i) previous velocity of the particle, (ii) the distance between the particle’s best previous and
current positions and (iii) the distance between swarm’s best experience (the position of the
best particle in the swarm) and the current position of the particle. The velocity in Eq. (35) is
also limited by the range [−vmax, vmax] with vmax as the maximum velocity of the particle.
Choosing too small a value for vmax can cause a minute update of the velocities and positions
of the particles at each iteration. Hence, the algorithm may take long to converge, leading
to a local optima. To avoid this case, Clerc (1999), and Clerc and Kennedy (2002) proposed
an improved velocity update rule by employing a constriction factor χ . Accordingly, the
updated velocity is given by

v
(k+1)
i = χ

[
v

(k)
i + c1r1

(
p(k)
i − x (k)

i

)
+ c2r2

(
p(k)
g − x (k)

i

)]
(37)

with the constriction factor χ expressed as

χ = 2∣∣∣2 − φ − √
φ2 − 4φ

∣∣∣ (38)

where φ = c1 + c2, φ > 4 and χ is a function of c1 and c2. Typically, c1 and c2 are both
set at 2.05. Thus, φ is set to 4.1 and χ is 0.729. This PSO is known as PSO-CO, i.e. the
constriction coefficient based PSO.

The search procedure of PSO can be summarized as follows:

Step 1 Initialize the PSO parameters and bounds of the decision variables of the optimization
problem in the search space.

Step 2 Initialize a population of particles with random positions and velocities.
Step 3 Evaluate the fitness of all particles.
Step 4 Keep track of the locations where each individual has its highest fitness so far.
Step 5 Keep track of the position with the global best fitness.
Step 6 Update the velocity of each particle.
Step 7 Update the position of each particle.
Step 8 If the stopping criterion is satisfied, goto Step 9, otherwise goto Step 3.
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Step 9 Print the position and fitness of global best particle.
Step 10 Stop.

Generally, every particle is depicted by its position and velocity vectors which determine
the trajectory of the particle. This means that a particle moves along a determined trajec-
tory. However, in quantum mechanics, the term trajectory is meaningless, as the position
and velocity of a particle cannot be determined simultaneously according to Heisenberg’s
uncertainty principle. Hence, if a particle in a PSO system has quantum behavior, then the
PSO algorithm works differently (Sun et al. 2004a, b). Considering quantum behavior, Sun
et al. (2004a, b) first proposed the improved PSO algorithm leading to the quantum behaved
PSO (QPSO). In the QPSO, the particles’ state equations are structured by a wave function
and each particle’s state is described by the local attracter p and the characteristic length
L of δ-trap which is determined by the mean-optimal position (MP). As MP enhances the
cooperation between the particles and the particles waiting with each other, QPSO can pre-
vent particles from being trapped in a local minima (Pan et al. 2013). However the speed
and accuracy of convergence are slow. From Sun et al. (2004a, b), the iterative equation for
a particle’s position in QPSO is given by

x (k)
i j = p̃(k)

i j ± β ′
∣∣∣m(k)

j − x (k)
i j

∣∣∣ log
(

1

u j

)
(39)

where u j is a random number uniformly distributed in (0,1). The parameter β ′ is labelled as
the contraction-expansion coefficient which can be tuned to control the convergence speed
of the algorithm.

The global point, labelled as the Mainstream or Mean best
(
m(k)

)
of the population at kth

iteration is defined as the mean of the pbest positions of all particles, i.e.

m(k) =
(
m(k)

1 ,m(k)
2 , . . . ,m(k)

n

)
=

(
1

psize

psize∑
i=1

p̃(k)
i1 ,

1

psize

psize∑
i=1

p̃(k)
i2 , . . . ,

1

psize

psize∑
i=1

p̃(k)
in

)
.

(40)
The procedure for implementing the QPSO is given as follows:

Step 1 Initialize the PSO parameters and bounds of the decision variables.
Step 2 Initialize a population of particles with random positions.
Step 3 Evaluate the fitness value of each particle.
Step 4 Update the mean best position using Eq. (40).
Step 5 Compare each particle’s fitness with the particle’s pbest. Store better one as pbest.
Step 6 Compare current gbest position with earlier gbest position.
Step 7 Update the position of each particle using Eq. (39).
Step 8 If the stopping criterion is satisfied, goto Step 9, otherwise goto Step 3.
Step 9 Print the position and fitness of global best particle.
Step 10 Stop.

To improve the performance of the QPSO, many improved versions for the QPSO have
been proposed, such as the Weighted QPSO i.e. WQPSO (Xi et al. 2008). AQPSO (Sun et al.
2005), RQPSO, RRQPSO, SRQPSO (Pan et al. 2013). Gaussian QPSO i.e. GQPSO (Coelho
2010).

Bhunia et al. (2015a) applied the PSO-CO technique to solve a two-warehouse inventory
problem for deteriorating items considering partially backlogged shortages and inflation.
Bhunia et al. (2014a) and Bhunia and Shaikh (2015) applied a variant of the PSO algorithm
to solve the inventory problem.
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Table 1 Best found solution of inventory models by PSO-CO

Case D(t) tr tw T Z∗ B∗ Q∗ Best found
minimum cost

1

{
a + bI (t) ; I (t) > 0
a; I (t) < 0

0.1 0.4247 2.5406 331.32 75.65 406.97 469.07

2

{
a + bI (t) ; I (t) > 0
a ; I (t) < 0

0.10 0.4247 2.5597 213.74 76.87 290.61 467.32

Table 2 Best found solution of inventory models by PSO-CO

Case D(t) tr tw T Z∗ B∗ Q∗ Best found
minimum cost

1

{
a + bI (t) ; I (t) > 0
a; I (t) < 0

0.1001 0.4248 2.5451 331.35 75.70 407.05 469.04

2

{
a + bI (t) ; I (t) > 0
a; I (t) < 0

0.10 0.4247 2.5535 213.77 76.65 290.42 467.12

In the WQPSO, the mean best position is replaced by the weighted mean best position.
In that case, the particles are ranked in decreasing order according to their fitness values. A
weighted coefficient αi is then assigned, linearly decreasing, with the particle’s rank i.e. the
nearer to the best solution, the larger is its weighted coefficient. The mean best positionm(k),
therefore, is calculated as follows:

m(k) =
(
m(k)

1 ,m(k)
2 , . . . ,m(k)

n

)

=
(

1

psize

psize∑
i=1

αi1 p̃
(k)
i1 ,

1

psize

psize∑
i=1

αi2 p̃
(k)
i2 , . . . ,

1

psize

psize∑
i=1

αin p̃
(k)
in

)

where αi is the weighted coefficient and αid is the dimension coefficient of every particle
respecitvely. In our paper, the weighted coefficient for each particle decreases linearly from
1.5 to 0.5.

5 Numerical and sensitivity analysis

5.1 Numerical example

Suppose an inventory system has the following data: A = $250/order, s = $10/unit/year, c =
$20/unit, c1 = $5/unit, H = $0.5/unit/year, F = $0.7/unit/year, W = 200 units, a = 80, b
=10, α = 0.05/unit, β = 0.03/unit, R = 0.06, δ = 0.9, td = 0.1year. We now apply the
PSO-CO. which has been coded in C and compiled on a PC with Intel Core-2-duo 2.5 GHz
processor in a LINUX environment. For each case (I and II), 20 runs are performed by the
proposed PSO for which the best value of the cost function is taken (Tables 1, 2).

For the entire computation, the values of the PSO parameters are as follows: p_size = 100,
m_gen = 100, C1 = 2.05, C2 = 2.05. The initial velocity is assigned randomly between
−Vmax and Vmax where Vmax is set to be 20% of the range of each variable in the search
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Table 3 Statistical analysis of the results for PSO-CO

Case 1 2

Mean objective value (minimum cost) 469.07 467.32

SD of objective valuea 5.82 × 10−14 5.46 × 10−12

COV of objective valuea 5.45 × 10−16 5.95 × 10−14

a SD Standard deviation, COV coefficient of variation

Table 4 Statistical analysis of the results for WQPSO

Case I II

Mean objective value (minimum cost) 469.04 467.12

SD of objective valuea 0.0181 4.82 × 10−10

COV of objective valuea 3.85 × 10−5 2.45 × 10−13

a SD Standard deviation, COV Coefficient of variation

domain. From the statistical analysis of the results obtained for the two cases (cf. Tables 3,
4), the proposed soft computing method PSO-CO and WQPSO are stable.

5.2 Sensitivity analysis

Next, we perform a graphical sensitivity analyses to study the effect of under or over estimat-
ing the system parameters on the optimal solution corresponding to the best found value of
the average cost of the system (i.e. the minimum value of the average cost, but the minimal
property cannot be established theoretically). Here, the percentage changes are taken as mea-
sures of sensitivity. These analyses are carried out by altering the parameters individually by
±20% of their original values.

From Tables 5, 6, following insights are made:

• With the increase in the ordering cost (A) and holding cost of both OW and RW i.e. (H
& F), the optimal cycle length (T ), optimal maximum backorder (B), and optimal order
quantity (Q) decrease but the present value of the total optimal cost (TC) increases.

• With the increase in the purchasing cost (c) and opportunity cost (c1), the optimal cycle
length (T ), optimal maximum backorder (B) and optimal order quantity (Q) increases
which results in an increase in the present value of total optimal cost (TC).

• Also, with an increase in the net rate of inflation (R), the order quantity (Q) and the
Present value of the total optimal cost (TC) Increase. Further analysis on R shows that
the influence of inflation should be considered even if it is small. To achieve higher sales
during inflationary conditions, a customer should order more and for a longer period of
time. It shows that as deterioration increases, one should order less while if the inflation
increases, one should order more.

• There is a decrease in the present value of the total optimal cost (TC) and increases in the
optimal cycle length (T ) and order quantity (Q) with an decrease in backlogging param-
eter (δ). As increasing the backlogging rate suggests accommodating more backlogged
demand, this increases the order quantity. At the same time, the initial inventory for the
cycle decreases, which decreases the holding cost, and in turn reduces the present value
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Table 5 Sensitivity analysis with different parameters of the inventory system of case-I

Parameter % change in
parameter

% change in

tw∗ T ∗ B∗ Z∗ TC∗

A −20 0.00 6.79 2.48 0.00 −4.04

−10 0.00 3.49 1.32 0.00 −2.06

10 0.00 −3.75 −1.55 0.00 2.13

20 0.00 −7.88 −3.41 0.00 4.35

H −20 0.00 2.00 0.21 0.00 −0.31

−10 0.00 0.98 0.11 0.00 −0.15

10 0.00 −0.95 −0.11 0.00 0.16

20 0.00 −1.86 −0.21 0.00 0.31

F −20 0.00 0.01 0.00 0.00 −0.01

−10 0.00 0.01 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00

20 0.00 −0.01 0.00 0.00 0.01

c1 −20 0.64 −8.62 −3.77 0.00 −6.60

−10 0.64 −4.16 −1.73 0.00 −3.36

10 0.00 3.93 1.48 0.00 3.45

20 0.00 7.65 2.77 0.00 6.98

c −20 0.00 0.49 0.19 0.00 −0.29

−10 0.00 0.25 0.10 0.00 −0.14

10 0.00 −0.25 −0.10 0.00 0.14

20 0.00 −0.50 −0.2 0.00 0.29

R −20 0.00 5.07 1.89 0.00 2.14

−10 0.00 2.46 0.94 0.00 1.04

10 0.00 −2.33 −0.95 0.00 −1.00

20 0.00 −4.55 −1.89 0.00 −1.95

δ −20 0.00 17.36 0.00 1.76 7.03

−10 0.00 7.97 0.00 0.88 3.03

10 0.00 −6.93 0.00 −0.89 −2.33

20 0.00 −13.10 0.00 −1.78 −4.12

td −20 −20.96 −6.81 −1.36 −6.04 2.44

−10 −7.18 −0.1 −0.04 −5.23 2.43

10 2.28 3.98 0.03 0.34 2.21

20 16.69 5.22 0.06 1.32 2.25

of the total optimal cost (TC). In short, when the backlogging rate is greater, a customer
should order more to satisfy the backlogged demand.

• With an increase in the value of non-deteriorating period (td), it can be observed that the
cycle length (T ) and the order quantity (Q) increase but the Present value of the total opti-
mal cost (TC) decreases. One explanation could be that as the period for non-deterioration
(td) increases, the costs incurred due to deterioration decreases which accounts for less
total cost to the system.

123



416 Ann Oper Res (2017) 254:401–423

Table 6 Sensitivity analysis with different parameters of the inventory system of case-II

Parameter % change in
parameter

% change in

tw∗ T ∗ B∗ Z∗ TC∗

A −20 0.00 6.93 2.57 0.00 −4.05

−10 0.00 3.56 1.37 0.00 −2.06

10 0.00 −3.83 −1.60 0.00 2.14

20 0.00 −8.10 −3.56 0.00 4.37

H −20 0.00 0.55 0.22 0.00 −0.31

−10 0.00 0.28 0.11 0.00 −0.16

10 0.00 −0.26 −0.11 0.00 0.16

20 0.00 −0.54 −0.22 0.00 0.31

F −20 0.00 0.17 0.07 0.00 −0.09

−10 0.00 0.09 0.04 0.00 −0.05

10 0.00 −0.07 −0.03 0.00 0.05

20 0.00 −0.16 −0.06 0.00 0.09

c1 −20 0.00 −8.83 −3.98 0.00 −6.53

−10 0.00 −4.25 −1.79 0.00 −3.34

10 0.00 4.02 1.54 0.00 3.42

20 0.00 7.66 2.86 0.00 6.92

c −20 0.00 −0.28 0.19 0.00 −0.29

−10 0.00 −0.26 0.10 0.00 −0.14

10 0.00 0.11 −0.10 0.00 0.14

20 0.00 0.37 −0.20 0.00 0.29

R −20 0.00 5.12 1.93 0.00 2.11

−10 0.00 2.49 0.97 0.00 1.03

10 0.00 −2.35 −0.97 0.00 −0.98

20 0.00 −4.60 −1.94 0.00 −1.92

δ −20 0.00 17.66 23.70 0.00 6.94

−10 0.00 8.13 10.66 0.00 2.99

10 0.00 −7.09 −8.90 0.00 −2.28

20 0.00 −13.40 −16.48 0.00 −4.04

td −20 −4.71 −1.54 −0.30 −10.68 0.55

−10 −2.35 −0.76 −0.15 −5.60 0.27

10 2.35 0.73 0.13 6.19 −0.25

20 4.71 1.45 0.26 13.04 −0.49

5.3 Graphical interactions of the decision variables

Graphical sensitivity analysis with respect to parameters a, b and W of case-I
Graphical sensitivity analysis with respect to parameters a, b and W of case-II

From Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14, the following observations are made:

• In both cases, the Present value of the total optimal cost (TC), maximum shortage (B)

and cycle length (T ) are highly sensitive to a, moderately sensitive to b and less so toW .
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Fig. 3 ±20% change of parameter a on TC, Z, and B for Case I

Fig. 4 ±20% change of parameter a on Tw and T for Case I

Fig. 5 ±20% change of parameter b on TC, Z, and B for Case I
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Fig. 6 ±20% change of parameter b on Tw and T for Case I

Fig. 7 ±20% change of parameter W on TC, Z, and B for Case I

Fig. 8 ±20% change of parameter W on Tw and T for Case I
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Fig. 9 ±20% change of parameter a on TC, Z, and B for Case II

Fig. 10 ±20% change of parameter a on tw and T for Case II

Fig. 11 ±20% change of parameter b on TC, Z, and B for Case II
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Fig. 12 ±20% change of parameter b on tw and T for Case II

Fig. 13 ±20% change of parameter W on TC, Z, and B for Case II

Fig. 14 ±20% change of parameter W on tw and T for Case II
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• In both cases, the highest stock level (Z) is moderately sensitive to a, b, and insensitive
to W .

• In both cases, the waiting time for the next replenishment tw is highly sensitive with
respect to b and moderately sensitive to a and W .

6 Conclusion

Our paper has proposed a realistic model which is well practised in a retail setting that typ-
ically holds discounts at the end of a cycle, so as to sell off the current stock and to make
space for the next replenishment period.We have discussed a twowarehouse inventorymodel
for non-instantaneous deteriorating items with stock-dependent demand under inflationary
conditions. In the model, shortages are allowed and the backlogging rate is variable and
depends on the waiting time for the next replenishment. We seek to obtain an optimal replen-
ishment policy that minimizes the present value of the total cost per unit time. The necessary
and sufficient conditions of the existence and uniqueness of the optimal solution for Cases
I and II are found. Then for each case, the corresponding problems have been formulated
and solved with the help of particle swarm optimization (PSO). A numerical example is
presented to demonstrate the developed model, followed by a graphically sensitivity analysis
of the optimal solution with respect to the key parameters of the inventory system.

Our inventory model can be extended further in several ways. The present model can be
formulated under a single level and two-level trade credit policy. To inject more realism,
the model can also be extended with different forms of demand such as the credit linked
demand and advertisement dependent demand, which is of much interest in the cyberspace
eCommerce domain currently.
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