
Ann Oper Res (2019) 277:83–93
https://doi.org/10.1007/s10479-017-2486-3

RELIABILITY AND QUALITY MANAGEMENT IN STOCHASTIC SYSTEMS

A generalized software reliability model with stochastic
fault-detection rate

Triet Pham1 · Hoang Pham2

Published online: 31 March 2017
© Springer Science+Business Media New York 2017

Abstract We propose a theoretic model of software reliability where the fault detection rate
is a stochastic process. This formulation provides the flexibility in modeling the random
environment effects in testing software data. We examine two particular cases: additive and
multiplicative noise and provide explicit representations for the expected number of software
failures. Examples are included to demonstrate the formulas for specific choices of time
dependent total number of faults and distribution of noise.

Keywords Non-homogeneous Poisson process · Software reliability model · Stochastic
fault-detection rate

1 Introduction

Many existing non-homogeneous Poisson process (NHPP) software reliability model have
been carried out through the fault intensity rate function h(t) and themean value functionm(t)
within a controlled testing environment to estimate reliability metrics such as the number of
residual faults, failure rate, and reliability of software. Specifically, the mean value function
is modeled as

d

dt
m(t) = h(t)(N (t) − m(t)), (1.1)

wherem(t) is the number of software failures detected by time t, N (t) is the expected number
of faults that exist in the software before testing and h(t) is the time dependent fault detection
rate per unit of time. The goal of thesemodels is to achieve an explicit formula form(t)which

B Triet Pham
tmp140@math.rutgers.edu

Hoang Pham
hopham@rci.rutgers.edu

1 Department of Mathematics, Rutgers University, Pisctacaway, NJ, USA

2 Department of Industrial Engineering, Rutgers University, Pisctacaway, NJ, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-017-2486-3&domain=pdf


84 Ann Oper Res (2019) 277:83–93

is applied to the software testing data and used to make predictions on the software failures
and reliability in the field.

We observe, however, that model (1.1) is deterministic, while the operating environments
in the field are random. Specifically, there are factors of the operating environments that will
affect the software failure and software reliability in an unpredictable way. Many authors
have worked in different directions to extend the model (1.1) to account for the random
environment effects. Teng and Pham (2006) discussed a generalized model that captures the
uncertainty of the environment and its effects upon the software failure rate. Other researchers
(Chang et al. 2014; Goel and Okumoto 1979; Inoue et al. 2015, 2016; Kapur et al. 2011,
2012, 2014; Kumar et al. 2016; Lee et al. 2016; Liu et al. 2016; Minamino et al. 2016;
Ohba 1984; Okamura and Dohi 2016; Ohba and Yamada 1984; Persona et al. 2010; Pham
and Pham 2000; Pham 1993, 1996, 2006, 2007, 2013, 2014a, b, 2016; Pham and Deng
2003; Pham et al. 1999, 2014; Pham and Zhang 1997, 2003; Roy et al. 2014; Sgarbossa
and Pham 2010; Sato and Yamada 2016; Teng and Pham 2006, 2004; Xiao and Dohi 2011;
Yamada and Osaki 1985; Yamada et al. 1992; Zhang and Pham 2006; Zhu and Pham 2016;
Zhu et al. 2015) have also developed reliability and cost models incorporating both testing
phase and operating phase in the software development cycle for estimating the reliability
of software systems in the field. citeP1 recently also developed a software reliability model
with Vtub-shaped fault-detection rate subject to the uncertainty of operating environments.

One way we can capture the random environment effects abstractly is by letting h(t, ω)

be a stochastic process adapted to a given filtration F(t), 0 ≤ t < ∞:

dm(t, ω)

dt
= h(t, ω)(N (t) − m(t, ω)). (1.2)

Under the assumptions that N (t) = N and m(0) = 0, one can derive the solution for (1.2)
as

m(t, ω) = N
[
1 − e− ∫ t

0 h(s,ω)ds
]
. (1.3)

As m(t, ω) is a random variable, the interest now is to obtain an explicit representation of

m̄(t) := E(m(t, ω)). (1.4)

The general formulation of (1.2) allows for flexibility in modelling the random environ-
ment effect via the term h(t, ω). For example, Pham (2014a) models

h(t, ω) = η(ω)h̃(t) (1.5)

where η(ω) is a Gamma(α, β) random variable and h̃(t) is a Vtub-shaped rate function. We
will refer to this formulation as a (static)multiplicative noisemodel.Under these assumptions,

m̄(t) = N

[
1 −

(
β

β + ∫ t
0 h̃(s)ds

)α]
. (1.6)

One can also generalize the model in Pham (2014a) by considering

h(t, ω) = η(t, ω)h̃(t), (1.7)

where η(t, ω) is a well-known stochastic process adapted to a given filtration and h̃(t) is a
deterministic rate function. We refer to this formulation as a dynamic multiplicative noise
model. A possible choice would be η(t, ω) = W (t, ω) whereW (t, ω) is a Brownian motion.

123



Ann Oper Res (2019) 277:83–93 85

We do not pursue the dynamic multiplicative noise model and its implications in this paper.
Instead, we propose a dynamic additive noise model:

h(t, ω) = h̃(t) + Ṁ(t, ω). (1.8)

The goal in this formulation is to choose Ṁ(t, ω) such that M(t, ω), the (formal) anti-
derivative of Ṁ(t, ω) with respect to t , is a martingale. That is for all s < t

E(M(t, ω)|F(s)) = M(s, ω), (1.9)

where F(t), t ≥ 0 is a given filtration representing the flow of information in time. Equation
(1.8) and the martingale property of M(t, ω) implies that for all u < t

E

(∫ t

u
h(s, ω)ds

)
=

∫ t

u
h̃(s)ds. (1.10)

This captures the intuition that on average the random effect of h(s, ω) cancels out to give us
the equivalene of the original deterministic rate function h̃(s). We note that relation (1.10)
does not trivialize the model in the sense of reducing m̄(t) to the deterministic case since in

general E(e
∫ t
u h(s,ω)ds) �= eE(

∫ t
u h(s,ω)ds).

Ourmain contribution of this paper is to provide a general theory for the software reliability
model with stochastic fault-detection rate. The results when the rate follows a dynamic
additive white noise model are presented in Sect. 2.1. To the best of our knowledge, the
martingale framework, in particular the Brownian motion and white noise processes has not
been utilized in the software reliability literature to model the random environment effect.We
also extend the theory of the static multiplicative rate (1.5) in the model (1.2) by removing the
assumption that N (t) is constant. The results are presented in Sect. 2.2. Section 3 concludes
the paper.

Notation

m(t, ω): number of software failures detected by time t
m̄(t): expected number of software failures detected by time t
N (t): expected number of faults that exist in the software before testing
h(t, ω): time-dependent fault-detection rate per unit of time
φη(t): moment generating function of the random variable η evaluated at t

2 General fault-detection model with stochastic rate

This section presents themain contribution of this paper,which is a general software reliability
model where the fault-detection rate h(t, ω) is a stochastic process. We present specific
modelling details of h(t, ω) in subsequent sections.

Consider the initial value problem

d

dt
m(t, ω) = h(t, ω)(N (t) − m(t, ω))

m(0) = 0. (2.1)

This equation has the solution

m(t, ω) = e− ∫ t
0 h(s,ω)ds

∫ t

0
e
∫ u
0 h(s,ω)dsh(u)N (u)du. (2.2)

123



86 Ann Oper Res (2019) 277:83–93

Assuming N (t) is differentiable and using integration by parts, we have

m(t, ω) =
{
N (t) − N (0)e− ∫ t

0 h(s,ω)ds
}

−
∫ t

0
e− ∫ t

u h(s,ω)ds N ′(u)du. (2.3)

In this expression, the randomness ofm(t, ω) comes from
∫ t
0 h(s, ω)ds and

∫ t
u h(s, ω)ds.

Thus the explicit representation of m̄(t) depends on the computation of

E
(
e− ∫ t

u h(s,ω)ds
)

, u ≥ 0. (2.4)

In Pham (2014a), the author facilitates this computation by imposing the multiplicative noise
structure

h(t, ω) = η(ω)h̃(t). (2.5)

It follows that

E
(
e− ∫ t

u h(s,ω)ds
)

= φη(−
∫ t

u
h̃(s)ds), (2.6)

where φη(t) is the moment generating function of η(ω). On the other hand, the moment
generating function φη(t) also poses difficulty in deriving the explicit representation of m̄(t)
when we generalize the expected number of faults N to a non-constant function N (t). Indeed
as the examples in Sects. 2.2.1 and 2.2.2 show, we need to choose a suitable N (t) to achieve
such goal.

2.1 Fault-detection rate model with additive white noise

In this section, we utilize the martingale framework to model the random environment effect.
For the convenience of the readers, we present the basic definitions of a martingale and a
Brownian motion. For a thorough introduction we refer the readers to Protter (2013).

A stochastic process M(t) is a martingale with respect to a filtration F(t), 0 ≤ t ≤ T if
for any s ≤ t

E(M(t)|F(s)) = M(s). (2.7)

We note that by convention we suppress the dependence of M(t) (and later on, the Brownian
motion W (t)) on ω. That is we write M(t) instead of M(t, ω) (respectively W (t) instead of
W (t, ω)) . For a continuous martingale M(t), the quadratic variation process [M](t) is such
that M2(t) − [M](t) is also a F(t) martingale.

A particular and well-known example of a martingale is a Brownian motion. A stochastic
process W (t) is a Brownian motion with respect to a filtration F(t), 0 ≤ t ≤ T if

W (0) = 0

W (t) − W (s) is independent of F(s), for any s < t

W (t) − W (s) has N (0, t − s) distribution. (2.8)

For our purpose, if M(t) is a continuous martingale with suitable integrability condition then

E
(
eM(t)−M(u)

)
= E

(
e
1
2 ([M](t)−[M](u))

)
. (2.9)

We can take advantage of this relation by using a martingale M(t)where [M](t) has a simple
expression. For example, if W (t) is a Brownian motion then W (t) is also a martingale (with
respect to its own filtration) and [W ](t) = t .

123



Ann Oper Res (2019) 277:83–93 87

To utilize the exponential martingale structure, we assume that
∫ t

0
h(s, ω)ds = M(t) +

∫ t

0
h̃(s)ds, (2.10)

where h̃(s) is a deterministic rate function. Equivalently

h(t, ω) = Ṁ(t) + h̃(t), (2.11)

where Ṁ(t) formally denotes the derivative ofM with respect to time. The technical difficulty
here is that a non-trivial continuous martingale would almost surely have paths that are
nowhere differentiable. Thus one has to be careful to interpret the process h(t, ω) in this
formulation. For our starting point, we can choose M(t) = W (t) to be a Brownian motion
because the process Ẇ (t) is well-studied in the literature : it is referred to as the white noise
process. We will investigate other possible choices for M(t), including the martingale with
jumps case in future works.

Thus we consider the model

d

dt
m(t, ω) = h(t, ω)(N (t) − m(t, ω))

m(0) = 0. (2.12)

where

h(t, ω) = h̃(t) + √
2Ẇ (t). (2.13)

Here h̃(t) is a usual deterministic rate process and Ẇ (t) is the white noise process. In other
words, Ẇ (t) is a Gaussian process with covariance structure

E(Ẇ (s)Ẇ (t)) = δ(t − s), 0 < s < t; (2.14)

where δ(t) is the Dirac Delta measure. For more details about white noise processes, we refer
the readers to Martin (2009). In our model, the structure (2.13) has the effect that

∫ t

u
h(t, ω)ds =

∫ t

u
h̃(s)ds + √

2(W (t) − W (u)), (2.15)

whereW (t) is a Brownianmotion. Plugging this expression in (2.3), we have the computation
of m̄(t) as followed

m̄(t) =
{
N (t) − N (0)e− ∫ t

0 h̃(s)ds E(e−√
2W (t))

}

−
∫ t

0
e− ∫ t

u h̃(s)ds E(e−√
2(W (t)−W (u)))N ′(u)du

=
{
N (t) − N (0)e− ∫ t

0 h̃(s)dset
}

−
∫ t

0
e− ∫ t

u h̃(s)dset−u N ′(u)du

=
{
N (t) − N (0)e− ∫ t

0 (h̃(s)−1)ds
}

−
∫ t

0
e− ∫ t

u (h̃(s)−1)ds N ′(u)du. (2.16)

The expression (2.16) is suitable for the choice of h̃(t) such that
∫
h̃(t)dt is of the log type.

We demonstrate this by several examples below.

Example 1 Let

h̃(t) = b

1 + γ e−bt
. (2.17)

123



88 Ann Oper Res (2019) 277:83–93

This is the S-shape detection rate used in Pham et al. (1999). Then

m̄(t) =
{
N (t) − N (0)

γ + 1

γ + ebt
et

}
− et

γ + ebt

∫ t

0

(
γ e−u + e(b−1)u

)
N ′(u)du. (2.18)

Let

N (t) = ket

then

m̄(t) = k

{
et − γ + 1

γ + ebt
et

}
− ket

γ + ebt

(
γ t + ebt − 1

b

)
. (2.19)

Example 2 Let

h̃(t) = bt

1 + bt
, b > 0. (2.20)

Letting b̃ = 1
b , we have

h̃(t) = t

t + b̃
. (2.21)

Then

m̄(t) =
{
N (t) − N (0)

(
1 + t

b̃

)b̃
}

− (t + b̃)b̃
∫ t

0

N ′(u)

(u + b̃)b̃
du. (2.22)

Let

N (u) = log(u + b̃)

or

N ′(u) = 1

u + b̃

then

m̄(t) = log(t + b̃) −
(
log(b̃) + 1

b̃

) (
1 + t

b̃

)b̃

+ 1

b̃
.

2.2 Fault-detection rate model with static multiplicative noise

We consider the model

d

dt
m(t, ω) = h(t, ω)(N (t) − m(t, ω))

m(0) = 0. (2.23)

where

h(t, ω) = η(ω)h̃(t). (2.24)

In this section, we present the explicit representations of m̄(t) under the choice of h̃(t) as the
S-shaped rate function

h̃(t) = b

1 + γ e−bt
, (2.25)

123



Ann Oper Res (2019) 277:83–93 89

assuming certain form of N (t). We have

m(t, ω) = N (t) − N (0)e−η
∫ t
0 h(s)ds −

∫ t

0
e−η

∫ t
u h(s)ds N ′(u)du (2.26)

And thus

m̄(t) = N (t) − N (0)φη(−
∫ t

0
h(s)ds) −

∫ t

0
φη(−

∫ t

u
h(s)ds)N ′(u)du, (2.27)

where φη(t) is the moment generating function of the random variable η(ω). For convenience
of notation, we introduce the function

H(t) :=
∫ t

0
h(s)ds = log

(
1 + ebt

γ

)
− log

(
1 + 1

γ

)
. (2.28)

Thus m̄(t) can be expressed as

m̄(t) = N (t) − N (0)φη(−H(t)) −
∫ t

0
φη(H(u) − H(t))N ′(u)du. (2.29)

2.2.1 N (t) = H(t) + N (0)

Under the assumption that N (t) = H(t) + N (0), we have N ′(t) = h(t). This assumption
still ensures that N (t) is increasing since N ′(t) = h(t) > 0. Equation (2.27) becomes

m̄(t) = {
N (t) − N (0)φη(−H(t))

} −
∫ H(t)

0
φη(−u)du. (2.30)

Example 3 Let η(ω) follows a Gamma(α, β) distribution. That is the probability density
function of η(ω) is given by

g(x) = βαxα−1e−βx

	(α)
; quadα, β > 0, x > 0. (2.31)

We have

φη(t) =
(
1 − t

β

)−α

, (2.32)

and

∫ t

0
φη(−u)du = β

(
1 + t

β

)1−α − 1

1 − α
. (2.33)

Thus

m̄(t) =
{
N (t) − N (0)(1 + H(t)

β
)−α

}
− β

(
1 + H(t)

β

)1−α − 1

1 − α
, (2.34)

where N (t) = H(t) + N (0) and H(t) is given by (2.28).

Remark 1 There are 5 parameters in example (3): b, γ from h(t), α, β from the distribution
of η and N (0). One can choose these parameters to fit a given existing data by standard
methods such as maximum likelihood or least square estimations.

123



90 Ann Oper Res (2019) 277:83–93

2.2.2 N (t) = G(H(t))

Under the assumption that N (t) = G(H(t)) and G(x) is differentiable, we have

N ′(t) = G ′(H(t))h(t).

In particular, when G(x) = x + N (0) this reduces to the assumption we have in section
(2.2.1). To ensure that N (t) is increasing, we also require that

g(x) := G ′(x) > 0.

Now equation (2.27) becomes

m̄(t) = {
N (t) − N (0)φη(−H(t))

} −
∫ H(t)

0
φη[−(H(t) − u)]g(u)du

= {
N (t) − N (0)φη(−H(t))

} − (φ̂η ∗ g)(H(t)),

where φ̂η(u) = φη(−u) and ∗ denotes the convolution operator:

f ∗ g(t) :=
∫ t

0
f (t − s)g(s)ds. (2.35)

Remark 2 The challenge in finding the explicit representation for (2.35) is to compute the
convolution φ̂η ∗ g(t). In the following examples, we choose certain combinations of η and
g that allow for such computation.

Example 4 Let η follows a Gamma(α, β) in Example (3) with α an integer. Let g(t) = t .
Then

φ̂η ∗ g(t) = β2

(
1 + t

β

)2−α − (1 + 1
β
)2−α

(1 − α)(2 − α)
−

β
(
1 + 1

β

)1−α

1 − α
. (2.36)

Thus

m̄(t) =
{
N (t) − N (0)(1 + H(t)

β
)−α

}
− β2

(
1 + H(t)

β

)2−α − (1 + 1
β
)2−α

(1 − α)(2 − α)

+β(1 + 1
β
)1−α

1 − α

H(t) = log

(
1 + ebt

γ

)
− log

(
1 + 1

γ

)
. (2.37)

Example 5 Let η follows a Normal(μ, σ 2) distribution. Then

φη(t) = eμt+ σ2 t2
2 . (2.38)

Let g(t) = eαt− σ2 t2
2 . Then

φ̂η ∗ g(t) = eαt− σ2 t2
2 − e−μt+ σ2 t2

2

μ + α − σ 2t
. (2.39)

123



Ann Oper Res (2019) 277:83–93 91

Thus

m̄(t) =
{
N (t) − N (0)e−μH(t)+ σ2H2(t)

2

}
− eαH(t)− σ2H(t)2

2 − e−μH(t)+ σ2H(t)2
2

μ + α − σ 2H(t)
(2.40)

H(t) = log

(
1 + ebt

γ

)
− log

(
1 + 1

γ

)
. (2.41)

In particular, if μ = α = 0 and σ = √
2

φ̂η ∗ g(t) = sinh(t2)

2t
, (2.42)

and

m̄(t) =
{
N (t) − N (0)e−H2(t)

}
− sinh(H2(t))

2H(t)
. (2.43)

Example 6 Let η follows a Poisson(λ) distribution. Then

φη(t) = eλ(et−1). (2.44)

Let g(t) = et . Then

φ̂η ∗ g(t) = et−λ

λ

(
eλ − eλe−t

)
. (2.45)

Thus

m̄(t) = N (t) − N (0)eλ(e−H(t)−1) − eH(t)−λ

λ

(
eλ − eλe−H(t)

)
(2.46)

H(t) = log

(
1 + ebt

γ

)
− log

(
1 + 1

γ

)
. (2.47)

Remark 3 The advantage of the assumption N (t) = G(H(t)) comparedwith N (t) = H(t)+
N (0) is that it allows us to take advantage of the choice of the function g(x) = G ′(x) in the
calculation. In assuming N (t) = H(t) + N (0) we need to compute

∫ t
0 φη(−u)du and there

are not many choices of the distribution of η where we know this integral explicitly. In Sect.
2.2 we have seen one example where that is possible: the Gamma distribution. Examples (5)
and (6) show instances where this computation is not known explicitly because it involves
the anti-derivative of φη(t). On the other hand, by assuming a suitable g(t) we can still carry
out the calculation of φ̂η ∗ g(t) and achieve a representation of m̄(t).

3 Conclusion and future works

We have presented the explicit representations for m̄(t) for two different models, one with
dynamic additive noise in Sect. (2.1) and one with static multiplicative noise in section (2.2).
In both cases, N (t) is allowed to be a function of t . We observe that the model with additive
noise is most suitable when the anti-derivative of the rate function h(t) is of a log type. On
the other hand, the multiplicative model is suitable when we have a nice moment generating
function φη to work with.

For our future works, we will apply the models we have derived in this paper to an
existing data and compare them under various fitting criteria. Because we allow N (t) to be

123



92 Ann Oper Res (2019) 277:83–93

a function of t we hope to achieve a better fit in cases where N was traditionally assumed to
be a constant. We will also investigate and generalize the additive and multiplicative noise
structure mentioned in Sects. (2.2) and (2.1). One direction is to investigate the dynamic
multiplicative noisemodel. For the additivemodel, we plan to consider other possible choices
of M(t), including the non-continuous case such as a compensated Poisson process.

So far in this paper we have limited the source of randomness to the rate function h(t, ω).
One can also consider other places where randomness comes in, such as in the total number
of faults N (t). While h(t, ω) models the endogenous random aspects of the software testing
process, N (t, ω) models the exogeneous aspects. Thus another direction we can take for our
future work is to investigate the model

dm(t, ω)

dt
= h(t, ω)(N (t, ω) − m(t, ω)), (3.1)

were h(t, ω) and N (t, ω) follows some correlation structure, given by a function ρ(t).

References

Chang, I. H., Pham, H., Lee, S. W., & Song, K. Y. (2014). A testing-coverage software reliability model with
the uncertainty of operating environments. International Journal of Systems Science, 1(4), 220–227.

Goel, A. L., & Okumoto, K. (1979). Time-dependent fault-detection rate model for software and other per-
formance measures. IEEE Transactions on Reliability, 28, 206–211.

Inoue, S., Ikeda, J., & Yamada, S. (2016). Bivariate change-point modeling for software reliability assessment
with uncertainty of testing-environment factor. Annals of Operations Research, 244(1), 209–220.

Inoue, S., Taniguchi, S., & Yamada, S. (2015). An all-stage truncated multiple change-point model for soft-
ware reliability assessment. International Journal of Reliability, Quality and Safety Engineering, 22(4),
1550017.

Kapur, P. K., Pham, H., Aggarwal, Anu G., Kaur, Gurjeet, & Kaur, Gurjeet. (2012). Two dimensional multi-
release software reliability modeling and optimal release planning. IEEE Transaction on Reliability,
61(3), 758–768.

Kapur, P. K., Pham, Hoang, Anand, Sameer, & Yadav, Kalpana. (2011). A unified approach for developing
software reliability growth models in the presence of imperfect debugging and error generation. IEEE
Transaction on Reliability, 60(1), 331–340.

Kapur, P. K., Pham, H., Singh, J. N. P., & Sachdeva, N. (2014). When to stop testing multi-upgradations of
software based on cost criteria. International Journal of Systems Science, 1(2), 84–93.

Kumar, V., Mathur, P., Sahni, R., & Anand, M. (2016). Two-dimensional multi-release software reliability
modeling for fault detection and fault correction processes. International Journal of Reliability, Quality
and Safety Engineering, 23(3), 1640002.

Lee, S. W., Chang, I. H., Pham, H., & Song, K. Y. (2016). A three-parameter fault-detection software reli-
ability model with the uncertainty of operating environment. Journal of Systems Science and Systems
Engineering,. doi:10.1007/s11518-016-5322-4.

Liu, Y., Li, D., Wang, L., & Hu, Q. (2016). A general modeling and analysis framework for software fault
detection and correction process. Software Testing, Verification and Reliability, 26(5), 351–365.

Martin, H. (2009). An introduction to stochastic PDEs. arXiv preprint arXiv:0907.4178.
Minamino, Y., Inoue, S., & Yamada, S. (2016). NHPP-based change-point modeling for software reliability

assessment and its application to software development management. Annals of Operations Research,
244(1), 85–101.

Ohba, M., & Yamada, S. (1984). S-shaped software reliability growth models. In Proceedings of 4th interna-
tional conference reliability and maintainability (pp. 430–436).

Ohba, M. (1984). Inflexion S-shaped software reliability growth models. In S. Osaki & Y. Hatoyama (Eds.),
Stochastic models in reliability theory (pp. 144–162). Berlin: Springer.

Okamura, H., & Dohi, T. (2016). Phase-type software reliability model: Parameter estimation algorithms with
grouped data. Annals of Operations Research, 244(1), 177–208.

Persona, A., Pham, Hoang, & Sgarbossa, F. (2010). Age replacement policy in random environment using
systemability. International Journal of Systems Science, 41(11), 1383–1397.

123

http://dx.doi.org/10.1007/s11518-016-5322-4
http://arxiv.org/abs/0907.4178


Ann Oper Res (2019) 277:83–93 93

Pham, H. (1993). Software reliability assessment: Imperfect debugging and multiple failure types in software
development. EG&G-RAAM-10737; Idaho National Engineering Laboratory.

Pham, H. (1996). A software cost model with imperfect debugging, random life cycle and penalty cost.
International Journal of Systems Science, 27(5), 455–463.

Pham, H. (2006). System software reliability. Berlin: Springer.
Pham, H. (2007). An imperfect-debugging fault-detection dependent-parameter software. International Jour-

nal of Automation and Computing, 4(4), 325–328.
Pham,H. (August 2013).A software reliabilitymodelwithVtub-shaped fault-detection rate subject to operating

environments. In Proceedings of the19th ISSAT international conference on reliability and quality in
design, Hawaii

Pham, H. (2014a). A new software reliability model with Vtub-shaped fault-detection rate and the uncertainty
of operating environments. Optimization, 63(10), 1481–1490.

Pham, H. (2014b). Loglog fault-detection rate and testing coverage software reliability models subject to
random environments. Vietnam Journal of Computer Science, 1(1), 39–45.

Pham, H. (2016). A generalized fault-detection software reliability model subject to random operating envi-
ronments. Vietnam Journal of Computer Science, 3(3), 145–150.

Pham, H., & Deng, C. (August 2003). Predictive-ratio risk criterion for selecting software reliability models.
In Proceedings of the ninth international conference on reliability and quality in design.

Pham, H., Nordmann, L., & Zhang, Z. (1999). A general imperfect-software-debugging model with S-shaped
fault-detection rate. IEEE Transactions on Reliability, 48(2), 169–175.

Pham, L., & Pham, H. (2000). Software reliability models with time-dependent hazard function based on
Bayesian approach. IEEE Transactions on Systems, Man, and Cybernetics: Part A, 30(1), 25–35.

Pham, H., Pham, D. H., & Pham, H, Jr. (2014). A new mathematical logistic model and its applications.
International Journal of Information and Management Sciences, 25, 79–99.

Pham, H., & Zhang, X. (1997). An NHPP software reliability model and its comparison. International Journal
of Reliability, Quality and Safety Engineering, 4(3), 269–282.

Pham, H., & Zhang, X. (2003). NHPP software reliability and cost models with testing coverage. European
Journal of Operational Research, 145, 443–454.

Protter, P. E. (2013). Stochastic integration and differential equations (Vol. 21). Springer.
Roy, P., Mahapatra, G. S., & Dey, K. N. (2014). An NHPP software reliability growth model with imperfect

debugging and error generation. International Journal of Reliability, Quality and Safety Engineering,
21(2), 1450008.

Sato, T., & Yamada, S. (2016). Analysis of process factors affecting software quality based on design review
record and product metrics. International Journal of Reliability, Quality and Safety Engineering, 23(4),
1650011.

Sgarbossa, F., & Pham, H. (2010). A cost analysis of systems subject to random field environments and
reliability. IEEE Transactions on Systems, Man, and Cybernetics Part C, 40(4), 429–437.

Teng, X., & Pham, H. (2004). Software cost model for quantifying the gain with considerations of random
field environments. IEEE Transactions on Computers, 53(3), 380–384.

Teng, X., & Pham, H. (2006). A new methodology for predicting software reliability in the random field
environments. IEEE Transactions on Reliability, 55(3), 458–468.

Xiao, X., & Dohi, T. (2011). Wavelet shrinkage estimation for non-homogeneous Poisson process based
software reliability models. IEEE Transactions on Reliability, 60(1), 211–225.

Yamada, S., Tokuno, K., & Osaki, S. (1992). Imperfect debugging models with fault introduction rate for
software reliability assessment. International Journal of Systems Science, 23(12), 2241–2252.

Yamada, S., & Osaki, S. (1985). Software reliability growth modeling: Models and applications. IEEE Trans-
actions on Software Engineering, 11, 1431–1437.

Zhang, X., & Pham, H. (2006). Software field failure rate prediction before software deployment. Journal of
Systems and Software, 79, 291–300.

Zhu, M., & Pham, H. (2016). A software reliability model with time-dependent fault detection and fault
removal. Vietnam Journal of Computer Science, 3(2), 71–79.

Zhu, M., Zhang, X., & Pham, H. (2015). A comparison analysis of environmental factors affecting software
reliability. Journal of Systems and Software, 109, 150–160.

123


	A generalized software reliability model with stochastic fault-detection rate
	Abstract
	1 Introduction
	2 General fault-detection model with stochastic rate
	2.1 Fault-detection rate model with additive white noise
	2.2 Fault-detection rate model with static multiplicative noise
	2.2.1 N(t) = H(t) + N(0)
	2.2.2 N(t) = G(H(t))


	3 Conclusion and future works
	References




