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Abstract This paper introduces the serial batching scheduling problems with position-based
learning effect, where the actual job processing time is a function of its position. Two schedul-
ing problems respectively for single-machine and parallel-machine are studied, and in each
problem the objectives of minimizing maximum earliness and total number of tardy jobs are
both considered respectively. In the proposed scheduling models, all jobs are first partitioned
into serial batches, and then all batches are processed on the serial-batching machine. We take
some practical production features into consideration, i.e., setup time before processing each
batch increases with the time, regarded as time-dependent setup time, and we formalize it as
a linear function of its starting time. Under the single-machine scheduling setting, structural
properties are derived for the problems with the objectives of minimizing maximum earliness
and number of tardy jobs respectively, based on which optimization algorithms are developed
to solve them. Under the parallel-machine scheduling setting, a hybrid VNS—-GSA algorithm
combining variable neighborhood search (VNS) and gravitational search algorithm (GSA)
is proposed to solve the problems with these two objectives respectively, and the effective-
ness and efficiency of the proposed VNS—GSA are demonstrated and compared with the
algorithms of GSA, VNS, and simulated annealing (SA). This paper demonstrates that the
consideration of different objectives leads to various optimal decisions on jobs assignment,
jobs batching, and batches sequencing, which generates a new insight to investigate batch-
ing scheduling problems with learning effect under single-machine and parallel-machine
settings.
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1 Introduction

In most scheduling literature, the processing time of jobs was often assumed to be fixed
and known before the processing (Pinedo 2002). However, in many practical environments,
the workers can acquire experience and the production efficiency improves continuously
with time after they repetitiously operate the same or similar tasks. As a result, the later a
job is processed, the shorter its processing time. This phenomenon is so-called the “learning
effect” in the literature (Biskup 1999). Biskup (1999) was the pioneer introducing the learning
effect into scheduling problems, where a position-dependent learning model was developed,
and since then the learning effect has received extensive discussion in the scheduling field
(Mosheiov and Sidney 2003; Janiak and Rudek 2009; Teyarachakul et al. 2011). In particular,
much research on the batch scheduling problems with the learning effect can be found in the
last decade (Yang and Kuo 2009; Kumar and Tan 2015; Paul et al. 2015; Tan et al. 2016;
Tan and Carrillo 2017). However, all these studies focus on the parallel-batching scheduling
problems. Whereas the other major type of batch scheduling problems, the serial-batching
problems, with learning effect are relatively unexplored.

Our study was motivated by a practical production scenario of the aluminum-making
process in an aluminum plant. In this particular scenario, cylindrical aluminum ingots are
processed on an extrusion machine, which is a batch processing machine that processes
batches of aluminum ingots for the extrusion process in the form of serial-batching, i.e.,
one after another in the same batch. Before processing each batch of aluminum ingots, a
time-dependent linear setup time is required. The production efficiency improves continu-
ously over time, and the processing time of an aluminum ingot depends on its processing
position or sequence in a batch. That is, if an aluminum ingot is processed in a later posi-
tion, then it takes less time to complete the extrusion process. Therefore, the processing
times of aluminum ingots can be modeled as a decreasing function of their positions. In this
production scenario, both single-machine and parallel-machine configurations are required
for different production demands. Thus, in this paper we focus on both single-machine and
parallel-machine scheduling situations according to the actual production requirements.

There have been many studies on the problems of single-machine scheduling with the
learning effect. Cheng and Wang (2000) studied a single-machine scheduling problem where
the job processing times decrease following a volume-dependent piecewise linear learning
function, and the objective was to minimize the maximum lateness. Wang et al. (2008)
considered a single-machine scheduling problem with the time-dependent learning effect,
in which a job’s processing time is assumed to be a function of the total normal processing
time of all the other jobs scheduled in front of the job, and the objectives were to minimize
the weighted sum of completion times, the maximum lateness, and the number of tardy jobs.
Lee et al. (2010) investigated a single-machine problem with the learning effect and release
times, and the objective was to minimize the makespan. A branch-and-bound algorithm was
developed to derive the optimal solution. More recent papers which have addressed single-
machine scheduling problems with learning effect include Lu et al. (2012), Zhu et al. (2013),
Wang et al. (2014a), Wang and Wang (2014).

In addition to single-machine scheduling problem, some researchers also focus on the
parallel-machines scheduling with the learning effect. Mosheiov (2001) studied parallel-
machine scheduling problems flow-time minimization with a learning effect, and the objective
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was to minimize the flow-time. Eren (2009) investigated the bicriteria parallel machine
scheduling problem with a learning effect of setup and removal times, and the objective
function of the problem was to minimize of the weighted sum of total completion time and
total tardiness. Three heuristic approaches were proposed to solve large-size problems. Eren
and Giiner (2009) also studied m-parallel machine scheduling problem for minimizing the
weighted sum of total completion time and total tardiness based on the learning effect. Some
other works on parallel-machine scheduling with learning effect can be found in Hsu et al.
(2011), Okotowski and Gawiejnowicz (2010), etc. Although the scheduling problems under
single-machine and parallel-machine settings have been separately studied, these two set-
tings are rarely considered simultaneously. Meanwhile, the previous studies mainly focused
on the general processing jobs way, and few papers studied the special processing way, e.g.,
serial-batch processing according to the practical production scenario.

The group scheduling problems with the learning effect are similar to the problem studied
in this paper. In the group scheduling problems, the jobs are classified into certain groups in
advance based on similar production requirements. Yang and Chard (2008) studied a group
scheduling problem with learning and forgetting effects, and the objective was to minimize
the total completion time of jobs. Three basic models were developed and some comparisons
were made through computational experiments to analyze the impact of effects on learning
and forgetting on this problem. Pan et al. (2014) studied an integrated single machine group
scheduling problem, where the effects of learning and forgetting and preventive maintenance
planning were simultaneously considered. More recent papers on the group scheduling prob-
lems with the learning effect include Bai et al. (2012), Huang et al. (2011), and Wang et al.
(2012, 2014b), etc. Although some similarity can be found between the serial-batching prob-
lems and group scheduling problems, that is, the jobs in a batch or group are processed one
after another. However, there are several significant differences between them, as concluded
in Pei et al. (2015a).

We have also studied the serial-batching scheduling problems with learning effect in the
past research, while many key significant differences can be found in them. Different from Pei
etal. (2017a), our paper only focuses on the learning effect, different argument jobs batching
and jobs sequencing are obtained, and parallel-machine scheduling problems are studied
and the hybrid VNS-GSA is proposed to solve them. Different from Pei et al. (2016), the
machines are available all the time in this paper, and different learning effects are investigated.
In addition, we also investigated the scheduling problems with the deteriorating jobs in the
past research (Pei et al. 2015a,b, 2017b), and the deterioration phenomenon is also a typical
characteristic during the practical production. We compare and contrast the related papers
with our work in the following Table 1.

The main contributions of this paper can be summarized as follows:

(1) Both single-machine and parallel-machine scheduling problems with the learning effect
using the processing way of serial-batching are studied, and the objectives of minimizing
maximum earliness and total number of tardy jobs are considered in these two types of
scheduling problems. The integer programming models for all the studied problems are
constructed.

(2) For the single-machine scheduling problems, structural properties are derived for the
problems of minimizing maximum earliness and number of tardy jobs, and optimization
algorithms are developed to solve them.

(3) Based on the derived structural properties of the single-machine scheduling problems,
the hybrid VNS—GSA algorithm is proposed to solve the parallel-machine scheduling
problems with these two objectives.

@ Springer



Ann Oper Res (2019) 272:217-241

220

juspuadop-owin $3J0UdP (IT, ‘1991J0 SuruIes] pue 109§30 SuneIonelep Aousp g1 pue 4J

VSO=SNA PHSH witfj1o8[p JusLnapy Suyo1nq-o1iag (N ar wouig in X a1 Kpnys yuarimn)
u
=1
wylLIos[e dNSLINOY Surssoooid [erouan = - L RE¢ a1 (1102) "I 1 nsH
u
1= 1=1
- Surssoooid [e1ouan 3 - TX{g+HXn» 1 (6007) Iouno pue uarg
u u
1=?
wWyILIoT[e oNSUNdY Surssoooid [erouan =< - r+9) < a1 (6007) uarg
u
1=?
WYLI0S[e W) [BIWOUA[Oq Sursseooid [erouan 1 - (pd+11g + tgo) 1 (BH107) 'Te 19 Suepy
u
wyjLIos[e punoq-pue-youerg Surssaooid [erouan I - Xpuiry q71 (0107) Te 1R 297
1= 1=?
WYLI0S[e W) [BIOUA[Oq Surssoooid [erouan 1 - nX ‘Hm{ 1 (8007) 'T® 12 Suepy
u u
Swayos uonewrxoidde [erwoukjoq Surssaooid [erouan I - xoulry a1 (0007) Suepp pue Suay)
WYILIoS[e JNSLINOH Suyojeq-[eLos I daL oy aa (AL10T ‘a'8S107) 1812 19d
WyILIOF [ ONSLINOH SuryoIeg-[eLIRg 1 aLr iy a1 (9100) 'Te 19 19d
WYILIOS[E JNSLINOH SuryoIeg-[eLog 1 aLr RLe) 47149d (8L107) T2 19 1od
wyPLos [y Surssaooid sqor QuIydRIN dnjog 2A192[q0 jblliia| Ieak/s10yINy

Apnjs JUSLIND pue ‘YoIeasal paje[al 1oylo ‘raded snoraaid mo uo suostredwod Aoy | J[qe],

pringer

as



Ann Oper Res (2019) 272:217-241 221

The reminder of this paper is organized as follows. The notation and problem descrip-
tion are given in Sect. 2. The single-machine and parallel-machine scheduling problems are
studied in Sects. 3 and 4, respectively. Finally, the conclusion is given in Sect. 5.

2 Notation and problem definition

The notation used in this paper is first described as Table 2.
There is a given set of n non-preemptive jobs to be processed at time zero. Two types
of scheduling problems are studied. In the first type of problem, all jobs are processed

Table 2 The list of the notation

Plr]
Xir (xgir)
Pir (Pgir)

bi (bgr)

nic (ngk)

S (bk) (S (bgk))
C (i) (C (bgr))
o

sk (Sgk)
d

c

s
Ci (m)
yik (Veik)

2kt (2gki)

i%(iUig)

i=1 i=1

Emax (E;gr’lax)

The number of jobs

The number of machines in the parallel-machine scheduling problems
Machine g, f =1,2,...,¢q

Jobi,i=1,2,....n

The basic processing time of J;,i =1,2,...,n

The learning index of processing time

The symbol which denotes the job order in a schedule

The actual processing time of a job assigned to the position r,
r=12,...,n

1, if J; is assigned to the position r (on Mg),i,r =1,2,...,n,
g=12,...,q;0, otherwise

The actual processing time of J; assigned to the position r (on My),
ihr=12,....,n,g=1,2,...,¢q

The total number of batches

The number of batches on Mg, g =1,2,...,¢q
Batchk (on Mg), k=1,2,...,m,g=1,2,...,q

The number of jobs in by (on Mg), k =1,2,...,m,g=1,2,...,¢q
The starting time of by (on Mg), k =1,2,...,m,g=1,2,...,q
The completion time of by (on Mg), k=1,2,....m,g=1,2,....¢q
The deteriorating rate of the setup time

The setup time of by (on Mg), k =1,2,...,m,g=1,2,...,¢q

The common due date of all jobs

The capacity of the serial-batching machine, i.e., the maximum number of
jobs in a batch

A schedule of n jobs
The completion time of J; in a given schedule w,i =1,2,...,n

1, if J; is assigned to by (bfk)(on Mg),i=1,2,....n,k=1,2,...,m,
g=12,...,q;0, otherwise

L, if b (bgy) precedes by (b i) (on Mg), k =1,2,...,m,
g=1,2,...,q;0, otherwise

The number of tardy jobs (on Mg), g =1,2,...,¢q

The maximum earliness of all jobs (on Myg), g = 1,2,....q
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on a single serial-batching machine, while in the second one, all jobs are first assigned
into parallel machines, and then the assigned jobs are processed on each machine with
serial-batching processing way. For both single-machine and parallel-machine scheduling
problems, the objectives to minimize maximum earliness and total number of tardy jobs are
considered, respectively. The jobs are firstly partitioned into multiple serial batches on each
serial-batching machine and then they are processed on the serial-batching machine. Serial
batches require that all the jobs within the same batch are processed consecutively in a serial
fashion (Xuan and Tang 2007), and the completion times of all jobs are equal to that of
their belonged batch, which is defined as the completion time of the last job in that batch.
The capacity of the serial-batching machine is defined as ¢, that is, the maximum number
of jobs in a batch is equal to ¢, and each machine has the same capacity c in the parallel-
machine scheduling problems. A time-dependent setup time is required before processing
each batch. In this paper, we extend the application of Biskup’s model (Biskup 1999) in
the serial-batching scheduling problem. The learning effect is reflected on the varying job
processing time. Specifically, the actual processing time of J; is defined as

pir =pp1=pir®, i,r=12,...,n

where r is the position of J;, and a is the learning index of processing time and a < 0.
Moreover, as in Cheng et al. (2011), the batch’s setup time is also defined as a simple
linear function of its starting time 7, that is,

s =0t

where 6 > 0 is the setup time’s deterioration rate.
We adopt E,qx = gnzax {0,d — C;} and ZLI U; to denote the maximum earliness
n

1=1,Z,...,
and total number of tardy jobs, respectively. All jobs have a common due date, where U; = 1
if C; > d and 0 otherwise. In the remaining sections of the paper, we use the three-field
notation schema « | 8| y introduced by Graham et al. (1979) to denote all the problems.

3 Single-machine scheduling problems

In this section, we firstly derive the completion time of each batch, which will be used in the
problems with the objectives of minimizing maximum earliness and total number of tardy
jobs. Then, the problems with the objectives of minimizing maximum earliness and total
number of tardy jobs are studied in Sects. 3.1 and 3.2, respectively.

Lemma 1 For any given schedule 1 = (bl, by,....by, ..., bm), the completion time of b ¢
in schedule 7 is

k
Zj:] nj n

Clp)=>_ > D pixi A+ * 3.1)

i, =1
where f=1,2,...,m.

Proof This lemma can be proved by the mathematical induction based on the number of
batches. Firstly for f = 1, we have

ni

ni n
Chy=si+Y pr=y. Y pi.

r=1 r=1i=1
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Thus, Eq. (3.1) holds for f = 1. Suppose for all 2 < f < m — 1, Eq. (3.1) is satisfied. We
have

k
Zj 1nj n

f
=) Zp,z xir (L+6) 75

k=1 ,— 1+Z]; llnj
Then, for the (f + 1)th batch b7,
i
Cbrn)=Cbr)+sra+ Y, ppl
’=1+ij':1”j

k
Zj 11 n

;
=) > piwm A+
lr_l+zk.=

k= ci=1
1)
k
Yij-

+GZ szl xzr(1+9)f K

1
k=l oy, =1
4
ZJ 11 n

+ Z Z pii®xir

r:l+2{:]nl i=1

a1 Xhom
=> Z Zp,z xip (140)7 17,
k=1 r= 1+Z j
Thus, Eq. (3.1) holds for C (b;41), and the lemma is proved by the induction. ]

3.1 Problem 1 |s — batch, p;y = pir®,s = 0t| E;qx

In this section, we study the single-machine scheduling problem with the objective of min-
imizing the maximum earliness of all jobs. For this problem, all jobs are restricted to be
completed no later than the common due date d, which is usually assumed in many previous
works involving earliness (Yin et al. 2012), and otherwise if without this assumption each
job may be trivially scheduled sufficiently late to avoid earliness cost. Hence, it should be
d > 1+ >3 sk + >.rpi, where t is the starting time of processing jobs. We denote

the earliness of job J; and the maximum earliness of all jobs as E; = max {0,d — C;}
and Eax = Ilnzax E;, respectively. Next, the model is given in Sect. 3.1.1, and then
i=1,2,....n

some structural properties are derived and an optimization algorithm is proposed to solve the
problem based on the properties.
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3.1.1 Mixed integer programming model for the problem
L|s — batch, piy = pir®, s = 0t| Epax

Minimize Ejnqy (3.2)

Subject to:

n

dovik<e k=12...m (3.3)

i=1

m

dyik=1. i=12....n (3.4)

k=1

Sbrt1) =2 Cr)(1+0), k=1,2,...,m—1 (3.5
m n

d=t+Y s+ pi. (3.6)
k=1 i=1

Ch)—Cb)+Mzyy —C ) (14+60)—P(by) =0, k,I1=12....m 37

Vik, 2kl =0or 1, ki1=1,2,...,mj,i,p=1,2,...,n (3.8)

The objective function (3.2) is to minimize the maximum earliness of all jobs. Constraint set
(3.3) prohibits that the job number of any batch more than the machine capacity. Constraint
set (3.3) guarantees that each job should be only assigned to one batch. Constraint set (3.4)
makes sure that setup time is required before processing each batch. Constraint sets (3.6)
ensures that all jobs are restricted to be completed no later than the common due date d in this
studied problem. Constraint set (3.7) indicates that there is no overlapping situation between
two continuous batches. Constraint set (3.8) defines the ranges of the variables.

3.1.2 The structural properties and the proposed optimization algorithm

The structural properties on the jobs sequencing and batching argument are proposed as
follows.

Lemma 2 For the problem 1|s — batch, pi, = pir®,s = 0t| Eyax, there is an optimal
schedule in which there are no idle times between any consecutive batches or consecutive
jobs in the same batch, and the first batch by starts at time t such that

m Z];:I”.f n
LA+O" Y > Y pita (140" =d (3.9)
k=1, ykoly, =1
= j=1"t

Then, the maximum earliness is

Zk':lnj . —k
_N\m J n ay. m
4= X X2, T it (46)

Epax =d — A+ o)mfl

(3.10)

Proof Apart from satisfying the constraint that all jobs’ completion times should be no later
than the common due date, they need to be completed as late as possible to minimize the
maximum earliness. Hence, the completion time of the last batch should be just equal to the
common due date. Similar to the proof of Lemma 1, it can be derived that
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k
Z =11

£ (1+6)" +Z > Zp,txu(lJr@)’”"

k= lr_H_Z/J{:ll j,z 1

If there is any idle time between consecutive batches or consecutive jobs in the same batch,
then the starting time ¢ will be earlier and the maximum earliness will be increased. Thus,
there should be no idle times in the optimal schedule. Then, we have

n n
Epax =d —1t(1+0) — Zzpiiaxir~

r=1i=1
Based on Eq. (3.9), it should be
Emax =d — (1+06)
d- Z:H:l Z?:] piitx;, (1+6)"~ 1 Zk 5 Zr lle]Zi{ . Z?:l pii9xiy (1 + g)mfk
. (14+6)m

ni n
-a
=22 piixir

r=1li=I

1 . _
d—3 22 jHZi‘ ‘Z;ﬁ:l pii®xiy (1+0)"k
(1_,’_9)171—1

The proof is completed. O

—d—

Lemma 3 For the problem 1 |s — batch, p;r = pir®,s = 0t| Epax, if m > 2, then the pro-
cessing time of an arbitrary job in by is no smaller than that in other batches.

Proof Let 7* and 7 be an optimal schedule and a job schedule. The difference between the
two schedules is the pairwise interchange of these two jobs J,, € by and J, € b), and J,, and
Jy are assigned to the orders e and w in the optimal schedule t*. n* = (b1 , Wi, by, Wz), T =
((01/ (2D UL Wi ((bp/ (1)) U L)) . Wa). whete np = 2, p = 2.....m, Wy and
W5 represent two partial sequences, and W or W, may be empty. We assume that Pu < Dv-
For 7*, the maximum earliness is

d— Zk 22 jl+zk 1 Z:‘l:l pii®xir (1+9)m_k

*)
B (") = d - .
For 7, the maximum earliness is updated to
Enax ()
1 p—1 Zl}:lnj n

cie e ([T D S avor

k=2 ,_ H—Z,]njl 1
5":1”1' n
+ D o pidtx 0" = pow® (14 6)" P
r=1430 7y =1
m le‘:lnj n

Ao (40" P+ > Y i (10"

k=ptl =14y in, =1
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Then,
(py — p) w* (1 +60)"7F
It can be derived that E,;qx (™) > Epax (77), which conflicts with the optimal solution.
Thus, it should be p, > p,. The proof is completed. O

Lemma 4 For the problem 1 |s — batch, p;y = pir®,s = 0t| Enax, if n > c, then the first
batch is full, i.e., n1 = c.

Proof Let 7* and 7 be an optimal schedule and a job schedule. The difference between the
two schedules is the transferring of a job J,, and J,, is assigned to the position e in the optimal
schedule 7*. That is, 7% = (b1, by, W), m = ((b1 U {J,.}), (b2/ {Ju}), W), W represents a
partial sequence, and it may be empty. We assume that n > c and n; < c. J,, is the first one
in b, and updated to the last one in b;. After the transferring, we obtain that J, is still in the
position e.

For 7*, the maximum earliness is

Yioin . _
r—jliz]"*} 0 Z?:1 pit®xi (1 + oy k
= j=1Mj

1+ 6)"!

EDY DY

Epax (n*) =d—

For 7, the maximum earliness is updated to

k
Zj:l nj
r:l+zl;;} nj

i~ (Tix

S i (14+0)"7F — pue® (1+ 9)'"—2)

1+ 6)"!

Emax () =d—

Then,

pue® (1+6)"2

Emax ) — Emax =
(7‘[ ) (7‘[) (l +9)m—1

It can be derived that E,;qx (m*) > Epax (77), which conflicts with the optimal solution.
Thus, we can transfer the jobs from b, (or other batches) to b until b is full. The proof is
completed. O

Based on the swapping and transferring operations of jobs, we obtain the following two
lemmas.

Lemma 5 For the problem 1|s — batch, pi, = pir®, s = 0t| Eyax, if n > c, then the jobs
following by belonged to the same batch should be sequenced in the non-decreasing order

of pi in an optimal schedule.

Lemma 6 For the problem 1|s — batch, p;r = pir®,s = 0t| Enax, if n > ¢, then each

batch following by is full except possibly the second batch in an optimal schedule.
Based on Lemma 6, we have the following corollary.

Corollary 1 For the problem 1|s — batch, pi, = pir®,s = 0t| Eyax, if n > ¢, then ny =
c,np=n— (f%] - 1) ¢, ng = c¢ (k > 2) in an optimal schedule.
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On the basis of the above lemmas and corollary, we design the following Algorithm 1 for
solving the problem 1 |s — batch, pi, = pir®, s = 0t| E;ax.

Algorithm 1

Step 1. All jobs are indexed in the non-decreasing order of p; such that p; < p, < -+ < p,,
and a job list is obtained.

Step 2. Place the last ¢ jobs in a batch.
Step 3. If there are unscheduled jobs in the job list, then place the first n — (E] —1) c jobsina

batch.
Step 4. If there are unscheduled jobs in the job list, then place the first ¢ jobs in a batch and
iterate.

Step 5. The batches are scheduled in their generation order.

Theorem 1 For the problem 1|s — batch, piy = pir®, s = 0t| Eyax, an optimal schedule
can be obtained by Algorithm 1 in O (nlogn) time, and the optimal maximum earliness is
E;mx

0 n>c

ctn—([ L ]=1)e+(k=3)c+c ) n g
r=<>+n(*|—(L(-|ﬂ-\zl)«ﬂk—%)uﬂer’l:lpﬂ“"‘""(lJrg)’—r-l ‘)
1 3

a+ol el

" dﬁ(ﬂifll(m*')"zl”:]pff"x”<1+9>m’2+ZEg]Z

n<c

(3.11)

Proof Based on Lemmas 2-6 and Corollary 1, an optimal solution can be generated by
Algorithm 1, and also the result of the optimal solution can be obtained as Eq. (3.11). The
time complexity of step 1 is O (nlogn), and the time complexity of steps 2, 3, and 4 is
at most O (n). Thus, the total time complexity of Algorithm 1 is O (nlogn). The proof is
completed. O

3.2 Problem 1|s — batch, p;, = p;ir®,s = 0t| Y, U;

In this section, the problem with the objective of minimizing the number of tardy jobs is
studied. We first give some properties for the optimal schedules, and then an optimization
algorithm is developed to solve this problem. Here, the job sets of which the completion times
are no later than and later than the common due date d are denoted as O (i.e., ordinary jobs)
and L (i.e., late jobs), respectively. Similar to the problem in Sect. 3.1, the model, structural
properties, and optimization algorithm are proposed as follows.
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3.2.1 Mixed integer programming model for the problem 1|s — batch, p;, = p;r®,
s =0t} U;

Minimize Z;’ZIU,» (3.12)
Subject to (3.3) — (3.5), (3.7) — (3.8)

The objective function (3.12) is to minimize the number of tardy jobs.

3.2.2 The structural properties and the proposed optimization algorithm

The structural properties on the jobs sequencing and batching argument are also proposed as
follows.

Lemma 7 For the problem 1 |s — batch, p; = pir®,s = 0t|>_;_, Ui, the following prop-
erties are satisfied in an optimal schedule:

(1) All jobs should be sequenced in the non-decreasing order of p; in O, and all batches
are full except possibly the first batch and the highest indexed batch in O;

(2) The processing time of an arbitrary job in O is no more than that of other jobs in L.

(3) Ifthere exists a batch by in L satisfying that S (by) < d and C (by) > d, then it should be
C (bg—1) (1 +6) (1 4+ p;w*) > d for an arbitrary job J; € L, where w = Zf:lln,- +1
and it is the first position after by_1.

Proof (1) This property can be proved by swapping and transferring operations of jobs. We
omit the proof.

(2) Let w* and 7 be an optimal schedule and a job schedule. The difference between
the two schedules is the pairwise interchange of these two jobs J, and J, (suppose J,
and J, are in the e-th and w-th orders, and ¢ < w), that is, 7* = (Wi, by, Wa, by, W3),
T = (Wl, (bp/ {Ju}) Uiy}, Wa, (bq/ {Ju}) Ui}, W3). Wi, Wa, and W3 represent three
partial sequences, where Wy, W>, or W3 may be empty, b, C O, and b; C L. Here we
assume that p, > p,.

The completion time of b, in 7* is

C(bp () = > pii‘air (1+60)"7F.

The completion time of b, in 7 is

P Zl;:l"j n
Clpm)=_ Y Dopi“xir (1+0)" ™ = pye + puec.

= k—1 =
k 1r:1+z_,~:|nj’ 1

Then, C (bp (n*)) -C (bp (71)) = pye® — pye®. Since p, > p,, it can be derived that
C (bp (%)) > C (bp (7)), which conflicts with the optimal solution. Hence, it should be
Pu < pyp in an optimal schedule.
(3) If there exist a batch by and a job J; in L satisfying that S (bx) < d, C (bx) > d, and
C (bg—1) (1 +6) (1 4+ p;w?) < d, then the solution can be improved after J; is placed into
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a single batch, which contradicts with the optimal schedule. Thus, it can be derived that
C (br—1)(14+6) (1 + pjw*) > d for any job J; € L.
This completes the proof. O

Based on Lemma 7, we develop the following Algorithm 2 to solve the problem

n
L|s — batch, pir = pir®,s = 0t| > U;.
i=1

Algorithm 2

Step 1. Index all jobs in the non-decreasing order of p; such that p; < p, < -+ < p,, and
obtain a job list. Initialize the first batch, and set k =1, i =1, b, ={J;}, nx =1,
C(by) = pii®.
Step 2. If i = n, then go to step 6. Otherwise, update i =i + 1 and go to step 3.
Step 3. If n, = c, then go to step 4. Otherwise, go to step 5.
Step 4. If C(b)(1+0) +p;i® <d, then update k=k+1, b, ={;}, np, =1, and
C(b) = C(bp)(1 + 0) + p;i%, go to step 2. Otherwise, go to step 7.
Step 5. If C(by) + p;i® <d, then update by =b, U{J;}, npy=n,+1, and C(by) =
C(by) + p;i%, go to step 2. Otherwise, go to step 6.
Step 6. Transfer the last job from by into the first position of by, for f =12,k —1,
update each batch and re-calculate the completion time of each batch(job), go to step 3.
Step 7. Batch the remaining jobs arbitrarily and output the schedule of batches as their

generation sequence.

Theorem 2 For the problem 1 |s — batch, p;r = p;ir®, s = 0t| Z:'ZIU,-, an optimal sched-
ule can be obtained by Algorithm 2 in O (nlogn) time.

Proof Based on Lemma 7, an optimal solution can be obtained by Algorithm 2. The time
complexity of step 1 is O (nlogn), the total time complexity of steps 2, 3, 4, 5, and 6 is
O (n). Thus, the time complexity of Algorithm 2 is at most O (n log n). O

4 Parallel-machine scheduling problems
In this section, the hybrid VNS—GSA algorithm is used to solve the parallel-machine schedul-

ing problems with the objective of minimizing the maximum earliness and total number of
tardy jobs, respectively.
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4.1 Mixed integer programming models for the parallel-machine scheduling
problems

4.1.1 Mixed integer programming model for the problem
P |s — batch, piy = pir®, s = 0t| Epax

Minimize (3.2)

Subjec to:

n

Sy e k=12...mug=12...4 .1

i=1

Mg

Sk =1 i=12...mg=12....4q (42)

k=1

S (bgurn) = C(bg) 1 +6), k=12....m—1lg=12....q  (43)
m n

d>te+Y s+ pin g=12,....q (“44)
k=1 i=1

C(bgr) — C(bg) + Mzgry — C(bgi)(1 4+ 0)

—P(bgx) >0, k,I=1,2...,mg=12,...,q 4.5)

Yeiko 2kt =0o0r 1, k1=12,....mg,g=12,...,q,i=1,2,...,n (4.6)

Constraint set (4.1) assures that the number of jobs in any batch should be no more than
the machine capacity on each machine. Constraint set (4.2) guarantees that each job should
be only assigned to one batch on each machine. Constraint set (4.3) makes sure that setup
time is required before processing each batch on each machine. Constraint set (4.4) ensures
that all jobs should be completed no later than the common due date d on each machine, and
here f, denotes the starting time to process the batches. Constraint set (4.5) indicates that
there is no overlapping situation between two continuous batches on each batch. Constraint
set (4.6) defines the ranges of the variables.

4.1.2 Mixed integer programming model for the problem
P |s — batch, piy = pir®, s =0t| Y +_,U;

Minimize (3.12)
Subject to (4.1)—(4.3), (4.5)—(4.6)

4.2 Key procedures of VNS-GSA

Variable neighborhood search (VNS) was proposed by Mladenovi¢ and Hansen (1997), since
when this algorithm has been extensively studied by many researchers and applied in many
practical combinatorial optimization problems. Gravitational search algorithm (GSA), pro-
posed by Rashedi et al. (2009), is a population-based heuristic algorithm based on Newton’s
theory of gravity and mass interactions. In this paper, we combine the main features and
steps of VNS and GSA to develop a novel hybrid VNS-GSA algorithm for solving the
parallel-machine scheduling problems. The key procedures of VNS—GSA are described as
follows:
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4.2.1 Coding scheme

In the proposed VNS—GSA, for ensuring the continuity of search space in GSA algorithm, the
random key encoding way is applied in our problem, which was first proposed by Bean (1994)
to keep feasibility from parent to offspring in genetic algorithm. In this paper, a solution to
the problem of assigning jobs to the parallel-machine is an array with the length equal to
n 4 g — 1, and each position value is a decimal between 0 and 1.

4.2.2 Encoding scheme

We should map this decimal array into the jobs number array on each machine before encod-
ing. Firstly, we map this decimal array into an integer array, and each decimal sequenced in
the non-decreasing order of the value is transformed to the order number. For example, the
smallest decimal is transformed to the integer 1, and the second smallest decimal is trans-
ferred to the integer 2, and so on. Then, if the value of any position is greater than n, then
this position is marked as a flag to assign the following jobs into a different machine, and
this flag mechanism has been applied in Wang and Chou (2010).

Assume that there are five jobs to be processed on two serial-batching machines. In Fig. 1
there is an example of a decimal array (0.67, 0.78, 0.54, 0.98, 0.45, 0.08) and the mapping
process. The jobs {Ju4, J5, J3} are assigned on M and {J>, J;} on machine M>.

Then, we can obtain the jobs set assigned on each machine, and different encoding strate-
gies are designed for different objective functions. The detail of encoding strategy for problem
P |s — batch, piy = pir®, s = 0t| Epqx is described as follows:

Encoding strategy for problem P |s-batch, Pir =pir*, s = 0t| Enax

Step 1. Setg = 1,Epmax =0

Step 2.  Apply Algorithm 1 to sequence and batch all jobs assigned on Mg, and E € .« is obtained for M g
Step3:  If Epax < Egax. then Epgy = Efax

Step4: If g < g,setg = g+ 1, then go to step 2. Otherwise, output the result of Ejqx

The detail of encoding strategy for problem P |s — batch, pir = pir®,s =0ty '_,U;
is described as follows:

0.67 0.78 0.54 0.98 0.45 0.08

mapping

Fig. 1 An example of encoding mapping
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Encoding strategy for problem P |s-batch, p;, = p;r*.s = 0t| Y !, U;

Stepl. Setg=1"7_ U =0

Step 2.  Apply Algorithm 2 to sequence and batch all jobs assigned on Mg, and Z?:l U ig is obtained for
Mg Set Y1 Uy = Y0, Ui + 370, Uf

Step3. Ifg <g.setg = g+ L, then go to step 2. Otherwise, output the result of Z?:l Ui=0

4.2.3 Neighborhood structure

Swap operator is widely applied in neighborhood structure of combinatorial optimization
problem. A multiple swap-based neighborhood structure is applied in this paper, which can be
described as follows: randomly select two different positions from the solution and swap them
to form a new solution, and the above process is defined as 1-swap, and then repeat to randomly
swap two different positions from the new solution, it is defined as 2-swap, and so on.

4.2.4 GSA-based local search in variable neighborhood search

In order to improve the efficiency of local search in VNS, we use GSA as local search operator
to strengthen the optimization ability of the algorithm. The detail of GSA-Based Local Search
operation is described as follows (Rashedi et al. 2009):

GSA-Based Local Search operation

Step 1.  Randomly select m solutions from a certain neighborhood of the current optimal solution in
variable neighborhood search

Step 2. Calculate the fitness of each solution

Step 3.  Update best and worst of the population

Step4.  Calculate mass and acceleration for each solution

Step 5. Update velocity and position for each solution

Step 6.  If termination condition is met, then stop the iteration

4.3 The main steps and framework of VNS-GSA

In our problem, the initial solution is denoted by x, the neighborhood of the solution is
denoted by N, (x), and the current iteration step is denoted by iz. We initialize the following
parameters 0, Omin, Omax > tmax» Ostep, Where o is the current neighborhood, 0y, is the first
neighborhood, 0,4y is the last neighborhood, #,,,, is the maximum number of iterations,
Ostep 1s the step length of iteration.

Main steps of VNS-GSA

Step 1. Setitr = 1, execute local search procedure to find a local optimal solution for initial solution and
set it as the optimal solution xp,g;

Step2. Seto = oyin

Step 3.  Execute GSA-Based Local Search for N, (xXpes;) to obtain a solution x’

Step4.  If solution x” is better than xp4;, then set xpps; = X’
Otherwise, set o = 0+ 1, if 0 < 0;4x and go to step 3

Step 5.  If it < tyqx, then stop the iteration. Otherwise, set it = it + 1 and go to step 2
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i Begin
Randomized initialization set o =o,;,
Execute encoding strategy for problem Execute encoding strategy for problem
P|s—batch,p, = p;r*,s=0|E,.. P|s—batch,p, = pr‘,s=0t| Y U,
i=1
Calculate the fitness for the initial solution
Execute local search procedure ‘
> Execute o-swap procedure }4—

Execute GSA-based local search procedure ‘

Better solution? - Y

Output best solution ‘

v

End

e

AN

Fig. 2 The framework of VNS-GSA

The framework of VNS-GSA is shown in Fig. 2 to solve the problem
P |s — batch, pijy = pir®,s = 0t| Ejyax and P |s — batch, p;y = pir®,s = 0t| ZL]U,'.

4.4 Computational experiments and comparison

In this sub-section, a serial of computational experiments are conducted to test the per-
formance of our proposed algorithm VNS-GSA, compared with VNS (Lei and Guo 2016),
GSA (Rashedi et al. 2009), and SA (Damodaran and Vélez-Gallego 2012). We also conducted
computational experiments for the problems of P |s — batch, p;y = pir®,s = 0t| E,4x and
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Table 3 Parameters setting

Parameters Description Value
n The number of jobs in the small-size problems 60,70, 80, 90, 100
The number of jobs in the large-size problems 200, 300, 400, 500, 600
q The number of machines U[5,10]
Pi The basic processing time of J;,i =1,2,...,n U[1,10]
o The learning index of processing time U[—-1,0]
d The common due date of all jobs in the problem U[800,900]
P |s —batch, p;y = pir9, s = 0t| Epax with
small size
The common due date of all jobs in the problem U[80000,90000]
P |s — batch, pjy = pir®,s = 0t| Emax with
large size
The common due date of all jobs in the problem U[20,30]
P |s — batch, pjy = pir®,s = 0t| i U; with
small size =
The common due date of all jobs in the problem U[100,300]
P |s — batch, p;y = pir?,s = 0t| i U; with
large size =
The capacity of the serial-batching machine UI[5,10]
% The deteriorating rate of the setup time U[0,1]

P |s — batch, p;, = pir®,s = 0t| Z?:l U;. The parameters of the test problems were ran-
domly generated according to the practical production situations of an aluminum factory, as
shown in Table 3.

4.4.1 Experiments and comparison for the problem
P |s — batch, pir = pir®,s = 0t| Epax

In order to test the performance of proposed VNS-GSA, the proposed algorithm and
another three algorithms have been applied to solve the problem P |s — batch, p;, = p;r®,
s = 0t| E;;qx for comparison. In Table 4, the average objective value (Avg.Obj) and the max-
imum objective value (Max.Obj) for the problem P |s — batch, p;r = pir®,s = 0t| Epax
are listed. It is easy to find that the VNS—GSA can obtain better solutions than compared
algorithms, especially for the large-size problems.

We also compared the proposed algorithm with other compared algorithms on the conver-
gence speed and efficiency. Figures 3 and 4 show the convergence performance of VNS—GSA,
GSA, VNS and SA for small-size and large-size problem instances, respectively. Compared
to GSA, VNS, and SA, the proposed VNS—GSA converges faster and has better optimization
capability.
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Fig. 3 Convergence curves for the problem P |s — batch, p; = pir®, s = 0t| Epqx with small size. a
Convergence curves for problem 1, b convergence curves for problem 2, ¢ convergence curves for problem 3,
d convergence curves for problem 4, e convergence curves for problem 5
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Fig.4 Convergence curves for the problem P |s — batch, p;, = pir®, s = 0t| Epqx with large size. a Con-
vergence curves for problem 6, b convergence curves for problem 7, ¢ convergence curves for problem 8, d
convergence curves for problem 9, e convergence curves for problem 10

4.4.2 Experiments and comparison for the problem P}s — batch, pijy = pir®,s = 0t

> iU

In Table 5, we list the Ave.obj and Max.obj of the problem P |s — batch, p;y = pir?,
s = 01| Y_7_,U; generated by the proposed algorithm and other algorithms. It is also obvious
that VNS—GSA has better optimization capability than other algorithms.

Figures 5 and 6 show the convergence performance of the proposed algorithm and com-
pared algorithms when solving the problem P |s — batch, p;» = pir®,s = 0t] Y i_,U; with
small and large problem instances, respectively. It is obvious that the proposed algorithm has
better convergence than compared algorithms.

In all, from the above results we can conclude that the proposed VNS—GSA has faster
convergence speed when solving problems compared with VNS (Lei and Guo 2016), GSA
(Rashedi et al. 2009), and SA (Damodaran and Vélez-Gallego 2012). Then, it can be inferred
that the proposed VNS—GSA is very stable and robust in terms of solution quality and
convergence speed.
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n
Table 5 Computational results for the problem P |s — batch, p;, = pir®,s = 9t‘ > U

i=1

No. n GSA SA BVNS VNS-GSA
Ave.obj Max.obj Ave.obj Max.obj Ave.obj Max.obj Ave.obj Max.obj
11 60 21.4 27 20.2 29 19.8 27 19.7 25
12 70 26.7 40 25.3 38 25.2 39 25.2 38
13 80 34.7 44 333 48 33.4 44 32.8 44
14 90 41.7 55 40.2 54 39.4 51 39 51
15 100 48.9 61 46.2 57 46.3 59 46.1 57
16 200 14.3 46 12.3 28 6.5 31 5.4 27
17 300 63.1 106 57 99 54.4 98 49.8 88
18 400 46.8 90 28.7 72 15.2 42 12.1 41
19 500 47.4 104 29.7 60 10.3 46 6.8 35
20 600 91.2 189 66.1 126 42.5 99 33.5 95
28 35
27 35
2% 2
g2 g %05
& g 2
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Fig. 5 Convergence curves for the problem P |s — batch, p; = pir®,s = Ot} Z;’=1 U; with small size. a
Convergence curves for problem 11, b convergence curves for problems 12, ¢ convergence curves for problem
13, d convergence curves for problem 14, e convergence curves for problem 15
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Fig. 6 Convergence curves for the problem P \s — batch, p; = pir®,s = Ot{ Z?:l U; with large size. a
Convergence curves for problem 16, b convergence curves for problem 17, ¢ convergence curves for problem
18, d convergence curves for problem 19, e convergence curves for problem 20

5 Conclusions

In this paper, we study single-machine and parallel-machine serial-batching scheduling prob-
lems with learning effect, considering the time-dependent set-up time. Under the setting of
single-machine, we propose the models and structural properties for the problems with the
objectives of minimizing the maximum earliness and the number of tardy jobs, and develop
optimization algorithms to solve these two problems, respectively. Under the setting of the
parallel-machine, we propose a hybrid VNS—-GSA algorithm to solve the scheduling prob-
lems with the same two objectives. In future research, we will investigate more general
serial-batching scheduling models with the learning effect, take different objective functions
into consideration, and extend our models to the background of supply chain scheduling.
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