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Abstract A simulation optimization framework containing three fundamental stages (fea-
sibility check, screening, and selection) is proposed for solving the zero-one optimization
via simulation problem in the presence of a single stochastic constraint. We present three
rapid screening algorithms that combine these three stages in different manners, such that
various sampling mechanisms are applied, therefore yielding different statistical guarantees.
An empirical evaluation for the efficiency comparison between the proposed algorithms and
other existing works is provided.
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1 Introduction

Most real-world problems usually have complicated and difficult features, and thus some
simplified modeling assumptions have to be imposed in order to create analytical tractability.
However, another promising and straightforward approach is to build and study a simula-
tion system that is more reflective of reality that may possibly result in better decisions. In
many simulation studies the analyst is concerned about identifying the decision variables that
can maximize or minimize the expected performance measure of interest, and this is called
the optimization via simulation (OvS) problem [see Amaran et al. (2016) for a survey]. An
appropriate solution approach for the small-scale OvS problem (often less than 500 candi-
date solutions) is ranking and selection (R&S) procedures [see, for instance, Chen (2011)].
Traditional R&S procedures are characterized by the consideration of a single performance
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measure and the presence of a fixed set of candidate solutions available before the simulation
experiment. For instance, Nelson et al. (2001) developed a two-stage procedure that employs
the subset-selection procedure to eliminate inferior solutions in the first stage, and then deter-
mines the number of total samples required to find the best among the remaining solutions in
the second stage. Kim and Nelson (2001) proposed a fully sequential procedure that obtains
a single additional observation from the surviving solutions and then performs the elimi-
nation process at each stage. Boesel et al. (2003) and Pichitlamken et al. (2006) extended
the aforementioned two-stage and fully sequential research works, respectively, to be able
to handle the case of unequal initial sample sizes, which is particularly useful during the
search process of an OvS algorithm. Tsai (2013) designed rapid screening algorithms, which
consist of multiple sampling stages along with an intelligent solution-generation mechanism,
to solve zero-one OvS problems efficiently. All of the above works considered only a single
performance measure.

Recently, more research effort has been dedicated to OvS problems involving multiple
performance measures. For instance, Andradóttir and Kim (2010) developed fully sequential
procedures that can select the best solution in the presence of a single stochastic constraint,
whichwas later extended byBatur andKim (2010) to considermultiple stochastic constraints.
Park and Kim (2015) proposed an approach called “penalty function with memory”, which
is imposed on the objective function, and then the constrained OvS problem is replaced by a
series of unconstrained problems. The constrained or multicriteria OvS problems arise in a
wide variety of decision-making scenarios, with practical examples including water resource
management (e.g., Udías et al. 2014), healthcare operationsmanagement (e.g.,Williams et al.
2010) and call center staffing problems (e.g., Atlason et al. 2004).

The goal of this paper is to develop rapid screening algorithms for solving the zero-oneOvS
problem considering a single stochastic constraint. The proposed simulation optimization
framework contains three fundamental stages: a Feasibility Check, Screening, and Selection.
We present three algorithms that combine these three stages in different ways, such that
various sampling mechanisms are applied, therefore yielding different statistical guarantees.
A pre-specified number (R) of screening iterations is performed, in which inferior solutions
are eliminated through a comparison with other chosen solutions, and then a random number
of newsolutions are generated from the neighborhoodof surviving solutions. In each objective
screening iteration, the number of replications allocated to each solution is specified in
advance, and it grows at a constant rate. If more than one solution is left at the end of the R
screening iterations,we then apply the selection procedure ofBoesel et al. (2003) to choose the
best solution. The first algorithm implements the feasibility check procedure of Andradóttir
and Kim (2010) and then uses the objective screening procedure of Tsai (2013) in each
screening iteration. In other words, it only applies screening procedure (with respect to the
objective performance) to those solutions that have been identified as feasible (with a given
confidence level). Notice that the number of simulation samples used in the feasibility check is
random and that we have to take new samples in the following objective screening procedure
(to maintain statistical validity). The second proposed algorithm is more heuristic-oriented;
it implements constraint screening and then objective screening (in each iteration) based on
simulation observations collected from the same replications. It performs feasibility check
once only to the solutions surviving through the R screening iterations. We also introduce an
alternative version that considers more candidate solutions in the feasibility check stage, and
the statistical validity can thus be maintained to some extent. The third proposed algorithm
allows us to perform objective screening between feasible solutions and other solutions
whose feasibility has not been determined yet. Prior to this operation, it employs the ordinary
feasibility check procedure based on a pre-specified number of observations allocated to each
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iteration. We adopt a stricter rule for the elimination of inferior solutions, and after these R
iterations, we also have to conduct a feasibility check procedure on the surviving solutions
whose feasibility has not been determined yet (with the accumulated observations).

The paper is organized as follows. In Sect. 2 we define the stochastically constrained
zero-one OvS problem and describe the statistical guarantee that our algorithms can provide.
Section 3 introduces the relevant notations and presents three rapid screening algorithms for
the constrained problem. An empirical evaluation for the comparison between the proposed
algorithms and other existing works is provided in Sect. 4. Finally, Sect. 5 provides some
concluding remarks and possible future research directions. All proofs and some details of
our algorithms are relegated to the Appendix in the Online Supplement.

2 Framework

The purpose of this study is to determine a set of zero-one decision variables that yields
the best expected primary performance measure, while also satisfying a single stochastic
constraint with respect to a secondary performance measure. We let Xi j and Yi j denote the
j th simulation observation of the i th solution for the primary and secondary performance
measures, respectively. The i th solution is a vector of d zero-one decision variables, and is
denoted bySi = (Si1, Si2, . . . , Sid). The expected performances of solutionSi with respect to
the objective and the constraint are defined asX(Si ) = E[Xi j ] andY(Si ) = E[Yi j ]. Therefore,
the constrained zero-one simulation optimization problem can be formulated as follows:

max
Si∈�

X(Si )

where the feasible region � is required to satisfy the following stochastic constraint:

Y(Si ) ≤ Q,

where Q is a constant specified by the analyst. The expected performance ofX(Si ) andY(Si )
is unknown and analytically intractable, but it can be measured or estimated by running sim-
ulation experiments. Similar to the recent R&S literature considering multiple performance
measures (e.g., Andradóttir andKim 2010), wemake the following bivariate normal (denoted
as BN) assumption on (Xi j , Yi j ) for i = 1, 2, . . . , j = 1, 2, . . .:

[
Xi j

Yi j

]
i id∼ BN

([
X(Si )
Y(Si )

]
,�i

)

where
i id∼ denotes independent and identically distributed, and �i is the variance-covariance

matrix of a vector of observations (Xi j , Yi j ). The normality assumption is quite reasonable
when Xi j and Yi j are themselves the within-replication averages of some output variables
frommultiple independent replications, orwhen they are the batchmeans of a large number of
basic outputs in the context of steady-state simulation. It should be noted that Xi j and Yi j can
be correlated because they are simulated observations taken from the same solution design.
For instance, the time-based service level (to satisfy customer demands) and the backorder
cost of an inventory system are often negatively correlated. However, the observation vectors
(Xi j , Yi j ) and (X�j , Y�j ) are assumed to be independent for i �= � (i.e., common random
numbers (CRN) are not employed). Further, in the case of a complex system with random
noise, it is almost impossible to check exactly whether the candidate solution is feasible with
respect to the stochastic constraint. We thus follow the same setting as in Andradóttir and
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Kim (2010) to allow some relaxation of the constraint. Specifically, we have to specify a
so-called tolerance level ε, and then define the upper bound Q+ = Q + ε and the lower
bound Q− = Q − ε (for the constraint threshold). Subsequently, we can divide the solution
space (for Si ) into three regions as follows: (1) if Y(Si ) ≤ Q−, then we call Si a desirable
solution (i.e., Si ∈ RD) (2) if Q− < Y(Si ) ≤ Q+, then we call Si an acceptable solution
(i.e., Si ∈ RA) (3) if Y(Si ) > Q+, then we call Si an unacceptable solution (i.e., Si ∈ RU ).
Andradóttir and Kim (2010) and Batur and Kim (2010) developed feasibility check proce-
dures that can guarantee the choice of all desirable solutions and probably some acceptable
solutions. Suppose that the set I contains the indexes of all the candidate solutions visited and
evaluated by the proposed algorithm (therefore, |I | ≤ 2d ). Without any loss of generality,
we also assume that the set I includes k desirable solutions and that the index [k] repre-
sents the best desirable solution. That is, we can denote the ordered, but unknown expected
performance (with respect to the primary measure) for the k visited desirable solutions as:

X[1] ≤ X[2] ≤ · · · ≤ X[k].

The desirable solution associated withX[i] is unknown, but is denoted as S[i]. We let δ denote
an indifference-zone parameter representing the smallest difference worth detecting (with
respect to the expected primary performance measure). Most of the proposed rapid screening
algorithms can provide the following statistical guarantee in terms of probability of correct
selection (PCS):

PCS[I ] = Pr{select S[k] | X[k] ≥ Xi + δ,∀i ∈ (RD ∪ RA),with i �= [k]} ≥ 1 − α.

This means that we can select solution S[k] with a pre-specified confidence level 1 − α

whenever its expectedmeasure (with respect to the objective performance) is superior to other
visited desirable and acceptable solutions by at least a practically significant amount δ. One of
the presented algorithms provides a statistical guarantee that may be somewhat less stringent.

3 Algorithms

In this section, we introduce the setting and notation, which are similar to that of Tsai (2013).
We also present three rapid screening algorithms in detail for the zero-one OvS problem
considering a single stochastic constraint.

3.1 Setting and notation

The proposed algorithms consist of R screening iterations 0, 1, . . . , R−1 and one final selec-
tion iteration R. Our notation uses “(r)” to indicate quantities defined at the r th iteration.
At each screening iteration r of the algorithm, there are b(r) new solutions generated from
the solution space (whose feasibility has not been identified yet). We use the set M(r) to
represent the candidate solutions that need to be evaluated with the feasibility check proce-
dure at iteration r . The detailed definition of M(r) varies depending on which version of the
algorithm we are using. We also use I (r) to denote the set of surviving solutions through
iteration r , and we use F(r) to represent the set of feasible solutions identified from M(r)
or from all visited solutions (which also depends on which algorithm we use). Let Ni (r) be
the number of replications allocated to solution Si at objective screening of iteration r . If
Si is a newly generated solution, we then use Ni (r) = 	N0Gr
, where N0 represents the
number of initial replications and G is a constant growth factor. If Si is a surviving solu-
tion (i.e., i ∈ I (r − 1)), we then use Ni (r) = Ni (r − 1) + 	N0Gr
 (i.e., the accumulated
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Table 1 Summary of notations
defined in Sect. 3.1

Parameters Functionality

R Number of screening iterations

G Growth factor of sample size

b (r) Number of new solutions generated at r th iteration

M(r) Set of solutions evaluated by FCP at r th iteration

F(r) Set of feasible solutions identified by FCP at r th iteration

I (r) Set of surviving solutions through r iterations

Ni (r) Sample size allocated to Si at r th iteration

Wi�(r) Screening threshold for Si and S� at r th iteration

observations) to compute the sample mean X̄i (Ni (r)) and variance S2i (Ni (r)) for the objec-
tive performance. We assume that each candidate solution is simulated independently (i.e.,
common random numbers are not used), and in this case, it is more appropriate to reuse the
observations collected previously for the objective screening of the surviving solutions [see
Tsai (2013) for a detailed discussion]. We let the number of allocated replications grow at a
constant geometric rate to yield tighter screening thresholds, which results in more effective
elimination of inferior solutions in later iterations. For the objective screening stage, we let
Wi�(r) represent the screening threshold for the comparison between solutions Si and S� at
iteration r , which is a function of t critical values and the sample variance of their objective
performance. For the final selection stage, we have to obtain additional replications from
surviving solutions, and the total number of observations for solution Si (denoted as Ni ) is
determined by Rinott’s (1978) constant h to deliver the desired statistical validity. Typically,
the constant h is determined by the number of solutions being evaluated, the desired con-
fidence level, and the number of observations used to compute the variance estimator [see
Nelson et al. (2001) for a discussion]. A summary of all the aforementioned notations is
presented in Table 1.

3.2 Algorithm A

The first proposed approach represents an intuitive way to incorporate the feasibility check
procedure into rapid-screening type algorithms when encountering a stochastic constraint.
This approach is denoted asAlgorithmA and consists of R screening iterations 0, 1, . . . , R−1
and one final selection iteration R. In each screening iteration r , we want to identify the
feasibility of every newly-generated solution with a specified confidence level, and then
return the set of feasible solutions F(r). Then the screening procedure with respect to the
objective performance is implemented upon the union of the feasible solutions of the current
iteration (i.e., F(r)) and the surviving solutions through iteration r −1 (i.e., I (r −1)). In this
case, we can simply employ the ordinary feasibility check procedure (FCP) of Andradóttir
and Kim (2010) that requires an equal initial sample size since it is applied to these b(r) new
solutions (therefore, no previous samples are retained). If there is more than one solution
left at the end of the screening iterations (i.e., iteration R − 1), we then apply the selection
procedure due to Boesel et al. (2003) to pick up the best solution in terms of the objective
performance among the solutions in the remaining set I (R − 1). This algorithm can be
proven to select the best feasible solution among those candidate solutions visited by all
the R iterations (i.e.,

∑R−1
r=0 b(r)) with a pre-specified confidence level 1 − α. A flowchart
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Fig. 1 Flowchart of Algorithm A

of Algorithm A is given as Fig. 1. A detailed description of Algorithm A and a theorem
regarding its statistical guarantee are presented as follows:

Algorithm A

Setup: Choose the desired overall confidence level 0 < 1 − α < 1. Determine α1, α2, αs ,
and α f such that α1 +α2 = α and (1−αs)(1−α f ) = 1−α1. Specify the indifference-zone
parameter δ, the constraint tolerance level ε, the number of iterations R, the initial sample
size n0 (for feasibility check), the number of initial replications N0 (for objective screening),
and the constant growth factor G ≥ 1. Set the iteration number r = 0 and I (−1) = ∅.
Initialization: Generate b(0) initial solutions and let M(0) = {1, 2, . . . , b(0)}. For all i ∈
M(0), compute the sample mean Ȳi (n0) and the sample variance S2i (n0) with respect to the
constraint performance.

Feasibility Check Stage: For all i ∈ M(r), apply the feasibility check procedure of
Andradóttir and Kim (2010) (see Appendix A.3 and Remark A.1). Note that we use α f , n0
and k = ∑R−1

r=0 b(r) to compute the value of η. Return F(r) as the set of feasible solutions
(identified from M(r)). If | {F(r) ∪ I (r − 1)} | ≤ 1, we go to the Stopping Rule Stage.
Otherwise (i.e., | {F(r) ∪ I (r − 1)} | > 1), we go to the following Objective Screening
Stage.

Objective Screening Stage:

Step 1 For all i ∈ {F(r) ∪ I (r − 1)}, take 	N0Gr
 replications from solution Si . If i ∈
I (r − 1), we let Ni (r) = Ni (r − 1) + 	N0Gr
. Else if i ∈ F(r), we let Ni (r) =
	N0Gr
.
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Step 2 For all i, � ∈ {F(r) ∪ I (r − 1)} and i �= �, compute the sample mean X̄i (Ni (r)),
the sample variance S2i (Ni (r)), and the screening threshold Wi�(r) (with respect to
the objective performance) as follows:

Wi�(r) =
√
t2i S

2
i (Ni (r))

Ni (r)
+ t2� S

2
� (N�(r))

N�(r)

where ti = t
(1−α′)1/(

∑r
z=0 |F(z)|−1)

,Ni (r)−1
and α′ = αs/R.

Step 3 Form the subset

E(r) = {
i ∈ {F(r) ∪ I (r − 1)} : ∃� ∈ {F(r) ∪ I (r − 1)}, X̄i (Ni (r))

−X̄�(N�(r)) ≤ −Wi�(r), � �= i
}
,

and update I (r) = {F(r) ∪ I (r − 1)}\ E(r).

Stopping Rule: Let r = r + 1. If r < R, then generate b(r) new solutions; let

M(r) =
{∑r−1

j=0 b( j) + 1,
∑r−1

j=0 b( j) + 2, . . . ,
∑r

j=0 b( j)
}
, and go back to Feasibility

Check Stage. Otherwise (i.e., r = R), let B = ∑R−1
r=0 |F(r)|, and go to the following

Selection Stage.

Selection Stage: If |I (R − 1)| = 0, declare that no feasible solution has been found in these
R screening iterations. If |I (R − 1)| = 1, then declare that solution as the best. Otherwise,
compute the total number of replications Ni , for all i ∈ I (R − 1), as follows:

Ni = max

{
Ni (R − 1),

⌈(
hSi (Ni (R − 1))

δ

)2
⌉}

where h = h(2, (1 − α2)
1/(B−1), nmin) is the extended Rinott’s (1978) constant and nmin =

mini∈I (R−1){Ni (R − 1)}. If Ni (R − 1) < Ni , then obtain Ni − Ni (R − 1) additional
replications from all solutions Si , i ∈ I (R − 1). Select the solution with the largest sample
mean X̄i = (1/Ni )

∑Ni
j=1 Xi j as the best.

Theorem 1 If the BN assumption of
(
Xi j , Yi j

)
holds, then AlgorithmA selects solution S[k]

with a probability ≥ 1−α whenever its objective performance is better than other desirable
and acceptable solutions by at least a practically significant amount δ.

It should be noticed that most details of Algorithm A are designed to maintain its prov-
able validity (see Appendix A.1 for the proof). For instance, in the Setup stage, the overall
allowable error α is split into α1 (for incorrect selection on R screening iterations) and α2

(for incorrect selection on the final selection iteration). We also follow a multiplicative rule
to specify αs (for objective screening) and α f (for feasibility check). The allowable error αs

is then divided equally into R screening iterations (see Step 2 of the Objective Screening
stage). In the Feasibility Check stage, we must use the number of total solutions visited by
FCP in all R iterations (i.e., k = ∑R−1

r=0 b(r)) to compute the monitoring statistic in each
iteration. In this way, the feasibility guarantee for all R iterations can thus be simultaneously
maintained. In many cases, it is possible to specify or conjecture an upper bound on the num-
ber of solutions that can be simulated in advance (see Sect. 4 for an illustration). By contrast,
in the Objective Screening stage, the screening statistic should depend on the accumulated
number of solutions that has ever entered this stage through iteration r (i.e.,

∑r
z=0 |F(z)|).

This setting is due to the fact that we reuse the sample information with respect to the objec-
tive performance collected previously for the surviving solutions (i.e., use Ni (r) samples).
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Another important feature of AlgorithmA is that the observations obtained in the Feasibility
Check stage are discarded thereafter. That is, we need to restart the sampling process in
the Objective Screening stage (i.e., perform new 	N0Gr
 simulation replications) in order
to avoid the dependency between these two stages. Finally, in the Selection stage, we use
the total number of feasible solutions identified by FCP (i.e.,

∑R−1
r=0 |F(r)|) to compute the

extendedRinnott’s (1978) constant, which is similar to the setting adopted by Tsai (2013).We
also use the accumulated observations collected in all R Objective Screening stages (with
sample size Ni (R − 1)) when determining the number of total required replications. The
advantage of Algorithm A is that it represents an intuitive combination (and simple modifi-
cation) of existing procedures under a carefully designed algorithm framework. The resulting
algorithm can be proven to deliver the desired statistical validity. The disadvantage is that it
may require excessive sampling effort due to the necessary parameter settings and sampling
mechanisms mentioned above. In addition, Algorithm A is especially not desirable when
there are a number of solutions whose constraint means are close to the specified boundary,
and in which they meanwhile have uncompetitive expected objective performance. In this
case, we need to spend very large sampling budget to determine their feasibility (with a given
accuracy), but afterward they might easily be eliminated in the Objective Screening stage.
Therefore the sampling during the Feasibility Check stage is quite wasteful and does not
contribute much to the generation process intended to lead to potential promising solutions.

3.3 Algorithm B

In this subsection, we propose a more heuristic-oriented algorithm (denoted as Algorithm B)
that does not require the application of FCP to every sampled solution. A critical component
of Algorithm B is the constraint screening procedure (denoted as CSP) that is an extension of
the so-called comparison-with-a-standard procedure (see Tsai and Chu (2012) for a detailed
introduction). That is, the constraint threshold Q is treated as a known standard and we want
to find a subset that contains all the solutions that are better than the standard by at least
a significant amount ε in terms of the expected constraint performance (i.e., the desirable
solutions defined in Sect. 2). Suppose that at iteration r , we have a set of candidate solutions
I (r) to be evaluated (i.e., |I (r)| = k), and let Ni (r) denote the accumulated sample size,
for all i ∈ I (r). We now describe CSP in detail and then provide a theorem regarding its
statistical guarantee. The derivation is relegated to Appendix A.2.

Constraint Screening Procedure

Step 1 Specify the desired confidence level 0 < 1 − αc < 1 and the tolerance level ε.
Step 2 For all i ∈ I (r), compute the sample mean Ȳi (Ni (r)) = (1/Ni (r))

∑Ni (r)
j=1 Yi j , the

sample variance S2i (Ni (r)) = (1/(Ni (r) − 1))
∑Ni (r)

j=1 [Yi j − Ȳi (Ni (r))]2, and the
screening threshold Wi0 as follows:

Wi0 = h
√
S2i (Ni (r))/Ni (r).

The setting of h must satisfy the condition Pr{H ≤ h} = 1 − αc, where
H = max {T1, T2, . . . , Tk} and T1, T2, . . . , Tk are student’s t random variables with
Ni (r)−1degrees of freedom.We followaproven procedure ofNelson andGoldsman
(2001) to obtain an efficient estimator of h.
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Step 3 Form the subset

I ′(r) = {i : Ȳi (Ni (r)) − Q ≤ (Wi0 − ε)+,∀i ∈ I (r)},
where y+ = max{0, y}.

Theorem 2 Under the assumption that the simulation output data Yi j are normally dis-
tributed, in each iteration r, our constraint screening procedure provides the following
statistical guarantee:

Pr{SD(r) ⊆ I ′(r)} ≥ 1 − αc where SD(r) = {i : Yi − Q ≤ −ε,∀i ∈ I (r)} .

Each screening iteration of Algorithm B is composed of a Constraint Screening stage and
anObjective Screening stage. A specified amount of simulation replications is taken to obtain
observations of (Xi j , Yi j ) for use in both the Constraint Screening and Objective Screening
stages, which can significantly reduce the simulation budget. The accumulated observations
with respect to Yi j are used to employ CSP to eliminate inferior solutions (with respect to
the constraint performance) and then return a subset I ′(r). Then, the simulated samples of
Xi j collected from the same replications are utilized in the following Objective Screening
stage, in order to further reduce the subset size (based on the objective performance). We
then generate new solutions from the neighborhood of the remaining solutions and go on
to the next screening iteration. After implementing these R iterations, we first identify the
feasibility of all the surviving solutions with a specified statistical guarantee and then apply
the clean-up procedure due to Boesel et al. (2003) to choose the best solution in terms of the
objective performance among the remaining feasible solutions. A flowchart of Algorithm B
is given as Fig. 2. Notice that in this case, the number of observations already taken from
each solution should be unequal, which implies that the ordinary FCP of Andradóttir and
Kim (2010) is not readily applicable. Therefore, we propose an alternative version of FCP
that can handle unequal initial sample sizes and exploit the previously taken observations,
in a similar manner as in Pichitlamken et al. (2006), and prove the following theorem in
Appendix A.3.

Theorem 3 Under the assumption that the simulation output data Yi j are normally dis-
tributed, the feasibility check procedure with unequal sample sizes provides the following
statistical guarantee:

Pr {RD ⊆ F ⊆ (RD ∪ RA)} ≥ 1 − α f .

We propose two versions of Algorithm B (i.e., B-1 and B-2), and the specific steps of Algo-
rithm B-1 are first described as follows:

Algorithm B-1

Setup: Choose the number of iterations R. Determine the allowable error corresponding to
constraint screening (αc), objective screening (αs), feasibility check (α f ), and selection of
the best (α2). Specify the indifference-zone parameter δ, the constraint tolerance level ε, the
number of initial replications N0 (for both constraint and objective screening), the minimum
initial sample size n0 (for feasibility checkwith unequal sample size), and the constant growth
factor G ≥ 1. Set the iteration number r = 0.

Initialization: Generate b(0) initial solutions and let I (0) = {1, 2, . . . , b(0)}. For all i ∈
I (0), take N0 initial replications from solution Si (to obtain (Xi j , Yi j )), and let Ni (0) = N0.

Constraint Screening Stage: For all i ∈ I (r), we apply the aforementioned constraint
screening procedure to obtain I ′(r). If |I ′(r)| ≤ 1, we let I (r + 1) = I ′(r) and go to
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Fig. 2 Flowchart of Algorithm B

the Stopping Rule Stage. Otherwise (i.e., |I ′(r)| > 1), we go to the following Objective
Screening Stage.

Objective Screening Stage: For all i ∈ I ′(r), we follow the same steps as in the objective
screening stage of Algorithm A, except that we do not perform any new simulations (to
obtain Xi j ), and the critical value for screening is now ti = t

(1−α′)1/(|I ′(r)|−1),Ni (r)−1, where
α′ = αs/R. We also update I (r + 1) = I ′(r) \ E(r).

Stopping Rule: Let r = r + 1. If r < R, then generate b(r) new solutions. We take 	N0Gr

replications from all remaining solutions. If i ∈ I (r), we let Ni (r) = Ni (r − 1) + 	N0Gr
.
Else if index i belongs to the set of b(r) new solutions, we let Ni (r) = 	N0Gr
. Add the set
of b(r) solutions to I (r), and go back to the Constraint Screening Stage. Otherwise (i.e.,
r = R), let M = I (R) and go to the following Feasibility Check Stage.

FeasibilityCheck Stage: If |M | = 0, declare that no feasible solution has been found in these
R screening iterations. Otherwise, for all i ∈ M , we apply the feasibility check procedure
with unequal sample size (see Appendix A.3). Note that we use ni = Ni (R−1) and k = |M |.
If |F | = 0, declare that no feasible solution has been found in these R screening iterations.
Otherwise, return F as the set of feasible solutions, and go to the following Selection Stage.

Selection Stage: If |F | = 1, then declare that solution as the best. Otherwise, for all i ∈ F ,
we follow the same steps as in the selection stage of AlgorithmA, except that we use B = |F |
to compute the extended Rinnott’s (1978) constant h.

The advantage of this algorithm is that we only need to implement FCP once in the final
stage, and it can utilize simulation observations accumulated in previous R iterations. In
other words, FCP is applied to those solutions that have competitive objective performance
since they have survived through previous Objective Screening stages (which implies that
the feasibility check is worthwhile). This seems to be a more reasonable and efficient scheme
compared to Algorithm A, where FCP is applied to any newly generated solutions. Further,
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the sampled observations of Xi j and Yi j collected from the same replications can be both
exploited in the screening iterations (in Algorithm A they are sampled from different repli-
cations), which helps save a significant amount of the sampling budget. Another desirable
setting is that we take a number of observations and keep updating the variance estimators of
CSP at each Constraint Screening stage, so that eliminations are made more and more effi-
ciently as the optimization search progresses. The variance-updating multistage procedure
can be shown to be more efficient (in terms of the required sampling efforts) than the ordi-
nary fully sequential procedure, such as FCP, which takes a number of preliminary samples
to estimate the variance and fixes it in the following steps [see Tsai and Chu (2012) for a
detailed argument]. It should also be noticed that in the Constraint Screening stage, we can
guarantee that the returned subset contains all the desirable solutions, but this subset can
also include some acceptable or unacceptable solutions. Therefore, it is possible that feasi-
ble solutions with worse objective performance are eliminated by infeasible solutions having
superior objective performance in the following Objective Screening stage. As a result, Algo-
rithm B-1 is a heuristic in the sense that it cannot deliver the overall probability of correct
selection for the solution finally chosen (i.e., PCS[I ] ≥ 1−α defined in Sect. 2). We thus do
not need to prescribe how to allocate the overall confidence level 1 − α in the Setup stage.
However, in the empirical study, an additive rule of error allocation is served as a heuristic
way. Subsequently, we make slight modifications to Algorithm B-1 and propose Algorithm
B-2 to improve the PCS guarantee, but the algorithm’s statistical efficiency might be sacri-

ficed. More specifically, in the Stopping Rule stage, we now let M =
{⋃R−1

r=0 E(r)
}

∪ I (R)

immediately after consuming all R screening iterations (i.e., when r = R). In other words, in
the Feasibility Check stage, Algorithm B-2 considers not only the remaining solutions I (R)

(through all R iterations), but also those solutions that survived the Constraint Screening
stage and were eliminated in the subsequent Objective Screening stage (i.e., E(r)). Further,
we employ the accumulated simulation observations and use the number of total solutions
visited in all R iterations (i.e., k = ∑R−1

r=0 b(r)) to compute the monitoring statistic of FCP.
In addition, after the feasibility check, we implement one more objective screening for those
feasible solutions based on previously obtained observations. Then, we keep the surviving
solutions and go to the final Selection stage. In the Setup stage of Algorithm B-2, we now
need to specify the confidence levels as follows: R×αc +α f +α′ +α2 = α, where α′ repre-
sents the allowable error used in the last objective screening (which is also the error applied
in the objective screening of each iteration). It can be anticipated that in these R screening
iterations, the number of simulated observations expended by Algorithm B-1 (or B-2) is less
than that of Algorithm A, while Algorithm B-2 considers many more candidate solutions in
the final stage (compared to Algorithm A and Algorithm B-1). This setting will definitely
lead to an increase in the total required sampling budget of Algorithm B-2 (when compared
to Algorithm B-1), but the statistical validity can thus be maintained to some extent. See
Appendix A.4 for the proof of Theorem 4.

Theorem 4 If the BN assumption of
(
Xi j , Yi j

)
holds, then Algorithm B-2 guarantees that

Pr {[k] ∈ F} ≥ 1− R × αc − α f . We conjecture that Pr{select S[k]|[k] ∈ F} ≥ 1− α′ − α2

whenever its objective performance is better than other desirable and acceptable solutions
by at least a practically significant amount δ, but have been unable to prove it.

To deliver the overall probability of correct selection (i.e., PCS[I ] ≥ 1−α) of Algorithm
B-2, we can restart the sampling process (i.e., without using the previous simulation observa-
tions) of the last objective screening procedure (right after the feasibility check), but it may
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incur highly excessive simulation sampling effort. The disadvantage is more obvious when
there are many remaining solutions after the Feasibility Check stage.

3.4 Algorithm C

In this subsection, we introduce an algorithm that allows the ability to perform objective
screening to candidate solutions whose feasibility has not been determined yet (which is
similar to Algorithm B), and in the meanwhile, the desired statistical guarantee is provided.
We use the notation SSi to indicate the set of solutions that are superior to solution Si in terms
of the objective performance, and this setting is adopted from Andradóttir and Kim (2010).
Each screening iteration of Algorithm C is composed of a One-Time Feasibility Check stage
and an Objective Screening stage. Similar to Algorithm B, in each iteration, we take a pre-
specified number of simulation replications (i.e., 	N0Gr
) from each remaining solution and
then implement the feasibility check and objective screening in sequence. The feasibility
check is different from that of Algorithm A in that its decision is based on the accumulated
observations (it could be feasible, infeasible, or undetermined), rather than continuing the
sequential sampling process until the feasibility has been identified. In otherwords,we use the
accumulated observations to compute the monitoring statistic and examine one time whether
a feasibility decision can be made. In order to maintain the feasibility guarantee for all R
iterations, we must use the number of total solutions visited by FCP in all R iterations (i.e.,
k = ∑R−1

r=0 b(r)) in order to compute the monitoring statistic in each iteration, which is the
same setting as in AlgorithmA andAlgorithmB-2. If solution Si is determined to be feasible,
we then eliminate all � (and the corresponding set SS�) that satisfy i ∈ SS�. If solution Si is
determined to be infeasible, we then delete the index i and the corresponding set SSi . This
is called a one-time feasibility check. In the follow-up Objective Screening stage, we do not
need to restart the sampling process to collect new observations with respect to objective
performance (i.e., screening is based on accumulated Ni (r) observations). If solution Si is
eliminated by a feasible solution S� in terms of the objective performance, we then delete
index i and the corresponding set SSi ; otherwise, if the feasibility of S� is not determined yet,
we then add the index � to the set SSi . After implementing these R iterations, we first identify
the feasibility of the surviving solutions whose feasibility has not been determined yet (see
Appendix A.3) and then apply the clean-up procedure to choose the best solution among the
feasible solutions. It should be noticed that in the final Feasibility Check stage, if solution
Si is determined to be feasible, we then directly delete all solutions S� that satisfy i ∈ SS�

(without performing the feasibility check), which can also further reduce the sampling cost
incurred in the following Selection stage. A flowchart of Algorithm C is given in Fig. 3.
A detailed description of Algorithm C and a theorem regarding its statistical guarantee are
presented as follows:

Algorithm C

Setup: Choose the desired overall confidence level 0 < 1−α < 1. Determine the allowable
error corresponding to objective screening (αs), feasibility check (α f ), and selection of the
best (α2), such that αs + α f + α2 = α. Specify the indifference-zone parameter δ, the
constraint tolerance level ε, the number of iterations R, the number of initial replications N0,
and the constant growth factor G ≥ 1. Set the iteration number r = 0 and F(0) = ∅.
Initialization: Generate b(0) initial solutions and let M(0) = {1, 2, . . . , b(0)}. For all i ∈
M(0), take N0 initial replications from solution Si (to obtain (Xi j , Yi j )) and let Ni (0) = N0.
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Fig. 3 Flowchart of Algorithm C

Let SSi = ∅ be the set of superior solutions (compared to Si ) in terms of expected objective
performance X(Si ).

One-TimeFeasibilityCheckStage:For all i ∈ M(r), basedon the accumulated Ni (r)obser-
vations, we apply the feasibility check procedure with unequal sample size (see Appendix
A.3). If solution Si is determined to be feasible, we then move i from M(r) to F(r) and
delete all � (from M(r) or F(r)) that satisfy i ∈ SS�. Else if Si is determined to be infeasible,
we then delete i from M(r) and eliminate the set SSi .

Objective Screening Stage: For each i, � ∈ {M(r)∪F(r)} such that i �= �, i /∈ SS�, � /∈ SSi ,
we follow the same steps as in Algorithm B to compute the screening threshold Wi�(r), and
then check whether the following condition holds:

X̄i (Ni (r)) − X̄�(N�(r)) ≤ −Wi�(r).

If the condition holds and � ∈ F(r), we then eliminate i and SSi ; else if the condition holds,
and � ∈ M(r), we then add � to SSi .

Stopping Rule: Let r = r + 1. If r < R, then generate b(r) new solutions, and let J (r) ={∑r−1
j=0 b( j) + 1,

∑r−1
j=0 b( j) + 2, . . . ,

∑r
j=0 b( j)

}
. We update M(r) = {M(r − 1)∪ J (r)}

and F(r) = F(r − 1). We then take 	N0Gr
 replications from all solutions of M(r) and
F(r). If index i belongs to the set J (r), we let Ni (r) = 	N0Gr
. Otherwise, we let Ni (r) =
Ni (r − 1) + 	N0Gr
. Go back to One-Time Feasibility Check Stage. Else if r = R, go to
the following Feasibility Check Stage.

Feasibility Check Stage: If |M(R − 1)| = 0 and |F(R − 1)| = 1, then declare that solution
as the best. If |M(R − 1)| > 0, then we apply the feasibility check procedure with unequal
sample size (see Appendix A.3) to all i ∈ M(R − 1). In the implementation process of FCP,
if solution Si is determined to be feasible, we then delete all � (from M(R− 1) or F(R− 1))
that satisfy i ∈ SS�. Return F as the set of feasible solutions identified by FCP and update
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F = {F(R − 1) ∪ F}. If |F | = 0, declare that no feasible solution has been found in these
R screening iterations. Otherwise, return F as the set of feasible solutions, and go to the
following Selection Stage.

Selection Stage: If |F | = 1, then declare that solution as the best. Otherwise, for all i ∈ F ,
we follow the same steps as in the selection stage of Algorithm B to select the best solution.

Theorem 5 If the BN assumption of
(
Xi j , Yi j

)
holds, then Algorithm C selects solution S[k]

with probability ≥ 1 − α whenever its objective performance is better than other desirable
and acceptable solutions by at least a practically significant amount δ.

In each iteration of Algorithm C, we continue updating M(r) and F(r), which represents
the set of solutions whose feasibility have not been determined yet and the set of feasible
solutions, respectively. In the Objective Screening stage, we eliminate candidate solutions
only when they are obviously inferior to any feasible solution among F(r) (there may be only
a few of them). This implies that in Algorithm C, it is more difficult to eliminate solutions
as compared to the other algorithms. Therefore, when given the same amount of simulation
budget, the total number of evaluated solutions in the searching process of Algorithm C will
be smaller than that of other algorithms, and this might result in a final solution with inferior
objective performance. In addition, Algorithm C is more favorable when there exists some
feasible solution that is very competitive in terms of objective performance where, in the
meantime, the determination of its feasibility is not very difficult. In this case, if at least one
of the good solutions is found in early iterations (i.e., add into F(r)), then we can use them
to eliminate a large number of uncompetitive solutions and thus deliver a great algorithm
performance.

4 Empirical results

In this section, we conduct an extensive experimental evaluation to compare the follow-
ing algorithms for the purpose of solving the zero-one OvS problem subjected to a single
stochastic constraint:

1. The rapid screening algorithms considering a single stochastic constraint presented in
Sect. 3 are performed, including Algorithm A (RSC-A), Algorithm B-1 (RSC-B1),
Algorithm B-2 (RSC-B2), and Algorithm C (RSC-C).

2. Andradóttir and Kim (2010) proposed a fully sequential procedure (AK) that can select
the best solution in the presence of a single stochastic constraint. AK assumes that the
set of solutions is available at the beginning of the experiment and requires excessive
simulated samples if the number of candidate solutions is large.

3. Lee et al. (2012) developed a new optimal computing budget allocation (OCBA) algo-
rithm for stochastically constrained problems. The goal is to maximize the posterior PCS
under a given sampling budget. Notice that the OCBA does not provide a guaranteed
PCS, but it might be the most efficient R&S procedure to achieve an approximate PCS
(see Branke et al. 2007).

In the experiments, the AK algorithm is applied to the whole solution space to serve as a
benchmark for comparison, which represents a very conservative way to achieve a global
PCS guarantee. By contrast, our rapid screening algorithms can provide a PCS guarantee
among the visited candidate solutions, andmeanwhile, they hopefully consume an affordable
amount of simulated replications.We also considerOCBA in the experimental study because
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the philosophy of ordinal optimization (see Ho et al. 2000) matches with that of our rapid
screening algorithms [see Tsai (2013) for a discussion].

4.1 Configurations and experiment design

To obtain more control over the factors that affect the performance of the algorithms, we con-
sider several known response-surface functions to which we add normally distributed noise
(or some components of the function serve as normal random variables). We assume that
each candidate solution is simulated independently (i.e., CRN are not used). The competing
algorithms are implemented without knowing the explicit structure of the expected objec-
tive and constraint functions. The first test problem is analogous to the zero-one stochastic
knapsack problem (e.g., Kosuch and Lisser 2010). Given d items, each having a prespecified
profit per weight unit p j > 0, a random weight w j ( j = 1, 2, . . . , d), and a capacity Q, the
knapsack problem is intended to choose a subset of items that has maximum expected total
profit and an expected total weight not exceeding Q. We assume that the random weight w j

is independently normally distributed with mean μ j and standard deviation σ j . The decision
of which items are collected has to be made without knowing their weights with certainty.
The constrained problem can be formulated as follows:

max X(Si ) = E

⎡
⎣ d∑

j=1

w j p j Si j

⎤
⎦

s.t. Y(Si ) = E

⎡
⎣ d∑

j=1

w j Si j

⎤
⎦ ≤ Q

where Si j is a binary variable taking the value 1 if and only if item j is selected for the i th
solution Si . We set d = 10, and therefore, we have a total of 210 = 1024 candidate solu-
tions. The profit per weight unit p j is set as (2, 2, 3, 2, 2, 1, 2, 2, 1, 2), for j = 1, 2, . . . , 10.
The expected value μ j is set as (62, 53, 96, 73, 89, 83, 66, 77, 60, 58), for j = 1, 2, . . . , 10.
The standard deviation σ j of random weight is specified as (8, 10, 5, 4, 2, 4, 8, 5, 9, 18)
and (13, 15, 10, 9, 7, 9, 13, 10, 14, 23), representing a low or high level of output variabil-
ity, respectively. When implementing the proposed rapid screening algorithms, we set the
indifference-zone parameter (for the objective performance) as δ = 20 and specify the tol-
erance level (for the constraint performance) as ε = 15. To investigate the effect of different
proportions of feasible solutions on the algorithm performance, we use different values of
Q (= 260, 370, 460) in the experiments. For the case of Q = 260, we have 200 feasible
solutions, which accounts for 19.5% of the solution space and is regarded as a scenario with
a low level percentage of feasible solutions in the entire space. In this case the optimal fea-
sible solution is (0, 0, 1, 0, 0, 0, 0, 0, 0, 1) with an objective value of 612. For the case of
Q = 370, we have 559 feasible solutions (accounting for 54.5% of the solution space), which
represents a scenario with a medium percentage of feasible solutions. The optimal feasible
solution is located at (0, 0, 1, 1, 0, 0, 1, 1, 0, 1) with an objective value of 836. For the last
case of Q = 460, we have 832 feasible solutions, which accounts for 81% of the solution
space and can be viewed as a scenario with a high percentage of feasible solutions. In this
case the optimal feasible solution is located at (0, 0, 1, 1, 1, 0, 1, 1, 0, 1) with an objective
value of 1014.

The second evaluated function of the response surface is known as the constrained binary
quadratic problem (CBQP), where the objective is represented as a binary quadratic function
(see Barahona et al. 1989):
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X(Si ) = Si TUSi ,

where

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 −1 −2 −2 2 −1 2 2 −3 2 2 −1
−3 −1 8 −3 −1 −2 2 5 5 −2 4 6
−1 −2 −1 1 −2 −3 3 5 6 5 3 2
1 2 1 −2 2 −2 2 −2 −3 −1 −2 −2
2 4 1 6 2 1 −2 −1 −2 −1 3 −1
5 −2 8 −2 6 2 −1 −2 1 −1 1 −1

−2 2 1 2 3 5 −1 8 2 −1 8 5
−2 8 5 −3 −1 −1 2 −2 3 −1 6 2
−1 −1 4 2 2 2 1 6 −3 −1 −1 1
−2 1 1 −1 −2 −2 −1 3 −1 −2 2 2
5 8 6 −1 1 1 2 3 −1 −2 6 1

−1 2 −2 3 4 5 5 −4 −3 2 −2 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We set d = 12, and therefore, we have a total of 212 = 4096 candidate solutions. The stochas-
tic objective function is adopted from Tsai (2013), and it represents a response surface where
most candidate solutions differ widely in terms of performance. The considered stochastic
constraint is a quadratic and convex function, and is formulated as follows:

Y(Si ) =
⎛
⎝ 12∑

j=1

Si j − 12

⎞
⎠

2

+
⎛
⎝ 12∑

j=1

Si j

⎞
⎠

2

≤ Q.

To examine the impact of different percentages of near-boundary solutions (i.e., acceptable
solutions as defined in Sect. 2) present in the solution space, we consider two settings of
the constraint threshold: Q = 80 and Q = 96. For the case of Q = 80, we have 3498
feasible solutions and 990 near-boundary solutions (accounting for 24% of the solution
space), which is considered to be a scenario with a high level percentage of near-boundary
solutions. In this case, the optimal feasible solution is (0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1) with
an objective value of 140. For the case of Q = 96, we have 3938 feasible solutions and
there are not any near-boundary solutions, which is considered as a scenario with a low
level percentage of near-boundary solutions. In this case, the optimal feasible solution is
(0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1) with an objective value of 157. We set the noise variance for
both the objective and constraint performance function as σ 2 = 150. When performing the
proposed rapid screening algorithms,we set the indifference-zone parameter (for the objective
performance) as δ = 5, and specify the tolerance level (for the constraint performance) as
ε = 5.

Each algorithm is performed on different experimental configurations, and examining
factors include the number of screening iterations (R), the growth factor of the number of
replications (G), the number of initial solutions (b(0)), and the number of candidate solutions
encountered in each iteration (M). We specify a fixed value of M for each iteration, which
implies that the number of newly generated solutions (b(r)) can be computed by the difference
between the value ofM and the number of remaining solutions. After some pilot experiments,
we find that M = 40 is a reasonable choice when implementing the proposed rapid screening
algorithms. It should be noted that Tsai (2013) proposed and discussed different methods
to generate candidate solutions from the neighborhood of surviving solutions, but in the
current experimental study, we only adopt the nearest-neighborhood search method. The
initial sample size for feasibility check and objective screening is set as n0 = 20 and N0 = 12,
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Table 2 Parameter settings in the experimental study

Parameters Tested values

Number of screening iterations (R) 6

Sample size growth factor (G) 1.3

Initial number of solutions (b(0)) 8

Number of solutions evaluated in each iteration (M) 40

Initial sample size for feasibility check (n0) 20

Initial sample size for objective screening (N0) 12

Overall allowable error (α) 0.05

Allowable errors forRSC-A α1 = α2 = α/2 and αs = α f = 1 − √
1 − α1

Allowable errors forRSC-B1 αc = α2 = α/2 and αs = α f = 1 − √
1 − α2

Allowable errors forRSC-B2 αc = α/(4R) and α f = α′ = α2 = α/4

Allowable errors forRSC-C αs = α f = α2 = α/3

Optimal values for the knapsack problem 612 (Q = 260), 836 (Q = 370), 1014 (Q = 460)

Optimal values for the quadratic problem 140 (Q = 80), 157 (Q = 96)

respectively. We also specify R = 6, G = 1.3, and b(0) = 8 across different versions of
the rapid screening algorithms. In all of the experiments, the overall confidence level is set
as 1 − α = 0.95. For the RSC-A algorithm, we divide the allowable error α equally, set
α1 = α2 = α/2, and then specify αs = α f = 1 − √

1 − α1. An upper bound of k (which is
used to compute η in the Feasibility Check stage) is set as k = 8 + 39 × 5 = 235. For the
RSC-B1 algorithm, we set αc = α2 = α/2, and then specify αs = α f = 1 − √

1 − α2. For
the RSC-B2 algorithm, we have to satisfy R × αc + α f = α′ + α2 = α/2, and each error
amount is allocated equally. For the RSC-C algorithm, we specify αs = α f = α2 = α/3.
The AK algorithm is applied to the entire set of candidate solutions, and the allowable error
for both the feasibility check stage and the comparison stage is equal to α/2. For the OCBA
algorithm, the sampling budget is chosen in accordance with the experimental results of the
RSC-A algorithm. In each trial of theOCBA algorithm, we randomly choose a fixed number
of candidate solutions within the solution space, and consider them to be the set of available
solutions. The initial replications for each solution is set as n0 = 10, and incremental 100
replications are allocated in each iteration until the specified sampling budget is exhausted.
The detailed parameter settings for the empirical study are provided in Table 2.

For each problem configuration, 500 macro-replications (complete repetitions) of each
competing algorithm are performed. To compare the performance of the algorithmswe record
the Average Performance (i.e., expected value of the objective function) of the final selected
solution (AP), the Average Number of Samples (ANS) required by each algorithm (without
dividing by the number of visited solutions), theAverage number of total Generated Solutions
(AGS), the Average number of Surviving Solutions through R screening iterations (ASS),
the Probability of selecting Feasible Solutions (PFS), and the estimated PCS. To simplify the
experimental presentation, we round the values of AP, ANS and AGS to the nearest whole
number, round the values of ASS to the nearest hundredth, and round the values of PFS and
PCS to the nearest thousandth.

4.2 Summary of results

The estimated PFS andPCS for the proposed rapid screening algorithms and theAK algorithm
are higher than the nominal level 0.95 in most investigated configurations. The only excep-
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tion is that RSC-B1 shows an inferior PCS performance in a specially designed scenario.
Algorithm A is intuitive and statistically valid, but it also consumes the most simulation
replications among the proposed algorithms. By contrast, the advantage of Algorithm B
(compared to other algorithms) is more significant in terms of the required sampling effort
especially whenwe have sampledmany solutions close to the constraint boundary. Algorithm
C can be proven to achieve the statistical guarantee and consumes an affordable amount of
simulation effort, but it might return an inferior solution because the number of sampled
solutions is not large enough. The other advantage of Algorithm C is that its parameters
required to be specified is fewer than the other two algorithms. In almost every scenario, the
AK algorithm can identify a final solution with the best quality, as anticipated, but it also
requires a substantially larger amount of simulation effort. It should also be noted that in the
empirical study, we implement pureOCBAwithout adopting any efficient solution searching
mechanism. Therefore it is not surprising that OCBA delivers inferior performance in terms
of AP, PFS and PCS. We do not intend to suggest that pure OCBA is not a good choice for
ordinary R&S problems. Please refer to Branke et al. (2007) for a comprehensive comparison
between frequentist-type and Bayesian-type procedures.

4.3 Experimental results for the constrained stochastic knapsack problem

The experimental results for the stochastic knapsack problem under the low and high variance
scenarios (with different settings of Q and R = 6) are summarized in Table 3. When the
output variance increases, the compared algorithms all deliver increasing values of ANS
and ASS, while their AP and AGS values are decreased. This is an anticipated result since
more variance naturally leads to a more difficult feasibility check and solution elimination
process. In addition, we can see that among the proposed rapid screening algorithms,RSC-A
presents the best AP performance but also consumes the most simulation replications. The
excessive simulation effort required byRSC-A is not surprising because it has to implement
a feasibility check to every newly sampled solution, and the collected simulated observations
cannot be exploited in the subsequent Objective Screening stage. The difference in ANS from
RSC-A and other rapid screening algorithms is more significant especially when the output
variability is high. For instance, in the case with Q = 460 and “High Variance”, the required
ANS ofRSC-A is more than two times of the sampling cost ofRSC-B1. We find thatRSC-
B1 uses the smallest ANS and still maintains competitive performance in terms of AP. The
estimated PFS and PCS of RSC-B1 and RSC-B2 are higher than the nominal level of 0.95
in the tested configurations, although their statistical validity cannot be provided. It should
be noted thatRSC-B2 delivers somewhat stronger statistical validity (as compared toRSC-
B1) in the sense that it can at least guarantee that the best solution is retained in the subset
before performing the Selection step (see Theorem 4). We can also see thatRSC-B2 requires
more sampling effort thanRSC-B1 because it encounters many more candidate solutions in
the final stage (i.e., more ASS). For the same reason, RSC-B2 can usually achieve better
final selected solution quality in terms of AP (as compared to RSC-B1). It should be noted
that in the Objective Screening stages,RSC-C can only screen out candidate solutions when
they are statistically inferior to any feasible solution, which implies a more strict condition
to perform elimination when compared to other algorithms. Given a setting where a fixed
number of solutions (M) is evaluated in each iteration, we can therefore find that RSC-C
visits fewer candidate solutions (i.e., smaller AGS and ASS) in the entire process, which then
leads to somewhat inferior AP performance (especially in the cases with “High Variance”).
In most cases,RSC-C requires more sampling cost thanRSC-B1 mainly because it allocates
a smaller allowable error for selection of the best (so more simulation effort is needed in
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the Selection stage). We also implement the experiments of RSC-A using different values
of R (8, 10, and 12) for the constrained stochastic knapsack problem (see Table 4). We use
RSC-A as an illustration because it requires the most sampling effort among the proposed
algorithms. We can see that the global optimal solution can be obtained when R = 10 or 12,
and the required sampling cost is still far less than that of AK.

4.4 Special case for the constrained stochastic knapsack problem

The tested configuration is chosen to make the problem especially difficult for RSC-B1 by
placing a competitive solution (in terms of the objective performance) near the boundary of
the feasible region. The profit per weight unit p j is specified as (2, 1, 10, 11, 9, 3, 1, 4, 2, 3),
for j = 1, 2, . . . , 10. The constraint threshold is specified as Q = 252 with a tolerance
level ε = 5. The other parameter settings are the same as those mentioned in Sect. 4.1.
In this case we have 185 feasible solutions, which accounts for only 18% of the solu-
tion space, and it represents a scenario where only a small portion among the candidate
solutions is feasible. The optimal feasible solution is (0, 0, 1, 1, 0, 0, 0, 1, 0, 0) with an
objective value of 2071. The solution (0, 0, 1, 1, 1, 0, 0, 0, 0, 0) is an unacceptable solu-
tion (denoted as Su) with an objective value of 2564 and where the expected constraint
performance is 258 (note that Q + ε = 257), which is designated as one of the initial
solutions. In this case, it is likely that some competitive feasible solutions (which are sam-
pled in subsequent iterations) are incorrectly eliminated by this specific chosen unacceptable
solution Su . The experimental results under both low and high variance scenarios are sum-
marized in Table 5. For the comparative results of the “Low Variance” scenario, we can
observe similar patterns as seen in Table 3. We also find that RSC-B1 consumes the least
amount of sampling cost while still identifying a promising final solution. However, in the
“High Variance” scenario, RSC-B1 delivers the worst performance in terms of AP and
PCS. This is because the higher output variability makes it more difficult to remove Su
in the Constraint Screening stage, which increases the chance of promising feasible solu-
tions (or the best solution) being eliminated by Su in the subsequent Objective Screening
stages.

4.5 Experimental results for the constrained binary quadratic problem

The experimental results for the stochastically constrained binary quadratic problem with
different percentage levels of near-boundary solutions are summarized in Table 6. The disad-
vantage ofRSC-A in terms of sampling cost is more significant when encountering a higher
percentage of near-boundary solutions in the solution space (more than three times the sam-
ple size compared toRSC-B1). This is becauseRSC-A has to implement a feasibility check
for every possible near-boundary solution, in which case excessive sampling effort might
be incurred. In this case, RSC-B2 also requires more sampling cost because more solutions
remain in the subset before the feasibility check process. By contrast, the performance of
RSC-B1 is not so sensitive to different levels of near-boundary solutions because it uses
the accumulated observations to perform a final feasibility check. On the other hand, when
there is a higher percentage of near-boundary solutions, we can see thatRSC-C suffers from
visiting a much smaller number of candidate solutions and therefore has worse AP perfor-
mance (compared to the optimal solutions in these two settings). Similar to the previous
results, we find that RSC-C requires significantly less sampling cost than either RSC-A or
RSC-B2.
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Table 4 Experimental results for RSC-A with different values of R (specified in the parenthesis) when
applied to the constrained stochastic knapsack problem under the low variance scenario

Q = 260 Q = 460

A(6) A(8) A(10) A(12) AK A(6) A(8) A(10) A(12) AK

AP 602 608 612 612 612 1010 1012 1013 1014 1014

ANS 6387 8072 10,167 13,841 25,538 9571 12,124 16,414 21,567 40,297

AGS 195 272 348 426 1024 188 257 330 404 1024

ASS 1.83 1.20 1.03 1.00 N/A 4.88 3.73 2.62 1.92 N/A

PFS 1 1 1 1 1 1 1 1 1 1

PCS 1 1 1 1 1 1 1 1 1 1

Table 5 Experimental results for
the rapid screening algorithms
when applied to a designed
configuration of the constrained
stochastic knapsack problem

Low variance High variance

A B1 B2 C A B1 B2 C

AP 2062 2065 2068 2059 2031 1785 2030 2012

ANS 7118 5856 6872 6016 15,745 6952 7954 7218

AGS 200 202 205 191 191 190 189 142

ASS 1.64 1.42 51 1.53 3.86 3.77 45 3.31

PFS 1 1 1 1 1 1 1 1

PCS 1 1 1 1 1 0.36 1 1

Table 6 Experimental results for the rapid screening algorithmswhen applied to the stochastically constrained
binary quadratic problem under different percentages of near-boundary solutions

Low percentage High percentage

A B1 B2 C A B1 B2 C

AP 149 142 145 139 130 122 126 116

ANS 34,549 18,905 24,873 21,005 71,376 22,975 34,976 28,747

AGS 166 145 154 131 155 135 142 114

ASS 3.45 5.67 46 5.63 3.14 9.97 54 3.06

PFS 1 1 1 1 1 0.99 1 1

PCS 1 0.99 0.99 1 1 0.99 0.99 1

5 Conclusions

In this paper, we develop three rapid screening algorithms to solve the zero-one simulation
optimizationproblemconsidering a single stochastic constraint.AlgorithmA ismore intuitive
and is easier to implement (and statistically valid), but it may require excessive sampling
effort especially when there are lots of near-boundary solutions. Algorithm B-1 requires the
fewest simulation replications, but it is a heuristic (i.e., cannot deliver the PCS guarantee)
and is especially undesirable when there are some unacceptable solutions (which are close to
the feasible region) with a superior objective performance, which are also sampled in early
iterations. We also propose Algorithm B-2 to improve the statistical validity, but this would
be at the price of generating an additional number of simulation replications. Algorithm C can
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maintain the desired statistical guarantee, and in the meantime, the sampling cost is modest,
but it might return a final solution with inferior objective performance. Algorithm C is more
favorable when there exists some very promising feasible solution where, in the meantime,
the determination of its feasibility is not very difficult. In this case, it is better that at least
one of the good solutions is identified in early iterations.

There are several possible interesting extensions for future research. For instance,we could
design new procedures to exploit variance reduction techniques, such as control variates and
CRN, to further improve the statistical efficiency (see Tsai and Kuo 2012). Another possible
extension would be to consider the zero-one simulation optimization problem with multiple
stochastic constraints (see Batur and Kim 2010). The other possible research topic would be
to develop efficient algorithms that can take advantage of Bayesian-type procedures (e.g.,
OCBA) in the rapid-screening framework for constrained simulation optimization.
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