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Abstract Both theoretical and empirical evidence point to the fact that phylogenetic trees of
different genes (loci) do not display precisely matched topologies. Nonetheless, most genes
do display related phylogenies; this implies they form cohesive subsets (clusters). In this
work, we discuss gene tree clustering, focusing on the normalized cut (Ncut) framework as a
suitable method for phylogenetics. We proceed to show that this framework is both efficient
and statistically accurate when clustering gene trees using the geodesic distance between
them over the Billera–Holmes–Vogtmann tree space. We also conduct a computational study
on the performance of different clustering methods, with and without preprocessing, under
different distance metrics, and using a series of dimensionality reduction techniques. Our
results with simulated data reveal that Ncut accurately clusters the set of gene trees, given a
species tree under the coalescent process. Other observations from our computational study
include the similar performance displayed by Ncut and k-means under most dimensionality
reduction schemes, the worse performance of hierarchical clustering, and the significantly
better performance of the neighbor-joining method with the p-distance compared to the
maximum-likelihood estimation method. Supplementary material, all codes, and the data
used in this work are freely available at http://polytopes.net/research/cluster/ online.
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1 Introduction

During this last decade, the field of phylogenetics has been undergoing a gradual shift from the
notion of the strictly bifurcating, completely resolved species trees. Instead,wenow recognize
that species are containers of allelic variation for each gene. It is established that differences
in lineage sorting due to genetic drift lead to differences in phylogenetic tree topologies
(Maddison 1997). Gene flow in ancestral populations and independent lineage sorting of
polymorphisms are, hence, expected to generate topological conflicts between gene trees
in reticulating (e.g., sexually recombining) species (Taylor et al. 2000; Huson et al. 2005;
Weisrock et al. 2006). Both extant and ancestral species could exhibit this phenomenon, so
ancestral species should not be regarded as node points in a fully resolved bifurcating tree,
but instead they should be thought of as spatiotemporal clouds of individual genotypes with
all their inherent allelism.

Thus, a central issue in systematic biology is the reconstruction of populations and species
from numerous gene trees with varying levels of discordance (Brito and Edwards 2009;
Edwards 2009). While there has been a well-established understanding of the discordant
phylogenetic relationships that can exist among independent gene trees drawn from a com-
mon species tree (Pamilo and Nei 1988; Takahata 1989; Maddison 1997; Bollback and
Huelsenbeck 2009), phylogenetic studies have only recently begun to shift away from sin-
gle gene or concatenated gene estimates of phylogeny towards these multilocus approaches
(e.g., Carling and Brumfield 2008; Yu et al. 2011; Betancur et al. 2013; Heled andDrummond
2011; Thompson and Kubatko 2013). Initially, the study of phylogenetics tended to focus
on individual protein sequences (Neyman 1971). However, with the availability of more and
more sequencing data, it has become imperative to consider more loci in our studies, which
will lead to significantly less biased phylogenetic inferences, since uncertainty, along with
missing data, is mitigated over multiple loci (Salichos and Rokas 2013).

There are several methods to conduct multilocus phylogenetic analyses (Bininda-Emonds
et al. 2002; Liu et al. 2009). Most of them infer the best fit tree from the entire data set.
However this “averaging scheme” over multiple loci can not handle biological processes
such as horizontal gene transfer (Jeffroy et al. 2006). It has been documented that it is
common for the genome to have multiple different evolutionary histories (Leigh et al. 2011),
which in turn leads to a significant reduction in the correlation among gene trees. There exist
numerous processes that can reduce this correlation. As an example, negative or balancing
selection on a particular locus is expected to increase the probability that ancestral gene copies
are maintained through speciation events (Takahata and Nei 1990). Furthermore, horizontal
transfer shuffles divergent genes among different species (Maddison 1997).

Correlation may also be reduced by naive sampling of loci for analysis. For example,
paralogous gene copies will result in a gene tree that conflates gene duplication with specia-
tion. Similarly, sampled sequence data that span one or more recombination events will yield
“gene trees” that are hybrids of two or more genealogical histories (Posada and Crandall
2002). These non-coalescent processes can strongly influence phylogenetic inference (Mar-
tin and Burg 2002; Posada and Crandall 2002; Edwards 2009) and are often misleading. In
addition, Rivera et al. (1998) showed that an analysis of complete genomes indicated a mas-
sive prokaryotic gene transfer (or transfers) preceding the formation of the eukaryotic cell,
arguing that there is significant genomic evidence for more than one distinct class of genes.
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More specifically, Gori et al. (2015) recently showed that there are three clusters in the
data set consisting of 344 curated orthologous sets of genes from 18 ascomycetous yeast
species from Hess and Goldman (2011). These examples suggest that the distribution of
gene trees may be more accurately modeled as a mixture of a number of more fundamental
distributions. In order to find a mixture structure in distributions of gene trees, the first step
is to accurately identify the components in the mixture. This is the main reason why in this
work we focus on the problem of clustering gene trees over the “tree space”, in order to
detect subsets (clusters) of maximum similarity.

Many researchers take an approach to apply a likelihood-based method, such as the maxi-
mum likelihood estimator (MLE) or Bayesian inference on the concatenated alignment from
gene alignments in order to reconstruct the species tree. However, Roch and Steel (2015)
showed that applying a likelihood-based method on the concatenated alignment from gene
alignments is not statistically consistent. Therefore, the resulting trees might be misleading.
This could be due to significantly different mutation rates between genes because of incom-
plete lineage sorting and horizontal gene transfer, among other reasons. More precisely, they
showed that, under the multi-species coalescent with a standard site substitution model, such
as the general time reversible (GTR) model (Tavare 1986), application of the MLE method
on sequence data that has been concatenated across genes was a statistically inconsistent
estimator of the species. This observation held true under the mild assumption that all sites
have evolved independently and identically on a fixed tree.

Here, we focus on a non-parametric approach in order to detect the existence and extent of
any significant incongruencewithin a given data set, without relying on any prior assumptions
about its biological basis. There are several non-parametric methods in the form of statistical
tests of incongruence such as Holmes (2005), Haws et al. (2012) andWeyenberg et al. (2014).
Typically, statistical analysis on phylogenetic trees is conducted by mapping each tree to a
vector inRd , d ∈ N: this is referred to as a dissimilarity map (e.g., Holmes 2005; Haws et al.
2012; Weyenberg et al. 2014; Gori et al. 2015).

However, the geometry of the space where phylogenetic trees with n leaves reside in is
not a Euclidean space. In fact, it is represented as the union of lower dimensional polyhedral
cones in R(n

2). Billera et al. (2001) introduced a continuous space which explicitly models
the set of rooted phylogenetic trees with edge lengths on a fixed set of leaves. Although the
Billera–Holmes–Vogtmann (BHV) tree space is not Euclidean, it is non-positively curved,
and thus any two points are connected by a unique shortest path through the space, called a
geodesic. In this computational study, we show, among other things, that using the BHV tree
space can help produce more statistically accurate results. More information on the BHV
space is presented in Sect. 2.

Provided then with any tree T of n leaves with branch length information, the correspond-
ing distance matrix, D(T ), can be calculated. This distance matrix is an n × n symmetric
matrix of non-negative real numbers, and each element (i, j) corresponds to the sum of
the lengths of the branches connecting leaf i to leaf j . Calculating D(i j)(T ) is simple: first
we determine which branches form the path from i to j , and then we sum their branch
lengths. Because D(T ) is symmetric and has zeros on the diagonal, we need only consider
for our analysis the upper-triangular portion of the matrix. Overall, tree T is vectorized by
considering this unique portion of the distance matrix, as in

vD(T ) := (D12(T ), D13(T ), . . . , D23(T ), . . . , Dn−1,n(T )).

This is referred to as the dissimilarity map of tree T and is a vector in R(n
2).
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In a relevant study by Gori et al. (2015), the above observations have led the authors to
investigate different clustering techniques under different distance spaces. More specifically,
they employed three distance metrics: the Euclidean, the geodesic in the BHV tree space, and
the Robinson–Foulds distance metrics were investigated, while for clustering the authors put
to the test hierarchical clustering, spectral clustering, k-means, and k-medoids. They then
proceeded to use the best obtained setup (spectral clustering with a combination of geodesic
and Euclidean distances) to further analyze real-life genome data. Moreover, Mirarab et al.
(2014) employed statistical binning to significantly reduce species tree topology estimation
errors. Their study reveals the importance for proper categorization of gene tree topology
before estimating species trees, which is also what our work aims to achieve.

In contrast, we propose the use of the framework of Normalized cut (Ncut), introduced
by Shi and Malik (2000). An advantage of this framework is that it can be directly applied to
the geodesic distances in the BHV tree space. The Ncut framework has been proposed and
applied very successfully in the field of image segmentation, but has not been thoroughly
investigated in relation to phylogenetics. Our contributions further include the design and
implementation of a full-scale computational experiment to showcase the differences in
the performance of the Ncut, k-means, and hierarchical clustering frameworks in both the
Euclidean and theBHV tree spaces, and under different dimensionality reduction approaches.
Another contribution is that in our case, we allow for uncertainty of the tree reconstruction
by considering MLE under a range of evolutionary models and NJp. This last contribution
is a step forward compared to the literature which assumes that the set of true gene trees is
readily available as their input.

This paper is outlined as follows. Section 2 offers a basic review of the BHV space,
the normalized cut framework, and different dimensionality reduction techniques for the
interested reader. In Sect. 3, we present our computational study and the results obtained
using simulated and real datasets. Then, Sect. 4 discusses these results with a focus on
our main computational analysis, while also summarizing our work and offering insight into
possible future directions. Last, amore detailed review over the clustering and dimensionality
reduction techniques, as well as our full computational experiment results are provided in
the Supplementary material at http://polytopes.net/research/cluster/.

2 Preliminaries and background

Herein, we present a comparative study of different methods for multilocus phylogenetic
analysis using gene tree clustering based on the distance matrix obtained by the geodesic
distances between tree pairs over theBHVspace. Themethodswe compare are the normalized
cut framework, based on the seminal contribution by Shi and Malik (2000), k-means (e.g.,
Hartigan 1975), and hierarchical clustering (e.g., Everitt et al. (2011); interested readers are
also referred to Maimon and Rokach (2005) for an excellent overview).

Furthermore, we investigate how dimensionality reduction methods can be applied in
order to extract a lower dimensional structure before clustering and whether that affects
the solution quality compared to applying our clustering methods directly upon the original
distance matrix. It should be noted that this reduction can also help with regards to data
visualization purposes. For dimensionality reduction, kernel principal component analysis
[KPCA, Schölkopf et al. (1998)] and t-stochastic neighborhood embedding [t-SNE, Maaten
and Hinton (2008)] are employed among many other methods, based on our preliminary
experiments. Hereafter, we refer to the direct application of clustering to a distance matrix
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as direct, and the above two approaches for dimensionality reduction as KPCA and t-SNE,
respectively.

We now proceed to offer some basics on the BHV tree space, the normalized cut frame-
work, and the different dimensionality reduction techniques used. For more details on the
methods used, we refer the interested reader to the supplementary material available at http://
polytopes.net/research/cluster/.

2.1 Billera–Holmes–Vogtmann tree space

A phylogenetic tree on n leaves is typically represented as an acyclic graph with every leaf
having a degree of 1 and all internal nodes a degree of at least 3. The number of edges in
a tree on n leaves is at most 2n − 2, as there are definitely n terminal edges (connecting
leaves) and as many as n − 2 internal edges. The maximum number of edges is achieved
when considering a binary tree; on the contrary, any polytomies lead to a smaller number of
edges. An example of three phylogenetic trees on 4 leaves is given in Fig. 1. The first tree
is binary, and as such has the maximum number of edges (4 terminal and 2 internal for a
total of 6 edges), while the last two contain polytomies, and hence have a smaller number of
edges. Note also that the last phylogenetic tree contains the minimum number of edges (the
4 terminal edges are present alone).

Considering all rooted phylogenetic trees with a set number of leaves (such as the ones
presented in Fig. 1 on 4 leaves), Billera et al. (2001) introduced a continuous space to model
them. We note here that the root requirement can easily be bypassed by either using the
Ferras transformation, or by arbitrarily selecting one of leaf nodes to serve as the root. Now,
associated with every distinct tree topology is a Euclidean orthant with dimension equal
to the number of edges of the topology. This orthant is, in our case, a subset of Rd with
all coordinates being non-negative. Then, the orthant coordinates correspond to the branch
lengths in the tree: as an example, we illustrate a portion of the quadrant corresponding
to phylogenetic trees on 4 leaves in Fig. 2. Billera et al. (2001) proceeded to show that
the Billera–Holmes–Vogtmann (BHV) tree space is globally non-positively curved, which
implies that any two points are connected by a unique geodesic, and the distance between
two trees is defined as the length of the geodesic connecting them.

In the following discussion regarding the BHV space, we can ignore the terminal edge
lengths (this does not mean that we ignore the terminal edge lengths in the computation
of the geodesic distance), and focus primarily on the portion of each orthant that describes
the internal edges. This is justified since all tree topologies have the same set of n terminal
leaves, and each of these leaves is associated with a single terminal edge. Therefore, the
orthant coordinates associated with the terminal edges are of less interest than those of
internal nodes. First, we focus on computing the geodesic distance between two trees on the
BHV tree space and then we include the terminal branch lengths for calculating the overall

a b c d

e1

e2

a b c d

e2 = 0

e1

a b c d

e1 = e2 = 0

Fig. 1 Three examples of phylogenetic trees on 4 leaves. Note that we have identified two unique edge lengths,
e1 and e2, and we show what happens when one or both are equal to zero. The leftmost tree is binary, while
the rightmost tree has no internal edges, and is also referred to as a star
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(1, 1)(0, 1)

(0, 0) (1, 0)

e2

e 1

Fig. 2 A small portion of the quadrant corresponding to the set of phylogenetic trees on 4 leaves. Here the
two dimensions shown correspond to the edge lengths of e1 and e2 as shown in Fig. 1. Point (0, 0) corresponds
to the tree where both edge lengths are equal to 0, point (0, 1) corresponds to the tree where only edge length
e2 is 0, point (1, 0) corresponds to only edge length e1 being equal to 0, and, last, point (1, 1) corresponds to
the tree with both edge lengths e1 = e2 = 1

geodesic distance between two trees by taking the difference between each terminal branch
length.

At this point, we recall that the space has at most d = n − 2 dimensions, as only internal
edges are of interest. Since each of the coordinates in a simplified orthant corresponds to an
internal edge length, the orthant boundaries (where at least one coordinate is zero) represent
trees with collapsed internal edges. For example, consider the second and third trees in
Fig. 1, where the last tree is obtain by collapsing the internal edge e1 of the second tree.
These boundary points are, then, corresponding to treeswith different, and yet closely related,
topologies. Themain insight of theBHVspace is that the trees in the boundary of two different
orthants can still describe the same polytomies. Using this realization, orthant boundaries
can then be grafted together whenever the trees they represent are the same.

As each orthant is locally viewed as a Euclidean space, the shortest path between two
points within the same orthant is straightforward. On the other hand, when two trees possess
different topologies, calculating the geodesic becomes tougher. The main difficulty has to
do with selecting the order in which orthants are to be visited, and which sequence actually
contains the geodesic. For small enough number of leaves (for example, in the case of
four leaves), this can be easily done using a brute-force search, but this is computationally
intractable for large enough numbers. Owen and Provan (2011) gave a quartic-time algorithm
(in the number of leaves, n) for detecting the geodesic between any two points in the BHV
space. After the geodesic path has been found, computing its length with the terminal branch
lengths—and thus the distance between the trees—is an easy feat. The interested reader is

123



Ann Oper Res (2019) 276:293–313 299

referred to Owen and Provan (2011) for more details in the computation of these geodesic
distances.

2.2 Clustering

Given a set of gene trees for the species in analysis, a clustering algorithm is applied based on
the distancematrix containing the geodesic distances in theBHV tree space. As an alternative,
dimensionality reduction may be applied before the clustering when directly applying the
clustering techniques proves unfruitful.

There are many standard clustering methods ranging from non-hierarchical clustering,
such as k-means, to hierarchical clustering methods. This paper focuses on three methods:
normalized cut, k-means, and hierarchical clustering (with average linkage). The k-means
method is the most standard non-hierarchical clustering method in the literature, and has
been extensively used in a variety of applications. Note, however, that with BHV geodesic
distances, direct application of the k-means method would be not as accurate, as updating
the “centroids” (a step that is required in the method) is problematic due to its “stickiness”
to the boundaries of the treespace (Miller et al. 2015). As a linkage method for hierarchical
clustering we use average linkage, since this is traditionally applied to general distance or
dissimilarity measures. Note that another popular choice, Ward’s method, lacks variance
interpretation for a non-Euclidean distance matrix.

From the clustering methods presented in this computational study, the normalized cut
framework (Shi and Malik 2000) has been successfully applied to numerous applications,
including image segmentation (Shi and Malik 2000; Carballido-Gamio et al. 2004; Yao et al.
2012), biology (Xing and Karp 2001; Higham et al. 2007), and social networks (Newman
2013). It has been used in the past also in phylogenetics (Abascal andValencia 2002; Chatterji
et al. 2008), however its performance when distance metrics vary is still largely uninvesti-
gated. The Ncut framework can be employed for clustering even when only a similarity or
dissimilarity matrix is available; that is, the coordinates of the original data points are not
necessary. To properly apply the normalized cut framework in a clustering setting the only
required input is the set of data points (each represented by a node in an undirected graph)
forming node set V , and a set of weights of similarity between them (the edge set, E , of the
graph, with we representing the similarity, for e ∈ E). Then, the normalized cut framework
aims to detect a bipartition of the node set of the graph in two node sets, (S, S̄), such that the
objective function

NCut (S, S̄) = cut (S, S̄)

assoc(S, V )
+ cut (S, S̄)

assoc(S̄, V )
(1)

is minimized with S ∪ S̄ = V and S ∩ S̄ = ∅. We refer to the summation of all weights of the
edges within the cluster as the association of the cluster (assoc(S, V ) = ∑

e∈(S×S)∩E we),

and the summation of all edges with exactly one endpoint in each cluster (S, S̄) as the cut
(cut (S, S̄) = ∑

e∈(S×S̄)∩E we). If we want more than two clusters, one of the clusters is
partitioned further by the same criterion.

More recently, the problem has been studied by Hochbaum (2010, 2013), where normal-
ized cut variants are discussed, with some of them being shown to be solvable in polynomial
time. Among them, of interest to the clustering community would be the “normalized cut”
problem of Sharon et al. (2006), which is nothing more but a single version of the original
normalized cut criterion shown in (1) and the ratio regions problem (Cox et al. 1996). In
Hochbaum (2010) both the ratio regions and “normalized cut” problems were shown to be
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poly-time solvable. In addition, the normalized cut is known to be solved approximately (with
typically good performance) as a generalized eigenproblem, which admits a straightforward
and easy to implement solution. Using this relaxation as an eigenproblem, the Ncut is similar
to solving a spectral clustering problem. Spectral clustering is not new in phylogenetics,
and has been studied in the past (Chen et al. 2007; Zhang et al. 2011). A popular method
for spectral clustering uses k-means after obtaining a low-dimensional data representation
by the spectral method (see Gori et al. 2015). Since from our preliminary experiments the
spectral method does not necessarily provide low-dimensional plots whose shape is suitable
for k-means clustering, we chose the Ncut method, which uses a graph-based criterion to
partition data.

As mentioned earlier, the only necessary information for the Ncut to work is the simi-
larity/dissimilarity information for all data points. As in our case we only have access to a
properly constructed distance matrix, we convert the distance between two data points to a

similarity wi j by computing wi j = e− 1
2σ2

D2
i j , where Di j is the distance matrix element, and

σ = 1.2× m, where m = median{Di j | i �= j}. The median has been used as a heuristically
good approximate solution for the parameter in Gaussian kernel for kernel methods (Gret-
ton et al. 2005), and the constant 1.2 was found from the preliminary experiments to be a
generally good choice.

2.3 Dimensionality reduction

Optionally, before clustering, a low-dimensional expression of gene trees may be extracted
from the distance matrix. Among various dimensionality reduction methods, kernel principal
component analysis (KPCA,Schölkopf et al. 1998) and t-stochastic neighborhood embedding
(t-SNE,Maaten andHinton 2008) are chosen for our analysis by preliminary experiments (we
also applied spectral methods and Isomap, but the results were less favorable than KPCA
and t-SNE; for a full set of computational results, we refer the interested reader to the
supplementary material). Three-dimensional expressions of the data were extracted using
the above methods, when of course applied, and the clustering methods were then applied to
the Euclidean distance matrix among the three-dimensional data points.

KPCA is a nonlinear extension of the standard principal component analysis (PCA); it
applies PCA to feature vectors, which are given by a nonlinear mapping of the original data
to the feature space. The nonlinear map is defined by a positive definite kernel, and the feature
space is possibly an infinite dimensional Hilbert space provided implicitly by the positive
definite kernel. KPCA gives nonlinear functions f1, . . . fd of data points (Xi )

N
i=1 so that

( f1(Xi ), . . . , fd(Xi ))
N
i=1 can serve as a d-dimensional representation of data. The analysis

of this paper uses Gaussian kernel k(Xi , X j ) = exp(− 1
2σ 2 D2

i j ) where Di j is the distance

matrix of the gene trees.1

Last, t-SNE is a method for low-dimensional expression or visualization of high-
dimensional data; it typically provides us with a two- or three-dimensional expression. Given
(Xi )

N
i=1 in a high-dimensional space, t-SNE first computes a probability pi j based on the

distance matrix so that a high probability corresponds to higher similarity of Xi and X j .
The method then provides a low-dimensional expression (Yi )

N
i=1 in such a way that the set

of probabilities qi j , defined similarly for a pair (Yi , Y j ), is close in value to pi j . The points
(Yi )

N
i=1 are found with numerical optimization to minimize the Kullback–Leibler divergence

between the sets of probabilities (pi j ) and (qi j ) (see supplementarymaterial formore details).

1 While this kernel with an arbitrary distance matrix D is not necessarily positive definite, in our analysis the
Gram matrices k(Xi , X j ) created by the given data were positive definite.
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In our experiments, a Matlab implementation by van der Maaten (http://lvdmaaten.github.io/
tsne/) is used. The perplexity parameter, which provides a way to determine local bandwidth
parameters, is set to 30 (as is the default value in the software) in our experiments.

3 Results

We conducted numerical experiments with simulated datasets and a genome dataset. All our
simulated datasets were generated using the software Mesquite (Maddison and Maddison
2009). We first demonstrate that the normalized cut framework accurately clusters the set
of gene trees given by a species tree under the coalescent process. Then, we proceed to
compare different dimensionality reduction schemes and their performance as compared to
clustering via normalized cut directly on the original tree space. Last, we compare k-means
and hierarchical clustering to our proposed approach. Two main observations throughout our
obtained results are that hierarchical clustering is not effective in recognizing clusters (as
opposed to normalized cut and k-means), and that the frameworks perform better on the gene
trees reconstructed via the neighbor-joining (NJ) method (Saitou and Nei 1987) than those
reconstructed via the MLE under evolutionary models.

The experimental design for the genome dataset in Sect. 3.2 is as follows. The three
clustering methods were first applied to a genome-wide dataset on coelacanths, lungfishes,
and tetrapods fromAmemiya et al. (2013) and Liang et al. (2013), where it was observed that
there exist two reliable clusters in their 1290 genes. Based on the datasets, we reconstructed
the consensus trees using NJ trees with bootstrap confidence for the clusters ≥0.95 (see
Sect. 3.2 for more details). We performed numerical experiments using the Euclidean space
and the BHV tree space, and compared the accuracy of the two spaces for the goal of
recognizing more statistically accurate clusters. Last, we compared different preprocessing
dimensionality reduction schemes for each and every one of the spaces, and the clustering
techniques.

Overall, we obtained consistent results with both the normalized cut and the k-means
frameworks on the consensus trees obtained. The consensus tree from one cluster (of 858
gene trees with the direct application of the normalized cut, of 761 gene trees with the
normalized cut after applying KPCA, and of 817 gene trees with t-NSE normalized cut)
supports the view of Fritzsch (1987) and Gorr et al. (1991) that claims that coelacanths
are most closely related to the tetrapods; furthermore, the consensus tree constructed from
the other cluster (of 322 gene trees with the direct Ncut algorithm, of 320 gene trees with
the KPCA Ncut algorithm, and of 463 gene trees with the t-NSE Ncut) supports the view
of Takezaki et al. (2004), that is, the coelacanth, lungfish, and tetrapod lineages diverged
within a very short time interval and that their relationships may represent an irresolvable
trichotomy. We now proceed to describe our results in more detail on both simulated datasets
(see Sect. 3.1) and coelacanths, lungfishes, and tetrapods (see Sect. 3.2).

3.1 Simulated data sets

The simulated data is generated as follows. We first fixed the number of species as ten
(n = 10), the population size Ne = 10,000, and set the species depth as c · Ne where c ∈
{0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.4, 1.6, 1.8, 2}. Then, for each species depth c · Ne, we generated
two species trees from the Yule process (with parameters being the default setting of the
software Mesquite Maddison and Maddison 2009). With each species tree, we generated
500 randomgene trees under the coalescent processwithin the species tree usingMesquite.
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Fig. 3 Ncut clustering accuracy for simulated data. NJp gives superior accuracy than MLE. The results of
MLE show three groups depending on the three clustering methods

To generate the sequenceswith each gene tree, we used the softwarePAML (Yang 1997) under
the Jukes–Cantor (JC) +Γ model (Jukes and Cantor 1969) and the GTR +Γ model. For the
set of gene trees under the first species tree, we generated sequences under the GTR +Γ

model with rate parameters set as 10, 5, 1, 2, 3 (as the order of the input for the software PAML
and the other parameter is dependent of these five parameters) and the number of categories
for the discrete gamma model is 1 with α = 1.0.

For the other set of gene trees under the second species tree, the substitution rate for the
JC model was set equal to 1 and the number of categories of the discrete gamma model is 4
with α = 0.5. The frequencies for T ,C , A, and G in the data are set as 0.15, 0.35, 0.15, 0.35,
respectively. We set the length of sequences as 500. To reconstruct trees from these DNA
sequences, we used the NJ algorithm with the p-distance (Saitou and Nei 1987) (referred
to as NJp method from hereafter) to reconstruct the NJ trees, and used the software PHYML
(Guindon and Gascuel 2003) to reconstruct MLE trees under the GTR model (Felsenstein
1981), the Hasegawa–Kishino–Yano (HKY) model (Hasegawa et al. 1985), the Kimura 2
parameter (K80) model (Kimura 1980), and the Jukes–Cantor (JC) model (Jukes and Cantor
1969); they are denoted by MLE–GTR, MLE–HKY, MLE–K80, and MLE–JC, respectively,
from now on.

Figure 3 shows the rates of correctly clustered genes by our three proposed clustering
schemes: direct Ncut, KPCA Ncut, and t-SNE Ncut. The accuracy is calculated as follows:
first, each cluster is assigned to one of the species tree by majority of genes, and then, a
gene in the cluster is considered to be correctly clustered if the gene was generated from
the species tree. Generally the accuracy is higher for larger species depths (larger c), which
imply clearer separation. There is a significant difference of accuracy between NJp andMLE
tree reconstruction methods; the NJp method (red lines) gives better clustering performance
in the Ncut and k-means methods. It is also noted that the accuracy for the MLEs has clear
groups depending on the dimensionality reduction schemes; t-SNE Ncut (doted lines), direct
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Table 1 Comparison of clustering accuracy between BHV space and Euclidean space when using normalized
cut

NJp MLE–GTR

KPCA t-SNE Direct KPCA t-SNE Direct

(a) c = 0.6

BHV 0.898 0.848 0.880 0.506 0.722 0.612

Euclid 0.666 0.732 0.782 0.504 0.750 0.536

(b) c = 1.2

BHV 0.986 0.970 0.982 0.590 0.886 0.736

Euclid 0.960 0.962 0.962 0.824 0.934 0.680

Euclidean distances give worse results than geodesic distances in the BHV tree space. BHV geodesic distance
with NJp tree construction seems to be the most suitable for clustering

Ncut (dashed lines), and KPCA Ncut (solid lines) give groups of similar accuracy levels in
this order.

To show the advantage of using the BHV tree space over the Euclidean space, we applied
the same clustering methods to Euclidean distance matrices D(T ) in R(n

2), and compared
the clustering accuracy obtained. The differences (which are easily noted) are shown in
Table 1, however we focus only on depth ratios c = 0.6 and 1.2 for ease of presentation; the
remaining depths also portray the same differences and can be found in the supplementary
material (which is freely available at http://polytopes.net/research/cluster/). We observe that
in most cases, the BHV tree space gives better clustering accuracy than when using Euclidean
distances. Even though the Euclidean distance of MLE–GTR with t-SNE for c = 0.6 and
t-SNE and KPCA for c = 1.2 gives more accurate clustering, these accuracies are much
lower than the ones obtained by NJp.

To show the performance of the normalized cut framework compared to other standard
clustering methods in the field, we performed the same experiments using the well-known
k-means and hierarchical clustering. Note that k-means clustering is computationally infea-
sible for the BHV tree space. This happens as updating the centroids, an operation required in
the method, is too computationally expensive. Instead k-means can be applied with a dimen-
sionality reduction scheme before putting it to the test. As such, there is no direct application
in the results shown in Fig. 4.

From Figs. 3, 4, and 5, we observe that k-means is indeed a viable option for accurately
clustering the trees, performing similarly to our proposed normalized cut framework. On
the other hand, hierarchical clustering has proven to be worse in clustering in this context:
more specifically, KPCA and direct methods result in significantly imbalanced clusters, and
t-SNE shows improvement but is still worse than both Ncut and k-means. Even when other
linkage methods were implemented, the results were similar. This could be caused by the
agglomerative nature of the method; if two clusters have some overlap, it will easily fail.
Note that Gori et al. (2015) also reported unfavorable results for hierarchical clustering.

From our computational study, it can be concluded that normalized cut is very effective in
reproducing the cluster structure in gene trees when using BHV distances; moreover, the NJp
method is superior in recognizing clusters when compared to MLE methods. Hierarchical
clustering, on the other hand, is not recommended in this context. Last, amain advantage of the
normalized cut framework is that it requires no dimensionality reduction, but instead can be
directly applied on the BHV space. Computational results of clustering accuracy for k-means
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Fig. 4 k-means clustering accuracy for simulated data. It performs similarly to the normalized cut framework;
the main difference is the lack of a direct application of k-means on the datasets
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Fig. 5 Hierarchical clustering accuracy for simulated data. The results, albeit similar, are still statistically
worse than the other two clustering techniques

with Euclidean distances are also presented in Table 2; the results for hierarchical clustering,
as it performs poorly, are omitted here but are provided for a full computational comparison
in the supplementary material (available at http://polytopes.net/research/cluster/).

In addition to the clustering accuracy, we confirmed the correctness of the species tree
reconstruction from the genes in each cluster. Tables 3 and 4 present the Robinson–Foulds
(RF) distances (Robinson and Foulds 1981) between the reconstructed tree and the true
species tree (T1 and T2) used to generate gene trees in each species depth defined above.
Each cluster, obtained by the normalized cut method applied directly on the set of trees

123

http://polytopes.net/research/cluster/


Ann Oper Res (2019) 276:293–313 305

Table 2 Comparison of clustering accuracy between BHV space and Euclidean space when using k-means

NJp MLE–GTR

KPCA t-SNE Direct KPCA t-SNE Direct

(a) c = 0.6

BHV 0.780 0.824 N/A 0.582 0.744 N/A

Euclid 0.618 0.738 0.782 0.504 0.718 0.548

(b) c = 1.2

BHV 0.992 0.972 N/A 0.742 0.870 N/A

Euclid 0.966 0.964 0.966 0.856 0.934 0.682

We observe that the normalized cut framework and k-means both perform well. There is no direct application
of k-means on the BHV space, which is a main advantage of the normalized cut

Table 3 Robinson–Foulds (RF) distances between the reconstructed species tree and the true species tree, as
obtained when using PHYML on the concatenated sequences under the GTR model and JC model

c DC,T1 DC,T2 DT1,T2 DC1,T1 DC2,T2

0.6 10 10 14 0 4

0.7 6 12 14 0 4

0.8 10 4 14 6 0

0.9 6 8 14 6 0

1.0 10 6 14 2 2

1.2 10 6 14 4 4

1.4 4 14 14 2 8

1.6 12 6 12 6 2

1.8 4 10 12 2 4

2.0 8 10 12 2 4

The symbols C , C1, C2 denote the reconstructed species trees by concatenation of all genes, genes in cluster
1, and genes in cluster 2, respectively. T1 and T2 are the true species trees

reconstructed by NJp, is used to reconstruct a species tree and we denote them as C1 and
C2. We estimated each species tree by the software PHYML (Guindon and Gascuel 2003) on
the concatenated sequences under the GTR model and the JC model for Table 3. We then
estimated each species tree by applying NJp on the concatenated sequences, as Dasarathy
et al. proposed in their paper (Dasarathy et al. 2015) and the results are shown in Table 4. For
a valid comparison, we reconstructed the species tree from all the concatenated sequences we
generated (denoted by C). To measure the accuracy, we computed the RF distance between
the reconstructed species tree (Ci ) and each of T1 and T2, as well as the RF distance between
the two true species trees (DT1,T2 ).

We can see that DC1,T1 and DC2,T2 are significantly smaller than the RF distances DC,T1
and DC,T2 , which demonstrates the effectiveness of the clustering approach to species tree
reconstruction in phylogeny. Moreover, it

To see how effectively the employed reconstruction methods for gene trees work, we also
compare the accuracy between the true gene tree and each of the reconstructed trees under
different reconstruction methods. The results, which validate that NJp performs better than,
or at least as well as, the other methods, are shown in Table 5.
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Table 4 Robinson–Foulds (RF)
distances between the
reconstructed species tree and the
true species tree, as obtained
when using NJp

c DC,T1 DC,T2 DT1,T2 DC1,T1 DC2,T2

0.6 14 4 14 0 4

0.7 6 12 14 0 2

0.8 10 4 14 6 2

0.9 8 8 14 6 2

1.0 10 6 14 2 2

1.2 10 6 14 2 4

1.4 6 14 14 2 4

1.6 12 6 12 4 0

1.8 4 10 12 2 4

2.0 8 10 12 2 4

Table 5 Comparison between the accuracy of the reconstructed gene tree under different methods and the
true gene tree

c NJp ML–JC ML–K80 ML–HKY ML–GTR

0.6 1.67 (0.45) 1.80 (0.44) 1.78 (0.44) 1.79 (0.44) 1.69 (0.45)

0.7 1.41 (0.52) 1.52 (0.48) 1.52 (0.48) 1.49 (0.49) 1.47 (0.49)

0.8 1.72 (0.43) 1.77 (0.42) 1.75 (0.42) 1.72 (0.42) 1.66 (0.44)

0.9 1.67 (0.44) 1.76 (0.42) 1.75 (0.42) 1.76 (0.42) 1.71 (0.44)

1.0 1.91 (0.42) 1.91 (0.42) 1.91 (0.42) 1.94 (0.42) 1.88 (0.43)

1.2 1.38 (0.50) 1.60 (0.45) 1.60 (0.46) 1.61 (0.45) 1.60 (0.45)

1.4 1.67 (0.42) 1.68 (0.44) 1.66 (0.44) 1.64 (0.46) 1.61 (0.46)

1.6 1.35 (0.50) 1.49 (0.47) 1.47 (0.48) 1.46 (0.47) 1.42 (0.48)

1.8 1.79 (0.41) 1.70 (0.44) 1.66 (0.44) 1.71 (0.43) 1.67 (0.45)

2.0 1.28 (0.50) 1.43 (0.48) 1.40 (0.49) 1.39 (0.49) 1.30 (0.51)

Ave. 1.58 (0.46) 1.67 (0.45) 1.65 (0.45) 1.65 (0.45) 1.60 (0.46)

The value in each cell represents Pc (dT )where Pc is the average RF distance among 1000 gene trees and dT is
the topological error index, i.e., the proportion of the correct tree topology each method reconstructed among
1000 gene trees. This result validates that, on average, NJp outperforms the other reconstruction techniques

3.2 Genome data set on coelacanths, lungfishes, and tetrapod

On top of the simulated datasets, we have also applied the clustering methods to the dataset
comprising 1290 nuclear genes encoding 690,838 amino acid residues obtained from genome
and transcriptome data byLiang et al. (2013).Over the last decades, the phylogenetic relations
between coelacanths, lungfishes, and tetrapods have been controversial despite the existence
of many studies on them (Hedges 2009). Most morphological and paleontological studies
support the hypothesis that lungfishes are closer to tetrapods than they are to coelacanths
[Tree 1 in Fig. 1 from Liang et al. (2013)], however, there exists research in the field that
supports the hypothesis that coelacanths are closer to tetrapods [Tree 2 in Fig. 1 from Liang
et al. (2013)]. Others support the hypothesis that coelacanths and lungfishes form a sister
clades [Tree 3 in Fig. 1 from Liang et al. (2013)] or tetrapods, lungfishes, and coelacanths
cannot be resolved [Tree 4 in Fig. 1 from Liang et al. (2013)]. In this subsection, we apply
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the normalized cut framework for clustering to the genome data set from Liang et al. (2013)
and analyze each obtained cluster.

We applied the clustering methods (with and without a dimensionality reduction) to the
distance matrix computed from the set of gene trees constructed by the NJp method. The
number of clusters in Ncut was set to two, that is, a bipartition, which is shown to be reliable,
as discussed later. Figure 6 shows the clustering results with KPCA and t-SNE, plotted on
the three-dimensional space found by the dimensionality reduction. The red and blue colors
show the two clusters, where the color density represents the bootstrap confidence explained
below.

To evaluate the stability of clustering, we computed the bootstrap confidence probability
for each gene. Namely, given an N × N distance matrix (Di j ) as input to the Ncut, we
generated random resampling {i1, . . . , iN } from {1, . . . , N } with replacement, and applied
Ncut to (Diaib )

N
a,b=1.We repeated this procedure 100 timeswith independent random indices,

and computed the ratio that a gene is classified in the same cluster as the one given by (Di j ).
We computed the bootstrap confidence for all 1290 genes. The cumulative distribution

functions of these values are shown for the tree clustering methods in Fig. 7 (left). The ratio
of genes with confidence above 0.95 is 91.4, 83.8, and 99.2% for direct Ncut, KPCA Ncut,
and t-SNE Ncut, respectively. For comparison, we computed the bootstrap confidence for
Ncut with three clusters. Figure 7 (right) shows the cumulative distribution function, in which
the two cluster case has high bootstrap confidence, whereas using three clusters has a much
lower confidence, revealing that the latter is unstable. From these observations, we see that
the two clusters obtained by the methods are not artifacts but instead a stable structure in the
genome data.

The clusters obtained by the three methods look different in their shapes. We then exam-
ined agreements of the clusters at the gene level. After extracting the genes with bootstrap
confidence not less than TH (TH = 0.90 or 0.95), we evaluated the agreement of methods A
and B by

tAB := |C1
A ∩ C1

B | + |C2
A ∩ C2

B |
NA

,

where NA is the number of genes by Method A with confidence larger than TH and Ci
A is the

i-th (i = 1, 2) cluster by Method A (NA = |C1
A| + |C2

A|). We identified which cluster in A
corresponds to a cluster in B based on the number of common genes. Table 6 shows the value
tAB for every pair of the three methods. We can see that majority of genes in a cluster agrees
to another cluster given by a different method. This confirms that the clustering reveals the
structure of the data. KPCA Ncut and t-SNE Ncut are slightly less consistent, which may be
caused by the difference of NA for the two methods.

Finally we conducted the phylogenetic analysis on the clusters of gene trees. For each
clustering method (direct Ncut, KPCA Ncut, and t-SNE Ncut), we have reconstructed a
consensus tree from each cluster. To construct the consensus tree, we have used the gene
trees in each cluster with bootstrap confidence greater than 0.95 and took the majority rule
with more than 50% for reconstructing the consensus tree for resolving each split on the tree.
With all the clustering methods, the result suggests that there are two clusters in the genome-
wide data set on coelacanths, lungfishes, and tetrapods: the number of genes are (858, 322),
(761, 320), and (817, 463) for direct Ncut, KPCA Ncut and t-SNE Ncut, respectively.

With all of the three methods, direct Ncut, Ncut with KPCA, and Ncut with t-SNE,
one cluster of the gene trees provides the tree topology Tree 4 from Fig. 1 in Liang et al.
(2013), while the other cluster gives the tree topology Tree 2 from Fig. 1 in Liang et al.
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Fig. 6 Clustering of the genome data set. The two clusters are depicted in red and blue with bootstrap
confidence shown by color density

(2013) (see Fig. 8). We have also reconstructed a tree from each cluster by concatenating the
alignments using the software PhyloBayes 3.3 under a mixture model CAT +Γ 4 with
two independent MCMC runs for 10,000 cycles. However, we did not observe any difference
in the tree topologies, i.e., the reconstructed trees all have the same tree topology as Tree
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Fig. 7 Cumulative distribution functions of bootstrap confidence values for clustering. The two clusters (top)
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Table 6 Agreement of clusters
among the three methods for the
normalized cut

A\B Direct KPCA t-SNE NA

(a) TH = 0.90

Direct – 0.917 0.800 1207

KPCA 0.912 – 0.757 1135

t-SNE 0.812 0.785 – 1284

(b) TH = 0.95

Direct – 0.896 0.786 1180

KPCA 0.886 – 0.712 1081

t-SNE 0.803 0.757 – 1280

The rightmost column shows the
number of selected genes for
each method (NA)
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Fig. 8 The majority rule consensus tree consists of gene trees with more than 0.95 bootstrap values in each
cluster. Each split in the trees is resolved only if we have majority, i.e., 50% of all given gene trees in each set
agree. All the three clustering methods give the same two spices trees

Fig. 9 The reconstructed trees obtained by concatenating the alignments from each cluster after using direct
Ncut. For this result, we employed the Bayesian inference using the software PhyloBayes 3.3 under a
mixture model CAT +Γ 4 with two independent MCMC runs for 10,000 cycles. The same tree topology was
obtained after reconstructing the tree via NJp

1 from Fig. 1 in Liang et al. (2013) (see Fig. 9). Last, the trees were reconstructed via the
neighbor joining technique on the concatenated sequences. The resulting tree topology was
identical to the one obtained in Fig. 9.

4 Discussion

In this paper, we have shown three main computational results: first, the Ncut clustering
algorithm works well on the set of gene trees reconstructed via the NJp under the evolu-
tionary models; secondly, via the Ncut clustering algorithm we were able to identify two
clusters on the genome data sets from Liang et al. (2013); last, k-means performs equally
well after dimensionality reduction, while hierarchical clustering is always outperformed in
this context. More specifically, as far as the computational experiments are concerned, we
were able to show that the normalized cut framework works effectively on the set of gene
trees reconstructed via the NJp method compared to the trees reconstructed via the MLE
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under the evolutionary models (see Table 6; Fig. 3, as well as Figs. 4 and 5 for the other
methods). It is not clear why this phenomenon appears in our computational study and it is
of interest to further investigate mathematically the reasons behind it.

A very important finding has to do with the dataset of coelacanths, lungfishes, and
tetrapods. Using the Ncut algorithm on the gene trees reconstructed via the NJp method,
we were able to identify two clusters. Bootstrap confidence analysis suggests that these are
two reliable clusters and it appears to be very unlikely to have more than two clusters (see
Fig. 7). From the two clusters we were able to find using the Ncut framework, we recon-
structed the consensus trees, and their tree topologies did not support the hypothesis that
lungfishes are the closest living relatives of tetrapods as in Liang et al. (2013). Instead, it
supported the hypothesis that coelacanths are most closely related to tetrapods, and that the
coelacanth, lungfish, and tetrapod lineages diverged within a very short time interval. Since
clustering analysis with Ncut does not infer any evolutionary events that caused the clusters,
it would be interesting and important to further investigate how these clusters were made in
the evolutionary history.
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