
Ann Oper Res (2018) 265:5–27
https://doi.org/10.1007/s10479-017-2448-9

TERLAKY60

Computational study of valid inequalities for the
maximum k-cut problem

Vilmar Jefté Rodrigues de Sousa1 · Miguel F. Anjos2 ·
Sébastien Le Digabel1

Published online: 3 March 2017
© Springer Science+Business Media New York 2017

Abstract We consider the maximum k-cut problem that consists in partitioning the vertex
set of a graph into k subsets such that the sum of the weights of edges joining vertices in
different subsets is maximized. We focus on identifying effective classes of inequalities to
tighten the semidefinite programming relaxation. We carry out an experimental study of four
classes of inequalities from the literature: clique, general clique,wheel and bicycle wheel.
We considered 10 combinations of these classes and tested them on both dense and sparse
instances for k ∈ {3, 4, 5, 7}. Our computational results suggest that the bicycle wheel and
wheel are the strongest inequalities for k = 3, and that for k ∈ {4, 5, 7} thewheel inequalities
are the strongest by far. Furthermore, we observe an improvement in the performance for all
choices of k when both bicycle wheel and wheel are used, at the cost of 72% more CPU
time on average when compared with using only one of them.

Keywords Maximum k-cut · Graph partitioning · Semidefinite programming ·
Computational study

Mathematics Subject Classification 65K05 · 90C22 · 90C35

We dedicate this paper to Tamás Terlaky on the occasion of his 60th birthday.

B Vilmar Jefté Rodrigues de Sousa
Vilmar.de.sousa@gerad.ca

Miguel F. Anjos
http://www.miguelanjos.com

Sébastien Le Digabel
http://www.gerad.ca/Sebastien.Le.Digabel

1 GERAD and Département de Mathématiques et Génie Industriel, Polytechnique Montréal,
CP 6079, Succ. Centre-ville, Montreal, QC H3C 3A7, Canada

2 Canada Research Chair in Discrete Nonlinear Optimization in Engineering, GERAD and
Département de Mathématiques et Génie Industriel, Polytechnique Montréal, CP 6079,
Succ. Centre-ville, Montreal, QC H3C 3A7, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-017-2448-9&domain=pdf

6 Ann Oper Res (2018) 265:5–27

1 Introduction

Graph partitioning problems (GPPs) are an important class of combinatorial optimization.
There are various types of GPP based on the number of partitions allowed, the objective
function, the types of edgeweights, and the possible presence of additional constraints such as
restrictions on the number of vertices allowed in each partition. This work considers the GPP
known as the maximum k-cut (max-k-cut) problem: given a connected graph G = (V, E)

with edge weights wi j for all (i, j) ∈ E , partition the vertex set V into at most k subsets so
as to maximize the total weight of cut edges, i.e., the edges with end points in two different
subsets. This problem is sometimes also called minimum k-partition problem (Ghaddar et al.
2011). The special case of max-k-cut with k = 2 is known as the max-cut problem and has
received most attention in the literature, see e.g. Barahona et al. (1988), Deza and Laurent
(1997), Goemans and Williamson (1995), Krislock et al. (2012), Palagi et al. (2011) and
Rendl et al. (2010).

Graph partitioning and max-k-cut problems have myriad applications as VLSI lay-
out design (Barahona et al. 1988), sports team scheduling (Mitchell 2003), statistical
physics (Liers et al. 2005), placement of television commercials (Gaur et al. 2008), network
planning (Eisenblätter 2002), and floorplanning (Wei-Ming and Kuh 1987).

The unweighted version of max-k-cut is known to be NP-complete (Papadimitriou and
Yannakakis 1991). Hence, researchers have proposed heuristics (Coja-Oghlan et al. 2006),
(Ma and Hao 2017), approximation algorithms (Coja-Oghlan et al. 2006), (Frieze and Jerrum
1997), and exact methods (Anjos et al. 2013; Ghaddar et al. 2011) for solving the max-k-cut.
In particular the approximation method proposed in Frieze and Jerrum (1997) extends the
famous semidefinite programming (SDP) results for max-cut in Goemans and Williamson
(1995) to max-k-cut. The authors of Klerk et al. (2004) subsequently improved the approxi-
mation guarantees for small values of k.

Ghaddar et al. (2011) propose the SBC algorithm. It is a branch-and-cut algorithm for
the minimum k-partition problem based on the SDP relaxation of max-k-cut. They found
experimentally that for k > 2 the SDP relaxation yields much stronger bounds than the LP
relaxation, for both sparse and dense instances. This algorithm was improved in Anjos et al.
(2013) which introduced the bundleBC algorithm to solve max-k-cut for large instances
by combining the approach of Ghaddar et al. (2011) with the design principles of Biq
Mac (Rendl et al. 2010). The results in Anjos et al. (2013) confirm that, computationally
speaking, the SDP relaxations often yield stronger bounds than LP relaxations.

The matrix lifting SDP relaxation of the GPP, and the use the triangle and clique inequal-
ities to strengthen it, were studied in Sotirov (2014) and van Dam and Sotirov (2015). In
particular Sotirov (2014) shows that this relaxation is equivalent to the relaxation in Frieze
and Jerrum (1997) and is as competitive as any other known SDP bound for the GPP. The
results also show that the triangle inequalities are stronger than the clique (independent set)
inequalities.

Using a similar approach as Sotirov (2014), the authors inDam and Sotirov (2016) propose
several new bounds for max-k-cut from the maximum eigenvalue of the Laplacian matrix of
G. Moreover, Dam and Sotirov (2016) shows that certain perturbations in the diagonal of
the Laplacian matrix can lead to stronger bounds. In Nikiforov (2016) the author proposes a
more robust bound than the one proposed in Dam and Sotirov (2016) by using the smallest
eigenvalue of the adjacency matrix of G.

In Fairbrother and Letchford (2016) the authors project the polytopes associated with the
formulation with only edge variables into a suitable subspace to obtain the polytopes of the

123

Ann Oper Res (2018) 265:5–27 7

formulation that has both node and edge variables. They then derive new valid inequalities
and a new semidefinite programming relaxation for the max-k-cut problem. The authors
suggest that the new inequalities may be of practical use only in the case of large sparse
graphs.

The objective of this work is to carry out a computational study of valid inequalities that
strengthen the SDP relaxation for the max-k-cut problem, and to identify the strongest ones
in practice. Valid and facet-inducing inequalities for k-partition were studied in Chopra and
Rao (1993, 1995). We focus our analysis on the following inequalities: Triangle, Clique,
General clique,Wheel and Bicycle wheel. To the best of our knowledge, no research has
specifically focused on comparing the strength of the range of inequalities considered here.

This paper is organized as follows. Sections 1.1 and 1.2 review the SDP formulation
and relaxation of the max-k-cut problem. Section 2 presents the classes of inequalities and
discusses the separation methods used. Section 3 describes the cutting plane algorithm used,
and Sect. 4 presents and discusses the test results. The conclusions from this study are
provided in Sect. 5.

1.1 Problem formulation

We assume without loss of generality that the graphG = (V, E) is a complete graph because
missing edges can be added with a corresponding weight of zero. Let k ≥ 2 and define the
matrix variable X = (Xi j), i, j ∈ V , as:

Xi j =
{ −1

k−1 if vertices i and j are in different partitions of the k − cut of G,

1 otherwise.

The max-k-cut problem on G can be expressed as:

max
X

∑
i, j∈V,i< j

wi j
(k − 1)(1 − Xi j)

k
(1)

s.t. Xii = 1 ∀i ∈ V, (2)

Xi j ∈
{ −1

k − 1
, 1

}
∀i, j ∈ V, i < j, (3)

X � 0. (4)

We refer to this formulation as (MkP). This formulation was first proposed by Frieze and
Jerrum (1997). As mentioned in Frieze and Jerrum (1997, Lemma 4), the value −1/(k − 1)
gives the best angle separation for k vectors.

1.2 Semidefinite relaxation

Replacing constraint (3) by −1
k−1 ≤ Xi j ≤ 1 defines the SDP relaxation. However, the

constraint Xi j ≤ 1 can be removed since it is enforced implicitly by the constraints Xii = 1
and X � 0. Therefore the SDP relaxation, denoted (RMkP), is:

max
X

∑
i, j∈V,i< j

wi j
(k − 1)(1 − Xi j)

k
(5)

s.t. Xii = 1 ∀i ∈ V, (6)

123

8 Ann Oper Res (2018) 265:5–27

Xi j ≥ −1

k − 1
∀i, j ∈ V, i < j, (7)

X � 0. (8)

2 Formulation and separation of inequalities

The SDP relaxation (RMkP) can be tightened by adding valid inequalities, i.e., cutting planes
that are satisfied for all positive semidefinite matrices that are feasible for problem (MkP)
but are violated by solution X ′ of the (current) SDP relaxation. In this section we present the
classes of inequalities from Chopra and Rao (1993, 1995) that we consider adding to tighten
the SDP relaxation. For each class, we describe its properties, its formulation in terms of the
SDP variable X , and the separation routine used.

The first two classes of inequalities (Triangle and Clique) were used in the SBC branch-
and-cut method (Ghaddar et al. 2011) and in the matrix lifting approach (Sotirov 2014; van
Dam and Sotirov 2015). We are unaware of the other classes having been computationally
tested or used.

2.1 Triangle inequalities

Triangle inequalities are based on the observation that if vertices i and h are in the same
partition, and vertices h and j in the same partition, then vertices i and j necessarily have to
be in the same partition. The resulting 3

(|V |
3

)
triangle inequalities are:

Xih + Xhj − Xi j ≤ 1 ∀i, j, h ∈ V . (9)

2.1.1 Separation of triangle inequalities

As pointed out in Anjos et al. (2013), the enumeration of all triangle inequalities is compu-
tationally inexpensive, even for large instances. Therefore, a complete enumeration is done
to find triangles in the graph G that violate (9). The tolerance used to detect a violation is
10−5.

2.2 Clique inequalities

The

(|V |
k + 1

)
clique inequalities ensure that for every subset of k + 1 vertices, at least two

of the vertices belong to the same partition. We express them as:

∑
i, j∈Q,i< j

Xi j ≥ −k

2
∀Q ⊆ V with |Q| = k + 1. (10)

2.2.1 Separation of clique inequalities

The exact separation of clique is NP-hard in general, and the complete enumeration is
intractable even for small values of k (Ghaddar et al. 2011). We use the heuristic described
in Ghaddar et al. (2011) to find a violated clique inequality for a solution X ′ of the SDP
relaxation. This heuristic is described here as Algorithm 1, and returns up to |V | clique
inequalities. We use a tolerance ε = 10−5.

123

Ann Oper Res (2018) 265:5–27 9

for all j ∈ V do
C = { j};
while |C | ≤ k do

Select u ∈ V \C such that u ∈
⎧⎨
⎩argmin

v

∑
i∈C

X ′
i,v | v ∈ V \C

⎫⎬
⎭;

C = C ∪ {u};
end

if

⎛
⎝ ∑
i,z,∈C,i<z

X ′
i z < − k

2
− ε

⎞
⎠ then

Q = C ;
Construct an inequality of type (10);

end
end

Algorithm 1: Heuristic to find violated clique inequalities.

2.3 General clique inequalities

TheGeneral clique inequalities in Chopra and Rao (1993) are a generalization of theClique
inequality (10).

Let Q = (V (Q), E(Q)) be a clique of size p := tk + q where t ≥ 1 and 0 ≤ q < k, i.e.,
t is the largest integer such that tk ≤ p. In terms of the SDP variable X , the general clique
inequalities have the form:

∑
i, j∈Q

Xi j ≥ k

k − 1

[
z + w

(
k − 1

k
− 1

)]
∀Q ⊆ V, |Q| = p, (11)

where z = 1
2 t (t − 1)(k − q) + 1

2 t (t + 1)q and w = p(p−1)
2 . It is proved in Chopra and Rao

(1993) that (11) is valid for the polytope of the max-k-cut problem if p ≥ k, i.e., t ≥ 1.
Furthermore, it is facet-defining if and only if 1 ≤ q ≤ k − 1, t ≥ 1, i.e., p is not an integer
multiple of k.

2.3.1 Separation of general clique inequalities

Because the clique inequalities are included in general clique, it is clear that enumeration is
also impracticable for general clique. Thus, we propose a heuristic to find the most violated
general clique inequalities for X ′.

Our heuristic is a small modification of the one used to separate the clique inequalities
(Algorithm 1). Specifically:

• The argument in the WHILE condition becomes |C | ≤ p − 1.
• The inequality in the IF condition is replaced by(

w(j) <
k

k − 1

[
z + w

(
k − 1

k
− 1

)]
− ε

)
.

The parameter p may vary with the number of partitions k. After preliminary tests using p ∈
{5, 7, 8, 10, 11, 13} for k = 3, p ∈ {6, 7, 9, 11, 13, 14} for k = 4, p ∈ {7, 9, 11, 13, 16, 18}
for k = 5, and p ∈ {9, 11, 13, 16, 18, 20} for k = 7, we settled onwith the following choices:
p = 5 for k = 3; p = 6 for k = 4; p = 7 for k = 5; and p = 11 for k = 7.

123

10 Ann Oper Res (2018) 265:5–27

Fig. 1 Example of wheel with
q = 6

v1

v2

v3

v4

v5

v6

v

2.4 Wheel inequalities

In Chopra and Rao (1993), the q-wheel is defined as Wq = (Vq , Eq), where

• Vq = {v, vi |i = 1, 2, . . . , q}
• Eq = Ē ∪ Ê , where Ē = {(v, vi), i = 1, 2, . . . , q} and Ê = {(vi , vi+1), i =

1, 2, . . . , q}.
where v ∈ V , and all indices greater than q are modulo q . For q = 6, W6 is illustrated in
Fig. 1.

LetWq be a subgraph of G for q ≥ 3. In terms of the SDP variable X , thewheel inequality
is defined as:

q∑
i=1

Xv,vi −
q∑

i=1

Xvi ,vi+1 ≤
⌊
1

2
q

⌋
k

k − 1
. (12)

The idea of this inequality is that vertex v can be in the same partition as vertices vi and
vi+1 if edge e = (vi , vi+1) is not cut. It is proved in Chopra and Rao (1993) that (12) is a
valid inequality for max-k-cut, and that it defines a facet if q is odd and k ≥ 4.

2.4.1 Separation of wheel inequalities

By inequality (12), a q-wheel is violated by X ′ if:
q∑

i=1

X ′
v,vi

−
q∑

i=1

X ′
vi ,vi+1

−
(⌊

1

2
q

⌋
k

k − 1

)
> 0. (13)

For each vertex v ∈ V , we wish to maximize the left-hand side of inequality (13) to find the
most violated wheel inequality.

In Deza et al. (1992) it is shown that the odd wheel inequalities can be separated in
polynomial-time. We also considered four heuristics, for a total of five methods tested:

• Exact algorithm (Deza et al. 1992).
• The GRASP meta-heuristic (Feo and Resende 1995).
• A genetic algorithm (GA) from Seyed et al. (2014).
• The K-step greedy lookahead (Scholvin 1999) with K=2.
• Our own greedy heuristic for multiple sizes of wheel (GMSW), described in Algorithm 2.

The GMSW heuristic achieved, on average, the best ratio between CPU time and perfor-
mance for all tests. For instance, the performance ratio (see Sect. 4.2.1) was <0.03% higher

123

Ann Oper Res (2018) 265:5–27 11

for all j ∈ V do
i = 1;
vi = j ;
W = {vi };
while i ≤ NbI te do

q = |W |;
z = 0;
if q ≥ 3 then

Select v ∈ V \W s.t.:

z = maxv
∑q

i=1 X ′
v,vi

− ∑q
i=1 X ′

vi ,vi+1
−

(

 12q� k

k−1

)
;

end
if z > 0 then

Build inequality (12) with W and v;
j = j + 1;
i = NbI te + 1 ;

else
Select u ∈ V \W such that u ∈ {arg min

v
X ′

vq ,v + X ′
v,v1

| v ∈ V \W };
i = i + 1;
vi = {u};
W = W ∪ {vi };

end
end

end

Algorithm 2: The GMSW heuristic to find violated wheel inequalities.

v1

v2

v3

v4

v5

u1

u2

edges ∈ E1

edges ∈ E2

edge ē

Fig. 2 Example of bicycle wheel with q = 5

than the exact method. In addition, its CPU time was in average 45% less. In GSMW, the
parameter NbI te ≤ |V | − 1 is the maximum size allowed for the wheel. We obtained the
best results using NbI te = 2k when 2k ≤ |V | − 1.

2.5 Bicycle wheel inequalities

The fourth class of inequalities corresponds to a q-bicycle wheel BWq = (Vq , Eq) subgraph
of G, where:

Vq = {u1, u2} ∪ {vi , i = 1, 2, . . . , q}, Eq = E1 ∪ E2 ∪ {ē},
E1 = {(ui , v j), i = 1, 2, j = 1 . . . , q}, E2 = {(v j , v j+1), j = 1 . . . , q},
ē = {(u1, u2)},

where vertices v, u ∈ V . For q = 5, BW5 is illustrated in Fig. 2.

123

12 Ann Oper Res (2018) 265:5–27

For BWq with q ≥ 3, the corresponding bicycle wheel inequality is defined as:

2∑
i=1

q∑
j=1

Xui ,v j −
q∑
j=1

Xv j ,v j+1 − Xu1,u2 ≤ k

k − 1

[
2
1

2
q� − q + 1

]
+ q − 1, (14)

where v ∈ V and all indices greater than q are modulo q . It is proved in Chopra and Rao
(1993) that the bicycle wheel inequality is a valid inequality to (MSkP), and for k ≥ 4 it
induces a facet if q is odd and BWq is an induced subgraph of G.

The idea behind bicycle wheel inequalities is that at least one edge e ∈ E1 must be cut
for each edge from ē or E2 that is cut.

2.5.1 Separation of bicycle wheel inequalities

In Deza et al. (1992) is pointed out that the separation for the odd bicycle wheel inequali-
ties (14) can also be done in polynomial time, by adapting the approach in Gerards (1985).

As we did for wheel separation, we tested also some heuristic method to find violated
inequalities of the form (14) for a given X ′.

The basic idea of those heuristics is:

• Search for a cycle that minimizes the sum (
∑ j≤q

j=1 Xv j ,v j+1).

• Find the best points u1 and u2 that maximize (
∑i=1,2, j≤q

j,i=1 Xui ,v j) and (−Xu1,u2).

For finding good cycles in the first step of this heuristic, we tested the same four heuris-
tics mentioned in Sect. 2.4.1. Our tests showed that the GA from Seyed et al. (2014) with
q = 3 obtained the best results in 95% of the cases. Moreover, this heuristic had the same
performance as the exact method for all tests, and its CPU time was 95% lower.

The GA has the following features:

• Size of population is 100.
• Half of the initial population was constructed with the GRASP and other half was ran-

domly selected.
• In crossover process the parents with higher fitness are favored.
• Offspring genes can accept some slight mutations.

We keep the best cycle Cw found in the final population after 100 iterations of the GA.
Using this cycle, the main heuristic then checks all the combinations of u1, u2 ∈ V \Cw to
find the one that maximizes the right-hand side of (14).

3 Cutting plane algorithm

This section presents the cutting plane algorithm (CPA) used for our computational tests.
This algorithm is similar to the one described in Ghaddar et al. (2011). The basic idea is to
start by solving the SDP problem (RMkP), then check for violated inequalities, add them to
the SDP problem, and resolve to obtain a better upper bound on the global optimal value of
the max-k-cut instance.

The pseudo-code of the CPA is given in Algorithm 3. We use the following notation: i is
the iterations counter, Fi is the set of inequalities in iteration i , Xi is the optimal solution of
the SDP relaxation at iteration i , and S(Xi) is the set of valid inequalities for (MkP) that are
violated by Xi .

123

Ann Oper Res (2018) 265:5–27 13

Initializations: i = 0, F0 = ∅.
repeat

Xi = Solve (RMkP) with Fi ;

S(Xi) = set of violated inequalities for Xi ;
if Constraint (3) is satisfied then

STOP ; /* Xi is also optimal for (MkP) */
end
if S(Xi) == ∅ then

STOP ; /* no violated inequalities */
else

Fi+1 = Fi ∪ S(Xi);
i = i + 1 ;

end
until STOP;

Algorithm 3: Cutting plane algorithm.

The set S(Xi) of inequalities is obtained by the separation routines of triangle, clique,
general clique, wheel and bicycle wheel inequalities described in Sect. 2. We say that
a class of inequalities is active if its separation routine is applied to find violations in the
relaxed solution at each iteration of the CPA.

The size of the set S(Xi) is controlled by the parameter NbIneq: |S(Xi)| ≤ NbIneq at
each iteration of the CPA. After some tests with NbIneq ∈ {100, 300, 500, 1000,∞}, the
CPAwith NbIneq = 300 was found to be the least expensive in terms of CPU time and CPA
iterations for a variety of graphs and choices of k. This limitation in the CPA imposes that
just the most violated inequalities of the set of activated families are added at each iteration.

4 Computational tests

The SDP relaxations of the max-k-cut were solved using the mosek solver (Mosek ApS
2015) on a linux PC with two Intel(R) Xeon(R) 3.07 GHz processors.

Tests were performed for each value of k ∈ {4, 3, 5, 7} on 147 test instances. Our instances
were taken from the Biq Mac Library (Wiegele 2015) or generated using rudy (https://
www-user.tu-chemnitz.de/~helmberg/sdp_software.html).

Section 4.1 introduces the combinations of inequalities tested, and the instances used.
Section 4.2 explains the benchmarking methodology used for analyzing the different algo-
rithms, and Sect. 4.3 reports the computational results. Finally, a summary of our results is
given in Sect. 4.4.

4.1 Combinations of inequalities and test instances

This section defines the ten combinations of active inequalities developed to analyze the
performance of the four classes of inequalities, and the instances used in the tests.

4.1.1 Combinations of inequalities

This section presents ten combinations of classes of inequalities. Each combination differ
from each other by the classes that are activated or deactivated when running the CPA
described in Sect. 3.

123

https://www-user.tu-chemnitz.de/~helmberg/sdp_software.html
https://www-user.tu-chemnitz.de/~helmberg/sdp_software.html

14 Ann Oper Res (2018) 265:5–27

Table 1 The ten combinations

Name Class of instances

Triangle Clique General clique Wheel Bicycle wheel

Tri X

T+Cl X X

T+GC X X

T+Wh X X

T+BW X X

ALL X X X X X

A-Cl X X X X

A-GC X X X X

A-Wh X X X X

A-BW X X X X

The triangle inequalities have been extensively studied in the literature and their efficiency
has been confirmed by various researchers (Sotirov 2014;Rendl et al. 2010;Anjos et al. 2013).
For this reason, we activated them in all combinations.

From the sixteen possible combinations of the remaining four classes of inequalities
(clique, wheel, bicycle wheel and general clique), we used the ten combinations defined
in Table 1 that emphasize the impact of individual classes. The first column of Table 1 gives
the name of each combination, and the other five columns indicate with an X which classes
are activated in that combination.

The ten combinations can be summarized as: one that activates none of the four classes
(Tri), another that activates them all (ALL), and for each class “inequality”, two additional
combinations (Tri + inequality) and (ALL − inequality).

Moreover, the ten combinations can be split into two groups: The first group,G1, is formed
by the combinations that activate at most two classes of inequalities, and the second group,
G2, corresponds to the combinations that deactivate at most one class.

4.1.2 Instances

Of a total of 147 instances, 76 are dense (edge density greater than or equal to 0.5), and the
remaining 71 are sparse.

• Random Twelve complete graphs with the edge weights randomly selected and gen-
erated by rudy (https://www-user.tu-chemnitz.de/~helmberg/sdp_software.html). The
dimension varies from 50 to 100 and the density between 0.5 and 1.

• spinglass_2g(3g) Eleven instances (3g: four instances) of a toroidal 2D(3D) grid for a
spin glass model with gaussian interactions. The grid has size (nrow)× (ncolumns). They
are sparse with density between 0.05 and 0.3.

• spinglass_2pm (3pm) Two instances (3pm: six instances) of toroidal 2D(3D)-grid for a
spin glassmodel with +/−J interactions. The grid has size (nrow)×(ncolumns)×(nlayers).
The percentage of negative weights is 50%, dimension n vary from 36 to 64 and density
between 0.05 and 0.3.

• pm1s_n.i Ten weighted instances with edge weights drawn uniformly from {−1, 0, 1},
density 0.1 and dimension 80.

123

https://www-user.tu-chemnitz.de/~helmberg/sdp_software.html

Ann Oper Res (2018) 265:5–27 15

• pm1d_n.i Ten weighted graphs with edge weights drawn uniformly from {−1, 0, 1} and
density 0.99. For densities n ∈ {80, 100}.

• gkai_a(b or c) For each type (a,b or c) five instances with dimensions from 30 to 100,
densities from 0.0625 to 0.5 (b: density 1 and for c: densities from 0.1 to 0.8). Diagonal
coefficients from [−100, 100] (b: [−63, 0] and c:[−100, 100]), off-diagonal coefficients
from [−100, 100] (b: [0, 100] and c: [−50, 50]).

• bqp_n-i For each dimension n, ten weighted graphs with dimension n ∈ {50, 100} and
density 0.1.

• g05_n.i Ten unweighted graphs with edge probability 0.5 and dimension n ∈
{60, 80, 100}.

• w01_100.i Ten graphs with integer edge weights chosen from [−10, 10], density 0.1 and
dimension 100.

4.2 Comparison methodology

This section explains the tools used to analyze our results. First, we present the performance
profiles proposed in Dolan and Moré (2002), then the data profiles as used in Moré and Wild
(2009), followed by the performance versus time graphs, and the relevance histograms.

We define a comparison in terms of a set P of problems (the 147 instances) and a set S of
optimization algorithms (the ten combinations).

4.2.1 Performance profiles

As in Dolan and Moré (2002) and Moré and Wild (2009), the performance profiles are
defined in terms of final objective solution z p,s > 0 obtained for each instance p ∈ P and
combination s ∈ S. In our case (relaxation of a maximization), larger values of z p,s indicate
worse performance. For any pair (p, s) of problem p and combination s, the performance
ratio is defined as:

rp,s = 100

(
z p,s − Bestp

Bestp

)
(15)

where Bestp = min{z p,s∀p ∈ P : s ∈ S}.
The performance profiles of a combination s ∈ S is defined as the fraction of problems

for which the performance ratio is at most α, that is,

ρs(α) = 1

|P| size{p ∈ P : rp,s ≤ α}. (16)

Thus, for a given α one knows the percentage of instances p ∈ P (y axis) that are solved
for each combination s ∈ S (ρs(α) in the x axis).

4.2.2 Data profiles

As pointed out in Moré and Wild (2009), data profiles are useful to users with a specific
computational time limit who need to choose a combination that is likely to reach a given
performance. Hence, it shows the temporal evolution of combinations to a specific perfor-
mance ratio (rmax).

123

16 Ann Oper Res (2018) 265:5–27

0

10

20

30

40

50

60

70

80

90

100

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

0

10

20

30

40

50

60

70

80

90

100

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

0

10

20

30

40

50

60

70

80

90

100

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

80

90

100

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

(a) (b)

(c) (d)

Fig. 3 Performance profiles for all instances. Ideal point is at (0.0, 100)

The data profiles are defined in terms of CPU time tp,s obtained for each p ∈ P and s ∈ S.
So, for a given time β we define the data profiles of a combination s ∈ S by:

ds(β) = 1

|P| size{p ∈ P : tp,s ≤ β and rp,s ≤ rmax }. (17)

Thus, for given rmax and time β, one sees the percentage of instances that can be solved
for each combination s ∈ S.

Note that in the computational results we do not analyze the data profiles for dense and
sparse graphs separately because the obtained results did not contribute additional insights.

4.2.3 Performance versus time graphs

This benchmark shows the average performance ratio (�rp,s∀p ∈ P : s ∈ S) in the x-axis,
and the average time of execution (�tp,s∀p ∈ P : s ∈ S) in the y-axis.

A combination ω dominates σ if�rp,ω < rp,σ and�tp,ω < �tp,σ . Thus, we can analyze
domination between our combinations.

4.2.4 Relevance histograms

We use relevance histograms to quantify the impact of each inequality on the quality of
the SDP bound. Let I = {Cl,Wh, BW,GC} be the set of four classes of inequalities, and

123

Ann Oper Res (2018) 265:5–27 17

10 4

0

10

20

30

40

50

60

70
Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

0

10

20

30

40

50

60

70
Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

10 4

0

10

20

30

40

50

60

70
Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

0 1 2 3 4 5 0 1 2 3 4

10 4

5

0 1 2 3 4 5 0 1 2 3 4 5

10 4

0

10

20

30

40

50

60

70
Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

(a) (b)

(d)(c)

Fig. 4 Data profiles for all instances with rmax = 0.0. Ideal point is at (0.0, 100)

�rp,s,∀p ∈ P be the average performance ratio of a combination s ∈ S. We calculate the
relevance μi of the inequality i ∈ I as:

μi = (�rp,Tri − �rp,T+i) + (�rp,A−i − �rp,ALL)

2 × (�rp,Tri − �rp,ALL)
. (18)

Equation (18) is normalized by the largest gap, which is the gap between combinations
Tri and ALL. Thus, if an inequality i ∈ I has relevance 1 it means that ALL −i = Tri and
Tri +i = ALL.

4.3 Computational results

This section presents and analyzes the results of our tests. Section 4.3.1 demonstrate the
benchmarks of all types of graphs. Sections 4.3.2 and 4.3.3 show the benchmarks of sparse
and dense instances, respectively.

4.3.1 Results on the full set of instances

In this part of the analysis we present and discuss the four benchmarks for all 147 instances
(sparse and dense) together.

123

18 Ann Oper Res (2018) 265:5–27

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
10 5

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
10 5

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
10 5

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

0 0.5 1 1.5 2 0 0.5 1 1.5 2

0 0.5 1 1.5 2 0 0.5 1 1.5 2
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
10 5

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

(a) (b)

(c) (d)

Fig. 5 Performance versus CPU time for all instances. Ideal point is at (0.0, 0.0)

Performance profiles Figure 3 shows the performance profiles for the ten combinations. To
facilitate the analysis, the performance ratio is limited to 0.8.

According to Fig. 3a (for k = 3), the combinations with the best performance are ALL,
A-GC and A-Cl, and the combinations of Group G2 almost always dominate the ones of
Group G1. Moreover, results suggest that the bicycle wheel is an important inequality since
T+BW dominates all the other combinations of G1 and A-BW has the worst performance of
the G2. For the same reasons we can notice that wheel inequality is also very relevant to
CPA for k = 3.

The results presented in Fig. 3b–d (for k = 4, 5 and 7, respectively) are very similar. It
can be noticed that all combinations that activate the wheel inequality dominate the oth-
ers. Moreover, we observe that all the combinations that have wheel and general clique
inequalities can solve more than 70% of the instances with performance ratio<0.05. We also
observe that the plots of Tri and T+Cl are very similar for those partitions, suggesting that
the clique inequalities are ineffective for k ∈ {4, 5, 7}.
Data profiles Figure 4 shows the data profiles for a maximum performance ratio (rmax) equal
to 0.0. Each graph shows the results for one of k ∈ {3, 4, 5, 7}. Moreover, the time in this
analysis is limited to 5 × 104 s (approximately 14h).

123

Ann Oper Res (2018) 265:5–27 19

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Clique Wheel B. Wheel Gen. Clique Clique Wheel B. Wheel Gen. Clique

Clique Wheel B. Wheel Gen. Clique Clique Wheel B. Wheel Gen. Clique
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) (b)

(c) (d)

Fig. 6 Relevance of the inequalities for all instances

In Fig. 4a, it can be observed that ALL followed by A-GC are the best combinations, and
we see that combinations of Group G2 perform better than those of G1.

The graphs in Fig. 4b–d can be separated in combinationswith andwithoutwheel inequal-
ity, and it can be noticed that all the algorithms that activatewheel inequalities have the better
performance, e.g. T+Wh dominates A-Wh for k ∈ {4, 5, 7}.
Quality versus time Figure 5 presents the average performance versus CPU time for the ten
combinations of the cutting plane algorithm.

In Fig. 5a it may be seen that A-Cl and T+GC are dominated by ALL and T+Cl, respec-
tively. Moreover, for k = 3, T+Cl, T+GC and Tri are the fastest combinations but they have
the worst performance. It is also noticeable that combinations with bicycle wheel show
better performance but require more CPU time.

It can be observed that the results for k ∈ {4, 5, 7} (Fig. 5b–d) are very similar. In those
graphs A-Wh is always dominated by T+Wh. We also notice that all combination that activate
wheel have on average a performance ratio <0.2.

Finally, results in Fig. 5 suggest that the CPU time of all the combinations is increased
with the number of partitions.

Relevance of inequalities Figure 6 presents the relevance histograms for partitions k ∈
{3, 4, 5, 7} of four inequalities: Clique, Wheel, Bicycle wheel (B. Wheel) and General
clique (Gen. Clique). In Fig. 6a, we see that the bicycle wheel is the most relevant inequal-
ity followed by wheel. However, for k ∈ {4, 5, 7} the wheel inequality is clearly the

123

20 Ann Oper Res (2018) 265:5–27

0

10

20

30

40

50

60

70

80

90

100

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

0

10

20

30

40

50

60

70

80

90

100

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

0

10

20

30

40

50

60

70

80

90

100

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

80

90

100

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

(a) (b)

(c) (d)

Fig. 7 Performance profiles for sparse instances. Ideal point is at (0.0, 100)

most significant. Figure 6 suggests that the relevance of the wheel inequality increases
with k.

4.3.2 Results for sparse graphs

This section analyzes the results of the ten combinations on the sparse instances (density
below 50%).We present the performance profiles, performance versus time and the relevance
histograms for the ten combinations on these 70 instances.

Performance profiles Figure 7 shows the performance profiles of the combinations for sparse
instances.

In Fig. 7a (k = 3), it can be observed that the combinations with the best results are
ALL, A-GC and A-Cl, followed by A-Wh. For k = 3, it is also noticeable that bicycle
wheel is the most important inequality, since all combinations that deactivate it have the
worst performance. For the same reasons we can include wheel inequalities in second place
of importance for k = 3.

Figure 7b–d (for k = 4, 5 and 7, respectively) are very similar. It can be seen that all
algorithms that the wheel inequality produce the best results. A closer look on those results
reveals a strong relation between T+Wh (the best result for Group G1) and A-BW, suggesting
that wheel is the most significant inequalities to the max-k-cut followed by bicycle wheel.

123

Ann Oper Res (2018) 265:5–27 21

0

0.5

1

1.5

2

2.5

3

3.5

10 5

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

0

0.5

1

1.5

2

2.5

3

3.5

10 5

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

0

0.5

1

1.5

2

2.5

3

3.5

10 5

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

0 0.5 1 1.5 2 0 0.5 1 1.5 2

0 0.5 1 1.5 2 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

10 5

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

(a)

(c) (d)

(b)

Fig. 8 Performance versus CPU time for sparse instances. Ideal point is at (0.0, 0.0)

Quality versus time Figure 8 presents the average performance versus CPU time of the
combinations for sparse instances.

In Fig. 8a the combinations T+Cl, T+GC and Tri are the fastest, but they have the worst
performance. The best performance can be credited to A-Wh or T+Wh since those results are
the closest to the ideal point. It is apparent that combinations with the bicycle wheel have
the best performance but the highest CPU time.

It can be noticed that the results for k ∈ {4, 5, 7} (Fig. 8b–d) are very similar. Those
graphs suggest that wheel is the most relevant class of inequalities because all the combina-
tions where it is activated have the average performance ratio lower than 0.3. Moreover, the
combinations that activate wheel and bicycle wheel inequalities at the same time (A-GC,
A-Cl and ALL) have the best average performance, but the worst CPU time. They present
an average time larger than 2 × 105 s.

Finally,weobserve that theCPU time increaseswith the number of partitions. For example,
for k = 7 the combinations spend 70% more CPU time solving the cutting plane algorithm
than for k = 4.

Relevance of inequalities Figure 9 demonstrates the relevance of the four inequalities for
sparse instances. For k = 3, results shown in Fig. 9a, it can be seen that the bicycle wheel
is the most relevant inequality followed by wheel.

123

22 Ann Oper Res (2018) 265:5–27

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Clique Wheel B. Wheel Gen. Clique Clique Wheel B. Wheel Gen. Clique

Clique Wheel B. Wheel Gen. Clique Clique Wheel B. Wheel Gen. Clique
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) (b)

(c) (d)

Fig. 9 Relevance of the inequalities for sparse instances

For k ∈ {4, 5, 7} it can be noticed that clique and general clique inequalities are inef-
fective, and that the wheel inequality is the strongest class by far.

4.3.3 Results for dense graphs

This section analyzes the results of the ten combinations on the dense instances (density
greater than or equal to 50%).

Performance profiles Similarly to the previous performances profiles, it can be observed in
Fig. 10a (k = 3) that the combinations with the best results are ALL, A-GC and A-Cl,
followed by A-Wh.

The results in Fig. 10a also suggest that bicycle wheel is the most significant inequality
since combinations that activate it have the best performance of G1 andG2. A similar analysis
reveals that wheel is also relevant for this partition.

Figure 10b–d (for k = 4, 5, 7) suggest that wheel and general clique are, respectively,
the most relevant, since the activation/deactivation of those inequalities have a huge impact
in the results.

It is also apparent that for k ∈ {4, 5, 7} the results of ALL, A-BW and A-Cl are similar
and the same occurs to Tri, T+Cl and T+BW. It means that the activation or deactivation of
clique and bicycle wheel does not change the performance of the CPA on these instances.

123

Ann Oper Res (2018) 265:5–27 23

0

10

20

30

40

50

60

70

80

90

100

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

0

10

20

30

40

50

60

70

80

90

100

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

0

10

20

30

40

50

60

70

80

90

100

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

80

90

100

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

(a) (b)

(c) (d)

Fig. 10 Performance profiles for dense instances. Ideal point is at (0.0, 100)

Quality versus time In Fig. 11a the combinations T+Cl, T+GC and Tri are the fastest.
However, they have the worst average performance (higher than 0.8). It can be seen that
A-Cl, A-BW, and T+GC are dominated by other combinations and it is also noticeable that
algorithms with bicycle wheel have the best average performance.

The results for k ∈ {4, 5, 7} (Fig. 11b–d) are very similar. In those graphs we notice the
relevance of the wheel inequality, since all the algorithms using this inequality have average
performance lower than 0.2. Furthermore, it can be concluded that T+Wh achieves the best
results, because it is the closest to the ideal point.

Finally, we observe that all the combinations spend in average 25% more CPU time for
k = 4 than for the other partitions.

Relevanceof inequalitiesFigure 12presents the four relevancehistograms for dense instances.
In Fig. 12a it can be noticed that the bicycle wheel is the most relevant class of inequality
followed by wheel and clique.

For k ∈ {4, 5, 7} the results suggests that wheel inequalities are the most relevant. It is
also notable that the clique and general clique inequalities are ineffective when the triangle
inequalities are activated.

4.4 Summary of the computational tests

While it is normal that the combination ALL (activation of all the inequalities) has the best
performance, it is also the combination that requires the most CPU time. On the other hand,

123

24 Ann Oper Res (2018) 265:5–27

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
10 4

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
10 4

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
10 4

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

0 0.5 1 1.5 2 0 0.5 1 1.5 2

0 0.5 1 1.5 2 0 0.5 1 1.5 20

0.5

1

1.5

2

2.5

3

3.5

4

4.5
10 4

Tri
T+Cl
T+Wh
T+BW
T+GC
ALL
A-Cl
A-Wh
A-BW
A-GC

(a) (b)

(c) (d)

Fig. 11 Performance versus CPU time for dense instances. Ideal point is at (0.0, 0.0)

Tri is the fastest combination but delivers the worst performance. The combination T+Wh
achieves, on average, the best ratio between CPU time and performance for all values of k
considered in this study.

Table 2 summarizes the results and shows the best inequalities for each benchmark [per-
formance profile, performance vs. time (QvsT) and inequality relevance] for each value of
k ∈ {3, 4, 5, 7}, and for sparse/dense/all instances. We observe that the strongest inequalities
for k = 3 are bicycle wheel and wheel, and for k ∈ {4, 5, 7} the wheel inequalities are the
strongest.

It is also noticeable that the activation ofwheel combinedwith bicycle wheel (or general
clique for dense graphs) improves the performance for all types of partitions. However, it
spends in average 72% (32%) more CPU time for the CPA to terminate. Generally, we see
that an increase in k causes an increase in the CPU time, especially for the sparse instances.

From a practical point of view, wheel is the most attractive inequality because it shows
good performances for all instances and for all types of partitions.

123

Ann Oper Res (2018) 265:5–27 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Clique Wheel B. Wheel Gen. Clique Clique Wheel B. Wheel Gen. Clique

Clique Wheel B. Wheel Gen. Clique Clique Wheel B. Wheel Gen. Clique
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) (b)

(c) (d)

Fig. 12 Relevance of the inequalities for dense instances

Table 2 Summary of the best inequalities for each benchmark

k Density Performance profiles QvsT Relevance

3 All Bicycle Wheel and Wheel Bicycle Wheel Bicycle Wheel and Wheel

Sparse Bicycle Wheel and Wheel Bicycle Wheel Bicycle Wheel and Wheel

Dense Bicycle Wheel and Wheel Bicycle Wheel Bicycle Wheel and Wheel

4,5,7 All Wheel and General Clique Wheel Wheel

Sparse Wheel and Bicycle Wheel Wheel Wheel

Dense Wheel and General Clique Wheel Wheel

5 Discussion

In this paper we carried out an experimental study of several classes of valid inequalities
to strengthen the SDP relaxation of the max-k-cut problem. Specifically we considered the
following classes of cutting planes: Triangle, Clique, General clique,Wheel and Bicycle
wheel. We developed a different separation algorithm for each class. For triangle inequal-
ities we used complete enumeration, for clique, general clique, and wheel inequalities a
greedy heuristics was developed, and for bicycle wheel a genetic algorithmwas applied. The

123

26 Ann Oper Res (2018) 265:5–27

inequalities were then tested within a standard cutting plane algorithm for k ∈ {3, 4, 5, 7},
using nearly 150 instances with varying properties.

To investigate the strength of each class of inequalities we created ten combinations
by alternating the activation and deactivation of the inequalities. In order to guarantee a
fair comparison of the combinations, we analyzed four different benchmarks: performance
profiles, data profiles, quality versus time and relevance histograms.

The results are summarized in Table 2. We conclude that bicycle wheel is the strongest
inequality for k = 3 and wheel for k ∈ {4, 5, 7}. Moreover, the inclusion of wheel and
bicycle wheel inequalities at the same time strengthens even more the SDP relaxation of the
max-k-cut at the cost of 72% more CPU time, on average.

In future research we plan to study more efficient algorithms to solve the SDP relaxation
with wheel and bicycle wheel inequalities, and to build a branch-and-cut algorithm to find
the integer solution of the max-k-cut problem for both sparse and dense graphs for large
instances.

Acknowledgements This research was supported by Discovery Grants 312125 (M.F. Anjos) and 418250 (S.
Le Digabel) from the Natural Sciences and Engineering Research Council of Canada. Moreover, we thank
three anonymous reviewers who helped us to significantly improve this paper.

References

Anjos, M. F., Ghaddar, B., Hupp, L., Liers, F., & Wiegele, A. (2013). Solving k-way graph partitioning
problems to optimality: The impact of semidefinite relaxations and the bundle method. In M. Jünger &
G. Reinelt (Eds.), Facets of combinatorial optimization (pp. 355–386). Berlin: Springer.

Barahona, F., Grötschel, M., Jünger, M., & Reinelt, G. (1988). An application of combinatorial optimization
to statistical physics and circuit layout design. Operations Research, 36(3), 493–513.

Chopra, S., & Rao, M. R. (1993). The partition problem. Mathematical Programming, 59(1), 87–115.
Chopra, S., & Rao, M. R. (1995). Facets of the k-partition polytope. Discrete Applied Mathematics, 61(1),

27–48.
Coja-Oghlan, A., Moore, C., & Sanwalani, V. (2006). Max k-cut and approximating the chromatic number of

random graphs. Random Structures and Algorithms, 28(3), 289–322.
Dai, W.-M., & Kuh, E. S. (1987). Simultaneous floor planning and global routing for hierarchical building-

block layout. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 6(5),
828–837.

de Klerk, E., Pasechnik, D. V., & Warners, J. P. (2004). On approximate graph colouring and max-k-cut
algorithms based on the θ -function. Journal of Combinatorial Optimization, 8(3), 267–294.

Deza, M., Grötschel, M., & Laurent, M. (1992). Clique-web facets for multicut polytopes. Mathematics of
Operations Research, 17(4), 981–1000.

Deza, M. M., & Laurent, M. (1997). Geometry of cuts and metrics (1st ed.). Berlin: Springer.
Dolan, E. D., & Moré, J. J. (2002). Benchmarking optimization software with performance profiles. Mathe-

matical Programming, 91(2), 201–213.
Eisenblätter, A. (2002). The semidefinite relaxation of the k-partition polytope is strong, volume 2337 of lecture

notes in computer science (pp. 273–290). Berlin: Springer.
Fairbrother, J., & Letchford, N. (2016). Projection results for the k-partition problem. Technical Report Opti-

mization Online 5370, Department of Management Science, Lancaster University, UK.
Feo, T. A., & Resende, M. G. C. (1995). Greedy randomized adaptive search procedures. Journal of Global

Optimization, 6(2), 109–133.
Frieze, A., & Jerrum, M. (1997). Improved approximation algorithms for maxk-cut and max bisection. Algo-

rithmica, 18(1), 67–81.
Gaur, D., Krishnamurti, R., & Kohli, R. (2008). The capacitated max k-cut problem.Mathematical Program-

ming, 115(1), 65–72.
Gerards, A. M. H. (1985). Testing the odd bicycle wheel inequalities for the bipartite subgraph polytope.

Mathematics of Operations Research, 10(2), 359–360.
Ghaddar, B., Anjos, M. F., & Liers, F. (2011). A branch-and-cut algorithm based on semidefinite programming

for the minimum k-partition problem. Annals of Operations Research, 188(1), 155–174.

123

Ann Oper Res (2018) 265:5–27 27

Goemans, M. X., & Williamson, D. P. (1995). Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. Journal of the ACM, 42(6), 1115–1145.

Krislock, N., Malick, J., & Roupin, F. (2012). Improved semidefinite bounding procedure for solving max-cut
problems to optimality. Mathematical Programming, 143(1), 61–86.

Liers, F., Jünger, M., Reinelt, G., & Rinaldi, G. (2005). Computing Exact Ground states of hard Ising spin
glass problems by branch-and-cut (pp. 47–69). Hoboken: Wiley.

Ma, F., & Hao, J.-K. (2017). A multiple search operator heuristic for the max-k-cut problem. Annals of
Operations Research, 248(1), 365–403. doi:10.1007/s10479-016-2234-0.

Mitchell, J. E. (2003). Realignment in the national football league: Did they do it right? Naval Research
Logistics, 50(7), 683–701.

Moré, J. J., & Wild, S. M. (2009). Benchmarking derivative-free optimization algorithms. SIAM Journal on
Optimization, 20(1), 172–191.

Mosek ApS. (2015).mosek. http://www.mosek.com.
Nikiforov, V. (2016). Max k-cut and the smallest eigenvalue. Linear Algebra and its Applications, 504, 462–

467.
Palagi, L., Piccialli, V., Rendl, F., Rinaldi, G., &Wiegele, A. (2011). computational approaches to max-cut. In

M.F.Anjos&J.B.Lasserre (Eds.),Handbookof semidefinite, conic andpolynomial optimization: Theory,
algorithms, software and applications, international series in operations research and management
science. New York: Springer.

Papadimitriou, C. H., &Yannakakis,M. (1991). Optimization, approximation, and complexity classes. Journal
of Computer and System Sciences, 43(3), 425–440.

Rendl, F., Rinaldi, G., & Wiegele, A. (2010). Solving max-cut to optimality by intersecting semidefinite and
polyhedral relaxations. Mathematical Programming, 121(2), 307–335.

Rinaldi, G. Rudy, a graph generator. https://www-user.tu-chemnitz.de/~helmberg/sdp_software.html.
Scholvin, J. K. (1999). Approximating the longest path problem with heuristics: A survey. Master’s thesis,

University of Illinois at Chicago.
Seyed, M. H., Sai, H. T., & Omid, M. (2014). A genetic algorithm for optimization of integrated scheduling of

cranes, vehicles, and storage platforms at automated container terminals. Journal of Computational and
Applied Mathematics, 270, 545–556. (Fourth international conference on finite element methods in
engineering and sciences (FEMTEC 2013)).

Sotirov, R. (2014). An efficient semidefinite programming relaxation for the graph partition problem.
INFORMS Journal on Computing, 26(1), 16–30.

van Dam, E. R., & Sotirov, R. (2015). Semidefinite programming and eigenvalue bounds for the graph partition
problem. Mathematical Programming, 151(2), 379–404.

van Dam, E. R., & Sotirov, R. (2016). New bounds for the max-k-cut and chromatic number of a graph. Linear
Algebra and its Applications, 488, 216–234.

Wiegele, A. (2015). Biq mac library-binary quadratic and max cut library. http://biqmac.uni-klu.ac.at/
biqmaclib.html.

123

http://dx.doi.org/10.1007/s10479-016-2234-0
http://www.mosek.com
https://www-user.tu-chemnitz.de/~helmberg/sdp_software.html
http://biqmac.uni-klu.ac.at/biqmaclib.html
http://biqmac.uni-klu.ac.at/biqmaclib.html

	Computational study of valid inequalities for the maximum k-cut problem
	Abstract
	1 Introduction
	1.1 Problem formulation
	1.2 Semidefinite relaxation

	2 Formulation and separation of inequalities
	2.1 Triangle inequalities
	2.1.1 Separation of triangle inequalities

	2.2 Clique inequalities
	2.2.1 Separation of clique inequalities

	2.3 General clique inequalities
	2.3.1 Separation of general clique inequalities

	2.4 Wheel inequalities
	2.4.1 Separation of wheel inequalities

	2.5 Bicycle wheel inequalities
	2.5.1 Separation of bicycle wheel inequalities

	3 Cutting plane algorithm
	4 Computational tests
	4.1 Combinations of inequalities and test instances
	4.1.1 Combinations of inequalities
	4.1.2 Instances

	4.2 Comparison methodology
	4.2.1 Performance profiles
	4.2.2 Data profiles
	4.2.3 Performance versus time graphs
	4.2.4 Relevance histograms

	4.3 Computational results
	4.3.1 Results on the full set of instances
	4.3.2 Results for sparse graphs
	4.3.3 Results for dense graphs

	4.4 Summary of the computational tests

	5 Discussion
	Acknowledgements
	References

