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Abstract The paper suggests a family of paired comparison-based scoring procedures for
ranking the participants of a Swiss system chess team tournament. We present the challenges
of ranking in Swiss system, the features of individual and team competitions as well as the
failures of the official rankings based on lexicographical order. The tournament is represented
as a ranking problem such that the linearly-solvable row sum (score), generalized row sum,
and least squares methods have favourable axiomatic properties. Two chess team European
championships are analysed as case studies. Final rankings are compared by their distances
and visualized with multidimensional scaling. Differences to the official ranking are revealed
by the decomposition of the least squares method. Rankings are evaluated by prediction
power, retrodictive performance, and stability. The paper argues for the use of least squares
method with a results matrix favouring match points on the basis of its relative insensitivity
to the choice between match and board points, retrodictive accuracy, and robustness.

Keywords Paired comparison · Ranking · Linear system of equations · Swiss system ·
Chess

1 Introduction

Chess tournaments are often organized in the Swiss system when there are too many par-
ticipants to play a round-robin tournament. They go for a predetermined number of rounds,
in each round two players compete head-to-head. None of them are eliminated during the
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tournament, but there are pairs of players without a match between them. Let us denote the
number of rounds by c and the number of participants by n.

Two emerging issues in Swiss system tournaments are how to pair the players and how
to rank the participants on the basis of their respective results. The pairing algorithm aims
to pair players with a similar performance, measured by the number of their wins and draws
(see FIDE 2015 for details).

The ranking involves two main challenges. The first one is the possible appearance of
circular triadswhen player i has won against player j , player j has won against player k, but
player k has won against player i . The second issue arises as the consequence of incomplete
comparisons since c < n − 1. For example, if player i has played only against player j , then
its rank probably should depend on the results of player j .

The final ranking of the players is usually determined by the aggregated number of points
scored: thewinner of amatch gets one point, the loser gets zero points, and a drawmeans half-
half points for both players. However, it usually does not result in a linear order (a complete,
transitive and antisymmetric binary relation) of the participants.1 Ties are eliminated by the
sequential application of various tie-breaking rules (FIDE 2015).

These ranking(s), based on lexicographical orders, will be called official ranking(s). They
can differ in the tie-breaking rules.

Official rankings are not able to solve the problem caused by different schedules as players
with weaker opponents can score the same number of points more easily (Brozos-Vázquez
et al. 2010; Csató 2012, 2013; Forlano 2011; Jeremic and Radojicic 2010; Redmond 2003).
It turns out that players with an improving performance during the tournament are preferred
contrary to players with a declining one. Consider two players i and j with an equal number
of points after playing some rounds. Player i is said to be on the inner circle if it scored
more points in some of the first rounds relative to player j who is said to be on the outer
circle. Since they have played against opponents with a similar number of points in each
round, it is probable that player j has met with weaker opponents. Tie-breaking rules may
take the performance of opponents into account but a similar problem arises if player j has
marginally more points than player i as a lexicographical order is not continuous.

This is known to be an inherent defect of these systems. In fact, players sometimes may
deliberately seek for a draw or defeat in the first (Forlano 2011). It is tolerated because the
case concerns very rarely the winner of the tournament, at least with an adequate number of
rounds.

Nevertheless, someworks have aimed to improve on ranking in Swiss system tournaments.
Redmond (2003) presents a generalization of win-loss ratings by accounting for the strength
of schedule. Brozos-Vázquez et al. (2010) argue for the use of recursive methods (as a tie-
breaking rule) in Swiss system chess tournaments. Forlano (2011) shows a way to correct
the points for wins and draws in order to derive a more legitimate ranking.

The current paper will attempt to solve the problem through the use of paired comparison-
based ranking procedures. In a sense, it is a return to the origins of this line of research
as early works were often inspired by chess tournaments (Landau 1895, 1914; Zermelo
1929).

We use a parametric family of scoring procedures based on linear algebra, the generalized
row sum (Chebotarev 1989, 1994) as well as the least squares method, which was extensively
used for sport rankings (Leeflang and Praag 1971; Stefani 1980). Despite the issue has been

1 In c rounds the number of match points can be an integer or a half-integer between 0 and c, so there always
will be players with equal score if n > 2c + 1.
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touched by Csató (2013), here a deeper methodological foundation will be given for the
problem and the evaluation of rankings will be revisited.

The analysis is based on some recent results. González-Díaz et al. (2014) have discussed
the axiomatic properties of generalized row sum and least squares, Csató (2015) has given an
interpretation for the least squares method, while Can (2014) has contributed to the choice
of distance functions between rankings.

In order to avoid the prominent role of colour allocation in individual championships, the
discussion focuses on team tournaments, where a match between two teams is played on 2t
boards such that t players of a team play with white and the other t players of the team play
with black. The winner of a game on a board gets 1 point, the loser gets 0 points, and the draw
yields 0.5 points for both teams, thus 2t board points are allocated in a given match. The
winner team achieving more (at least t + 0.5) board points scores 2 match points, the loser
0, while a draw results in 1 match point for both teams. Therefore one can choose between
the board points and the match points as the basis of the official ranking. Recently the use of
match points is preferred in chess olympiads and team European championships.

The paper is structured as follows. Section 2 shortly outlines the ranking problem, ranking
methods and their relevant properties. It also aims to incorporate Swiss system chess team
tournaments into this framework. The proposed model is applied in Sect. 3 to rank the
participants in the 2011 and 2013 European Team Chess Championship open tournaments.
Twelve rankings, distinguished by the influence of opponents’ performance andmatch versus
table points, are introduced and compared on the basis of their distances. They are visualized
with multidimensional scaling (MDS), while differences to the official ranking are revealed
by the decomposition of the least squares method.

On the basis of these results,we argue for the use of least squaresmethodwith a generalized
result matrix favouring match points. It is supported by several arguments, variability of the
ranking with respect to the role of match and board points as well as retrodictive performance
(the ability to match the outcomes of matches already played) and robustness (stability of
the ranking between two subsequent rounds).

Finally, Sect. 4 summarizes the findings and review possible extensions of the model. A
reader familiar with ranking problems (González-Díaz et al. 2014; Csató 2015) may skip
Sects. 2.1 and 2.2.

2 Modelling of the tournament as a ranking problem

In the following some fundamental concepts of the paired comparison-based rankingmethod-
ology are presented. A detailed discussion can be found in Csató (2015).

2.1 The ranking problem

Let N = {1, 2, . . . , n}, n ∈ N be a set of objects. The matches matrix M = (mi j ) ∈ N
n×n

contains the number of comparisons between the objects, and is symmetric (M� = M).2

Diagonal elements mii are supposed to be 0 for all i = 1, 2, . . . , n. Let di = ∑n
j=1 mi j

be the total number of comparisons of object i and d = max{di : i ∈ N } be the maximal
number of comparisons with the other objects. Let m = max{mi j : i, j ∈ N }.
2 In most practical applications (including ours) the conditionmi j ∈ Nmeans no restriction. Modification of
the domain to R+ has no impact on the results but the discussion becomes more complicated. This general-
ization has some significance for example in the case of forecasting sport results when the latest comparisons
may give more information about the current form of a player.
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The results matrix R = (ri j ) ∈ R
n×n contains the outcome of comparisons between the

objects, and is skew-symmetric (R� = −R). All elements are limited by ri j ∈ [−mi j , mi j
]
.

(ri j + mi j )/(2mi j ) ∈ [0, 1] may be regarded as the likelihood that object i defeats j . Then
ri j = mi j means that i is perfectly better than j , and ri j = 0 corresponds to an undefined
relation (if mi j = 0) or to the lack of preference (if mi j > 0) between the two objects. A
ranking problem is given by the triplet (N , R, M). Let Rn be the class of ranking problems
with |N | = n.

A ranking problem is called round-robin if mi j = 1 for all i �= j , that is, every object has
been compared exactly once with all of the others. A ranking problem is called balanced if
di = d j for all i, j = 1, 2, . . . , n, that is, every object has the same number of comparisons.

2.2 Rankings derived from rating functions

Matches matrix M can be represented by an undirected multigraph G := (V, E) where
vertex set V corresponds to the object set N , and the number of edges between objects i and
j is equal to mi j . The number of edges adjacent to i is the degree di of node i . A path from
object k1 to object kt is a sequence of objects k1, k2, . . . , kt such that mk�k�+1 > 0 for all
� = 1, 2, . . . , t − 1. Two vertices are connected if G contains a path between them. A graph
is said to be connected if every pair of vertices is connected.

Graph G is called the comparison multigraph associated with the ranking problem
(N , R, M), and is independent of the results of paired comparisons. The Laplacian matrix
L = (�i j ) ∈ R

n×n of graph G is given by �i j = −mi j for all i �= j and �i i = di for all
i = 1, 2, . . . , n.

Vectors are denoted by bold fonts, and assumed to be column vectors. Let e ∈ R
n be

given by ei = 1 for all i = 1, 2, . . . , n and I ∈ R
n×n be the matrix with Ii j = 1 for all

i, j = 1, 2, . . . , n.
A rating (scoring) method f is anRn → R

n function, fi = fi (N , R, M) is the rating of
object i . It defines a ranking method by i weakly above j in the ranking problem (N , R, M)

if and only if fi (N , R, M) ≥ f j (N , R, M). Throughout the paper, the notions of rating and
ranking methods will be used analogously since all ranking procedures discussed are based
on rating vectors. Rating methods f 1 and f 2 are called equivalent if they result in the same
ranking for any ranking problem (N , R, M).

Let us introduce some rating methods.

Definition 1 Row sum method: s(N , R, M) : Rn → R
n such that s = Re.

Row sum will also be referred to as scores, s is sometimes called the scores vector. It does
not take the comparison multigraph into account.

Definition 2 Generalized row sum method: x(ε)(N , R, M) : Rn → R
n such that

(I + εL) x(ε) = (1 + εmn) s,

where ε > 0 is a parameter.

This parametric rating procedurewas constructed axiomatically byChebotarev (1989) and
thoroughly analysed in Chebotarev (1994). Generalized row sum adjusts the standard row
sum by accounting for the performance of objects compared with it, and so on. ε indicates the
importance attributed to this correction. It follows from the definition that limε→0 x(ε) = s
for all ranking problems (N , R, M).
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Both the row sumand the generalized row sum ratings arewell-defined and can be obtained
from a system of linear equations for all ranking problems since (I + εL) is positive definite
for any ε ≥ 0.

In our model the outcome of paired comparisons is restricted by −m ≤ ri j ≤ m for all
i, j ∈ N . Then Chebotarev (1994, Proposition 5.1) argues that the reasonable upper bound
of ε is 1/ [m(n − 2)].

hi j = ri j/min{mi j ; 1} ∈ [−1, 1]3 may be identified as the normalized difference between
the latent ratings qi and q j of objects i and j . Then it makes sense to choose q in order to
minimize the error according to an appropriate objective function.

Definition 3 Least squares method: q(N , R, M) : Rn → R
n such that it is the solution to

the problem

min
q∈Rn

mi j
[
hi j − (

qi − q j
)]2

satisfying e�q = 0.

The normalization e�q = 0 is necessary because the value of the objective function is the
same for q and q + βe, β ∈ R.

The least squares ranking method is well-known in a lot of fields, a review about its
origin is given by González-Díaz et al. (2014) and Csató (2015). It has strong connections to
generalized row sum.

Proposition 1 The least squares rating can be obtained as a solution of the linear system of
equations Lq = s and e�q = 0 for all ranking problems (N , R, M).

Proof See Csató (2015, p. 57). �	
Lemma 1 For all ranking problems (N , R, M), the least squares method is equivalent to
the limit of generalized row sum if ε → ∞ since limε→∞ x(ε) = mnq.

Proof See Chebotarev and Shamis (1998, p. 326) and Csató (2016a). �	
Proposition 2 The least squares rating q(N , R, M) is unique if and only if comparison
multigraph G of the ranking problem is (N , R, M) connected.

Proof See Csató (2015, p. 59). �	
Note that in the case of an unconnected comparison multigraph there are independent

ranking problems.
A graph-theoretic interpretation of the generalized row sum method is given by Shamis

(1994). Csató (2015) provides the following iterative decomposition of least squares.

Proposition 3 Let the comparisonmultigraph of a ranking problem (N , R, M) be connected
and not regular bipartite. Then the unique solution of the least squares problem is q =
limk→∞ q(k) where

q(0) = (1/d) s,

q(k) = q(k−1) + 1

d

[
1

d
(dI − L)

]k
s (k = 1, 2, . . . ).

3 min{mi j ; 1} is written in order to avoid division by zero.
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2.3 Two properties of scoring procedures

In order to argue for the use of these methods we discuss some axioms.

Definition 4 Admissible transformation of the results (Csató 2014): Let (N , R, M) ∈ Rn be
a ranking problem. An admissible transformation of the results provides a ranking problem
(N , kR, M) ∈ Rn such that k > 0, k ∈ R and kri j ∈ [−mi j ,mi j

]
for all i ∈ N .

Multiplier k cannot be too large since −mi j ≤ kri j ≤ mi j should be satisfied for all
i, j ∈ N according to the definition of the results matrix. k ≤ 1 is always allowed.

Definition 5 Scale invariance (SI ) (Csató 2014): Let (N , R, M), (N , kR, M) ∈ Rn be two
ranking problems such that (N , kR, M) is obtained from (N , R, M) through an admissi-
ble transformation of the results. Scoring procedure f : Rn → R

n is scale invariant if
fi (N , R, M) ≥ f j (N , R, M) ⇔ fi (N , kR, M) ≥ f j (N , kR, M) for all i, j ∈ N .

Scale invariance implies that the ranking is invariant to a proportional modification of
wins (ri j > 0) and losses (ri j < 0). It seems to be important for applications. If the outcomes
of paired comparisons cannot be measured on a continuous scale, it is not trivial how to
transform them into ri j values. SI provides that it is not a problem in certain cases. For
example, if only three outcomes are possible, the coding (ri j = κ for wins; ri j = 0 for
draws; ri j = −κ for losses) makes the ranking independent from 0 < κ ≤ 1. It may also be
advantageous when relative intensities are known such as a regular win is two times better
than an overtime triumph.

Lemma 2 The row sum, generalized row sum and least squares methods satisfy S I .

Proof See Csató (2014, Lemma 4.3). �	
One disadvantage of the row sum procedure is its independence of irrelevant matches

(González-Díaz et al. 2014; Csató 2016b). However, it causes no problem in the round-robin
case, so it makes sense to preserve the attributes of row sum on this set.

Definition 6 Score consistency (SCC) (González-Díaz et al. 2014): Scoring procedure
f : Rn → R

n is score consistent if fi (N , R, M) ≥ f j (N , R, M) ⇔ si (N , R, M) ≥
s j (N , R, M) for all i, j ∈ N and round-robin ranking problem (N , R, M) ∈ Rn .

A score consistent method is equivalent to the row sum method in the case of round-robin
ranking problems. A similar requirement is mentioned by Zermelo (1929) and David (1987,
Property 3).

Remark 1 Regarding the generalized row summethod, Chebotarev (1994, Property 3) intro-
duces a more general axiom called agreement: if (N , R, M) ∈ Rn is a round-robin ranking
problem, then x(ε)(N , R, M) = s(N , R, M).

Lemma 3 Row sum, generalized row sum and least squares methods satisfy SCC.

Proof For generalized row sum, see Remark 1. In the case of least squares the proof is given
by González-Daz et al. (2014, Proposition 5.3). �	

Further properties of the scoring procedures are discussed by González-Díaz et al. (2014)
and Csató (2014).
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2.4 Interpretation of Swiss system chess team tournaments as a ranking problem

In order to use the scoring procedures presented above, the chess tournament should be
formulated as a ranking problem:

• Set of objects N consists of the teams of the competition;
• Matches matrix M is given by mi j = 1 if teams i and j have played against each other

and mi j = 0 otherwise.

For the sake of simplicity it is assumed that n is even, thus all teams play exactly cmatches
(there are no byes).4

The results matrix should be skew-symmetric. It excludes the incorporation of some
individual competitions where a win results in three points and a draw gives one point since
then a win and a loss is not equal to two draws. Furthermore, the model is not able to reflect
that the first-mover with white have an inherent advantage in the game. In order to eliminate
the role of colour allocation, only team tournaments are discussed.

First two extreme possibilities are suggested for the choice of results matrix.

Notation 1 MPi j and BPi j are the numbers of match points and board points of team i
against team j, respectively.

mp and gp are the vectors of match points and board points, respectively.

Definition 7 Match points ranking: The ranking derived from the vector mp.

Definition 8 Board points ranking: The ranking derived from the vector bp.

Note that match and board points rankings are usually not linear orders in a Swiss system
tournament. Ties are broken according to the rules given by the official ranking.

Definition 9 Match points based results matrix: Results matrix RMP is based on match
points if rMP

i j = MPi j − 1 for all i, j ∈ N .

Definition 10 Board points based results matrix: Results matrix RBP is based on board
points if r BP

i j = BPi j − t for all i, j ∈ N .

Note that match and board points based results matrices are skew-symmetric (a match
between two teams is played on 2t boards). The two concepts can be integrated.

Definition 11 Generalized results matrix: Results matrix RP (λ) is generalized if r Pi j (λ) =
(1 − λ)

(
MPi j − 1

) + λ
(
BPi j − t

)
/t for all i, j ∈ N such that λ ∈ [0, 1].

Lemma 4 RP (λ = 0) = RMP and RP (λ = 1) = RBP .

The row sum method is closely related to the match and board points rankings.

Lemma 5 Row sum method applied on the match points based results matrix is equivalent
to the match points ranking: si (RMP ) ≥ si (RMP ) ⇐⇒ mpi ≥ mp j .

Proof di = c for all i ∈ N , hence s(N , RMP , M) = mp − ce. �	
Lemma 6 Row sum method applied on the board points based results matrix is equivalent
to the board points ranking: si (RBP ) ≥ si (RBP ) ⇐⇒ bpi ≥ bp j .

4 A bye is a team which does not play a match in a given round.
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Proof di = c for all i ∈ N , hence s(N , RBP , M) = bp − cte. �	
A crucial argument for the application of paired comparison-based ranking methodology

is provided by the following result.

Theorem 1 Let (N , R, M) ∈ Rn be a round-robin ranking problem. Then:

• Generalized row sumand least squaresmethods applied on thematch points based results
matrix are equivalent to the match points ranking: xi (ε)(RMP ) ≥ xi (ε)(RMP ) ⇐⇒
qi (RMP ) ≥ q j (RMP ) ⇐⇒ mpi ≥ mp j .

• Generalized row sum and least squaresmethods applied on the board points based results
matrix are equivalent to the board points ranking: xi (ε)(RBP ) ≥ xi (ε)(RBP ) ⇐⇒
qi (RBP ) ≥ q j (RBP ) ⇐⇒ bpi ≥ bp j .

Proof In the case of round-robin problems, generalized row sum and least squares are equiv-
alent to the row summethod due to axiom SCC (Lemma 3), hence Lemmata 5 and 6 provide
the statement. �	

Generalized row sum and least squares methods take the opponents of each team into
account. Due to Theorem 1, they result in the official ranking without tie-breaking rules in the
ideal round-robin case.When the official ranking is based onmatch points, the transformation
RMP is recommended. Generalized results matrix with a small (i.e. close to 0) parameter λ

gives a similar outcome but it reflects the number of board points, the magnitude of wins and
losses. This effect becomes more significant as λ increases. RBP extends the board points
ranking to Swiss system competitions.

Proposition 4 Let (N , R, M) ∈ Rn be a ranking problem, and k ∈ (0, 1]. Generalized row
sum and least squares methods give the same ranking if they are applied on RMP and kRMP,
on RBP and kRBP as well as on RP (λ) and kRP (λ).

Proof It is the consequence of property SI (Lemma 1). �	
Due to Proposition 4, there exists only one ranking on the basis of match points if wins

are more valuable than losses and draws correspond to an indifference relation. Analogously,
there is a unique ranking based on board points. Without scale invariance, the ranking may
depend on the results matrix chosen such as wins are represented by ri j = 0.5 or ri j = 1,
for example.

Generalized row sum and least squares methods use all information of the tournament
(about the opponents, opponents of opponents and so on) to break the ties. Consequently, it
is very unlikely that teams remain tied, unless they have exactly the same opponents (and in
such a case it seems reasonable not to break the tie). The elimination of arbitrary tie-breaking
rules is a substantial advantage over official rankings.

3 Application: European chess team championships

In the following section, the theoretical model suggested in Sect. 3 will be scrutinized in
practice.

3.1 Examples and implementation

Themethod proposed in Sect. 3 is illustrated with an analysis of two chess team tournaments:
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Fig. 1 Distribution of (173) match results, ETCC 2013

• 18th European Team Chess Championship (ETCC) open tournament, 3rd–11th Novem-
ber 2011, Porto Carras, Greece.
Webpage: http://euro2011.chessdom.com/
Tournament rules: ECU (2012)
Detailed results: http://chess-results.com/tnr57856.aspx

• 19th European Team Chess Championship open tournament, 7th–18th November 2013,
Warsaw, Poland.
Webpage: http://etcc2013.com/
Tournament rules: ECU (2013)
Detailed results: http://chess-results.com/tnr114411.aspx

In both tournaments the number of competing teams was n = 38, playing on 2t = 4 tables
during c = 9 rounds. Results are known for about one quarter of possible pairs, 9×19 = 171
from n(n − 1)/2 = 703.5

The official ranking was based on the number of match points in both cases but tie-
breaking rules were different. In the 2013 competition application of the first tie-breaking
rule (Olympiad–Sonneborn–Berger points) was enough, while in 2011 two tie-breaking rules
(board points and Buchholz points—aggregated board points of the opponents) should be
used in some cases.

Distribution of match results for ETCC 2013 is drawn in Fig. 1. Minimal victory (2.5:1.5)
is the mode, so incorporating board points will not influence the rankings much.

There are two exogenous rankings called Official according to the tournament rules and
Start based on Élő points of players, reflecting the past performance of team members.
Further 12 rankings have been calculated from the ranking problem representation. Four
results matrices have been considered: RMP , RMB = RP (1/4) = 3/4 RMP + 1/4 RBP ,
RBM = RP (2/3) = 1/3 RMP +2/3 RBP and RBP . They were plugged into three methods,
least squares (LS) and generalized row sumwith ε1 = 1/324 (GRS1) and ε2 = 1/6 (GRS2).
Note that ε1 is smaller and ε2 is larger than the reasonable upper bound of 1/36.

Existence of a unique least squares solution requires connectedness of the comparison
multigraph (Proposition 2), which is provided after the third round. Rankings in the first two

5 Match results can be found in Tables A.1 (2011) and A.2 (2013), and—in another form—in Tables A.3
(2011) and A.4 (2013) of Csató (2016a).
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rounds are highly unreliable, therefore theywere eliminated. From the third round allmethods
give one, thus 7 × 13 + 1 = 92 rankings will be analysed as Start remains unchanged.6

Start and Official rankings are strict, that is, they do not allow for ties by definition. It can
be checked that the other rankings also give a linear order of teams in all cases.

Notation 2 The 14 final rankings are denoted by Start, Official; GRS1(RMP ), GRS1(RMB),
GRS1(RBM ), GRS1(RBP ); GRS2(RMP ), GRS2(RMB), GRS2(RBM ), GRS2(RBP ); and
LS(RMP ), LS(RMB), LS(RBM ), LS(RBP ). In the figures they are abbreviated by Start,
Off; G1, G2, G3, G4; S1, S2, S3, S4; and L1, L2, L3, L4, respectively.

3.2 Visualisation of the rankings

For the comparison of final rankings their distances have been calculated according to the
well-known Kemeny distance (Kemeny 1959) and its weighted version proposed by Can
(2014). Both distances are defined on the domain of strict rankings, i.e. ties are not allowed.
Our rankings satisfy this condition.

Kemeny distance is the number of pairs of alternatives ranked oppositely in the two
rankings examined.

Example 1 The Kemeny distance of a � b � c and b � a � c is 1, because they only
disagree on how to order a and b.

The Kemeny distance of a � b � c and a � c � b is 1 because of the sole disagreement
on how to order b and c.

Kemeny distance was characterized by Kemeny and Snell (1962), however, Can and
Storcken (2013) achieved the same result without one condition. Can and Storcken (2013)
also provides an extensive overview about the origin of this measure.

According to Example 1, the dissimilarity between a � b � c and b � a � c and
between a � b � c and a � c � b by the Kemeny distance is identical. However, in our
chess example a disagreement at the top of the rankings may be more significant than a
disagreement at the bottom since the audience is usually interested in the first three, five or
ten places but people are not bothered much whether a team is the 31st or 34th.

For this purpose, Can (2014) proposes some functions on strict rankings in the spirit of
Kemeny metric. They are respectful to the number of swaps but allow for variation in the
treatment of different pairs of disagreements by weighting them according to an exogenous
weight vector. It has some price since the calculation will depend on the order of swaps
between the two rankings. Can (2012, Theorem 1) shows that only the path-minimizing
function satisfies the triangular inequality condition for all possible weight vectors. Finding
the path-minimizing metric is not trivial, it is equivalent to solving a short-path problem in
general, but the solution is known if the weights are monotonically decreasing (increasing)
from the upper parts of a ranking to the lower parts.7

These results have inspired us to choose a monotonically decreasing weight vector mean-
ing that swaps in the first places are more important than changes at the bottom of the
rankings.

Definition 12 The weight vector of our weighted distance is given by ωi = 1/ i for all
i = 1, 2, . . . , n − 1.

6 Rankings according to different methods are displayed in Csató (2016a, Tables A.5 (2011) and A.6 (2013)).
7 Then the path-minimizing metric is equivalent to winners’ and losers’ decomposition (the Lehmer function
and the inverse Lehmer function), respectively (Can 2014, Corollaries 1 and 2).
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Table 1 Distances of rankings, ETCC 2011

(a)

(b)

Example 2 The weighted distance of a � b � c and b � a � c is 1 (a swap at the first
position).

The weighted distance of a � b � c and a � c � b is 1/2 (a swap at the second position).

Lemma 7 The maximum of Kemeny distance is n(n − 1)/2(= 703) and the maximum of
weighted distance is n − 1(= 37) if and only if the two rankings are entirely opposite.

Proof The maximal number of swaps between two rankings is n(n− 1)/2 in the case of two
entirely opposite rankings, which is also their Kemeny distance.

Take the rankinga1 � a2 � · · · � an . Thewinners’ decomposition (Can2014,Example 2)
first permutes an to the first place, which involves one swap in each position from the first to
the (n − 1)th, contributing by 1 + 1/2 + . . . 1/(n − 1) to the weighted distance. Thereafter,
it permutes an−1 to the second place, which involves one swap in each position from the
second to the (n − 1)th, contributing by 1/2+ . . . 1/(n − 1) to the weighted distance, and so
on. Thus the total weighted distance of two entirely opposite rankings is 1× 1+ 2 × 1/2 +
3 × 1/3 + · · · + (n − 1) × 1/(n − 1) = n − 1. �	

We do not know about any other application of Can (2014)’s novel method.
Distances of rankings of ETCC 2011 is presented in Table 1. All Kemeny distances

are significantly smaller than its maximum of 703 for entirely opposite rankings. Largest
values usually occur in comparison with Start since the latter is not influenced by the results.
However, rankings based on match points and board points are also relatively far from each
other. Official coincides with GRS1(RMB).
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Weighted distances are presented in Table A.1.b. Its maximum is 37. Ratio of Kemeny
and weighted distances are between 8.73 and 17.44 for ETCC 2011, and between 5.81 and
18.73 for ETCC 2013. In the second case accounting for swaps’ positions has a larger effect
but the discrepancy of the two distances remains smaller than expected, that is, variations are
more or less equally distributed along the rankings.

The ranking from GRS1(RMP )means a kind of tie-breaking rule for match points both in
ETCC 2011 and ETCC 2013: generalized row sum gives the match points ranking for ε = 0,
while a small increase in the parameter breaks ties among teams according to the strength of
their opponents. The official ranking also aims to eliminate ties, although it uses a different
approach.

The pairwise distances of 14 rankings can be plotted in a 13-dimensional space without
loss of information but it still seems to be unmanageable. Thereforemultidimensional scaling
(Kruskal andWish 1978) has been applied, similarly to Csató (2013). It is a statistical method
in information visualization for exploring similarities or dissimilarities in data, a textbook
application ofMDS is to draw cities on amap from thematrix consisting of their air distances.

Kemeny and weighted distances are measured on a ratio scale due to the existence of a
natural minimum and maximum. Then discrepancies of the reduced dimensional map are
linear functions of the original distances. Both Stress and RSQ tests for validity strengthen
that two dimensions are sufficient to plot the 14 rankings, however, one dimension is too
restrictive. Themethod produces amapwhere only the position of objects count, more similar
rankings are closer to each other. Only the distances of points representing the rankings yield
information, the meaning of the axes remains obscure.

MDS maps reinforce the conjecture from Table 1 that Start is far away from all other
rankings (see Csató 2016a, Fig. 2). Thus Start ranking is omitted from further analysis,
which improves the mapping, too.

There is not much difference between the four charts (ETCC 2011 vs. 2013, Kemeny
vs. weighted distances). MDS procedures of ETCC 2013 and Kemeny distances have more
favourable validity measures than MDS procedures of ETCC 2011 and weighted distances.
They reveal the following results shown by Fig. 2:

1. Start significantly differs from all other rankings since it does not depend on the results
of the tournament;

2. Generalized row sum rankings (with low λ) are more similar to the official one than least
squares;

3. The order of results matrices by the variability of rankings for a given scoring method is
RMP < RMB < RBM < RBP , a greater role of match points (smaller λ) stabilizes the
rankings;

4. The order of scoring procedures by the variability of rankings for a given results matrix is
LS < GRS2 < GRS1, a greater influence of opponents’ results stabilizes the rankings;

5. The effect of tie-breaking rule for match points is not negligible (Off and G1 are not very
close to each other).

On the basis of these observations, the application of least squares with a generalized
results matrix favouring match points (a low λ, for example, 1/4 as in RMB ) is proposed for
ranking in Swiss system chess team tournaments. It gives an incentive to score more board
points but still prefers match points.

3.3 Analysis of a ranking

The decomposition of the least squares rating (Csató 2015) offers another approach to com-
pare the rankings. The ranking problem is balanced and the comparisonmultigraph is regular,
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(a)

(b)

Fig. 2 MDS maps of rankings, ETCC 2013 (see Notation 2 for explanation) a Kemeny distance, without
Start. b Weighted distance, without Start

therefore Proposition 3 can be applied. In the zeroth step (q(0)) it gives the match points rank-
ing, the official ranking without the application of tie-breaking rules. After that, the iterated
ratings reflect the strength of opponents, opponents of opponents and so on by accounting
for their average match points as dI − L = M . A ranking equivalent to q(RMP ) is obtained
after the seventh (from q(7)(RMP )) and after the twelfth step (from q(12)(RMP )) in the case
of ETCC 2011 and ETCC 2013, respectively.

Table 2 shows the changes of teams’ positions in each step of the decomposition of the
ranking LS(RMP ) for ETCC 2013. In the second column (q(0)), ties are broken according to
the official rules, so it coincides with the official ranking. In subsequent steps there are no ties.
The last change is a swap of Turkey and Montenegro in the twelfth step of the iteration. The
least squares method is far from being only a tie-breaking rule for match points (contrary
to generalized row sum with ε1 = 1/324), a team may overtake another one despite its
disadvantage of two match points.

Correction according to opponents’ strength results in seven positions improvement for
Slovenia together with a four positions decline for Romania and six for Netherlands. Hence
Slovenia overtakes Netherlands despite it has a two match points disadvantage.8 Subsequent
steps of the iteration usually result in a similar direction of swaps, however, in a more
moderated extent. A notable exception is Romania, regaining some positions due to indirect
opponents. The monotonic decrease of absolute adjustments is violated only by Lithuania.

There are two changes among the top six teams. France becomes the winner of the tour-
nament after k = 2 instead of Azerbaijan. It can be debated since the latter team has no loss,
however, the schedule of France was more difficult. The swap of Russia and Armenia may

8 Tie-breaking rule T B4 (aggregated number of board points of the opponents) shows a similar direction of
adjustment.
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be explained by the advance on an outer circle of the former team (i.e. Russia had a worse
performance than Armenia during the first rounds of the tournament).

Imperfection of the official ranking is further highlighted byETCC2011, forwhichTable 3
contains the positional changes according to the iterative decomposition of LS(RMP ). Here
France scored three wins and three draws in the first six rounds but it has been defeated three
times after that, presenting an extreme example of advance on an inner circle. Thus France
had a more challenging schedule compared to teams with the same number of match points,
reflected in the significant adjustment by the least squares method.

On the other side, Serbia loses nine, and Georgia loses 14 positions. They had luck with
the opponents, for example, Georgia had not played against a better team according to the
official ranking, which is quite strange for a team at the 13th place. Consequently, both Serbia
and Georgia significantly benefit from decreasing ε or increasing the role of board points.

3.4 Assessment of the rankings

The 14 rankings are evaluated from three aspects:

• Predictive performance: ability to forecast the outcomes of future matches;
• Retrodictive performance: ability to match the results of contests already played;
• Robustness: stability between subsequent rounds.

The first two are standard aspects for the classification of mathematical ranking models
(Pasteur 2010). However, for the ranking of a Swiss system tournament, the second is much
more important: the aim is to get ameaningful ranking on the basis ofmatches already played,
shown by in-sample fit.

The third measure, stability, seems to be important because of (at least) two causes. First,
both the participants and the audience may dislike if the rankings are volatile. Naturally,
extreme stability is not favourable, too, but it is usually not a problem in a Swiss system
tournament. The second argument for robustness may be that the number of rounds is often
determined arbitrarily, for instance, it was 13 in the 2006 and 11 in the 2013 chess olympiads
with 148 and 146 teams, respectively.

Predictive and retrodictive performances are measured by the number of match and board
points scored by an underdog against a better team. It does not take into account the difference
of positions, only its sign.

Prediction power has a meaning only after the third round, when the comparison multi-
graph becomes connected. Start has the most favourable forecasting performance for the
remaining matches, especially in the first rounds, that is, match outcomes are determined
by teams’ ability rather than by their results in the competition (Csató 2016a, Figure A.1).
There is also no difference among the methods in prediction power if only the next round is
scrutinized (Csató 2016a, Figure A.2).

The fact that Start ranking is the best for forecastingmatch results reflects the insignificance
of prediction precision for a Swiss system tournament ranking: after all, what is the meaning
to organize a contest if its final result is determined by teams’ ability?

Retrodictive performance has a meaning after the third round, too, however, it is also
defined after the last round when prediction power cannot be interpreted. Least squares
method seems to be the best from this point of view, despite its statistical significance remains
dubious (Csató 2016a, Figure A.3). Generalized row sum is placed between the least squares
and official rankings. Choice of the results matrix and the tournament does not influence
these findings.
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(a)

(b)

Fig. 3 Robustness (distance between subsequent rounds), ETCC 2011 a Kemeny distance, results matrix

RMP . b Weighted distance, results matrix RMP

Stability is defined as the distance of rankings in subsequent rounds. It has no meaning for
Start but can be calculated for all other rankings from the third round. Figure 3 illustrates the
robustness of some rankings in ETCC 2011. Variability does not decrease monotonically, but
a solid decline is observed as the actual round gives relatively fewer and fewer information.
Ranking LS(RMP ) is the most robust according to both Kemeny and weighted distances,
followed by GRS2(RMP ), then GRS1(RMP ) and Official: rankings become less volatile
by taking into account the performance of opponents. Difference of absolute values seems
to be more significant in the case of weighted distance, the least squares method is robust
especially in the first, critical places. The order of variability LS < GRS2 < GRS1 is valid
for all other result matrices, however, GRS1 is sometimes more volatile than the official
ranking.
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In the case of ETCC 2013, these conclusions are more uncertain but least squares remains
themost stablewith the exceptionoffirst rounds (Csató 2016a, FigureA.4).Readers interested
in a somewhat more detailed analysis of the two tournaments are encouraged to study Csató
(2016a).

To summarize, the least squares method gives the most robust and legitimate ranking.
Therefore, its application is also recommended if the organizers want to mitigate the effects
of the (predetermined) number of rounds on the ranking.

4 Discussion

Thepaper has given an axiomatic analysis of ranking inSwiss systemchess team tournaments.
The framework is flexible with respect to the role of the opponents (parameter ε) and the
influence of match and board points (choice of the results matrix). The suggestedmethods are
close to the concept of official rankings (they coincide in the case of round-robin tournaments),
can be calculated iteratively or by solving a system of linear equations and have a clear
interpretation on the comparison multigraph. They also do not call for arbitrary tie-breaking
rules.

The model is tested on the results of the 2011 and 2013 European Team Chess Champi-
onship open tournaments, which supports the application of least squares method due to its
relative insensitivity to the choice between match and board points, retrodictive accuracy and
stability. There is an opportunity to take into account the number of board points scored by
using a generalized results matrix favouring match points (small λ close to zero). The find-
ings confirm that the official rankings have significant failures, therefore recursive methods,
similar to generalized row sum and least squares, are worth to consider for ranking purposes.

Naturally, the framework may have some disadvantages (Brozos-Vázquez et al. 2010):
a computer is needed in order to calculate the ranking of the tournament, and it will be
difficult for the players to verify and understand the whole procedure. However, we agree
with Forlano (2011) that ’The fact that players are not able to foresee the final standing should
not be considered a disadvantage but a way to force the players to play each round as the
decisive one.’ as well as ’The fact that the the players cannot replicate the method manually
should be seen of no significance.’ While the least squares method is more complicated than
usual tie-breaking rules, its simple graph interpretation (Csató 2015) and its similarity to an
’infinite Buchholz’ may help in the understanding.

Anyway, there usually exists a trade-off between simplicity and other favourable properties
(sample fit, robustness), and the use of more developed methods is worth to consider in the
case of Swiss system tournaments in order to avoid anomalies of the ranking,9 such as when
a Hungarian commentator speaks about ’the curse of the Swiss system’.10 It is not necessarily
the mistake of Swiss system rather a failure of the official ranking, which can be improved
significantly by accounting for the strength of opponents.

Nevertheless, the choice between simplicity andmore plausible rankings is not amodelling
issue. An alternative may be to use these methods only for tie-breaking purposes.

There are some obvious areas of future research. In the analysis several complications
observed have been neglected like matches played with black or white (an unavoidable
problem in individual tournaments) or different number of matches due to byes or unplayed

9 An excellent example is Georgia’s 13th place in ETCC 2011 such that it have not played any teams better
according to the official ranking.
10 See at http://sakkblog.postr.hu/sokan-palyaznak-dobogos-helyezesre-izgalmas-utolso-fordulo-dont.
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games. The choice of parameter ε also requires further investigation. Our findings can be
strengthened or falsified by the examination of other competitions and simulations of Swiss
system tournaments.

Finally, twopossible uses of the proposed rankingmethod areworth tomention. First, it can
be incorporated into the pairing algorithm, resulting in a more balanced schedules. Second,
extensive analysis of the stability of a ranking between subsequent rounds may contribute
to the choice of the number of rounds, which can be made endogenous as a function of the
number of participants and other restrictions.
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