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Abstract The bounded degree sum-of-squares (BSOS) hierarchy of Lasserre et al. (EURO
J Comput Optim 1–31, 2015) constructs lower bounds for a general polynomial optimization
problem with compact feasible set, by solving a sequence of semi-definite programming
(SDP) problems. Lasserre, Toh, and Yang prove that these lower bounds converge to the
optimal value of the original problem, under some assumptions. In this paper, we analyze
the BSOS hierarchy and study its numerical performance on a specific class of bilinear
programming problems, called pooling problems, that arise in the refinery and chemical
process industries.

Keywords Sum-of-squares hierarchy · Bilinear optimization · Pooling problem ·
Semidefinite programming

1 Introduction

Polynomial programming is the class of nonlinear optimization problems involving polyno-
mials only:
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f ∗ = inf
x∈Rn

f (x)

s.t. g j (x) ≥ 0, j = 1, . . . ,m,
(1)

where f and all g j are n-variate polynomials. We will assume throughout that

– the feasible set F = {x ∈ Rn | g j (x) ≥ 0, j = 1, . . . ,m} is compact;
– for all x ∈ F one has g j (x) < 1, j = 1, . . . ,m.

The second condition is theoretically without loss of generality (by scaling the g j ).
In general, these problems are NP-hard, since they contain problems like the maximum

cut problem as special cases; see e.g. Laurent (2009). In 2015, Lasserre et al. introduced
the so-called bounded degree sum-of-squares (BSOS) hierarchy to obtain a nondecreasing
sequence of lower bounds on the optimal value of problem (1) when the feasible set is
compact. Each lower bound in the sequence is the optimal value of a semidefinite program-
ming (SDP) problem. Moreover, the authors of Lasserre et al. (2015) showed that, under
some assumptions, this sequence converges to the optimal value of problem (1). From their
numerical experiments, they concluded that the BSOS hierarchy was efficient for quadratic
problems.

In this paper, we analyze the BSOS hierarchy in more detail. We also study variants of
the BSOS hierarchy where the number of variables is reduced.

The numerical results in this paper are on pooling problems, that belong to the class
of problems with bilinear functions. The pooling problem is well-studied in the chemical
process and petroleum industries. It has also been generalised for application to wastewater
networks; see e.g. Karuppiah and Grossmann (2006). It is a generalization of a minimum
cost network flow problem where products possess different specifications. There are many
equivalent mathematical models for a pooling problem and all of them include bilinear
functions in their constraints. Haverly (1978) described the so-called P-formulation, and
afterwards many researchers used this model (e.g. Adhya et al. 1999; Ben-Tal et al. 1994;
Foulds et al. 1992). Also, there are Q-, PQ-, and TP-formulations; in this paper, we use the
P- and PQ-formulations and point the reader to the survey by Gupte et al. (2017) where all
the formulations are described, as well as the PhD thesis by Alfaki (2012).

One way of getting a lower bound for a pooling problem is using convex relaxation,
as done e.g. by Foulds et al. (1992). Similarly, Adhya et al. (1999) introduced a Lagrangian
approach to get tighter lower bounds for pooling problems. Also, there are many other papers
studying duality (Ben-Tal et al. 1994), piecewise linear approximation (Misener et al. 2011),
heuristics for finding a good feasible solution (Alfaki and Haugland 2014), etc. A relatively
recent survey on solution techniques is Misener and Floudas (2009).

In a seminal paper in 2000, Lasserre (2001) first introduced a hierarchy of lower bounds
for polynomial optimization using SDP relaxations. Frimannslund et al. (2010) tried to solve
pooling problems with the LMI relaxations obtained by this hierarchy. They found that, due
to the growth of the SDP problem sizes in the hierarchy, this method is not effective for the
pooling problems. In this paper, we therefore consider the BSOS hierarchy as an alternative,
since it is not so computationally intensive.

The structure of this paper is as follows: We describe the BSOS hierarchy in Sect. 2.
In Sect. 3 the pooling problem is defined, and we review three mathematical models for it,
namely the P-, Q- and PQ-formulations. Also, we solve some pooling problems by the BSOS
hierarchy in this section. Section 4 contains the numerical results after a reduction in the
number of linear variables and constraints in each iteration of the BSOS hierarchy.
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2 The bounded degree SOS (BSOS) hierarchy for polynomial optimization

In this section, we briefly review the background of the BSOS hierarchy from Lasserre et al.
(2015). For easy reference, we will use the same notation as in Lasserre et al. (2015).

In what follows Nk will denote all k-tuples of nonnegative integers, and we define

Nk
d =

{
α ∈ Nk :

k∑
i=1

αi ≤ d

}
.

The space of n × n symmetric matrices will be denoted by Sn , and its subset of positive
semidefinite matrices by Sn+.

Consider the general nonlinear optimization problem (1). For fixed d ≥ 1, the following
problem is clearly equivalent to (1):

min
x

f (x)

s.t.
m∏
j=1

g j (x)
α j (1 − g j (x))

β j ≥ 0, ∀(α, β) ∈ N2m
d .

(2)

The underlying idea of the BSOS hierarchy is to rewrite problem (1) as

f ∗ = sup
t

{t : f (x) − t ≥ 0 ∀x ∈ F} .

The next step is to use the following positivstellensatz by Krivine (1964) to remove the
quantifier ‘∀x ∈ F’.

Theorem 1 ([14], see also §3.6.4 in Laurent 2009) Assume that g j (x) ≤ 1 for all x ∈ F
and j = 1, . . . ,m, and {1, g1, . . . , gm} generates the ring of polynomials. If a polynomial g
is positive on F then

g(x) =
∑

(α,β)∈N2m

λαβ

m∏
j=1

g j (x)
α j (1 − g j (x))

β j

for finitely many λαβ > 0.

Defining

hαβ(x) :=
m∏
j=1

g j (x)
α j (1 − g j (x))

β j , x ∈ Rn, α, β ∈ Nm,

we arrive at the following sequence of lower bounds (indexed by d) for problem (1):

f ∗ ≥ sup
t

⎧⎪⎨
⎪⎩t : f (x) − t =

∑
(α,β)∈N2m

d

λαβhαβ(x)

⎫⎪⎬
⎪⎭ . (3)

For a given integer d > 0 the right-hand-side is a linear programming (LP) problem, and the
lower bounds converge to f ∗ in the limit as d → ∞, by Krivine’s positivstellensatz. This
hierarchy of LP bounds was introduced by Lasserre (2005).
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A subsequent idea, from Lasserre et al. (2015) was to strengthen the LP bounds by enlarg-
ing its feasible set as follow: If we fix κ ∈ N, and denote by

∑[x]κ the space of sums of
squares polynomials of degree at most 2κ , then we may define the bounds

qκ
d := sup

t,λ

⎧⎪⎨
⎪⎩t : f (x) − t −

∑
(α,β)∈N2m

d

λαβhαβ(x) ∈ Σ[x]κ

⎫⎪⎬
⎪⎭ .

The resulting problem is a semidefinite programming (SDP) problem, and the size of the
positive semidefinite matrix variable is determined by the parameter κ , hence the name
bounded-degree sum-of-squares (BSOS) hierarchy. By fixing κ to a small value, the resulting
SDP problem is not much harder to solve than the preceding LP problem, but potentially
yields a better bound for given d .

For fixed κ and for each d , one has

qκ
d = sup

t,λ,Q
t

s.t. f (x) −
∑

(α,β)∈N2m
d

λαβhαβ(x) − t = trace
(
Qvκ(x)vκ(x)T

)
,

Q ∈ Ss(κ)
+ , λ ≥ 0,

(4)

where s(κ) = (n+κ
κ

)
, and vκ(x) is a vector with a basis for the n-variate polynomials up to

degree κ .
Letting τ = max{deg( f ), 2κ, d max j deg(g j )}, we may eliminate the variables x in two

ways to get an SDP problem:

– Equate the coefficients of the polynomials on both sides of the equality in (4), i.e. use the
fact that two polynomials are identical if they have the same coefficients in some basis.

– Use the fact that two n-variate polynomials of degree τ are identical if their function
values coincide on a finite set of s(τ ) = (n+τ

τ

)
points in general position.

The second way of obtaining an SDP problem is called the ‘sampling formulation’, and was
first studied in Lofberg and Parrilo (2004). It was also used for the numerical BSOS hierarchy
calculations in Lasserre et al. (2015), with a set of s(τ ) randomly generated points in Rn .

We will instead use the points

Δ(n, τ ) =
{
x ∈ Rn

∣∣∣∣∣ τ x ∈ Nn,

n∑
i=1

xi ≤ 1

}
.

Thus we obtain the following SDP reformulation of (4):

qκ
d = sup

t,λ,Q
t

f (x) −
∑

(α,β)∈N2m
d

λαβhαβ(x) − t = trace
(
Qvκ(x)vκ(x)T

)
,∀x ∈ Δ(n, τ )

Q ∈ Ss(κ)
+ , λ ≥ 0.

(5)

The following theorem, proved in Lasserre et al. (2015), gives some information on fea-
sibility and duality issues for the BSOS relaxation.
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Theorem 2 (Lasserre et al. 2015) If problem (1) is Slater feasible, then so is the dual SDP
problem of (5). Thus (by the conic duality theorem), if the SDP problem (5) has a feasible
solution, it has an optimal solution as well.

Note that problem (5) may be infeasible for given d and κ . One only knows that it will be
feasible, and therefore qκ

d will be defined, for sufficiently large d .

Remark 1 Assume that at the d-th level of the hierarchy we have qκ
d = f ∗, i.e. finite con-

vergence of the BSOS hierarchy, then

f (x) − f ∗ =
∑

(α,β)∈N2m
d

λαβhαβ(x) + vκ(x)T Qvκ(x) ∀x ∈ R. (6)

Let x∗ ∈ F be an optimal solution ( f (x∗) = f ∗), then it is clear from (6) that

0 =
∑

(α,β)∈N2m
d

λαβhαβ(x∗) + vκ(x∗)T Qvκ(x∗) ∀x ∈ R,

and due to the fact that Q is positive semidefinite, then

λαβhαβ(x∗) = 0 ∀(α, β) ∈ N2m
d . (7)

Hence, for an (α, β) ∈ N2m
d , if hαβ(x) is not binding at an optimal solution, then λαβ = 0.

We will use this observation to reduce the number of variables later on. 	


3 The P-, Q- and PQ-formulations of the pooling problem

In this section, we describe the P-, Q- and PQ-formulations of the pooling problem. The
notation we are using is the same as in Gupte et al. (2017). To define the pooling problem,
consider an acyclic directed graph G = (N ,A) whereN is the set of nodes and A is the set
of arcs. This graph defines a pooling problem if:

(i) the set N can be partitioned into three subsets I,L and J , where I is the set of inputs
with I members, L is the set of pools with L members and J is the set of outputs with
J members.

(ii) A ⊆ (I × L) ∪ (I × J ) ∪ (L × L) ∪ (L × J ); see Fig. 1.

In this paper, we consider cases where A ∩ L × L = ∅, which is called standard pooling
problem because there is no arc between the pools.

For each arc (i, j) ∈ A, let ci j be the cost of sending a unit flow on this arc. For each node,
there is possibly a capacity restriction, which is a limit for sum of the incoming (outgoing)
flows to a node. The capacity restriction is denoted by Ci for each i ∈ N . Also, there are
some specifications for the inputs, e.g. the sulfur concentrations in them, which are indexed
by k in a set of specifications K with K members. By letting yi j be the flow from node i to
node j, ui j the restriction on yi j that can be carried from i to j , and plk the concentration
value of kth specification in the pool l, the pooling problem can be written as the following
optimization model:

min
y,p

∑
(i, j)∈A

ci j yi j (8)
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OutputsPoolsInputs

1 1 1

2 2 2

...
...

...

I L J

Fig. 1 An example of a standard pooling problem with I inputs, L pools and J outputs

s.t. ∑
i∈I:

(i,l)∈A

yil =
∑
j∈J :

(l, j)∈A

yl j , l ∈ L (9)

∑
j∈L∪J :
(i, j)∈A

yi j ≤ Ci , i ∈ I (10)

∑
j∈J :

(l, j)∈A

yl j ≤ Cl , l ∈ L (11)

∑
i∈I∪L
(i, j)∈A

yi j ≤ C j , j ∈ J (12)

0 ≤ yi j ≤ ui j , (i, j) ∈ A (13)∑
i∈I:

(i,l)∈A

λik yil = plk
∑
j∈J :

(l, j)∈A

yl j , l ∈ L, k ∈ K (14)

∑
i∈I:

(i, j)∈A

λik yi j +
∑
l∈L:

(l, j)∈A

plk yl j ≤ μmax
jk

∑
i∈I∪L:
(i, j)∈A

yi j , j ∈ J , k ∈ K (15)
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∑
i∈I:

(i, j)∈A

λik yi j +
∑
l∈L:

(l, j)∈A

plk yl j ≥ μmin
jk

∑
i∈I∪L:
(i, j)∈A

yi j , j ∈ J , k ∈ K (16)

whereμmax
jk andμmin

jk are the upper and lower bound of the kth specification in output j ∈ J ,
and λik is the concentration of kth specification in the input i . Here is a short interpretation
of the constraints:

(9): volume balance between the incoming and outgoing flows in each pool.
(10): capacity restriction for each input.
(11): capacity restriction for each pool.
(12): capacity restriction for each output.
(13): limitation on each flow.
(14): specification balance between the incoming and outgoing flows in each pool.
(15): upper bound of the output specification.
(16): lower bound of the output specification.

For a general pooling problem, the aforementioned model is called the P-formulation.
Consider a pool l ∈ L and the arc incident to it from input i ∈ I. Let us denote by qil the ratio
between the flow in this arc and the total incoming flow to this pool. So, yil = qil

∑
j∈J yl j ,

and plk = ∑
i∈I λikqil for any k ∈ K. Applying these to the P-formulation yields the

following problem called the Q-formulation:

min
y,p

∑
(i, j)∈A

ci j yi j

s.t.

(10) − (13)∑
i∈I:

(i,l)∈A

qil = 1, qil ≥ 0, l ∈ L, i ∈ I, (i, l) ∈ A

yil = qil
∑
j∈J :

(l, j)∈A

yl j , l ∈ L, i ∈ I, (i, l) ∈ A

∑
i∈I:

(i, j)∈A

λik yi j +
∑
l∈L:

(l, j)∈A

∑
i∈I:

(i,l)∈A

λikqil yl j ≤ μmax
jk

∑
i∈I∪L:
(i, j)∈A

yi j , j ∈ J , k ∈ K

∑
i∈I:

(i, j)∈A

λik yi j +
∑
l∈L:

(l, j)∈A

∑
i∈I:

(i,l)∈A

λikqil yl j ≥ μmin
jk

∑
i∈I∪L:
(i, j)∈A

yi j , j ∈ J , k ∈ K. (17)

Adding two sets of redundant constraints

yl j
∑
i∈I:

(i,l)∈A

qil = yl j , l ∈ L, j ∈ J , (l, j) ∈ A, (18a)

qil
∑
j∈J :

(l, j)∈A

yl j ≤ Clqil , i ∈ I, l ∈ L, (i, l) ∈ A, (18b)

gives an equivalent problem, called the PQ-formulation. It is clear that all formulations are
nonconvex quadratic optimization problems which are not easy to solve (Haugland 2016).
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3.1 McCormick relaxation and the pooling problem

Assume that x and y are variables with given lower and upper bounds

	x ≤ x ≤ ux , 	y ≤ y ≤ uy .

Then, the following inequalities are implied when χ = xy:

χ ≥ 	x y + 	y x − 	x	y, (19a)

χ ≥ ux y + uyx − uxuy, (19b)

χ ≤ 	x y + uyx − 	xuy, (19c)

χ ≤ ux y + 	y x − ux	y . (19d)

It is known that the convex hull of

B := {
(x, y, χ)

∣∣ χ = xy, 	x ≤ x ≤ ux , 	y ≤ y ≤ uy
}
,

which is called the McCormick relaxation (Gupte et al. 2017), is exactly the set of (x, y, χ)

that satisfies the inequalities (19).
In the pooling problem, the following lower and upper bounds on the variables are implied:

mλ := mini∈I λik ≤ plk ≤ Mλ := maxi∈I λik, ∀l ∈ L, k ∈ K,

0 ≤ yl j ≤ min{C j , ul j }, ∀ j ∈ J , l ∈ L.

So, one can get a lower bound by using the McCormick relaxation of each bilinear term in
the P- or PQ-formulations.

The redundant constraints (18) guarantee that the relaxation obtained by using the
McCormick relaxation for the PQ-formulation is stronger than that for the P-formulation
(Gupte et al. 2017).

In this paper, we are going to use the BSOS hierarchy to find a sequence of lower bounds
that converges to the optimal value of the pooling problem. First we analyze the P-formulation
and in Sect. 4.3 we compare the results by using the PQ-formulation.

3.2 Solving pooling problems with the BSOS hierarchy

The BSOS hierarchy is only defined for problems without equality constraints and the P-
formulation has (K + 1)L equality constraints. The simplest way of dealing with equality
constraints, is to replace each equality constraint by two inequalities; however, this process
increases the number of constraints which is not favorable for the BSOS hierarchy. Another
way of doing so is eliminating the equality constraints (9) and (14), if possible.

3.2.1 Eliminating equality constraints

Let l ∈ L. We assume without loss of generality that the first t inputs feed the pool l.
Therefore, equality constraints (9) and (14) can be written as follows:⎛

⎜⎜⎜⎜⎜⎝

1 1 . . . 1
λ11 λ21 . . . λt1
λ12 λ22 . . . λt2
...

...
. . .

...

λ1K λ2K . . . λt K

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A:=

⎡
⎢⎢⎢⎣
y1l
y2l
...

ytl

⎤
⎥⎥⎥⎦ =

∑
j∈J :

(l, j)∈A

yl j

⎡
⎢⎢⎢⎢⎢⎣

1
pl1
pl2
...

plK

⎤
⎥⎥⎥⎥⎥⎦ l ∈ L. (20)
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Let rank(A) = r . Applying a singular value decomposition (see, e.g. Boyd and Vanden-
berghe 2004, Appendix A.5.4), there are matrices U = [U1,U2] ∈ R(K+1)×(K+1), V =
[V1, V2] ∈ Rt×t ,Σ ∈ Rr×r such that

A = U

[
Σ 01
02 03

]
V T ,UTU = I, V T V = I,

Σ = diag(σ1, . . . , σr ), σ1 > σ2 > · · · > σr > 0,

where V1 ∈ Rt×r , V2 ∈ Rt×(t−r),U1 ∈ R(K+1)×r ,U2 ∈ R(K+1)×(K+1−r), 01 ∈
Rr×(t−r), 02 ∈ R(K+1−r)×r , 03 ∈ R(K+1−r)×(t−r). Therefore, (20) can be written as

V T
1

⎡
⎢⎢⎢⎣
y1l
y2l
...

ytl

⎤
⎥⎥⎥⎦ =

⎛
⎜⎜⎜⎝
∑
j∈J :

(l, j)∈A

yl j

⎞
⎟⎟⎟⎠Σ−1UT

1

⎡
⎢⎢⎢⎢⎢⎣

1
pl1
pl2
...

plK

⎤
⎥⎥⎥⎥⎥⎦ l ∈ L, (21)

0 =

⎛
⎜⎜⎜⎝
∑
j∈J :

(l, j)∈A

yl j

⎞
⎟⎟⎟⎠UT

2

⎡
⎢⎢⎢⎢⎢⎣

1
pl1
pl2
...

plK

⎤
⎥⎥⎥⎥⎥⎦ l ∈ L. (22)

The fact that V T V = I , implies that all columns in V , and hence in V1 are linearly inde-
pendent. Therefore, taking the QR decomposition of V T

1 , i.e., V T
1 = Q[R1, R2], where

R1 ∈ Rr×r is upper triangular and invertible, R2 ∈ Rr×(t−r), and Q ∈ Rr×r is orthonormal
(QT Q = QQT = I ), (21) is equivalent to

⎡
⎢⎢⎢⎣
y1l
y2l
...

yrl

⎤
⎥⎥⎥⎦ = R−1

1

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎝
∑
j∈J :

(l, j)∈A

yl j

⎞
⎟⎟⎟⎠ QTΣ−1UT

1

⎡
⎢⎢⎢⎢⎢⎣

1
pl1
pl2
...

plK

⎤
⎥⎥⎥⎥⎥⎦− R2

⎡
⎢⎢⎢⎣
y(r+1)l
y2l
...

ytl

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠ , l ∈ L. (23)

Note that one may use Eq. (23) to eliminate the variables y1l , y2l , . . . , yrl .
Concerning (22), if, for a feasible solution of (8)–(16),

∑
j∈J yl j = 0, then any other

choice of the values plk, k = 1, . . . , K , gives another feasible solution. So in this case one
may choose values that satisfy

0 = UT
2

⎡
⎢⎢⎢⎢⎢⎣

1
pl1
pl2
...

plK

⎤
⎥⎥⎥⎥⎥⎦ , (24)

which is a system of K variables and K − r + 1 linearly independent equalities with r ≥ 1.
Conversely, a feasible solution with the property

∑
j∈J yl j �= 0 definitely satisfies (24). So,

instead of (22), wemay solve (24), whichmay be done using the QR decomposition. Thus we
may write plr , . . . , plK as a linear function of pl1, . . . , pl(r−1), and subsequently eliminate
plr , . . . , plK as well.
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Table 1 Details for some well-known pooling problem instances

Optimal value PQ-linear relaxation
value (Alfaki and
Haugland 2013; Dey
and Gupte 2015)

I J L K # var. # const.

Haverly1 − 400.00 −500.00 3 2 1 1 5 11

Haverly2 −600.00 −1000.00 3 2 1 1 5 11

Haverly3 −750.00 −800.00 3 2 1 1 5 11

Ben-Tal4 −450.00 −550.00 4 2 1 1 6 13

Ben-Tal5 −3,500.00 −3500.00 5 5 3 2 29 54

DeyGupte4 −1.00 [−4,−3] 2 4 2 2 10 52

Foulds2 −1100.00 −1100.00 6 4 2 1 18 38

Foulds3 −8.00 −8.00 11 16 8 1 152 219

Foulds4 −8.00 −8.00 11 16 8 1 152 219

Adhya1 −549.80 −840.27 5 4 2 4 11 41

Adhya2 −549.80 −574.78 5 4 2 6 11 53

Adhya3 −561.05 −574.78 8 4 3 6 17 66

Adhya4 −877.6. −961.93 8 5 2 4 16 51

RT2 −4391.83 −6034.87 3 3 2 8 14 67

sppA0 Unknown* −37,772.75 20 15 10 24 161 816

* The optimal value for this instance is not known exactly, but known to lie in the interval
[−36233.40,−35812.33]

Remark 2 We emphasize that after these substitutions, the equivalent mathematical model
to the pooling problem is still nonconvex quadratic optimization problem.

Remark 3 The interpretation of eliminating equality constraints is as followswhen thematrix
A is full rank (rank(A) = min{K + 1, t}): For pools with exactly K + 1 entering arcs, the
entering flow values are given by the total leaving flow and the concentrations in the pool.
With more than K + 1 arcs, say t, t − K − 1 flow values can be chosen freely and the
remaining K + 1 determined by total leaving flow and concentrations. When t < K + 1, a
basis of t concentration values define the K + 1 − t remaining ones.

3.2.2 First numerical results

In this section, we study convergence of the BSOS hierarchy of lower bounds q1d (d =
1, 2, . . .) for pooling problems (κ = 1). First, it is worth pointing out the number of variables
and constraints needed to compute q1d . The number of constraints, as it is mentioned in the

previous section, is
(n+2d

2d

)
. Also, the number of linear variables is one more than the size of

N2m
d , namely

(2m+d
d

)+ 1.
Table 1 gives some information of the standard pooling problem instances we use in this

paper. The GAMS files of the pooling problem instances that we use in this paper, except
DeyGupte4, can be found on the website http://www.ii.uib.no/~mohammeda/spooling/.
DeyGupte4 is constructed in this paper (Appendix) by using the results of Dey and Gupte
(2015). In Table 1, we recall in column “PQ-linear relaxation value” the lower bound pro-
posed in Alfaki and Haugland (2013) of each instance. This lower bound is the optimal
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Inputs Pools Outputs

(6, 3)

4
(9, 100)

2.5

(16, 1)

(10,2) (15, 200)
1.5

Format: (cil, λik)
(−clj , Cj)

μmax
jk

0

100

0

1000

100

y∗
il

y∗
lj

Fig. 2 Optimal solution for Haverly1

value of the PQ-formulation after applying McCormick relaxation for each bilinear term. It
is proved in Dey andGupte (2015) that any optimal value of a piecewise linear approximation
of the PQ-formulation (for a precise definition see Appendix) for DeyGupte4, has optimal
value in [−4,−3]. Also, columns “# var.” and “# const.” contain the number of variables
and constraints in the P-formulation after eliminating equality constraints, respectively.

Example 1 By way of example, we give the details for the first instance in Table 1, called
Haverly1. Its optimal solution is shown in Fig. 2, and the optimal value is−400 (Adhya et al.
1999). The optimal flow from node i to node j is denoted by y∗

i j in Fig. 2.
This instance has three inputs (denoted by 1, 2, 3), one pool (denoted by 4), two outputs

(denoted by 5, 6), and one specification. The mathematical model for this instance is as
follows:

min 6y14 + 16y24 + 10 [y35 + y36] − 9 [y45 + y35] − 15 [y46 + y36]

s.t. y14 + y24 = y45 + y46,

0 ≤ y45 + y35 ≤ 100, (25a)

0 ≤ y46 + y36 ≤ 200, (25b)

3y14 + y24 = p1 [y45 + y46] ,

2y35 + p1y45 ≤ 2.5 [y35 + y45] , (25c)

3y36 + p1y46 ≤ 1.5 [y36 + y46] ,

yi j ≥ 0, p1 ≥ 0. (25d)

So, we can use the elimination method described in the previous section, which implies that
y14 = 1

2 (y45+ y46)(p1−1), y24 = 1
2 (y45+ y46)(3− p1). Therefore, the reformulated model
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of this instance using scaling x1 := p1
3 , x2 := y45

200 , x3 := y46
200 , x4 := y35

200 , x5 := y36
200 , is

min −200x2(15x1 − 12) − 200x3(15x1 − 6) + 200x4 − 1000x5

s.t. 1 ≥ − 3

4
(x1 − 1)(x2 + x3) ≥ 0 (26a)

1 ≥ 1

4
(3x1 − 1)(x2 + x3) ≥ 0 (26b)

1 ≥ 1 − 2(x2 + x4) ≥ 0 (26c)

1 ≥ 1 − (x3 + x5) ≥ 0 (26d)

1 ≥ 1

2
(x4 + x2) − 2

5
x4 − 3

5
x1x2 ≥ 0 (26e)

1 ≥ 1

2
(x5 + x3) − 2

3
x5 − x1x3 ≥ 0

1 ≥ xi ≥ 0, i = 1, . . . , 5, (26f)

where the leftmost inequalities are redundant, (26a) and (26b) are from the sign constraints
after the elimination, (26c), (26d), (26e), and (26f) are from (25a), (25b), (25c) and (25d),
respectively.

The last step is to multiply the constraint functions by a factor 0.9 (any value in (0, 1)
will do, but we used 0.9 for our computations), to ensure that the ‘≤ 1’ conditions hold with
strict inequality on the feasible set. Thus, we define g1(x) = −0.9 · 3

4 (x1 − 1)(x2 + x3), etc.
We will use the BSOS hierarchy to find the optimal value of this example (Table 2). 	

The results forHaverly1 and the other pooling problem instances are listed in Table 2. All

computations in this paper were carried out with MOSEK 8 on an Intel i7-4790 3.60 GHz
Windows computer with 16 GB of RAM. “Numerical Prob.” and “≈” in the tables mean
the solver reported a numerical problem, and only obtained an approximate optimal value,
respectively. In all the tables from now on, columns “# lin. var.”, “size of SDP var.” and “#
const.” present the number of linear variables, the size of the semidefinite matrix variable
and the number of constraints in the hierarchy.

As it is clear, in order to compute qκ
d we can have a large number of linear variables and

constraints (depending of d), which affects the speed and the time we need to solve (5).
In the coming section, we describe how one can reduce the number of linear variables and
constraints at each level of the BSOS hierarchy significantly.

4 Reduction in the number of linear variables and constraints

In this section, we propose a method to reduce the number of linear variables and an upper
bound for the number of linearly independent constraints in each iteration.
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Table 2 Results for computing the lower bounds q1d for various pooling problem instances

Iteration Time Solution # Lin. var. Size of SDP var. # Const.

Haverly1 d = 1 0.01s −600.00 23 6 21

d = 2 0.03s −417.20 276 6 126

d = 3 0.47s −400.00 2300 6 462

Haverly2 d = 1 0.01s −1200 23 6 21

d = 2 0.03s −601.67 276 6 126

d = 3 0.39s −600.00 2300 6 462

Haverly3 d = 1 0.02s −875.00 23 6 21

d = 2 0.03s −750.00 276 6 126

Ben-Tal4 d = 1 0.02s −650.00 27 7 28

d = 2 0.03s −467.20 378 7 210

d = 3 1.44s −450.00 3654 7 924

Ben-Tal5 d = 1 0.06s −3500.00 109 30 465

DeyGupte4 d = 1 0.02s −4.00 105 11 66

d = 2 4.60s −3.86 5565 11 1001

d = 3 – – 198,485 11 8008

Foulds2 d = 1 0.01s −1200.00 77 19 190

d = 2 109.20s −1191.30 3003 19 7315

d = 3 – – 79,079 19 134,596

Foulds3 d = 1 90.84s −8.00 439 153 11,781

Foulds4 d = 1 92.85s −8.00 439 153 11,781

Adhya1 d = 1 0.02s −999.32 83 12 78

d = 2 4.26s ≈−723.94 3486 12 1365

d = 3 – – 98,770 12 12,376

Adhya2 d = 1 0.02s −798.29 107 12 78

d = 2 11.51s ≈−576.82 5778 12 1365

d = 3 – – 209,934 12 12,376

Adhya3 d = 1 0.03s −882.84 133 18 171

d = 2 135.39s ≈−802.89 8911 18 5985

d = 3 – – 400,995 18 100,947

Adhya4 d = 1 0.02s −1055.00 103 17 153

d = 2 52.59s ≈−1035.00 5356 17 4845

d = 3 – – 187,460 17 74,613

RT2 d = 1 0.02s −45,420.50 135 15 120

d = 2 30.84s −36,542.19 9180 15 3060

d = 3 – – 419,220 15 38,760

sppA0 d = 1 273.00s −47,675.00 1633 162 13,203

d = 2 – – 1,334,161 162 29,772,765

Bold faced entries correspond to the optimal solution
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4.1 Reduction in the number of variables

As it ismentioned inRemark 1, ifwe can identify constraints that are not binding at optimality,
then we can reduce the number of variables.

In particular, by construction the constraints g j (x) ≤ 1will never be binding at optimality.
Recalling that the variable λαβ corresponds to

hαβ(x) :=
m∏
j=1

g j (x)
α j (1 − g j (x))

β j , x ∈ Rn,

we know from Remark 1 that, in case of finite convergence, we will have λαβ = 0 whenever
α = 0.

Hence, instead of solving (5) to compute qκ
d , we may compute the following (weaker)

bound more efficiently:

q̂κ
d := sup

t,λ,Q
t

f (x) −
∑

(α,β)∈N2m
d

α �=0

λαβhαβ(x) − t = trace
(
Qvκ(x)vκ(x)T

)
, ∀x ∈ Δ(n, τ ),

Q ∈ Ss(κ)
+ , λ ≥ 0.

(27)

The advantage of (27) is that it has
(m+d

d

)
fewer nonnegative variables than (5). We

emphasize that problem (27) is not equivalent to (5), i.e. the lower bounds qκ
d and q̂κ

d are not
equal in general — the bound q̂κ

d is weaker, and may be strictly weaker.
The precise relation of the bounds qκ

d and q̂κ
d is spelled out in the next theorem, which

follows from the argument in Remark 1.

Theorem 3 If, for given d and κ, qκ
d and q̂κ

d are both finite, then q̂κ
d ≤ qκ

d . Moreover, if the
sequence qκ

d (d = 1, 2, . . .) from (5) converges finitely to f ∗, then so does q̂κ
d (d = 1, 2, . . .)

from (27). More precisely, if qκ
d∗ = f ∗ for some d∗ ∈ N, then q̂κ

d∗ = f ∗.
It is important to note that finite convergence of the sequence qκ

d (d = 1, 2, . . .) is not guar-
anteed in general. Sufficient conditions for finite convergence are described in Lasserre et al.
(2015).

The numerical results for using (27) for the pooling problem instances is demonstrated in
Table 3. The “rel. time” column from this table onward gives the solution time for each level
of the hierarchy as a ratio of that in Table 2, which shows that there is a significant reduction
in computational times when compared to Table 2.

4.2 Reduction in the number of constraints

From now on we fix κ = 1 and v1(x) = (1, x1, . . . , xn). As it was mentioned, the number
of constraints in each level of the BSOS hierarchy is

(n+2d
2d

)
, where n is the number of

variables in the original problem (1) and d is the level of the BSOS hierarchy. So, the number
of constraints increases quickly with d . In this subsection, we discuss the redundancy of
constraints and how we can eliminate linearly dependent constraints.

Let svec denote the map from the (n + 1) × (n + 1) symmetric matrix space Sn+1 to

R1×(n+2
2 ) given by

svec(X) =
[
X11,

√
2X12, X22, . . . ,

√
2Xn(n+1), X(n+1)(n+1)

]
, ∀X ∈ Sn+1.
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Table 3 Results for computing the lower bounds q̂1d for pooling problem instances using (27)

Iteration Rel. time Solution # Lin. var. Size of SDP var. # Const.

Haverly1 d = 1 1 −600.00 11 6 21

d = 2 1 −417.20 198 6 126

d = 3 0.60 −400.00 1936 6 462

Haverly2 d = 1 1 −1200.00 11 6 21

d = 2 1 −601.67 198 6 126

d = 3 0.79 −600.00 1936 6 462

Haverly3 d = 1 1 −875.00 11 6 21

d = 2 1 −750.00 198 6 126

Ben-Tal4 d = 1 1 −650.00 14 7 28

d = 2 1 −467.20 274 7 210

d = 3 0.73 −450.00 3095 7 924

Ben-Tal5 d = 1 0.83 −3500.00 55 30 465

DeyGupte4 d = 1 1 −4.00 53 11 66

d = 2 0.62 −3.86 4135 11 1001

d = 3 – – 172,250 11 8008

Foulds2 d = 1 1 −1200.00 39 19 190

d = 2 0.85 −1191.29 2224 19 7315

d = 3 – – 66,419 19 134,596

Foulds3 d = 1 0.94 −8.00 220 153 11,781

Foulds4 d = 1 0.92 −8.00 220 153 11,781

Adhya1 d = 1 1 −999.32 42 12 78

d = 2 0.95 ≈−723.94 2583 12 1365

d = 3 – – 85,526 12 12,376

Adhya2 d = 1 1 −798.29 54 12 78

d = 2 0.55 ≈−576.82 4293 12 1365

d = 3 – – 182,214 12 12,376

Adhya3 d = 1 1 −882.84 67 18 171

d = 2 0.69 ≈−802.82 6634 18 5985

d = 2 – – 348,601 18 100,947

Adhya4 d = 1 1 −1055.00 52 17 153

d = 2 0.71 ≈−1035.10 3979 17 4845

d = 3 – – 162,657 17 74,613

RT2 d = 1 1 −45,420.48 68 15 120

d = 2 0.65 −36,542.06 6836 15 3060

d = 3 – – 419,220 15 38,760

sppA0 d = 1 0.99 −47,6750.00 817 162 13,203

d = 2 – – 1,000,008 162 29,772,765

Bold faced entries correspond to the optimal solution

It will also be convenient to number the elements of Δ(n, τ ) as x1, . . . , x L where L = s(τ ).
Finally, we will use the notation |β| = ∑

i βi .
So, for d ≥ 1 and κ = 1 we may write the linear equality constraints in (5) as Hd yd = bd ,

where
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Hd =

⎡
⎢⎢⎣
1
(
hαβ(x1)

)
(α,β)∈N2m

d
svec

(
v1(x1)v1(x1)T

)
...

...
...

1
(
hαβ(x L)

)
(α,β)∈N2m

d
svec

(
v1(x L)v1(x L)T

)
⎤
⎥⎥⎦ ,

bd =
⎡
⎢⎣

f (x1)
...

f (x L)

⎤
⎥⎦ , yd =

⎡
⎣ t(

λαβ

)
(α,β)∈N2m

d

svec(Q)T

⎤
⎦ ,

and L = (n+2d
2d

)
. It is clear that Hd ∈ R

L×
[
(2m+d

d )+L+1
]
.

In the following theorem we prove that all the constraints are linearly independent when
d = 1.

Theorem 4 For the general problem (1) with quadratic functions f (x) and g j (x), j =
1, . . . ,m, all of the constraints in the first iteration of the BSOS hierarchy are linearly
independent, i.e. if d = 1, all of the constraints of (5) are linearly independent.

Proof Fix d = 1, which implies τ = 2 and L = (n+2
2

)
in (5). Then,

H1 =
⎡
⎢⎣
1 g1(x1) . . . gm(x1) 1 − g1(x1) . . . 1 − gm(x1) svec

(
v1(x1)v1(x1)T

)
...

...
. . .

...
...

. . .
...

...

1 g1(x L) . . . gm(x L) 1 − g1(x L) . . . 1 − gm(x L) svec
(
v1(x L)v1(x L)T

)
⎤
⎥⎦ ,

and,

b1 =
⎡
⎢⎣

f (x1)
...

f (x L)

⎤
⎥⎦ , y1 =

⎡
⎣ t(

λαβ

)
(α,β)∈N2m

1

svec(Q)T

⎤
⎦ ,

for x1, . . . , x L ∈ Δ(n, 2), defined in (5). To show that all of the rows in H1 are linearly
independent, we prove that the submatrix

V 1
n =

⎡
⎢⎣
svec

(
v1(x1)v1(x1)T

)
...

svec
(
v1(x L)v1(x L)T

)
⎤
⎥⎦ ∈ R(n+2

2 )×(n+2
2 ) = RL×L ,

is a full rank matrix by induction over n, the dimension of x . Assume that n = 1. Because

Δ(1, 2) = {0, 1
2 , 1}, it is clear that the rank of the matrix V 1

1 =
⎡
⎣1 0 0

1
√
2
2

1
4

1
√
2 1

⎤
⎦ , is 3, which

means that V 1
1 is a full rank matrix.

Now, suppose that V 1
n is a full rank matrix, and let us show it is full rank for n + 1. When

x ∈ Rn+1, we can partition the points in Δ(n + 1, 2) into three cases:

(I) points with xn+1 = 0. These points can be generated by considering all of the points in
Δ(n, 2), and adding a 0 as their last component.

(II) points with xn+1 = 1
2 . The points in this class can be sub-partitioned into two groups:

(i) points with one nonzero component.
(ii) points with two nonzero components.

123



Ann Oper Res (2018) 265:67–92 83

(III) points with xn+1 = 1. Clearly, there is only one point in this class.

According to the definition of svec
(
v1(x)v1(x)T

)
, each of V 1

n+1’s column is related to xγ ,

where γ ∈ Nn+1
2 . Let us order the columns of V 1

n+1 as follows: first we put all of the columns

related to xα , where (α, 0) ∈ Nn+1
2 , after that the columns related to xn+1, x2n+1, xn+1xi , i =

1, . . . , n. So, because each row of V 1
n+1 is related to a point in Δ(n + 1, 2), after ordering its

rows, the matrix looks like this:

Vn+1 =

⎛
⎜⎜⎜⎜⎜⎝

xα

(α, 0) ∈ Nn+1
2 xn+1 x2n+1

xn+1xi
i = 1, . . . , n

Case I V 1
n 0L×1 0L×1 0L×n

Case IIi i a1
√
2
2 1n×1

1
41n×1

√
2
4 In

Case IIi a2
√
2
2

1
4 01×n

Case III a3
√
2 1 01×n

⎞
⎟⎟⎟⎟⎟⎠,

for some a1 ∈ Rn×L , and a2, a3 ∈ R1×L . Due to the induction assumption, V 1
n is a full rank

matrix, which implies that V 1
n+1 is a full rank matrix. Therefore, the constraints in the first

iteration of the BSOS hierarchy are linearly independent. 	


In Theorem4,we prove that if d = 1, then all of the constraints in (5) are linearly independent.
In the next theorem, we prove that for d ≥ 2, if we rewrite Hd as [H̄d , V d

n ], where

V d
n =

⎡
⎢⎣
svec

(
v1(x1)v1(x1)T

)
...

svec
(
v1(x L)v1(x L)T

)
⎤
⎥⎦ ∈ RL×L ,

then Rank(Hd) = Rank(H̄d).

Theorem 5 Suppose that f is quadratic, d ≥ 2, andΘ ⊆ Δ(n, 2d). The equality constraints
in (5) corresponding to the points inΘ applied to the general problem (1)with sign constraints
over all of the variables, are linearly independent if and only if rows in H̄d corresponding to
the points in Θ are linearly independent.

Proof The ‘if’ part is trivial.
To prove the ‘only if’ part, without loss of generality we assume that x p, p = 1, . . . , t

generate linearly independent constraints, which means that the first t rows of Hd are linearly
independent. Since the objective function f is quadratic, bd is a linear combination of the
columns of V d

n . Because of the sign constraints for all of the variables, each column of V d
n

is also a column in H̄d , for d ≥ 2. This means that V d
n is a submatrix of H̄d , which implies

that the first t rows in H̄d are linearly independent. 	


After elimination of the equality constraints in pooling problem (8), we rewrite the model
with sign constraints over all of the remaining variables. So, when using Theorem 5 to find
the linearly independent constraints, we only need to check H̄d .

Theorem 6 Fix d ≥ 2. Consider Ĥd , which is a matrix with all of the columns of H̄d related
to (α, β) with β = 0. Then Range(H̄d) = Range(Ĥd).
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Proof Since we consider β = 0, we can write Ĥd as follows:

Ĥd =

⎡
⎢⎢⎣
(
g(x1)α

)
α∈Nm

d
...(

g(x L)α
)
α∈Nm

d

⎤
⎥⎥⎦ ,

where L = (n+2d
2d

)
, g(x) = (g1(x), . . . , gm(x)), for each α ∈ Nm

d , g(x p)α = ∏m
j=1 g j (x)α j ,

and (g(x p)α)α∈Nm
d

∈ R1×(m+d
d ), p = 1, . . . , L .

Because the columns of Ĥd are a subset of the columns of H̄d , so Range(Ĥd) ⊆
Range(H̄d). To prove the other containment, we show that all columns of H̄d are linear
combinations of Ĥd ’s columns. Each column of H̄d is related to a function hαβ(x) for some
(α, β) ∈ N2m

d . If β = 0 for a column of H̄d , then it is a column of Ĥd . Now consider a
column with β �= 0. Therefore, hαβ(x) related to this column is equal to

m∏
j=1

g j (x)
α j

t∏
j=1

(
1 − g j (x)

)β j = g(x)α
(

w∑
i=1

ai g(x)
γi

)
,

for some γi ∈ Nm|β|, ai ∈ R, i = 1, . . . , w, and w ≥ 0. Hence, hαβ(x) = ∑w
i=1 ai g(x)

γi+α .

Because γi + α ∈ Nm
d , g(x)γi+α is related to a column of Ĥd , for each i = 1, . . . , w. This

means that any column of H̄d is a linear combination of the columns in Ĥd . 	


By Theorem 6, to find the number of linearly independent constraints in (5), we only need
to check the columns related to hαβ(x) with β = 0.

It is clear that the results in this paper, except Theorem 4, can be modified for the LP
bounds (3). In fact, Theorems 5 and 6 are true in each level, even d = 1. In Table 4, the results
of solving the pooling problem instances in Table 1 are shown after eliminating the linearly
dependent constraints using (3) and q̂1d in (27). Note that the computational times at the
d = 2 and d = 3 levels are greatly reduced when compared to the times in Table 3. For some
instances because of the large number of constraints in the last level of the hierarchy, we could
not find the number of linearly independent constraints and we put “-” as in Table 4. Also in
this table we show howmuch stronger the BSOS hierarchy is compared to the LP bounds (3)
after reducing the number of variables and deleting the linear dependent constraints. As one
can see, the main difference between the BSOS hierarchy and (3) is in the first level, in which
the number of independent constraints in (3) is much smaller than the BSOS hierarchy. If
there is a difference between two hierarchies, it is presented in Table 4 with “()”, in which
the value corresponds to the LP bounds (3). It can be seen that there is a pay-off between
using (3) and the BSOS hierarchy. By using the LP bounds you may solve each level faster
(4 cases) but the lower bound can be strictly weaker than the one from the BSOS hierarchy
(2 cases).

4.3 Lower bounds using PQ-formulation

Up to now, we evaluated the BSOS hierarchy on the P-formulation. Since the McCormick
relaxation (Sect. 3.1) of the PQ-formulation is stronger than that of the P-formulation
Gupte et al. (2017), it isworthwhile to evaluate theBSOShierarchy using the PQ-formulation.
In Table 5 we present these results for the PQ-formulation. To eliminate the equality con-
straints, we replace them by two inequalities.
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Table 4 Results for computing the bounds from (3) and q̂1d in (27) after elimination of linearly dependent
constraints

Iteration Rel.time solution # Lin. var. Size of SDP var. # Const.

Haverly1 d = 1 1 −600.00 12 6 21(8)

d = 2 1 −417.20 199 6 33

d = 3 0.11 −400.00 1937 6 98

Haverly2 d = 1 1 −1200.00 12 6 21(8)

d = 2 1 −601.67(−640.00) 199 6 33

d = 3 0.13 −600.00 1937 6 98

Haverly3 d = 1 1 −875.00 12 6 21(8)

d = 2 1 −750.00 199 6 33

Ben-Tal4 d = 1 1 −650.00 14 7 28(9)

d = 2 1 −467.20 274 7 42

d = 3 0.08 −450.00 3095 7 140

Ben-Tal5 d = 1 1(0.11) −3500.00 55 30 465(44)

DeyGupte4 d = 1 1 −4.00 53 11 66(16)

d = 2 0.03 −3.86 4135 11 131

d = 3 – – 172,250 11 –

Foulds2 d = 1 1 −1200.00 39 19 190(24)

d = 2 0.002 −1191.30 2224 19 295

d = 3 – – 49,385 19 –

Foulds3 d = 1 0.94(10−4) −8.00 220 153 11,781(176)

Foulds4 d = 1 0.92(10−4) −8.00 220 153 11,781(176)

Adhya1 d = 1 1 −999.32 42 12 78(24)

d = 2 0.06(0.5) ≈−723.95 2583 12 260

d = 3 – – 85,526 12 –

Adhya2 d = 1 1 −798.29 54 12 78(24)

d = 2 0.12(0.3) −576.83 4293 12 260

d = 3 – – 182,214 12 –

Adhya3 d = 1 1 −882.84 67 18 171(38)

d = 2 0.02 ≈−802.88(−806.64) 6634 18 671

d = 3 – – 348,602 18 –

Adhya4 d = 1 1 −1055.00 52 17 153(39)

d = 2 0.03 ≈−1035.54 3979 18 732

d = 3 – – 162,657 17 –

RT2 d = 1 1 −45,420.48 68 15 120(23)

d = 2 0.02 −36,541.89 6836 15 266

d = 3 – – 364,480 15 –

sppA0 d = 1 0.99(10−4) −47,675.00 817 162 13,203(372)

d = 2 – – 1,000,008 162 –

The values in “()” are corresponding to the LP bounds (3) if they are different than those from q̂1d
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Table 5 Results for computing the bounds q̂1d in (27) after elimination of linearly dependent constraints on
the PQ-formulation

Iteration Rel. time Solution # Lin. var. Size of SDP var. # const.

Haverly1 d = 1 1 −600.00 25 9 45

d = 2 1 −411.11 901 9 82

d = 3 – Numerical Prob. 17,901 9 354

Haverly2 d = 1 1 −1200.00 25 9 45

d = 2 1 −600.00 901 9 82

Haverly3 d = 1 1 −875.00 25 9 45

d = 2 1 −750.00 901 9 82

Ben-Tal4 d = 1 1 −650.00 30 11 66

d = 2 1 −459.86 1306 11 124

d = 3 – – 31,031 11 –

Ben-Tal5 d = 1 4.17 −3500.00 127 45 1035

DeyGupte4 d = 1 1 −4.00 89 17 153

d = 2 0.35 ≈−2.49 11,749 17 438

d = 3 – – 818,445 17 –

Foulds2 d = 1 1 −1200.00 77 25 325

d = 2 – – 8779 25 –

Foulds3 d = 1 2.26 −8.00 628 193 18,721

Foulds4 d = 1 2.32 −8.00 628 193 18,721

Adhya1 d = 1 1 −999.32 73 19 190

d = 2 – – 7885 19 –

Adhya2 d = 1 1 −798.29 81 19 190

d = 2 – – 9721 19 –

Adhya3 d = 1 2 −882.84 109 29 435

d = 2 – – 17,659 29 –

Adhya4 d = 1 2 −1,055.00 96 27 378

d = 2 – – 13,680 27 –

RT2 d = 1 1 −18,155.84 96 23 276

d = 2 – – 13,680 23 –

sppA0 d = 1 5.88 −47,675.00 1165 234 27,495

d = 2 – – 1,326,340 234 –

4.4 Upper bound for the number of linearly independent constraints

According to Theorem 6, to find the number of linearly independent columns of Hd , for d ≥ 2
we only need to find the rank of the linear space, say Nd , spanned by {g(x)α}α∈Nm

d
. Hence,

the dimension of Nd is an upper bound on the number of linearly independent constraints.
In this part we give an upper bound on the dimension of Nd , which is an upper bound on the
number of linearly independent constraints in (5).

It is clear that Nd is a subspace of the linear space Md spanned by {w(x)α}α∈Nω
d
, where

w(x) is a vector containing all of the monomial existing in (1), and ω in the size of w(x).
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Therefore, rank(Md) is an upper bound on rank(Nd), and hence an upper bound of the
number of linearly independent constraints in each iteration of the BSOS hierarchy.

In the rest of this part, we try to find rank(Md) for the pooling problems, and assume
that the number of outgoing flows from each pool is equal to J . After elimination of equality
constraints in the pooling problem (8), the functions defining the inequality constraints can
be partitioned into three classes:

(I) bilinear functions,
(II) xi , i = 1, . . . , n,
(III) some other affine functions.

The bilinear functions are those related to constraints (15) and (16), or those related to the
constraints (13) after elimination of equality constraints. Hence, the only bilinear terms in
the reformulated problem are plk yl j , for each pool l and specification k, where there is an
outgoing flow from pool l to output j . Therefore,

〈⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝1, {yi j} i ∈ I

j ∈ J ,

{
yl j
}
l ∈ L
j ∈ J ,

{yil }(i,l)∈Ī , {plk}(l,k)∈L̄ ,
{
plk yl j

}
(l,k, j)∈J̄

⎞
⎟⎟⎠

α⎫⎪⎪⎬
⎪⎪⎭

α∈Nω
d

〉
= Md ,

where Ī, L̄ and J̄ are respectively including (i, l), (l, k) and (l, k, j) that yil , plk and plk yl j
appear in (8) after elimination of the equality constraints, and

ω = 1 + I × L + L × J + |Ī| + |L̄| + |J̄ |.

Clearly the number of variables in the pooling problem (8) after elimination of equality
constraints is I × L + L × J + |Ī| + |L̄|. For d = 1, we prove in Theorem 4 that all of
the constraints in (5) are linearly independent, with the number of

(n+2
2

)
. For d ≥ 2, we

are seeking for the monomials up to degree 2d that appear in Md . If d = 2, the number of
monomials with degree at most 2 is

(n+2
2

)
. The number of monomials with degree 3 that

appear in Md is at most

K × L ×
[(

n + 1

2

)
−
(
n − J + 1

2

)]
,

because for each k ∈ K and l ∈ L, in this case the only way of having amonomial with degree
3 is by multiplying a monomial of degree 2 with a variable, which makes

(n+1
2

) − (n−J+1
2

)
monomials of degree 3. And finally, the number of monomials of degree 4 that appear in Md

is
[(K×L×J

2

)+ K × L × J
]
, because the only ways to make such monomials are by taking

the square of a monomial with degree 2, or multiplying two degree 2 monomials. Therefore,
the number of linearly independent constraints for d = 2 is at most

(
n + 2

2

)
+ K × L ×

[(
n + 1

2

)
−
(
n − J + 1

2

)]
+
(
K × L × J

2

)
+ K × L × J.

(28)
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With the same line of reasoning as above, the number of monomials with degree at most 6
for d = 3 is less than or equal to(

n + 3

3

)
︸ ︷︷ ︸

monomials up
to degree 3

+ K × L ×
[(

n + 2

3

)
−
(
n − J + 2

3

)]
︸ ︷︷ ︸

monomials of
degree 4

+ K × L ×
[(

n + 2

3

)
−
(
n − J + 2

3

)
− J ×

(
n − J + 1

2

)]
︸ ︷︷ ︸

monomials of
degree 5

+
[(

K × L × J

3

)
+ K × L × J + 2

(
K × L × J

2

)]
︸ ︷︷ ︸

monomials of
degree 6

. (29)

Example 2 Consider the example (26). The only bilinear terms in (26) are y1y2 and y1y3.
So,

Md =
〈{

(1, y1, y2, y3, y4, y5, y1y2, y1y3)
α
}
α∈N8

d

〉
Therefore, the number of linearly independent constraints is at most(

7

2

)
+
(
6

2

)
−
(
4

2

)
+
(
2

2

)
+ 2 = 33,

if d = 2, and(
8

3

)
+ 2 ×

(
7

3

)
− 2 ×

(
5

3

)
− 2 ×

(
4

2

)
+ 2 ×

(
2

2

)
+ 2 = 98,

if d = 3. 	

4.5 Improving lower bounds by adding valid inequalities

Adding redundant constraints to the original problem (1) increases the number of linear
variables in (4); this introduces some flexibility in each level of the hierarchy because of
the new linear variables and may provide a stronger lower bound. As it was mentioned in
Sect. 3.1, for each bilinear term in the P- or PQ-formulations there are four valid inequalities
given by (19). So, in Table 6 we present the result of adding these valid inequalities to the
P-formulation and using q̂1d in (27) to solve the problem. In each level of the hierarchy in
this table, we use the upper bounds for the number of constraints proposed in Sect. 4.4. As
Table 6 shows, this improvement helps to obtain the optimal values of Haverly1, Harverly2,
Ben-Tal4, and DeyGupte4, and to get a good approximation of the optimal value of Foulds2
in the second level of the hierarchy. Also, for Adhya1,2,4 we obtained better lower bounds
than the PQ-linear relaxation values in Table 1.
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Table 6 Results for computing the lower bounds q̂1d for the P-formulation after adding valid inequalities and
considering (28) and (29) as the upper bound on the number of linearly independent constraints

Iteration Rel. time Solution # Lin. var. Size of SDP var. # const.

Haverly1 d = 1 1 −600.00 18 6 21

d = 2 1 −400.00 460 6 33

Haverly2 d = 1 1 −1100.00 18 6 21

d = 2 1 −600.00 460 6 33

Haverly3 d = 1 1 −850.00 18 6 21

d = 2 1 −750.00 460 6 33

Ben-Tal4 d = 1 1 −650.00 20 7 28

d = 2 1 −450.00 571 7 42

Ben-Tal5 d = 1 1 −3500.00 145 30 465

DeyGupte4 d = 1 1 −4.00 101 11 66

d = 2 0.32 −1.02 15,155 11 170

Foulds2 d = 1 1 −1200.00 63 19 190

d = 2 0.02 −1101.83 5860 19 358

d = 3 – – 289,695 19 2850

Foulds3 d = 1 1.60 −8.00 604 153 11,781

Foulds4 d = 1 1.53 −8.00 604 153 11,781

Adhya1 d = 1 1 −960.37 138 12 78

d = 2 1.34 −640.19 28,360 12 270

d = 3 – – 3,056,470 12 2860

Adhya2 d = 1 1 −777.63 198 12 78

d = 2 1.13 −569.55 58,510 12 270

d = 3 – – 9,036,390 12 4108

Adhya3 d = 1 1 −879.02 283 18 171

d = 2 1.06 −664.39 119,710 18 691

d = 2 – – 26,402,485 18 13,452

Adhya4 d = 1 1 −1032.50 172 17 153

d = 2 1.58 −948.88 44,119 17 1038

d = 3 – – 5,921,616 17 7089

RT2 d = 1 1 −36,542.22 212 15 120

d = 2 0.091 ≈−32,739.03 67,099 15 354

d = 3 – – 11,093,536 15 6440

sppA0 d = 1 1.39 ≈−46,636.57 4705 162 13,203

d = 2 – – 37,414,021 162 94,812

5 Conclusion

In this paper we analysed and evaluated the bounded degree sum-of-squares (BSOS) hierar-
chy of Lasserre et al. (2015) for a class of bilinear optimization problems, namely pooling
problems. We showed that this approach is successful in obtaining the global optimal values
for smaller instances, but scalability remains a problem for larger instances. In particular,
the number of nonnegative variables and linear constraints grows quickly with the level of
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the hierarchy. We have showed that it is possible to eliminate some variables and redundant
linear constraints in the hierarchy in a systematic way, and this goes some way in improving
scalability. More ideas are needed, though, if this approach is to become competitive for
medium to larger scale pooling problems.
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Appendix: A new pooling problem instance

In this section we use a result in Dey and Gupte (2015) to construct a pooling problem
instance (DeyGupte4) for which piecewise linear approximations of the PQ-formulation fail.

Consider a standard pooling problem with I = 2 inputs, L = 2 pools and J = 4 outputs.
Assume that both inputs are connected to the pools and both pools are connected to the
outputs (Fig. 3). Let K = 2 and the concentration of specifications be (1, 0) and (0, 1)
for the first and second input, respectively. We number the inputs by 1, 2, pools by 3, 4,
and outputs by 5, 6, 7, 8. Let μmax

jk = μmin
jk (given in Fig. 3), uil = 4 and ul j = 1, for

i = 1, 2, l = 3, 4, j = 5, 6, 7, 8, and k = 1, 2. Set the capacity of inputs, pools and outputs
C1 = C2 = 8,C3 = C4 = 4, and C5 = C6 = C7 = C8 = 1. Let

δ := min
{
‖μmax

ĵk
− μmax

j̄k
‖2 : ĵ �= j̄ ĵ, j̄ = 5, 6, 7, 8, k = 1

}
≈ 0.014,

Inputs Pools Outputs

(0.87, 0.13)

(0,1) (0.83, 0.17)

(1,0) (0.84, 0.16)

(0.9, 0.1)

Format: λik μmax
jk

Fig. 3 Flowchart of DeyGupte4
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cil = 0, for i = 1, 2 and l = 3, 4. Set c3 j = −1, c4 j = 2
δ
, for all j = 5, 6, 7, 8, and the rest

of the costs as 0.
The optimal value of this problem is −1 with the optimal solution constructed by sending

flows from inputs to the first pool, and from it to one of the outputs such that the restriction
in the specification in it is satisfied (Dey and Gupte 2015).

Let g, h : [0, 1] × [0, 1] → R be piecewise linear functions such that

g(α, β) ≥ αβ ≥ h(α, β), ∀α, β ∈ [0, 1].
Assume that

S = {(α, β, χ) | g(α, β) ≥ χ ≥ h(α, β), α, β ∈ [0, 1]} ,

is the piecewise linear approximation of

B = {(α, β, χ) | χ = αβ, α, β ∈ [0, 1]} ,

such that for all α, β ∈ [0, 1] and |e| ≤ 0.05, (α, β, αβ + e) ∈ S. As it was mentioned in
Sect. 3.1, in the pooling problem:

mλ ≤ plk ≤ Mλ, ∀l ∈ L, k ∈ K,

0 ≤ yl j ≤ min{C j , ul j }, ∀ j ∈ J , l ∈ L.

So, for any bilinear term vl jk = plk−mλ

Mλ−mλ

yl j
min{C j ,ul j } , l ∈ L, j ∈ J , k ∈ K, one can use

S to find a lower bound for the optimal value of the pooling problem. It is proved in Dey
and Gupte (2015) that applying this approximation to the PQ-formulation gives an objective
value in [−4,−3].
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