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Abstract Neuroscience is of emerging importance along with the contributions of Opera-
tional Research to the practices of diagnosing neurodegenerative diseases with computer-
aided systems based on brain image analysis. Although multiple biomarkers derived
from Magnetic Resonance Imaging (MRI) data have proven to be effective in diagnosing
Alzheimer’s disease (AD) and mild cognitive impairment (MCI), no specific system has yet
been a part of routine clinical practice. This paper aims to introduce a fully-automated voxel-
based procedure, Voxel-MARS, for detection of AD and MCI in early stages of progression.
Performance was evaluated on a dataset of 508 MRI volumes gathered from the Alzheimer’s
Disease Neuroimaging Initiative database. Data were transformed into a high-dimensional
space through a feature extraction process. A novel 3-step feature selection procedure was
applied. Multivariate Adaptive Regression Splines method was used as a classifier for the
first time in the field of brain MRI analysis. The results were compared to those presented
in a previous study on 28 voxel-based methods in terms of their ability to separate control
normal (CN) subjects from the ones diagnosed with AD and MCI. It was observed that
our method outperformed all of the others in sensitivity (83.58% in AD/CN and 78.38%
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in MCI/CN classification) with acceptable specificity values (over 85% in both cases). Fur-
thermore, the method worked for discriminating MCI patients which converted to AD in
18 months (MCIc) from non-converters (MCInc) with a sensitivity outcome better than 27 of
28 methods. Overall, it was shown that the proposed method is promising in early detection
of AD.

Keywords Neuroscience · Operational research · Image analysis · Computer-aided
diagnosis · Pattern classification · Alzheimer’s disease

1 Introduction

Alzheimer’s disease (AD) is the most common form of dementia that causes problems with
thinking, memory and behavior. It gradually affects all cognitive functions and eventually
causes death. This neurodegenerative disease is known to be related to structural atrophy,
pathological amyloid depositions, and metabolic alterations in the brain (Jack et al. 2010).
The underlying mechanism causing the deformations has not yet been completely explained
and it remains to be a topic of interest in the fields of neurology and mathematical modeling
(Álvarez-Miranda et al. 2016). Since histopathological confirmation of amyloid plaques
and neurofibrillary tangles is required for definite diagnosis, it can only be made through
a postmortem examination (Tiraboschi et al. 2004). However, early detection of AD has
increasingly gained importance along with efforts to delay the onset or prevent progression
of the disease and develop an effective treatment.

Unfortunately, no single test that proves a person has AD or mild cognitive impairment1

(MCI) currently exists. Diagnosis is made through a complete assessment including medi-
cal history, physical examination and diagnostic tests (e.g., clinical, laboratory, and genetic
tests—such as APOE-e4 gene), neurological examination (of reflexes, coordination, muscle
tone and strength, eye movement, speech, and sensation), and mental status tests (such as
mini-mental state exam (MMSE), mini-cog, and mood assessment). A medical workup for
AD often includes structural imaging with Magnetic Resonance Imaging (MRI) or Com-
puted Tomography (CT) (and functional imaging, too). However, brain imaging techniques
are primarily used to eliminate other probable conditions such as tumors, stroke, and damage
from trauma or fluid collection in intracranial compartments, which may cause symptoms
similar to AD but require different kinds of treatment.

Multiple biomarkers have been shown to be sensitive to existence of AD and MCI; i.e.,
structural MRI for brain atrophy measurement, functional imaging (such as FDG-PET:
Fluorodeoxyglucose Positron Emission Tomography) for hypometabolism quantification,
and cerebrospinal fluid (CSF) for quantification of specific proteins (Zhang et al. 2011).
Computer-aided diagnosis (CAD) systems for AD and MCI have been proposed and tested
for PET and SPECT (Single-Photon Emission Computed Tomography) (Padilla et al. 2010;
Ramìrez et al. 2013; Salas-Gonzalez et al. 2010, 2009), structural MRI (Davatzikos et al.
2008; Gerardin et al. 2009; Klöppel et al. 2008; Savio and Graa 2013), and Diffusion Tensor
Imaging (DTI) (Graa et al. 2011).

T1-weighted (W)MRI is a very well-known imaging technique to provide high-resolution
and high-contrast anatomical brain images in three dimensions. T1-WMRI technique uses T1
relaxation time (ameasure which is related to the recovery time of longitudinal magnetization

1 A brain function syndrome which causes a slight decline in cognitive abilities and an increased risk of
converting into AD.
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created by a strong magnetic field, after the excitation pulse is applied) as a physical property
to form images. Resulting images are composed of voxels (i.e., volumetric pixels) where
each voxel is associated to an intensity value varying between 0 and 1 (where 0 is black, 1
is white, and any rational number between these bounds is mapped into a gray-scale color).
“Voxel index” is defined as a three dimensional (3D) vector defining a specific position in a
volumetric image, and “voxel intensity” is the numeric value representing the gray-scale color
of that specific position. T1-W MR images provide a good contrast between the anatomical
structures forming central nervous system, such as whitematter (seeming brighter with a high
content of fat) and cerebrospinal fluid (seeming darker because of a high content of water). It
has already been proven that both the features based on specific anatomical structures such
as hippocampus, amygdale and entorhinal cortex (Boutet et al. 2014; Chupin et al. 2009a, b;
Colliot et al. 2008; Morra et al. 2010; Westman et al. 2011), and the voxel-based features
derived from whole-brain anatomy (Adaszewski et al. 2013; Davatzikos et al. 2008; Li et al.
2014; Ye et al. 2008; Zhang and Davatzikos 2011) may serve as biomarkers to detect AD.

There exist many recent classification methods which allow individual class prediction.
In particular, Support Vector Machine (SVM) classifiers are widely used to help differen-
tiating subjects with AD from the healthy ones. An SVM constructs hypersurfaces in a
high-dimensional space, which can be used for classification and regression. In Klöppel
et al. (2008), an SVM classifier is directly applied, whereas in Chaves et al. (2009), Magnin
et al. (2009), Misra et al. (2009), Padilla et al. (2012), Vemuri et al. (2008) and many other
Alzheimer’s CAD systems, the dimensionality of the feature space relying on different infor-
mation sources (e.g. MRI/PET/SPECT images, laboratory results, genetic information) is
firstly reduced. This is a crucial step in order not to suffer from a well-known common issue
in machine learning; the so-called “curse of dimensionality” or, equivalently, “peaking phe-
nomenon” (Jain et al. 2000). There also exist studies which use machine learning methods
other than SVM classification; i.e., Principal Component Analysis (PCA)-based techniques
(Alvarez et al. 2009; López et al. 2011; Park et al. 2012), Linear Discriminant Analysis
(LDA)-based approaches (Salas-Gonzalez et al. 2010; Savio and Graa 2013), Random Forest
Classifiers (Chincarini et al. 2011; Ramìrez et al. 2010), Multiple Kernel Learning (MKL)
approaches (Ye et al. 2011; Zhang et al. 2011), Artificial Neural Networks (Segovia et al.
2012), and Deep Learning (Liu et al. 2014; Suk et al. 2014).

In this study, a fully-automated machine learning routine to solve the problem of early
detection of AD is introduced and the performance of the proposed method is evaluated.
Main contribution of our approach is the utilization of the Multivariate Adaptive Regression
Splines (MARS) method for classification of structural brain MRI images for detection of
AD. Employing MARS made flexible models available for the domain, since this method
does not obligate making preliminary assumptions on the characteristics of the input data. A
raw feature set was derived from the voxel-wise tissue probabilities for 3 tissue classes (TCs)
which form the brain; namely, white matter (WM), gray matter (GM), and cerebrospinal
fluid (CSF). Unified Segmentation (Ashburner and Friston 2005) and DARTEL Image Regis-
tration (Ashburner 2007)methods—followed bymodulation andGaussian smoothing—were
applied to transform the original MRI data into the form of tissue probability maps. More-
over, a novel 3-step decision-making procedure for determining the final subset of significant
features was proposed.

The remaining parts of this paper are organized as follows: In Sect. 2, materials and the
methods used in this study are explained. Information associated with the studied data is
provided. Data preparation procedure involving tissue segmentation, bias field correction,
registration, modulation and smoothing is introduced. Additionally, a brief subsection is
reserved for the MARS method and its use in solving classification problems. Details of the
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experimental setup, performance evaluation results, a qualitative discussion, and conclusions
together with an outlook to future studies can be found in Sects. 3 and 4, respectively.

2 Materials and methods

2.1 Data description

Data used for training, validation, and testing purposes were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database.2 ADNI was launched in 2003 by the
National Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bio-
engineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical
companies and non-profit organizations, as a $60 million, 5-year public/private partnership.
The primary goal ofADNI has been to testwhether serialMRI, PET, other biologicalmarkers,
and clinical and neuropsychological assessments can be combined to measure the progres-
sion of MCI and early AD. Determination of sensitive and specific markers of a very early
AD progression is intended to aid researchers and clinicians to develop new treatments and
monitor their effectiveness, as well as lessen the time and cost of clinical trials.

Cuingnet et al. (2011) evaluated the performance of 10 different approaches of other
researchers (5 voxel-based methods, 3 methods based on cortical thickness and 2 methods
based on the hippocampus), using 509 subjects from theADNI archive. 3 classification exper-
iments were performed: (i) CN versus AD, (ii) CN versus MCIc (MCI who had converted
to AD within 18 months, MCI converters), and (iii) MCIc versus MCInc (MCI who had not
converted to AD within 18 months, MCI non-converters). They only used T1-WMR images
for the experiments. MRI acquisition had been done according to the ADNI acquisition pro-
tocol in Jack et al. (2008). For each subject, MRI scan—when available from the baseline
visit, and otherwise from the screening visit—was chosen. To enhance standardization across
centers and platforms of images acquired in the ADNI study, pre-processed images which
were exposed to some processes for correction of certain image artifacts were used. These
preprocessing steps involve image geometry corrections for gradient nonlinearity and mag-
netic field intensity non-uniformity corrections due to non-uniform receiver coil sensitivity,
both of which can be directly applied on the MRI console. All subjects were scanned twice
at each visit. MR scans were graded qualitatively by the ADNI investigators for artifacts and
general image quality. Each scan was graded considering several criteria, such as, blurring,
ghosting, homogeneity, flow artifact, intensity, etc. For each subject, the MRI scan which
was considered as the “best” quality scan by the ADNI investigators is used. Here, “best” is
defined as the one which was used for the complete preprocessing steps in ADNI methods
web page.3

In this study, it was decided to work on the same set of training and testing images as used
in Cuingnet et al. (2011), in consideration of the objectivity of the comparative performance
evaluation. Information involving the demographic characteristics of the training and the
test subjects is presented in Table 1. The whole set was formed by exactly the same images
except for a single one belonging to a subject with AD in the test group (the group is indicated
with “*” in the table). Since it was observed that the SPM12 Toolbox could not produce
meaningful results at the end of the image processing routine, the image is left out and the
group statistics are updated accordingly.

2 http://adni.loni.usc.edu.
3 http://adni.loni.usc.edu/methods.
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Table 1 Adapted fromCuingnet et al. (2011)Demographic characteristics of the studied patients (CN:Control
subjects, AD: Subjects with Alzheimer’s disease, MCIc: MCI converters, MCInc: MCI non-converters)

Diagnosis No. Age Gender MSE Centers

CN (train) 81 76.1±5.6 [60–89] 38 M/43 F 29.2±1.0 [25–30] 35

AD (train) 69 75.8±7.5 [55–89] 34 M/35 F 23.3±1.9 [18–26] 32

MCIc (train) 39 74.7±7.8 [55–88] 22 M/17 F 26.0±1.8 [23–30] 21

MCInc (train) 67 74.3±7.3 [58–87] 42 M/25 F 27.1±1.8 [24–30] 30

CN (test) 81 76.5±5.2 [63–90] 38 M/43 F 29.2±0.9 [26–30] 35

AD (test)* 67 76.0±7.1 [57–91] 32 M/35 F 23.2±2.1 [20–27] 33

MCIc (test) 37 74.9±7.0 [57–87] 21 M/16 F 26.9±1.8 [24–30] 24

MCInc (test) 67 74.7±7.3 [58–88] 42 M/25 F 27.3±1.7 [24–30] 31

Age and mental state examination (MSE) score statistics are indicated as “mean± standard deviation [range]”.
The column headers “No.” and “Centers” stand for the number of subjects for each group and the number of
institutions where the images were acquired, respectively
* One of the images in the original set was not included since the SPM version failed to provide a proper
output at the end of image processing step

2.2 Voxel-wise tissue probability maps

2.2.1 Unified segmentation

Segmentation of the brain images for extraction of different tissue classes usually takes
two forms: The first one is classification of voxels in terms of probabilities of belonging to
specified tissue, and the second one is directly registering the images to pre-determined tem-
plates. Unified Segmentation (Ashburner and Friston 2005) can be defined as a probabilistic
framework which combines tissue classification and image registration—with addition of
bias field correction—operations in an iterative scheme within the same generative model.
In Ashburner and Friston (2005), it is marked that brain tissue segmentation by estimat-
ing Unified Segmentation model parameters produces more accurate results than sequential
applications of each component separately.

The objective functionminimized by the optimum parameters is derived from aMixture of
Gaussians (MoG) model. Equation (1) shows the standard MoG model. Overall probability
distribution can bemodelled through amixture of K Gaussians. The kthGaussian ismodelled
by its mean (μk), variance (σ 2

k ), and mixing proportion (γk), where γk ≥ 0 (k = 1, . . . , K )

and
∑K

k=1 γk = 1:

P(y | μ, σ , γ ) =
I∏

i=1

(
K∑

k=1

γk
(
2πσ 2

k

)1/2 exp

(

− (yi − μk)
2

2σ 2
k

))

. (1)

After the insertion of bias field (modelled by additive noise and scaling) and the infor-
mation coming from the priors (TC templates), and taking the logarithm of both sides, the
objective function (to be minimized) takes the final form:

− log P(y | μ, σ , γ ,β,α) = −
I∑

i=1

log

(
ρi (β)

∑K
k=1 γkbi,k(α)
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2
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Fig. 1 ICBM tissue probabilistic atlases for GM (left), WM (middle), and CSF (right)

× exp

(

− (ρi (β)yi − μk)
2

2σ 2
k

))

, (2)

where ρi (β) represents the bias field with parameter vector β, and bi,k(α) stands for the
prior spatial information with parameter vector α originating from TC templates (i =
1, . . . , I ; k = 1, . . . , K ). Maximization of the probabilities defined by the MoG function
in Eq. (1) is accomplished when the right-hand side of Eq. (2) is minimized (with respect
to μ, σ , γ , β, and α), because these two functions are monotonically related. The reader is
referred to the original work of Ashburner and Friston (2005) for a detailed explanation of
the method and derivation of the objective function in Eq. (2). The optimization problem is
solved iteratively by using a scheme based on Expectation-Maximization (EM) algorithm,
where the E-step involves computation of the tissue probabilities, and the M-step involves
computation of the cluster and the non-uniformity field parameters (Frackowiak et al. 2003).

Unified Segmentation implementation in SPM12 Toolbox (Ashburner 2009) was used for
producing Tissue Probability Maps (TPMs). Spatial prior information for each one of the
TCs was provided by ICBM Tissue Probabilistic Atlas,4 2D axial cross-section images of
which are shown in Fig. 1. The numbers of Gaussians for each TCwere assigned as 3 for GM,
2 for WM and 2 for CSF based on the typical values given in Ashburner and Friston (2005).
The procedure for selecting the optimal number of Gaussians per class was declared to be a
model-order selection issue and was not addressed in the referenced study. It is observed that
typical K values which we used in this paper are equal to the ones that are given as default
unified model parameters provided by multiple versions of SPM Toolbox.

Warping a set of images to a template image causes differences in total tissue volumes. This
negative effect of spatial normalizationwas eliminated by applying amodulation operation for
updating the voxel intensities to compensate the volume differences introduced by warping.

4 All 452 ICBM subject T1-weighted scans were aligned with the atlas space, corrected for scan inhomo-
geneities, and classified into gray matter, white matter, and cerebrospinal fluid. The 452 tissue maps were
separated into their separate components and each component was averaged in atlas space across the subjects
to create the probability fields for each tissue type. These fields represent the likelihood of finding gray matter,
white matter, or cerebrospinal fluid at a specified position for a subject that has been linearly aligned to the
atlas space (http://www.loni.usc.edu/atlases/Atlas_Methods.php?atlas_id=7).
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Fig. 2 Final (segmented, warped, modulated, and smoothed) version of tissue probability maps, GM (left),
WM (middle), and CSF (right)

2.2.2 Nonlinear image registration

Images belonging to different subjects and acquired at different time frames must be spa-
tially aligned and resampled in order to make the dataset ready for further analysis with
increased localization and, thus, with higher sensitivity. For this purpose, we took advan-
tage of the DARTEL (Diffeomorphic Anatomical Registration through Exponentiated Lie
Algebra) Toolbox of SPM, which had been implemented on the grounds of the study by
Ashburner (2007).

First of all, DARTEL templates were created with a setup of 6 outer iterations including
3 inner loops per each. At the end of every outer iteration, each individual image in the
training set was warped to match the existing template, and warped images were averaged
to regenerate a new template. The starting version of the template was assumed to be the
average of the original tissue probability maps. The number of inner iterations indicates the
number of Gauss–Newton iterations within the outer loop. The whole process starts with a
coarse registration and iteratively evolves into a relatively more accurate state with higher
detail and less amount of regularization. Deformations were parametrized by and stored in
the form of flow-fields.

Afterwards, the test set was processed for nonlinear registration by matching each of
the individual images to the existing templates generated in the former step. It is essential
at this step not to allow the images in the test set to share information among each other
for the objectivity and the extensibility of the tests. More specifically, DARTEL flow-fields
belonging to the images in the test set were computed using templates which were acquired
using the training images. If new templates based on test data were generated and used, the
registration process would have caused misleading classification results. Moreover, it would
have been impossible to obtain the same result for a particular image when it is processed
together with other groups of test images or alone. Additionally, insertion of a new image into
the test set would have required repeating the top–down procedure for registration, causing
updated deformations in other images.

Finally, train and test images were normalized to the MNI-space5 paying attention to the
considerations stated in previous paragraph. The final template and the flow-fields generated
at the previous step were used for this purpose. Consequently, a modulation operation was
performed to preserve the total amount of information encapsulated by the 3 TCs. Finally,

5 Standard brain space defined by Montreal Neurological Institute (MNI).
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the images were smoothed with a FWHM Gaussian filter and saved to the disk in NIfTI6

file format. At the end of this process, each individual tissue probability map was aligned
with the MNI-space with dimensions of (121–145–121) and resolution of 1.5 mm in all
three orthogonal directions. Figure 2 shows the final (segmented, warped, modulated, and
smoothed) version of 3 tissue probability maps belonging to an image randomly chosen from
the AD group of the training set.

Since we treated each voxel as a feature set containing the tissue probabilities belonging
to 3 separate brain TCs as elements, the overall dimensionality of the raw input space IRp

appeared to be:

p = (121 × 145 × 121) × 3 = 6,368,835. (3)

For example, in the AD/CN classification case, only 150 training images were used. This
means that we have 150 samples, each one of them being represented as a point in a p-
dimensional space, where each dimension of this feature space is called a tissue probability
index. Evidently, a classifier with that proportion of sample and variable sizes in training data
is highly likely to have a poor generalization ability, due to the very well-known phenomenon
of Curse of Dimensionality (Jain et al. 2000). Furthermore, high-dimensional vector oper-
ations directly cause high costs for memory use and computational time. In consideration
of these reasons, a sequence of algebraic operations for determination of an optimal set of
significant features was designed and applied. Steps involved in this procedure are explained
in the following subsection.

2.3 Determination of the subset of significant features: a 3-step approach

Inmachine learning problems, prediction accuracy of a classifier does not necessarily increase
with increasing number of features, unless class-conditional densities are completely known
(i.e., we have made all possible observations) (Jain et al. 2000). This phenomenon is the
aforementioned Curse of Dimensionality and is well-recognized in most problem domains
associated with pattern classification.

According to the recent review study of Mwangi et al. (2014), in a majority of the neu-
roimaging studies, the sample size is smaller than 1000 and the number of non-zero voxels
(voxels which point to the positions included in the brain tissue, thus, carrying a non-zero
intensity value) contained in a 3D brain scan is larger than 100,000. This statement is consis-
tent with our case, in which the number of non-zero features is in the order of 1,000,000 and
training set sample sizes lie between 100 and 150. Consequently, a model has a high potential
of overfitting (which is also referred as overlearning or memorization in the literature) to the
training data, if it is built without elimination of the irrelevant features. Additionally, it is
obvious that for computational issues such as solvability and reasonable time and memory
costs, the number of features should be reduced to a more narrow range. For these reasons,
application of a feature selection procedure before the model building process is crucial in a
neuroimaging study.

If there is no obligation imposing that the remaining feature space must be a subspace
of the original one, the number of variables could be reduced by applying linear or nonlin-
ear transformations on the raw data. In this case, the remaining features are not the ones
selected among the originals, but new ones derived from the original data. This concept
involves many linear and nonlinear methods such as Principal Component Analysis (PCA),
Multidimensional Scaling (MDS), Kernel PCA, Diffusion Maps, Laplacian Eigenmaps, and

6 http://nifti.nimh.nih.gov/.
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Generalized Discriminant Analysis (GDA). A remarkably good comparative review on many
of the methods falling into this group can be seen in van der Maaten et al. (2009).

In our study, feature transformation based approaches were not employed because of the
following reasons: (i) Feature selection (without transformation) provides a clearer under-
standing of themain question of interest; for example, with revealing significant regions in the
brain scans. (ii) Those transformations usually require operations in spectral domain such as
solution of eigenvalue problems, which are usually expensive at such high dimensions. Also,
inherent constraints of those approaches are generally not in consistence with the domain.
(For example, PCA is not able to provide a set of transformed vectors, of which the number of
elements are greater than the number of training samples, which is not adequate in our case.)
Shih et al. (2014), stated this fact as follows: “Conventional variable selection techniques
are based on assumed linear model forms and cannot be applied in this ‘large p and small
N’ problem.” (iii) It was observed that the insertion of the domain knowledge via a more
heuristic approach affects the overall performance in the positive direction (see Sect. 3.1).

Instead of working with space-transformative dimensionality-reduction techniques, we
preferred to develop amethodology to choose optimal subsets of features from the raw dataset
constrained to pre-determined parameters. Our methodology consists of three steps, namely,
Statistical Analysis, Tissue Probability Criteria, and Within-class Norm Thresholding. It is
essential to note that each step is applied on the raw data (after removal of the zero-voxels)
and the union set of eliminated features are specified by superposing individual sets, at the
end of the procedure. Therefore, the proposed procedure does not impose carrying out the
three steps in this specific order. It should also be clarified that while we are claiming our 3-
step feature selection procedure to be novel, we are not implying novelty for each individual
step. In particular, Step I (Statistical Analysis) -on its own- is not novel with respect to other
GLM-based feature selection methods for MRI.

Effects of reducing the dimensionality by utilization of the aforementioned well-known
techniques were briefly examined and the performances of these methods became compared
with the performance of our procedure. Implementation details and results were introduced
in Sect. 3.1.

Individual steps of the procedure were introduced in the following subsections.

2.3.1 Step I: statistical analysis

For statistical analysis of the gray matter tissue probabilities at each voxel, a multivariate
General Linear Model (GLM) (cf. Eq. (4)) is considered. A GLM could mathematically be
expressed as:

y = Xb + u, (4)

where y is anN-dimensional response vector (whereN is the total number ofMR images),
X is an N × (p/3) matrix containing gray matter tissue probability values7 of each image
as feature vectors, and b is a vector of (p/3) unknown parameters to be estimated. The
errors comprised in the vector u are independent and identically distributed (i.i.d.) random
variableswithmean value 0.AGLMexplains the response variable (in our case, the class label
indicating patient and healthy subject) in terms of a linear combination of the explanatory
variables (in our case, normalized and modulated gray matter tissue probabilities).

7 The total number of the raw data features containing the probabilities for 3 tissue classes at each voxel is
p. Therefore, considering only the gray matter tissue probabilities, the dimensionality is equal to the total
number of voxels, which is (p/3).
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The matrix X in Eq. (4) is also referred as design matrix, which was constructed using
two-sample t-test for comparing the means of the two populations (namely, sets of MR
images belonging to patient and healthy subjects) at each voxel index and discriminating
the statistically significant voxel positions from others, in our case. Using voxel-level height
threshold and cluster-level extent threshold parameters as measures of significance, different
masks could be acquired with different threshold levels. In other words, different subsets of
columns of the matrixX could be specified as the set of significant feature vectors, depending
on the two threshold values.8

2.3.2 Step II: tissue probability criteria

Vemuri et al. (2008) introduced a novel methodology to assign values according to discrimi-
native power to the voxels of a structural MRI segmented into the three tissue classes. Their
metric is called STAND-score (Structural Abnormality Index Score).

In order to calculate the STAND-score, first the volumetric data were down-sampled to an
isotropic voxel size of 8mm(22×27×22 voxels).After this, the voxels carrying less than 10%
tissue density, and the images with CSF in half or more of the voxels were eliminated. Finally,
a linear SVM was applied to the remaining data, and weights corresponding to each tissue
density were estimated. These weights were used for further elimination of irrelevant voxels
(the definition of “irrelevant” differs among distinct tissue classes). The main motivation
of the procedure arises from the fact that existence and absence of GM and WM in certain
positions of the brain have anatomical relevance to diagnose the Alzheimer’s disease.

This step of our procedure was suggested being inspired by the second step of the STAND-
score approach (which puts forward a direct interpretation of the domain knowledge), except
for two slight modifications: (i) The lower bound constraint on the ratio of tissue content
to eliminate a voxel was not directly assumed as 10%. Instead, various—higher—threshold
values were tested. (ii) An additional constraint on the first moment (sample mean) of the
ratio of tissue content was introduced. The idea here was to avoid losing a substantial amount
of information at a single pass with a very small lower boundary, and to compensate the effect
of increasing the threshold by an additional operation, using the sample means this time.

First, the voxels, at which the sum of the probability of being GM and of the probability
of being WM is smaller than a certain first threshold, τ1, in all of samples were marked to
be eliminated. Secondly, the voxels at which the sum of the sample means of probability
of being GM and of being WM is smaller than a certain second threshold, τ2, were marked
to be eliminated. Both of the operations were applied on the raw data. Thus, the order of the
two operations could be reversed. Finally, the union set of variables which were marked to
be eliminated were removed from the data. In closer terms:

PGM(i, j) + PWM(i, j) < τ1, ∀i ∈ {1, 2, . . . , n} , (5)

or,

PGM( j) + PWM( j) < τ2. (6)

The expressions given in Eqns. (5) and (6) state the elimination criteria for the j th feature
mathematically, where i and j are indices of samples and features, PGM and PWM are gray
matter and white matter probabilities at specified indices, PGM and PWM are sample means
of tissue probabilities calculated across observations, respectively.

8 An explanatory example for the use of height threshold and extent threshold in fMRI analysis is provided
in Friston et al. (1996).
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In this paper, the value of the two thresholds were determined manually by observation
among successive experiments. MARS parameters were kept constant (see Sect. 3.2 for the
definition of the MARS parameters), while different combinations of τ1 and τ2 values were
used for feature selection. The resulting classifier was applied on the blind test data and the
thresholds giving the highest AUC (Area Under the ROC Curve) were chosen. For example,
in the AD/CN classification case, appropriate values for the two thresholds appeared tomatch
the highest AUC value at: τ1 = 0.5 and τ2 = 0.7. In the future, a further study involving
adaptive selection of the threshold values will be conducted.

2.3.3 Step III: within-class norm thresholding

The final step could be basically explained as a comparison of the Euclidean norm of a
variable among samples with the mean value of the norms belonging to the tissue class of
that variable. Here, the underlying rule is based on the idea that in case of a significant
variable, intensity differences between samples having different labels should create a higher
vector norm (when compared with the case of an insignificant variable). First of all, the
Euclidean norm of samples at each tissue probability index is computed by:

‖P( j)‖2 =
√

∑n

i=1
(P(i, j))2. (7)

Afterwards, within-class averages of the computed norms are calculated for the three
tissue classes. Namely, μ̂GM , μ̂WM , and μ̂CSF are computed by:

μ̂c =
∑

j∈c ‖P( j)‖2
jc

, (8)

where c stands for the tissue class (c ∈ {GM, WM, CSF}), and jc is the number of variables
belonging to the specified tissue class. The rule for a variable to be eliminated is defined as
its norm ‖P( j)‖2 being smaller than a fraction of the within-class norm mean (μ̂c) of the
corresponding class. That fraction could be called as ε, where the value of ε must be between
0 and 1. In order to determine the ε value, the same method as explained in Sect. 2.3.2
was used. In the AD/CN classification case, setting ε = 0.9 provided the best classification
performance among several trials.

It should be noted that, the tissue probability values could also have been used directly
instead of Euclidean norms for comparison with the within-class means. Although this deci-
sion would have affected the value of ε, the overall results would not have changed since
the tissue probabilities are guaranteed to be positive real numbers and the Euclidean norm
is monotonic for positive numbers. In this paper, we preferred using norms for providing a
more general notation to represent the vectorial distances.

Table 2 shows the amount of reduction in the dimensionality of the problem space after
removal of the zero-voxels and after applying the feature selection procedure. The posi-
tive effects of reducing the dimensionality on the overall classification performance were
observed; however, a comprehensive analysis was not included in this paper. A brief demon-
stration can be found in Sect. 3.1.

In MCI and MCIc detection cases, the General Linear Models constructed with MCI
data were visually examined and it was seen that the masks include meaningless (or less
meaningful) regions (such as air and CSF). This originated from the smallness of the intensity
difference between MCIs and normal controls, when compared to that of ADs and normal
controls. This concept can be thought of as a low signal-to-noise ratio problem. In order to
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Table 2 Number and ratio (to the no. of variables in the raw data) of remaining significant features after
zero-voxel removal and feature selection (AD/CN classification case)

No. of features Ratio to the no. of variables in
the raw data

Raw data 6,368,835 –

Zero-voxel removal 2,112,054 33.16%

Feature selection 3320 0.05%

overcome this problem, we chose to use AD/CN GLM as the initial mask in the other two
cases, too. This movement provided a good boost in the classifier performances.

In Fig. 3, the resulting mask consisting of the voxels which were marked as significant at
the end of the feature selection procedure is highlighted. It is noteworthy that the resulting
region appeared to be asymmetric between brain lobes.

2.4 Multivariate adaptive regression splines

Multivariate Adaptive Regression Splines (MARS) (Friedman 1991) is a nonparametric
regression technique which aims to build adaptive models. The method is nonparametric
since it involves a procedure with no specific assumptions on the relations between the vari-
ables. It is adaptive because its basis-function selection process depends completely on the
data themselves. Main ability ofMARS is to construct flexible models by allowing piecewise
linear regression functions through the utilization of hinge functions defined by:

(x − t)+ =
{

x − t, if x > t,

0, otherwise,
(9)

and

(t − x)+ =
{

t − x, if x < t,

0, otherwise.
(10)

The two functions given by Eqns. (9) and (10) are called a reflected pair. The idea is to
form reflected pairs for each input variable X j with knots at each observed value xi j of that
variable. Therefore, the collection of basis functions is:

C = {
(X j − t)+, (t − X j )+ | t ∈ {

x1 j , x2 j , . . . , xN j
}
, j = 1, 2, . . . , p

}
. (11)

MARS builds models of the form

f (X) = β0 +
M∑

m=1

βmhm(X), (12)

where M is the number of basis functions in the model and each hm(X) is a function (or a
product of two or more such functions) in C , multiplied by a factor of βm .

MARS builds a model in two phases: the forward pass and the backward pass. In fact,
MARS starts with a model which consists of only the intercept term (which is estimated by
the mean of the response values). MARS then repeatedly adds basis function in pairs to the
model. At each step it finds the pair of basis functions that gives the maximum reduction in
an objective function, such as sum-of-squares residual error. The forward pass usually builds
an overfit model. To build a model with a preferable generalization ability, the backward
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Fig. 3 Resulting binary mask consisting of significant voxels for discriminating between AD and CN classes

pass prunes the model function. It removes terms one by one, deleting the least effective
term at each step until it finds the best submodel. Basis functions are removed in the order
of least contribution, using the Generalized Cross-Validation (GCV) criterion. A measure of
importance of a variable is determined by observing the decrease in the recomputed GCV
values when a variable is removed from the model (Yao 2009).

The GCV criterion is defined by:

GCV =
∑N

i=1(yi − f̂α(xi ))
2

(1 − Mα/N )2
. (13)

In Eq. (13), N is the number of samples; f̂α is the optimally estimated submodel; Mα =
uα +dk, where uα is the number of linearly independent basis functions in the submodel, α; k
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is the number of knots in the forward process; and d is the cost coefficient for optimization—
also operating as a smoothing parameter for the procedure.

2.4.1 Classification with MARS

The MARS algorithm can be extended to handle classification problems (Hastie et al. 2009).
In two-class cases, the output can be coded as 0 and 1 (for example, 0 for healthy controls and
1 for Alzheimer’s disease patients) and the problem can be treated as a regression problem.
The only major deficiency of a MARS classification model is that it is built using a least-
squares loss function directly interpreting the class label as a continuous random variable
with two realizations (0 and 1) everywhere. Therefore, it is not guaranteed for the predictions
to be constrained to the interval [0, 1]. Thus, they cannot be thought of as probabilities. They
should instead be treated as generalized probability scores. In order to make a class decision
from the continuous output response, a threshold value is required. However, the value of
this threshold is not definite as the maximum and minimum values of the predictions are
not known. Automatic optimal threshold selection for image segmentation method of Otsu
(1975) was used to determine a valid class-separating threshold.

It was also observed that statistically normalizing the data with standard score provided a
better classification performance. Therefore, in each experiment,mean and standard deviation
values of the training group were computed at each dimension and used for normalization
of both the training and the test group input vectors. ARESLab,9 which is an open-source
MATLAB toolbox for building piecewise-linear and piecewise-cubic regressionmodels using
MARS technique, was selected and used for the model building and testing processes.

2.5 Performance evaluation

Resulting class labels of each classification experiment were compared with the known class
labels of the test data in order to assess the number of true positives (TP; i.e., individuals with
disease which are correctly classified), true negatives (TN; i.e., healthy individuals which
are correctly classified), false positives (FP; i.e., healthy individuals which are classified
as diseased) and false negatives (FN; i.e., individuals with disease which are classified
as healthy). Sensitivity defined as SEN = TP/(TP + FN), specificity defined as SPE =
TN/(TN + FP), positive predictive value defined as PPV = TP/(TP + FP) and negative
predictive value defined as NPV = TN/(TN + FN) were computed as the performance
evaluation metrics. Since the groups do not contain equal numbers of subjects, the overall
accuracy (ratio of number of correctly classified sample to the number of all samples) does
not provide meaningful information to compare classifier performances. Therefore, it was
not included as a measure of performance.

3 Results and discussion

3.1 Dimensionality reduction

Our 3-step procedure for feature selectionwas comparedwith sixwidely-usedmethodswhich
arementioned in Sect. 2.3, namely,PCA,MDS,Laplacian Eigenmaps,Kernel PCA,Diffusion

9 Jekabsons G., ARESLab: Adaptive Regression Splines toolbox for MATLAB/Octave, 2011, available at
http://www.cs.rtu.lv/jekabsons/.
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Table 3 Our procedure for dimensionality reduction is compared with other commonly used techniques, in
terms of sensitivity (SEN), specificity (SPE), positive predictive value (PPV), and negative predictive value
(NPV) outcomes

SEN (%) SPE (%) PPV (%) NPV (%)

None 67.16 81.48 0.75 0.75

Voxel-MARS 83.58 86.42 83.58 86.42

PCA 82.09 71.60 70.51 82.86

MDS 82.09 71.60 70.51 82.86

Laplacian eigenmaps 79.10 74.07 71.62 81.08

Kernel PCA 2.99 95.06 33.33 54.23

Diffusion maps 91.04 1.24 43.26 14.29

GDA 0 100 – 54.73

Maps, and GDA, in terms of SEN, SPE, PPV, and NPV outcomes (see Table 3). All of the
methods were applied on the AD/CN dataset. MARS models were constructed employing
all of the training samples for each technique. Performance outcomes were acquired through
testing the resulting models on the blind test data.

Before the application of each method, the first step (Statistical Analysis via GLM) of
our procedure was applied on the raw training and testing data. In this way, the number of
dimensions were reduced to a value (26,448) which is appropriate for the constraints induced
by the methods. After that, the intrinsic dimension of the training data was computed through
Maximum Likelihood Estimation (MSE), which appeared to be 11 for the AD/CN group. The
methods listed in Table 3 (from PCA to GDA) were applied10 both on the training and on the
test data to reduce dimensionality of the two values to the value computed as the intrinsic
dimension. Keeping the input parameters constant (max_fnc = 11, max_interact = 1, the
reader may refer to Sect. 3.2 for definitions of these input parameters), MARS models were
built. Finally, the models were tested using the blind test data. (In the case labeled as “None”,
model buildingwas performed just after the “Statistical Analysis” step, without further reduc-
tion in the dimension. In the case labeled as “Voxel-MARS”, our 3-step procedure was run
and the number of dimensions was reduced to 3320 before the model building process.)

According to the results shown in Table 3, only three of the six methods (PCA, MDS,
and Laplacian Eigenmaps) were able to provide feature vectors with discriminative strength
necessary for classification. It is seen that they provided greater sensitivity compared to the
“None” case, in which the number of dimensions were not reduced. However, our procedure
for feature selection outperformed all of the other methods listed on the table in terms of
sensitivity, specificity, positive predictive value, and negative predictive value.

A deeper research on the effects of dimensionality reduction methods to the classification
performance is planned to be conducted in the future.

3.2 Parameter optimization with grid search and ROC analysis

There are two main MARS parameters, based on which we can determine values to control
the model building process. The first parameter is the “maximum allowed number of basis
functions in the forward model” (max_fnc), and the second one is the “maximum allowed
degree of interactions between variables” (max_interact). Increasing max_fnc introduces

10 TheMatlab Toolbox for Dimensionality Reduction van derMaaten et al. (2009) was used for computations.
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a rise in the amount of flexibility—therefore, complexity—of the resulting model, where
increasingmax_interact provides ability tomodel nonlinearities and statistical dependencies
between variables.

AD/CN,MCIc/CN, andMCIc/MCInc classification experimentswere performedwith two
iterations of grid search to find the optimal values for these two variables. In the first iteration,
max_fnc was varied taking the values {11, 21,…, 101} one by one, and max_interact was
varied taking {1, 2, 3} for each value that max_fnc takes. In the second iteration, max_fnc
was variedwith smaller steps (step size = 2) around the parameter value giving themaximum
Area Under the ROC Curve (AUC) in the first iteration. In this way, a coarse-to-fine selection
of the model parameters was aimed at.

Ñ-times replicated k̃-fold cross-validation (Wendy and Martinez 2002) technique was
used to validate themodel parameters.11 In this approach, the original training set is randomly
divided into k̃ subsets (folds).While each subset is utilized for testing themodel, the remaining
k̃ − 1 are used for building the models. This process is repeated Ñ − 1 more times with
randomly updated partitions and the k̃ multiplied by Ñ results—in our case, AUC (area under
the ROC curve), sensitivity, and specificity values–are averaged. The parameters providing
the maximum AUC value were determined as the final model parameters. MARS models
built using these final parameters and all of the training samples were applied on the blind
test data to obtain final results.

However, the difference in the sample sizes of the training sets for the three different
experiments (see Table 1) posed a problem in determination of the Ñ and k̃ values for
cross-validation (the AD/CN group contains 150 samples, the MCI/CN group contains 120
samples, and the MCIc/MCInc group contains 104 samples for training). Also, it has been
observed that when the sample size used in the model building process is reduced under 100,
the classification performance drastically decreases. Therefore, the value of k̃ was assigned
to be 3 in the AD/CN case, 6 in the MCI/CN case, and 18 in the MCIc/MCIcn case, by taking
the difference in sample sizes into consideration. The reason for this approachwas to keep the
number of samples in each partition used for training balanced (N × (k̃ −1)/k̃ ≈ 100, where
N is the total number of samples) during the cross-validation procedure, independent from
the test case. The Ñ values are selected to compensate the differences in overall repetition
counts (introduced by using different k̃ values), accordingly (Ñ = 18 for AD/CN group,
Ñ = 9 for MCI/CN group, and Ñ = 3 for MCIc/MCInc group).

Classification experimentswere performedbybuildingMARSmodelswith the parameters
acquired through the parameter optimization procedure involving grid search and cross-
validation as explained in this subsection. Obtained models became applied on the blind test
data and the results achieved at the end of our decision process are introduced with the confu-
sion matrix given in Table 5 (see Sect. 3.3). The individual results for AD/CN, MCI/CN, and
MCIc/MCInc cases are presented in Figs. 4, 5, and 6, respectively. Table 4 shows the max-
imum average AUC value acquired through the search procedure, corresponding parameter
values, and the averages of the performance outcomes for each case.

3.3 Classification results

Classification experiments were performed by building MARS models with the parameters
acquired through our parameter optimization procedure involving grid search and cross-
validation as explained in the preceding subsection. The obtained models were applied on

11 Here, the letters N and k are used with a tilde (∼) sign over them in order not to be confused with the N
used for expressing the sample size and the k appearing in Eq. (13) as the number of knots, respectively.
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Fig. 4 Optimization of the MARS model parameters with grid search and cross validation for the AD/CN
group. Images in the first row show the coarse search and the ones in the second row show the fine tuning of
the optimization parameters. Columns represent different values (1, 2, and 3) for max_interact (see Sect. 3.2
for the definitions of max_fnc and max_interact). The dashed black line points the maximum AUC acquired
in each process. The overall maximum AUC is indicated by the yellow rectangle (AUC = 0.8656 with
max_fnc = 11 and max_interact = 1)

Fig. 5 Optimization of the MARS model parameters with grid search and cross validation for the MCI/CN
group. Images in the first row show the coarse search and the ones in the second row show the fine tuning of
the optimization parameters. Columns represent different values (1, 2, and 3) for max_interact (see Sect. 3.2
for the definitions of max_fnc and max_interact). The dashed black line points the maximum AUC acquired
in each process. The overall maximum AUC is indicated by the yellow rectangle (AUC = 0.7025 with
max_fnc = 11 and max_interact = 1)
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Fig. 6 Optimization of theMARSmodel parameterswith grid search and cross validation for theMCIc/MCInc
group. Images in the first row show the coarse search and the ones in the second row show the fine tuning of
the optimization parameters. Columns represent different values (1, 2, and 3) for max_interact (see Sect. 3.2
for the definitions of max_fnc and max_interact). The dashed black line points the maximum AUC acquired
in each process. The overall maximum AUC is indicated by the yellow rectangle (AUC = 0.5477 with
max_fnc = 71 and max_interact = 1)

Table 4 Optimal parameters
with corresponding averaged
performance outcomes acquired
through the grid search procedure
(see Sect. 3.2 for the definitions
of max_fnc and max_interact)

AD/CN MCI/CN MCIc/MCInc

max_fnc 11 11 71

max_interact 1 1 1

AUC 0.8656 0.7025 0.5477

SEN 0.7826 0.6328 0.5404

SPE 0.8025 0.6607 0.4973

Table 5 Confusion matrix
regarding all 3 experiment results
(H: healthy, D: diseased)

Confusion matrix True classes

AD/CN MCI/CN MCIc/MCInc

H D H D H D

Predictions

H 70 11 72 8 40 14

D 11 56 9 29 27 23

Totals 81 67 81 37 67 37

the blind test data, and the results achieved at the end of our decision process are introduced
with the confusion matrix given in Table 5.

SEN and SPE values were computed assuming the diseased label as positive and the
healthy label as negative. Thus, TPs were defined as diseased samples which our algorithm
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labeled as diseased, TNswere defined as healthy oneswhich our algorithm labeled as healthy,
FPs were defined as healthy ones which our algorithm labeled as diseased, and FNs were
defined as diseased ones which our algorithm labeled as healthy. In AD/CN classification
case, ADs were assumed diseased and CNs were assumed healthy. Similarly, in MCI/CN
case, the diseased set was composed of subjects with MCI. In the final case, diseased ones
were assumed to be the converter MCIs (MCIc), and the MCInc subjects were assumed
healthy (Table 5).

3.3.1 AD/CN classification

Classification results for AD/CN groups are presented in Table 7. Our method is enti-
tled as Voxel-MARS (ID: 0) referring the naming convention used in Cuingnet et al.
(2011). All 28 methods are sorted in descending order by their sensitivity outcomes and
the uppermost five are chosen. The columns show the unique hierarchical IDs given
in the original paper, names of the methods, sensitivity, specificity, positive predictive
value, and negative predictive value outcomes. In the table, it is seen that our method
(Voxel-MARS) produced the highest-ranking sensitivity (SEN) and negative predictive
value (NPV) among all 28 methods, with an acceptable specificity (86.42%). On the
other hand, Voxel-MARS ranks 22th at specificity (SPE) and 21th at positive predictive
value (PPV) among 28 other methods. Looking at the rankings, the proposed method
may seem to underperform in terms of specificity. However, deviation of sensitivity in
the positive direction (+12.12) is greater than that of specificity in the negative direc-
tion (−2.97) when compared with the average outcomes of all of the other methods (see
Table 7).

3.3.2 MCI/CN classification

Performance metrics for MCI/CN classification case are given in Table 8. All 28 methods are
sorted in descending order by their sensitivity outcomes and the uppermost five is chosen.
Similarly to the first case, our method outperformed all 28 voxel intensity-based methods of
sensitivity (SEN) and negative predictive value (NPV).Voxel-MARS ranks 17th at specificity
(SPE) and 12th at positive predictive value (PPV) among all of the 28 other methods; these
two ranks are both higher than the averages of others (see Table 6). In AD/CN and MCI/CN
cases, optimal values for max_fnc and max_interact were 11 and 1, respectively, and the
resulting number of basis functions was 7 for both.

3.3.3 MCIc/MCInc classification

In Cuingnet et al. (2011), only 15 out of 28 methods had been observed to produce mean-
ingful results (where both of the SEN and SPE outcomes are different from 100% or 0) in
MCIc/MCInc case. Similarly to the previous two cases, methods are sorted by their sensitiv-
ity outcomes and the uppermost five of them are listed in Table 9. Our technique is ranked
2nd in terms of sensitivity. Voxel-MARS ranks 16th at specificity (SPE), 12th at positive
predictive value (PPV), and 7th at negative predictive value (NPV) among 28 other methods.
Very similar to the AD/CN classification case, the amount of gain in SEN is greater than the
amount of loss in SPE (see Table 7).
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Table 6 Performance of our method is compared with the average outcomes of others

Case Metric Other methods Voxel-MARS Difference Rank

AD/CN SEN 71.46±5.65 [59–82] 83.58 +12.12 1

SPE 89.39±5.03 [77–98] 86.42 −2.97 22

PPV 85.18±6.23 [72–96] 83.58 −1.60 21

NPV 78.93±3.88 [70–86] 86.42 +7.49 1

MCIc/CN SEN 54.39±12.39 [22–73] 78.38 +23.99 1

SPE 88.82±7.27 [73–99] 88.89 +0.07 17

PPV 71.50±11.97 [50–89] 76.32 +4.82 12

NPV 81.21±3.60 [73–87] 90.00 +8.79 1

MCIc/MCInc SEN 44.20±15.22 [22–70] 62.16 +17.96 2

SPE 76.47±8.77 [61–91] 59.70 −16.77 16

PPV 51.33±7.25 [39–67] 46.00 −5.33 12

NPV 68.18±5.02 [66–79] 74.07 +5.89 7

Values in “other methods”, “Voxel-MARS” and “difference” columns are given as percentages

Table 7 Our method compared with five methods on AD/CN classification

ID Method name SEN (%) SPE (%) PPV (%) NPV (%)

0 Voxel-MARS 83.58 86.42 83.58 86.42

1.5.1 a Voxel-COMPARE-D-gm 82 89 86 86

1.1.1 a Voxel-Direct-D-gm 81 95 93 86

1.4.1 b Voxel-Atlas-D-all 81 90 87 85

2.2 Thickness-Atlas 79 90 87 84

1.4.1 a Voxel-Atlas-D-gm 78 93 90 83

Table 8 Our method compared with five methods on MCI/CN classification

ID Method name SEN (%) SPE (%) PPV (%) NPV (%)

0 Voxel-MARS 78.38 88.89 76.32 90.00

1.3.1 a Voxel-STAND-D-gm 73 85 69 87

3.1.1 Hippo-Volume-F 73 74 56 86

3.1.2 Hippo-Volume-S 70 73 54 84

1.4.2 a Voxel-Atlas-S-gm 68 95 86 87

2.3 Thickness-ROI 65 94 83 85

An overall quantitative comparison of the performance of our method with other methods
is introduced in Table 6. Performance statistics of other methods are presented in the format:
“average (%)± standard deviation (%) [range (%)]”. In both of the AD/CN and AD/MCI
classification cases, all 28methods had produced reasonable results, whereas inMCIc/MCInc
classification case, only 15 of them had. Therefore, for the 3rd case, 13 methods producing
“zero sensitivity” were not included in computations. The column “Difference” compares
the results gathered using our method and the averages of other methods as percentage.
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Table 9 Our method compared with five methods on MCIc/MCInc classification

ID Method name SEN (%) SPE (%) PPV (%) NPV (%)

3.1.1 Hippo-Volume-F 70 61 50 79

0 Voxel-MARS 62.16 59.70 46.00 74.07

3.1.2 Hippo-Volume-S 62 69 52 77

1.5.1 a Voxel-COMPARE-D-gm 62 67 51 76

1.3.1 a Voxel-STAND-D-gm 57 78 58 76

1.5.1 b Voxel-COMPARE-D-all 54 78 57 75

Fig. 7 Pseudo-code for an example MARS model function

3.4 Visualization of the model function

The pseudo-code shown in Fig. 7 is partially expressing the model function constructed for
AD/CN separation. The model is composed of 7 terms—each representing a MARS basis
function and, here, only the 1st term is expressed explicitly. The lowermost line of the code
shows the model function in terms of those basis functions.

Visualization of problem spaces with such a high dimensionality is always a difficult
issue. In order to offer a visual sense of the hypersurface which separates the problem space
into two subspaces, projections were used. Figure 8 shows two exemplary models projected
onto two knot dimensions each. Figure 8a, b show training data points and test data points
(output response), and the MARS model of Exp. 1, projected onto knot dimensions (voxels)
with indices 2553 and 2195 (which correspond to BF1 and BF4 and were chosen randomly
among all BFs included in the model), respectively. Similarly, Fig. 8c, d show projections of
an example model produced for Exp. 2 onto knot dimensions with indices 2369 and 2617,
respectively. The value for the parameter max_interact was selected to be 2 for visualizing
nonlinear BFs. Aforementioned voxel indices were chosen since their corresponding hinge
functions were appearing in a nonlinear BF in multiplication form. In both cases, a clear
separation of structural brain MRI images belonging to the healthy and diseased subjects
was observed.

In both of the cases shown in Fig. 8, the voxel indices -to project the model onto- were
chosen according to the contribution of the basis functions (coinciding with these voxel
indices) to the overall discriminative power of the model function. Residual Sum of Squares
(RSS) was used as a measure to choose the binary combination of basis functions among
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Fig. 8 Projections of the two model functions of Exp. 1 (AD/CN) and Exp. 2 (MCI/CN) onto the selected
knot dimensions

all of them. The two voxel indices, the corresponding basis functions of which provided the
minimum RSS on the blind test data, were chosen for model visualization.

3.5 Discussion

A fully-automatedmachine learningmethodwas proposed to help for diagnosis of Alzheimer
andMCI at early stages of diseases by analyzing 3DT1-WstructuralMRI. The proposed tech-
nique includes novel contributions in feature selection and classification procedures; namely,
a 3-step approach for determination of the subset of significant features, and utilization of
MARS method as a classifier for the first time in the field of OR in Neuroscience.

Training and test data were gathered from the ADNI database with permission, and data
groups were composed referring to the comparative study of Cuingnet et al. (2011). A set
of experiments was composed in order to compare the overall performances under different
conditions, and our best (in terms of maximum AUC) results were presented side by side
with the ones gathered in the referred study. It was seen that our method (Voxel-MARS)
outperformed all 28methods compared within the study in terms of sensitivity and NPV, with
acceptable specificity values in early detection of AD and MCI. Additionally, our algorithm
managed to produce meaningful results in the MCIc/MCInc classification case and worked
better than 27 of 28 other methods in terms of sensitivity. Although the specificity outcomes
produced by the proposed method were below the averages provided by the other methods
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in AD/CN and MCIc/MCInc classification experiments, the amount of gain in sensitivity
turned out to be greater than the amount of loss in specificity in both cases.

MARS is an adaptive regression method, which has the ability to model nonlinearities
and dependencies between variables automatically. GCV criterion of MARS constitutes an
equilibrium between flexibility and generalization ability of the MARS model function. It
is known that the aforementioned characteristics of the method may better be observed with
larger datasets. However, the method was completely proved to be working for our problem
with relatively simpler models provided (for example, models consisting of 7 basis functions
without interactions among them).

4 Conclusions

In this study, a complete, fully-automated computer-aided diagnosis system for early detec-
tion of AD and MCI based on structural brain MRI was introduced. A thorough image
processing scheme was applied to 3D T1-W MRI data downloaded from the ADNI archive,
in order to obtain voxel-based feature vectors. The choice of treating all voxel intensities
forming the three main brain tissues as potential features (i.e., voxel-as-feature approach)
effectively yields a “small N—large P” problem, which calls for a method capable to mitigate
the challenges arising from the coexistence of data sparsity and high dimensionality.

A novel 3-step feature selection approach was elaborated for the determination of the fea-
tures with significantly higher discriminative power. The feature selection procedure starts
with generation of an initial mask using a General Linear Model, proceeds with injection of
domain rules into the model for elimination of some features according to the tissue prob-
ability distributions, and ends with an application of the within-class norm thresholding—a
method offering elimination of features whose Euclidean sample norms are not large enough
with respect to the mean of norms of feature vectors within their tissue class.

Multivariate Adaptive Regression Splines (MARS) is a non-parametric, adaptive exten-
sion of decision trees (specifically, of Classification and Regresion Trees—CART) which is
able to produce nonlinear models for regression and classification. In Hastie et al. (2009),
a comparative analysis involving 5 of the “off-the-shelf” procedures for data mining is pre-
sented. According to this analysis, MARS provides better support for handling of data of
mixed-type and missing values, computational scalability, dealing with irrelevant inputs,
and interpretability than Support Vector Machines (SVM), the most widely-used technique
for AD classification, does. In Strickland (2014), it is stated that MARS is able to make
predictions quickly compared to SVM, where “every variable has to be multiplied by the
corresponding element of every support vector”. Furthermore, a special advantage of MARS
lies in its ability to estimate contributions of some basis functions, which are allowed to
determine the output response through additive and interactive effects of the input variables
(Weber et al. 2012). This final ability of MARS -which SVM lacks- is of particular impor-
tance in our study, whereby we employ all of the voxel intensities (forming the brain tissue)
as potential predictor variables at the beginning, and do not have the conclusive anatomical
knowledge of significant brain regions to be affected in the very early phases of AD.

When compared with another commonly used method in the field, Artificial Neural Net-
works (ANN), MARS is reported to be more computationally efficient (Zhang and Goh
2016). An additional drawback of ANN is that it provides models in form of a “black box”.
This is explained by Francis (2003) as follows: “The functions fit by neural networks are
difficult for the analyst to understand and difficult to explain to management. One of the
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very useful features of MARS is that it produces a regression like function that can be used
to understand and explain the model.” MARS, like ANN, is also effective in modeling the
interactions among variables. Additionally, in Moisen and Frescino (2002), using MARS
is reported to be tremendously advantageous over using Linear Models (LM), Generalized
Additive Models (GAM), and CART for prediction.

Keeping these qualities in mind, we have chosen MARS as the method to be utilized
for classification. MARS was employed to construct nonlinear models to function as class-
separating hypersurfaces. Employment of MARS as a classifier with such high degrees of
space dimensionality is one of themajor contributions of this study, as it is the first time use of
themethod in the field of structural brainMRI analysis. It has resulted in a remarkable success,
compared to the alternative approaches which correspondingly addressed voxel intensities of
structural brain MRI as the source of information. It was proved that MARS can excellently
perform as a nonlinear classifier having the ability to learn from high-dimensional data and to
construct complex—and yet stable—models without pre-assigning any constant parametric
form. Utilization of the method enabled for the resulting system to detect the effects of
microscopic changes occurring at the early phases of AD and converter-MCI in the intensity
distributions on T1-W brain MRI.

Recent technological improvements of all kinds of measurement devices (which is an
MRI scanner in our case) create a gigantic and continuously growing supply of information
(i.e., big data) to analyze. This situation forces us, scientists, to position the machine learning
issues within the areas of data mining and model optimization, and to elaborate our work in
the area of Operational Research within near future. Automatized detection of AD (andMCI)
at early phases with image analysis involves employment of techniques from mathematical
sciences such as statistical analysis, mathematical modeling, and decision theory. There-
fore, improvement of computer-aided AD and MCI diagnosis tools can be considered as an
open OR problem in the field of Neuroscience. This study showed that our decision-making
approach is one of the promising advances in the domain.

Inclusion of data provided by other modalities (both the imaging modalities such as PET
and other biomarkers such as CSF proteins and MSE scores) into the model, a quantitative
analysis of the effects of feature selection and dimensionality reduction on overall classifi-
cation performance, a deeper comparison between performances of SVM-based algorithms,
Artificial Neural Networks and MARS method in the field, and expansion of the system with
a wider learning set to be used in clinics are potential future studies that are motivating our
group.Moreover, a deeper researchwill be conducted by the help of recentmethodswhich are
mathematically more integrated variants of the algorithmic part of MARS, with less heuristic
elements, and supported bymodern optimization theory, such as CMARS (Weber et al. 2012)
-being reported to providemore complexmodels enabling higher classification accuracy than
MARS does- and its robust counterpart RCMARS (Özmen et al. 2011)—shown to be even
more successful than CMARS in handling various forms of uncertainty (e.g., by existence
of noise, by outliers, and by missing values) in the data.
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