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Abstract The choice of a risk measure reflects a subjective preference of the decision maker
in many managerial or real world economic problem formulations. To assess the impact of
personal preferences it is thus of interest to have comparisons with other risk measures at
hand. This paper develops a framework for comparing different risk measures. We establish
a one-to-one relationship between norms and risk measures, that is, we associate a norm
with a risk measure and conversely, we use norms to recover a genuine risk measure. The
methods allow tight comparisons of risk measures and tight lower and upper bounds for risk
measures are made available whenever possible. In this way we present a general framework
for comparing risk measures with applications in numerous directions.
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1 Introduction

Risk measures are designed to quantify the risk which is associated with a random, uncertain
outcome in a single real number. Risk measures have been considered in insurance first to
price insurance contracts, but nowadays they constitute an essential basis for decisionmaking
andmanagement in all areas of operations research, management science and (mathematical)
finance whenever unobserved, random, future outcomes are involved.

This paper addresses comparisons of riskmeasures and continuity relations by establishing
lower andupper bounds.Wegive tight relationswherever possible so that stochastic programs,
e.g., can be compared easily when employing different risk measures. A sensitivity analysis
thus can assess a subjective preference of a particular risk measure.
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Our research is motivated by Iancu et al. (2015), but in addition to the methods outlined in
this referencewe involve convex functions (as norms or functionals derived fromcoherent risk
measures, e.g.) to obtain explicit bounds. Some of these convex functionals perhaps violate
usual axioms of coherent risk measures, but they are useful and eligible for comparisons or
efficient in computations.

Risk measures are usually defined on vector spaces of real valued random variables and
these vector spaces typically come with a norm. It has been observed that risk measures
induce a norm themselves, which is occasionally equivalent to the genuine norm of the
domain space. Here, we establish and employ the converse relations, that is, we develop a
natural relationship between norms and riskmeasures so that both concepts can be exchanged
against each other or employed alternatively to specify the other. This equivalence is a major
tool of our analysis and in this way the risk measure naturally compares with the genuine
norm and with the norm induced. To illustrate the methods we provide many examples of
precise relations between risk measures and norms, and between different risk measures, thus
supporting the analysis of personal preferential choices of risk measures.

Our results are related to Wozabal (2014), who robustifies risk measures with respect
to changing the underlying probability space. López-Díaz et al. (2012) employ a specific
norm (called an L p-metric there), while Bellini and Caperdoni (2007), in contrast, relate
and compare risk measures with stochastic dominance relations. The papers Wozabal (2010,
2014) contain typical applications in operations research and finance, as asset allocation.

Risk measures impose several difficulties in a multistage stochastic framework. Cherid-
ito and Kupper (2011) investigate a natural composition of risk measures. This concept,
or approach, is formalized by Lara and Leclère (2016). Asamov and Ruszczyński (2014),
Ruszczyński (2010) andMiller andRuszczyński (2011) elaborate on riskmeasures in relation
to dynamic, multistage stochastic programming. Applications of these extended concepts of
risk measures are finally provided, for example, by Philpott and Matos (2012) and Philpott
et al. (2013), who involve compositions of risk measures to formulate and elaborate on
multistage hydro-thermal scheduling problems in New Zealand and Brazil.
Outline of the paper.The following section (Sect. 2) repeats the axioms for riskmeasures and
formulates corresponding axioms for norms. The Sects. 3 and 4 present explicit comparisons
with norms and with other risk measures. We develop bounds on composite risk measures in
Sect. 5, while Sect. 6 concludes with a comprehensive summary.

2 Preliminaries

We consider a linear vector space L ⊆ L1(�,F, P) of R-valued random variables with
pointwise ordering. The set L is used in this paper to represent random losses. The vector
space L ⊆ L1 is the domain of a risk measure. We state the axioms of risk measure here
in convex form, as we shall relate them to further axioms on (convex) norms on the domain
space L later.

Definition 2.1 (Axioms for risk functionals) A version independent, coherent risk measure
is a mapping ρ : L → R ∪ {∞} satisfying the following axioms:

(RM) Monotonicity: ρ (Y1) ≤ ρ (Y2) whenever Y1 ≤ Y2 almost surely;
(RC) Convexity ρ

(
(1 − λ) Y0 + λY1

) ≤ (1 − λ)ρ (Y0) + λρ (Y1) for 0 ≤ λ ≤ 1;
(RT) Translation equivariance: ρ(Y + c ·1) = ρ(Y ) + c if c ∈ R (1(·) = 1 is the constant

random variable);
(RH) Positive homogeneity: ρ(λ Y ) = λ ρ(Y ) whenever λ > 0;
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(RD) Version independence: ρ(Y1) = ρ(Y2), provided that Y1 and Y2 share the same law,
i.e., P(Y1 ≤ y) = P(Y2 ≤ y) for all y ∈ R.1

We shall call the set

L+ := {Y ∈ L : Y ≥ 0 a.s.}
the nonnegative orthant, or the nonnegative cone of L .

If only the properties (RM), (RC) and (RT) are fulfilled, then the functional ρ is often
simply called risk functional as well, while positively homogeneous risk measures satisfy-
ing (RH) are also called coherent risk measures. In this paper we shall address the specific
properties explicitly in the given context, if this is necessary.

The trivial risk measures satisfying the axioms (RM)–(RD) are the expectation ρ(Y ) =
E[Y ] and the max-risk functional ρ(Y ) = ess sup Y . An example of a risk functional that is
not necessarily version independent is ρZ (Y ) := E[Z · Y ] (with E[Z ] = 1 and Z ≥ 0 almost
everywhere).
Norms. We equip the vector space L ⊆ L1 with a norm and relate risk functionals with the
normed space (L , ‖·‖). In line with the axioms presented above on risk measures we make
use of the following assumptions on the norm ‖·‖ and the (Banach) space (L , ‖·‖).
(NM) Monotonicity: ‖Y1‖ ≤ ‖Y2‖ whenever |Y1| ≤ |Y2| almost surely;
(N1) Normalization (scaling): ‖1‖ = 1;
(ND) Density: uniformly bounded random variables and L∞ are dense in L with respect to

the norm ‖·‖;
(NP) Representation on the nonnegative cone:2

sup
‖Z‖∗≤1

E[Y · Z ] = sup
Z≥0, ‖Z‖∗≤1

E[Y · Z ] whenever Y ≥ 0 a.s., (1)

where
‖Z‖∗ := sup

‖Y‖≤1
E[Y · Z ] (2)

is the norm on the dual, which is denoted
(
L∗, ‖·‖∗).

Remark 2.2 Note that (NP) is not more than the Hahn–Banach theorem for the bi-linear form
(Y, Z) �→ E[Y Z ], just restricted to the nonnegative orthant L+.

From normalization (N1) and (2) it follows that

‖Z‖∗ ≥ E[Z ], (3)

and particularly that ‖1‖∗ ≥ E[1] = 1. Further it is evident from (1) that

E[Y ] ≤ ‖1‖∗ · ‖Y‖ . (4)

Specifications of the norm. Obvious candidates for a norm satisfying all relations (NM)–
(NP) are the norms ‖·‖p on L p-spaces. Further examples include the Luxembourg norm

‖Y‖� := inf

{
ξ > 0 : E

[
�

( |X |
ξ

)]
≤ 1

}

on Orlicz spaces, where � : [0,∞) → [0,∞) is a convex function satisfying �(0) = 0,
�(1) = 1 and limx→∞ �(x) = ∞ (cf. Bellini and Rosazza Gianin 2012, for example, for
details). Further, we mention Orlicz hearts, the spaces (Lσ . ‖·‖σ ) and their dual

(
L∗

σ . ‖·‖∗
σ

)
,

as well as Lorentz spaces, they satisfy all specified relations as well (cf. Pichler 2013a).

1 Also law invariant, or distribution based.
2 (NP) is mnemonic for positive.
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3 Relations between norms and risk measures

Given a risk measure ρ, then one may associate the function

‖·‖ρ := ρ(| · |) (5)

with ρ. The risk functional ρ is Lipschitz continuous with respect to the associated norm
‖·‖ρ (cf. Pichler 2013a).

In this chapter we elaborate the converse construction by providing explicitly a risk mea-
sure, which is based on a norm.We demonstrate that the risk measure is completely specified
by the nonnegative cone L+. We further demonstrate in this section that the risk measure
obtained is again (Lipschitz-)continuous with respect to the initial norm.

Theorem 3.1 Let ‖·‖ be a norm satisfying (NM)–(NP). Then, for c ≥ 1, the higher order
risk measure3

ρho
c (Y ) := inf

x∈R
{

x + c · ‖(Y − x)+‖} (6)

is a coherent risk measure. ρho
c (·) is version independent, iff the norm is version independent.

Its dual representation is

ρho
c (Y ) = sup

{
E[Y Z ] : Z ≥ 0, E[Z ] = 1 and ‖Z‖∗ ≤ c

}
. (7)

Remark 3.2 We point out that (7) specifies the risk measure ρho
c (·) by considering the ball

of radius c in the dual space. This emphasizes the strong relationship between a risk measure
and a norm.

Remark 3.3 We mention Krokhmal (2007) for a construction leading to (6). The functional

ρα(Y ) := inf
x∈R

{
x + 1

1 − α
· ‖(Y − x)+‖�

}
(8)

corresponding to the Luxembourg norm is also called Haezendonck–Goovaerts risk mea-
sure (or Haezendonck–Goovaerts premium in insurance). Bellini and Rosazza Gianin (2008,
2012) involve (8) to define generalized α-quantiles of the random variable Y . Dentcheva et al.
(2010) establish the duality relation of (6)–(7) for the L p-norm ‖·‖p in this journal, which is
called higher order risk measure (thus the name and superscript, ρho).

Remark 3.4 The constraint c ≥ 1 is a necessary condition, as otherwise the risk measure
ρho

c is degenerate and, e.g., ρho
c (1) = −∞.

Proof of Theorem 3.1 Observe first that

c · ∥∥(Y − x)+
∥∥ = sup

‖Z‖∗≤c

{
E[(Y − x)+ · Z ]} ≥ sup

E[Z ] = 1,
Z ≥ 0, ‖Z‖∗ ≤ c

{
E[(Y − x)+ · Z ]}

3 x+ := max {0, x} .
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by the Hahn–Banach theorem, and thus

x + c · ∥
∥(Y − x)+

∥
∥ ≥ sup

E[Z ] = 1,
Z ≥ 0, ‖Z‖∗ ≤ c

E
[(

x + (Y − x)+
) · Z

]

≥ sup
E[Z ] = 1,

Z ≥ 0, ‖Z‖∗ ≤ c

E[Y · Z ],

as x + (Y − x)+ ≥ Y , establishing thus the first inequality relation.
As for the converse inequality we shall assume first that Y is bounded. It follows that

sup
E[Z ] = 1,

Z ≥ 0, ‖Z‖∗ ≤ c

E[Y Z ] = sup
Z ≥ 0,

‖Z‖∗ ≤ c

inf
x∈R

{
x + E[(Y − x)Z ]}, (9)

as one may drop the constraint E[Z ] = 1: indeed,

inf
x∈R

{x + E[(Y − x)Z ]} = E[Y Z ] + inf
x∈R

{x · (1 − E[Z ])} = −∞
unless E[Z ] = 1, such that the inf does not contribute to the outer sup if E[Z ] �= 1.

Observe next that inf x∈R {x + E[(Y − x)Z ]} = x∗+E[(Y −x∗)+ · Z ] for x∗ := ess inf Y
(recall that Y is bounded by assumption so that this quantity is well-defined). So it follows
that

sup
E[Z ] = 1,

Z ≥ 0, ‖Z‖∗ ≤ c

E[Y Z ] = sup
Z ≥ 0,

‖Z‖∗ ≤ c

x∗ + E[(Y − x∗)
+ · Z ], (10)

and by the Hahn–Banach theorem and (NP) again (as (Y − x∗)+ ≥ 0) that

(10) = x∗ + c ·
∥∥∥
(
Y − x∗)

+
∥∥∥ ≥ inf

x∈R
{

x + c · ∥∥(Y − x)+
∥∥}

, (11)

the remaining inequality.
If Y is not bounded, then for every ε > 0 there is a bounded random variable Yε so that

‖Y − Yε‖ < ε due to the assumption (ND). It follows by combining (9) and (11) that

sup
E[Z ] = 1,

Z ≥ 0, ‖Z‖∗ ≤ c

E[Y Z ] + cε ≥ sup
E[Z ] = 1,

Z ≥ 0, ‖Z‖∗ ≤ c

E[Yε Z ]

≥ inf
x∈R

{
x+c · ∥

∥(Yε − x)+
∥
∥} ≥ inf

x∈R
{

x+c · ∥
∥(Y − x)+

∥
∥} − cε.

The assertion is immediate, as ε > 0 is arbitrary. �
The result (7) of the previous theorem is a dual characterization. The results allows a

natural comparison of risk measures by employing the genuine norm. We shall elaborate
corresponding bounds (lower and upper bounds) in the following statement. These results
provide a tool to prove continuity in the sequel.

Theorem 3.5 (Bounds, and comparison with norms) Let the risk measure ρho
c (·) be induced

by a norm as specified in (6). Then it holds that

‖Y‖ ≤ ρho
c (|Y |) ≤ c · ‖Y‖ .

The lower bound is sharp.
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Proof As for the first inequality recall the elementary inequality y ≤ x + (y − x)+ ≤
x + c (y − x)+ for c ≥ 1, and hence

|Y | ≤ x + c (|Y | − x)+ .

It follows from monotonicity (NM) and the triangle inequality that

‖Y‖ ≤ ∥
∥x + c (|Y | − x)+

∥
∥ ≤ x + c

∥
∥(|Y | − x)+

∥
∥ .

By passing to the infimum thus

‖Y‖ ≤ ρho
c (|Y |) .

Equality moreover is obtained for the constant random variable, Y = 1 and x = 1 in (6).
We employ the dual representation (7) to verify the second inequality. It follows from the

duality relation (NP) that

ρho
c (|Y |) = sup

{
E[|Y | Z ] : Z ≥ 0, E[Z ] = 1 and ‖Z‖∗ ≤ c

}

≤ sup
{‖Y‖ · ‖Z‖∗ : ‖Z‖∗ ≤ c

}

= c · ‖Y‖ ,

the remaining assertion. �

Remark 3.6 (The special case c = 1: specification on the nonnegative cone L+) The risk
measure ρho

1 is completely specified by the norm ‖·‖ on the nonnegative cone, as

ρho
1 (Y ) = ‖Y‖ for all Y ∈ L+

by choosing c = 1 in the latter theorem. Together with (5) this equation establishes the
one-to-one relationship between risk measures and norms.

It is thus enough to specify a risk measure ρ on the nonnegative cone L+, as it extends to
the entire space by setting

ρho
1 (Y ) := inf

x∈R
{

x + ρ
(
(Y − x)+

)}
. (12)

This setting carries translation equivariance (RT) to the entire space L and it holds that
ρ(Y ) = ρho

1 (Y ) for Y ∈ L+ [cf. also the inf convolution in e.g., Pflug and Römisch (2007,
Section 2.4.3); a related construction is the homogenization outlined in Shapiro et al. (2009,
Section 6.3.2) carrying homogeneity (RH) to the entire domain].

We finally remark that a local comparison on the nonnegative cone L+ extends to a global
comparison on L ⊇ L+. Indeed, if ρ(Y ) ≤ ρ′(Y ) for all Y ∈ L+, then ρ(Y ) ≤ ρ′(Y ) for
Y ∈ L by (12).

Corollary 3.7 (Continuity) The risk measure ρho
c is Lipschitz continuous with respect to its

norm,
∣∣∣ρho

c (Y2) − ρho
c (Y1)

∣∣∣ ≤ c · ‖Y2 − Y1‖

for all Y1, Y2 ∈ L.
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Proof Just observe thatρho
c (Y2) = ρho

c (Y2−Y1+Y1) ≤ ρho
c (Y2−Y1)+ρho

c (Y1) by convexity,
and thus

ρho
c (Y2) − ρho

c (Y1) ≤ ρho
c (Y2 − Y1) ≤ ρho

c (|Y2 − Y1|) ≤ c · ‖Y2 − Y2‖ .

The assertion follows by interchanging the roles of Y1 and Y2. �
Average Value-at-Risk The (upper) Average Value-at-Risk (AV@R) is the special case of
the latter theorem for the norm ‖·‖1. The equivalent expressions

AV@Rα(Y ) := inf
x∈R

{
x + 1

1 − α
E

[
(Y − x)+

]}

= sup

{
E[Y Z ] : 0 ≤ Z ≤ 1

1 − α
and E[Z ] = 1

}
(13)

are well-known indeed (cf. Rockafellar and Uryasev 2000; Pflug 2000), but here they con-
stitute a special case of Theorem 3.1 for the norm ‖·‖1 and its dual ‖·‖∗

1 = ‖·‖∞.

3.1 Higher order risk measures

Higher order risk measures constitute a special case of the risk measure (6) addressed in
Theorem 3.1, as the L p-norm ‖·‖p takes the role of the general norm ‖·‖. We denote them
by

ρho
c,p (Y ) := inf

x∈R

{
x + c · ∥∥(Y − x)+

∥∥
p

}
, (14)

where c ≥ 1 and p ≥ 1.
For this particular choice we have the following extension of Theorem 3.1 with precise

bounds.

Theorem 3.8 (Comparison with norms) Assume that 1 ≤ p ≤ p′. It holds that

(i)
‖Y‖p ≤ ρho

c,p′ (|Y |) , (15)

(ii) and
ρho

c,p(Y ) ≤ cp/p′ · ‖Y‖p′ . (16)

Both bounds are moreover sharp.

Proof The first inequality is immediate from Theorem 3.5. For the second inequality recall
the dual representation (7) (see also Dentcheva et al. 2010) that

ρho
c,p (|Y |) = sup

{
E [|Y |Z ] : ‖Z‖q ≤ c, Z ≥ 0 and E[Z ] = 1

}
,

where q is the Hölder conjugate exponent, 1
p + 1

q = 1.

Let q ′ be the conjugate exponent to p′ ( 1
p′ + 1

q ′ = 1). It follows that

ρho
c,p (|Y |) ≤ sup

{‖Y‖p′ ‖Z‖q ′ : ‖Z‖q ≤ c, Z ≥ 0 and E[Z ] = 1
}

= ‖Y‖p′ · sup {‖Z‖q ′ : ‖Z‖q ≤ c, Z ≥ 0 and E[Z ] = 1
}
.

Note now that 1
q ′ = 1

p′
p′−1

= 1− p
p′

1 +
p
p′
p

p−1
= 1− p

p′
1 +

p
p′
q , such that by Hölder’s interpolation

inequality (‖Z‖qθ
≤ ‖Z‖1−θ

q0 · ‖Z‖θ
q1 whenever

1
qθ

= 1−θ
q0

+ θ
q1
, cf. Wojtaszczyk 1991)

‖Z‖q ′ ≤ ‖Z‖1−p/p′
1 · ‖Z‖p/p′

q = cp/p′
,
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as Z ≥ 0 implies that ‖Z‖1 = E[Z ] = 1. It follows that

ρho
c,p (|Y |) ≤ cp/p′ · ‖Y‖p′ .

To see that this bound is sharp consider Y = cp/p′ · 1A, where P (A) = 1
cp . Then

‖Y‖p′ = (cp · P (A))
1/p′ = 1, and

t + c · ∥
∥(Y − t)+

∥
∥

p = t + c ·
(
0 + P (A)

(
cp/p′ − t

)p) 1
p

= t + c ·
(

1

cp

(
cp/p′ − t

)p
) 1

p = t +
(

cp/p′ − t
)

= cp/p′

for all t ∈ [
0, cp/p′]

. As the mapping t �→ t + c · ∥
∥(Y − t)+

∥
∥

p is convex it follows that the

infimum is ρ (|Y |) = cp/p′
. This proves that the bound is sharp. �

3.2 Higher order semideviation

The higher order semideviation is a risk measure addressed in Rockafellar et al. (2006) and
discussed in Shapiro et al. (2009). In the chosen context of norms the dual representation
is natural and straight forward again. We introduce and discuss the general case first before
establishing the continuity relations. The results then are further specified to L p-norms, as it
is again possible to give explicit, precise bounds.

Theorem 3.9 For every 0 ≤ λ ≤ 1,

ρsd
λ (Y ) := E[Y ] + λ · ‖(Y − E[Y ])+‖

is a risk functional. If the norm satisfies (NM)–(NP), then the representation

ρsd
λ (Y ) = sup

Z≥0,E[Z ]=1

(
1 − λ

‖Z‖∗
)
E[Y ] + λ

‖Z‖∗E[Y Z ] (17)

holds true.

Remark 3.10 Recall from (3) that ‖Z‖∗ ≥ E[Z ] = 1, such that (17) is a convex combination
with nonnegative weights provided that 0 ≤ λ ≤ 1. Further, the restriction to λ ≤ 1 ensures
monotonicity (RM).

Proof Observe first that

ρsd
λ (Y ) = E[Y ] + λ · ‖(Y − E[Y ])+‖ = sup

Z≥0
E[Y ] + λ

‖Z‖∗E [Z · (Y − E[Y ])] , (18)

as it is enough to restrict the supremum to Z ≥ 0 by (NP). Note that Z is in the nominator
and the denominator, so by rescaling to E[Z ] = 1 it follows that

ρsd
λ (Y ) = sup

E[Z ]=1, Z≥0

(
1 − λ

‖Z‖∗
)
E[Y ] + λ

‖Z‖∗E[Z · Y ],

which is the assertion. �
Theorem 3.11 (Comparison of the higher order semideviation with the norm) It holds that

‖Y‖1 ≤ ρsd
λ (|Y |) ≤ (‖1‖∗ + λ) · ‖Y‖ (19)
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and

λ · ‖Y‖ ≤ ρsd
λ (|Y |) ≤ (‖1‖∗ + λ) · ‖Y‖ .

Proof The first inequality in (19), ‖Y‖1 = E [|Y |] ≤ ρsd
λ (|Y |), is evident from the definition

of ρsd
λ .
Observe next that λy ≤ t + λ (y − t)+ whenever t ≥ 0. Hence λ |Y | ≤ t + λ (|Y | − t)+

and thus

λ · ‖Y‖ = ‖λ · |Y |‖ ≤ ∥
∥t + λ (|Y | − t)+

∥
∥ ≤ t + λ · ∥

∥(|Y | − t)+
∥
∥

by the triangle inequality and the monotonicity assumption (NM) of the norm. By choosing
t := E [|Y |] (note that t ≥ 0) it follows that

λ · ‖Y‖ ≤ E [|Y |] + λ · ∥
∥(|Y | − E [|Y |])+

∥
∥ = ρsd

λ (|Y |) .

As for the upper bound recall from Theorem 3.9 the representation

ρsd
λ (Y ) = sup

E[Z ]=1, Z≥0

(
1 − λ

‖Z‖∗
)
E[Y ] + λ

‖Z‖∗E[Y Z ]

≤ sup
E[Z ]=1, Z≥0

(
1 − λ

‖Z‖∗
)
E[Y ] + λ

‖Z‖∗ ‖Y‖ ‖Z‖∗ ,

from which we deduce that

ρsd
λ (|Y |) ≤ E[|Y |] + λ ‖Y‖ ≤ ‖1‖∗ ‖Y‖ + λ ‖Y‖

by (4), completing the proof. �
As in the case for the higher order riskmeasure it is possible to give better and tight bounds

by further specifying the norm. We state the results in what follows.

Definition (Higher order semideviation) The higher order semideviation risk measure (for
the parameters 0 ≤ λ < 1 and p ≥ 1) is

ρsd
λ,p (Y ) := E[Y ] + λ · ∥∥(Y − E[Y ])+

∥∥
p .

The risk measure is also called mean upper semideviation of order p in the literature (cf.
Shapiro et al. 2009; Pichler and Shapiro 2015). We present the following bounds for this risk
measure, which is important in applications.

Theorem 3.12 (Comparison with L p-norms) The following holds true:

(i) if p = 1, then
‖Y‖1 ≤ ρsd

λ,1 (|Y |) ≤ (1 + λ) · ‖Y‖1 ; (20)

(ii) if 1 < p < 2, then
λ · ‖Y‖p ≤ ρsd

λ,p (|Y |) ≤ kλ,p · ‖Y‖p , (21)

where kλ,p > (1 + λq)
1/q and q is the conjugate Hölder exponent, 1

p + 1
q = 1;

(iii) if p ≥ 2, then the inequalities

λ · ‖Y‖p ≤ ρsd
λ,p (|Y |) ≤ (

1 + λq)1/q · ‖Y‖p , (22)

are tight.
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All bounds are sharp, the upper bounds are sharp except that there is no closed, explicit
expression for kλ,p whenever 1 < p < 2.

Remark 3.13 The inequalities in (i) are useful in practical situation. The lower bounds in (ii)
and (iii) are tight, but particularly for small values of λ they are rather loose. We shall address
this issue further in the section on compositions of risk measures (Sect. 5) below.

Proof of Theorem 3.12 (i) and the first inequality of (ii) and (iii) are immediate from Theo-
rem 3.11.

To accept that the bounds are sharp consider Y := 1
P(A)1/p 1A. Then ‖Y‖p = 1, but

ρsd
λ,p (|Y |) = P (A)

1− 1
p + λ

(
P (A)

(
1

P (A)1/p − P (A)
1− 1

p

)p) 1
p

= P (A)
1− 1

p + λP (A)
1
p

(
P (A)

− 1
p − P (A)

1− 1
p

)

= P (A)
1− 1

p + λ
(
1 − P (A)

) −−−−−→
P(A)→0

λ,

provided that p > 1. It follows that the lower bound in (21) and (22) cannot be improved.
From Eq. (17) in Theorem 3.9 it follows that

ρsd
λ (Y ) = sup

E[Z ]=1, Z≥0
E

[((
1 − λ

‖Z‖∗
)
1 + λ

‖Z‖∗ Z

)
· Y

]
,

≤ sup
E[Z ]=1, Z≥0

∥∥∥∥
(
1 − λ

‖Z‖∗
)
1 + λ

‖Z‖∗ Z

∥∥∥∥
q

· ‖Y‖p (23)

by Hölder’s inequality. Equality in (23), however, is attained for

Y =
((

1 − λ

‖Z‖∗
)
1 + λ

‖Z‖∗ Z

)p−1

, (24)

such that

sup
Y �=0

ρsd
λ,p (Y )

‖Y‖p
= sup

E[Z ]=1, Z≥0

∥∥∥∥
(
1 − λ

‖Z‖∗
)
1 + λ

‖Z‖∗ Z

∥∥∥∥
q
.

Consider the function σβ(·) := 1
β
1[1−β, 1](·) (for which

∥∥σβ

∥∥
q = 1

β
q−1

q
) and the random

variable Z = σβ(U ) for some uniformly distributed random variable U .4 Then
∥∥∥∥
(
1 − λ

‖Z‖∗
)
1 + λ

‖Z‖∗ Z

∥∥∥∥

q

q
=

∥∥∥∥∥
1 − λ

∥∥σβ

∥∥
q

+ λ
∥∥σβ

∥∥
q

σβ

∥∥∥∥∥

q

q

= (1 − β)

(
1 − λβ

q−1
q

)q

+ β

(
1 − λβ

q−1
q + λ

1

β
β

q−1
q

)q

= (1 − β)

(
1 − λβ

q−1
q

)q

+
(
λ(1 − β) + β

1
q

)q
. (25)

By letting β → 0 it follows that limβ→0(25) = 1 + λq , from which we conclude that

1 + λ ≥ sup
Y �=0

ρsd
λ,p (Y )

‖Y‖p
≥ (

1 + λq)1/q
.

4 U is uniformly distributed, iff P(U ≤ u) = u.
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The upper bound can be rewritten as sup
{
ρsd

λ,p (|Y |) : ‖Y‖p ≤ 1
}
. As Y �→ ρsd

λ,p (|Y |) is
convex, it is enough to consider Y in the set of extreme points in the unit ball of L p , which

are the random variables Y = 1A1−1A2
P(A1∪A2)

1/p (cf. Sundaresan 1969), i.e.,

|Y | = 1A

P(A)1/p
(26)

for A := A1 ∪ A2. Now if |Y | is as in (26), then, because of (24) and (25), the extremum
is attained for σβ = 1

β
1[1−β,1], β ∈ (0, 1), which means that it is enough to maximize (25)

with respect to β ∈ [0, 1].
But (25) is a strictly decreasing in β for p ≥ 2 (i.e., q ≤ 2), such that the maximum as

attained for β → 0.
For p > 2, the maximum in (25) is attained in the interior, at some β ∈ (0, 1). However,

a closed analytic expression is not available. �
Example 3.14 (Dutch riskmeasure (cf. also Example 4.8 below)) TheDutch riskmeasure (or
Dutch premium principle, cf. Heerwaarden and Kaas 1992) is the higher order semideviation
risk measure

ρsd
1,λ (Y ) := E[Y ] + λ · E [

(Y − E[Y ])+
]
, (27)

where 0 ≤ λ < 1. Shapiro (2013) provides the Kusuoka representation

ρsd
1,λ (Y ) := sup

κ∈[0,1]
(1 − κλ) · E[Y ] + κλ · AV@R1−κ (Y ). (28)

It follows from (13) that AV@R1−κ (Y ) ≤ 1
κ
E [|Y |], such that

E[Y ] ≤ ρsd
1,λ (Y ) ≤ sup

κ∈[0,1]
(1 − κλ) · E[Y ] + λE[|Y |] ≤ (1 + λ)E[|Y |].

These estimates are sharp, and in line with the bounds (20) presented in Theorem 3.12.

4 Comparisons of risk measures, and nonlinear bounds

The previous section presents relations between a norm and a risk measure. This section
compares risk measures by establishing direct relations. We start with the following remark
to distinguish local and global comparisons. Finally we describe bounds which involve the
random variable in a nonlinear and in a non-homogeneous way.
Global comparisons Suppose a comparison of the risk measures ρ1 and ρ2 is of the global
form

ρ1(Y ) ≤ K · ρ2(Y ) for all Y. (29)

By considering Y + c · 1 instead of Y it follows from translation equivariance (RT) that
ρ1(Y ) ≤ ρ2(Y ) + (K − 1)c for all c ∈ R. This inequality is impossible unless K = 1. A
comparison of risk functionals in the general, global form (29) thus can only read

ρ1(Y ) ≤ ρ2(Y ) for all Y (30)

(i.e., K = 1 in (29)).
Only a few risk measures allow a general, global comparison as in (30). The inequality

for the Average Value-at-Risk,

AV@Rα(Y ) ≤ AV@Rα′(Y )
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for α ≤ α′ is an example of a global comparison—a special case of ρho
c (Y ) ≤ ρho

c′ (Y ) for
c ≤ c′. In what follows we state the global relations, if eligible.
Comparisons on the nonnegative cone To allow for more than global comparisons of risk
measures we recall from the previous section that it is enough to know the risk measure—or
the associated norm—on the nonnegative cone L+. Instead of the global form (30) we thus
consider

ρ(Y ) ≤ K · ρ′(Y ) for all Y ≥ 0 a.s. (31)

as well, that is to involve only nonnegative random variables or the norms associated with
the risk measure in order to obtain useful and non-trivial comparisons.

Many applications consider only nonnegative outcomes, and considering only nonnegative
randomvariables is not as restrictive as it seems. Every payoff function of an insurance policy,
for example, is always nonnegative (i.e.,Y ≥ 0). Some applications interested in financial risk
occasionally ignore the profit by considering the loss max {0, Y } instead of Y . Finally, instead
of bounded randomvariables it is often enough to consider c+Y (for some appropriate c > 0)
instead of Y in order to have the comparison on the nonnegative cone (31) available. This
approach is in line with the result reported in Theorem 3.5 and particularly with Remark 3.6.

4.1 Comparison of distortion risk functionals

Distortion risk functionals constitute a basic and elementary ingredient for risk functionals, as
every general version independent risk functional is the supremum over a class of distortion
risk functionals (cf. Kusuoka 2001; Shapiro 2013; Noyan and Rudolf 2014; they are related
to extreme points in the dual set). The distortion risk functional (also spectral risk measure,
cf. Acerbi 2002; Denneberg 1990) is defined by

ρσ (Y ) :=
∫ 1

0
σ(u)F−1

Y (u)du,

where F−1
Y (u) := inf {y : P(Y ≤ y) ≥ u} is the generalized inverse of the cumulative dis-

tribution function (cdf) FY (y) := P(Y ≤ y). σ : [0, 1) → [0,∞) is a nonnegative,
nondecreasing function satisfying

∫ 1
0 σ(u)du = 1. The function σ(·) is called distortion

functional. For convenience we shall associate the function (p) := ∫ 1
p σ(u)du (i.e., its

negative antiderivative) with σ(·).
On the nonnegative cone we have the following additional formula for distortion risk

functionals, which does not involve the quantile function F−1
Y , butY ’s cumulative distribution

function (cdf) FY directly.

Proposition 4.1 For a random variable Y ∈ L+ in the nonnegative cone the distortion risk
functional ρσ can be evaluated by the alternative expression

ρσ (Y ) =
∫ ∞

0


(
FY (y)

)
dy.

Proof Cf. Denneberg (1990) or Pflug and Pichler (2014, Corollary 3.15). �

Theorem 4.2 (Compararison of spectral risk measures) Suppose that

K := sup
0≤α<1

∫ 1
α

σ1 (u) du
∫ 1
α

σ2 (u) du
(32)
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is finite (K < ∞), then

ρσ1(Y ) ≤ K · ρσ2(Y ) (Y ≥ 0 a.s.), (33)

the bound is sharp. It holds moreover that K ≥ lim supα�1
σ1(α)
σ2(α)

.

Proof Pichler (2013a, Theorem 14) provides a proof. �
We provide a few examples to illustrate the strength of the previous result.

Example 4.3 (Average Value-at-Risk) The distortion function of the Average Value-at-Risk
is

σ(u) =
{
0 if u ≤ α,
1

1−α
if u > α

and α(u) := min

{
1,

1 − u

1 − α

}
.

For α1 ≤ α2 the non-trivial constant is K = 1−α1
1−α2

and as a particular consequence of (33) it
follows that

AV@Rα1 (|Y |) ≤ AV@Rα2 (|Y |) ≤ 1 − α1

1 − α2
AV@Rα1 (|Y |) . (34)

Particularly, AV@Rα (|Y |) ≤ 1
1−α

E [|Y |].
The risk measure ρ(Y ) := β · E[Y ] + (1 − β) · AV@Rα(Y ) is popular in applications

(referred to as risk measure for integrated risk management, cf. Pflug and Ruszczyński
2005), as it is a natural combination of elementary risk measures (compare also the Dutch

risk measure (28)). Its -function is α,β(u) = min
{
1 − βu,

1−αβ
1−α

(1 − u)
}
. The global

upper bound
β · E[Y ] + (1 − β) · AV@Rα(Y ) ≤ AV@R α−αβ

1−αβ
(Y ) (35)

followsby elementary computations andRemark 3.6,where the adapted risk levelα′ := α−αβ
1−αβ

is smaller than the initial risk level α, α′ ≤ α. The global bound (35) is sharp again, and the
risk level α′ cannot be improved.

A lower, sharp bound expressed for a general risk level α̃ is

AV@Rα̃(Y ) ≤ 1

α,β(α̃)

(
β · E[Y ] + (1 − β) · AV@Rα(Y )

)
(Y ≥ 0). (36)

Recall that the comparisons (34) and (36) are not valid in case that Y /∈ L+. Finally, as a
special case we note that 1

α,β (α′) = 1−αβ
1−αβ(2−β)

for the critical risk level α′ specified in (35).

Example 4.4 (Proportional hazards risk measure) The proportional hazards risk measure
(adapted from insurance, cf. Young 2006), is

ρH
c (Y ) =

∫ ∞

0

(
1 − FY (u)

)cdu

on the nonnegative cone, where 0 < c ≤ 1 is a parameter accounting for risk aversion. The
risk functional compares with the Average Value-at-Risk by

AV@Rα(Y ) ≤ 1

(1 − α)c
· ρH

c (Y ) (Y ∈ L+)

for every c > 0, again an immediate consequence of Proposition 4.1 and Theorem 4.2 with
(α) = (1 − α)c.
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Example 4.5 (Wang transform)Wang’s riskmeasure (cf.Wang1995) employs the parametric
family W

λ (u) = �
(
λ + �−1(1 − u)

)
for λ ≥ 0, it is defined as

ρW
λ (Y ) =

∫ ∞

0
W

λ

(
FY (y)

)
dy

on the nonnegative cone (�(·) is the cdf of the normal distribution, cf. Proposition 4.1). It is
a convex risk measure for λ ≥ 0. It is comparably easy to see that supu<1

α(u)

W
λ (u)

= 1
W

λ (α)

and it follows that

AV@Rα(Y ) ≤ 1

W
λ (α)

ρW
λ (Y ) (Y ≥ 0).

The proportional hazards risk measure dominates the Wang transform for every combi-
nation of λ and c,

ρW
λ (Y ) ≤ Kλ,c · ρH

c (Y ), (37)

although an explicit expression for the constant Kλ,c is not available. A converse inequality
to (37) is not possible.

4.2 General version independent risk measures

This section provides bounds for risk functionals of different type. We start with comparing
general version independent risk functionals and then give a general bound to compare higher
order risk measures with higher order semideviations.

For a class S of distortion functions it is immediate that ρS(Y ) := supσ∈S ρσ (Y ) is a risk
functional satisfying all Axioms (RM)–(RD). To obtain a comparison of the form

ρS1(Y ) ≤ K · ρS2(Y )

on the nonnegative cone L+ one may choose

K := sup
σ1∈S1

inf
σ2∈S2

sup
α<1

∫ 1
α

σ1(u)du
∫ 1
α

σ2(u)du
, (38)

which is an immediate consequence of (33) in Theorem 4.2, although K is possibly not the
best constant. It is evident from the max–min inequality that

K ≤ inf
σ2∈S2

sup
σ1∈S1

sup
α<1

∫ 1
α

σ1(u)du
∫ 1
α

σ2(u)du
≤ sup

σ1∈S1, σ2∈S2, α<1

∫ 1
α

σ1(u)du
∫ 1
α

σ2(u)du
,

and the latter are sometimes easier to evaluate in situations of practical relevance.

Example 4.6 (Entropic Value-at-Risk) The Entropic Value-at-Risk introduced in Ahmadi-
Javid (2012) is

EV@Rα(Y ) := inf
z>0

{
1

z
log

( 1

1 − α
E

[
ezY

] )}
. (39)

The EV@R is the tightest upper bound that can be obtained from the Chernoff inequality for
the Value-at-Risk. Delbaen (2015) elaborates the Kusuoka representation

EV@Rα(Y ) = sup

{
ρσ (Y ) :

∫ 1

0
σ(u) log σ(u)du ≤ log

1

1 − α

}
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using Kullback–Leiber divergence. We refer to the original reference Ahmadi-Javid (2012,
Proposition 3.2) for the global comparison

EVaRα(Y ) ≤ AV@Rα(Y ),

whenever α ∈ [0, 1). Equality is attained, for example, for the random variable Y =
1[α,1](U ), but strict inequality holds for Y = 1[β,1](U ), β �= α.

Relations between higher order risk measures and the higher order semideviation We
provide the following tight bounds to compare the risk measures discussed and introduced
in the previous Sect. 3.

Theorem 4.7 (Comparison of different risk measures) The relation

ρsd
λ (Y ) ≤ ρho

1+λ(Y ) (40)

is tight and holds globally (0 ≤ λ ≤ 1).
For arbitrary chosen 0 ≤ λ ≤ 1 and c ≥ 1 it holds that

ρho
c (Y ) ≤ c

λ
· ρsd

λ (|Y |) (41)

and conversely

ρsd
λ (Y ) ≤ (‖1‖∗ + λ

) ‖Y‖ ≤ (‖1‖∗ + λ
) · ρho

c (|Y |).

Proof Assume first that Y ≥ 0. Recall from (18) the representation

ρsd
λ (Y ) = sup

Z≥0
E[Y ] + λ

‖Z‖∗ [E [Z · (Y − E[Y ])]]

of the higher order risk measure. Note that E[Y ] ≥ 0 by assumption, so

ρsd
λ (Y ) ≤ sup

Z≥0,E[Z ]=1
E

[
Y

Z

‖Z‖∗
]

+ λ

‖Z‖∗E[Z · Y ].

Hence

ρsd
λ (Y ) ≤ sup

Z≥0,E[Z ]=1
E

[
Y

(1 + λ) · Z

‖Z‖∗
]

= sup
Z≥0,E[Z ]=1,‖Z‖∗≤1+λ

E[Y Z ] = ρho
1+λ(Y )

by (7), which is the desired estimate on L+. The general assertion for L ⊇ L+ follows from
Remark 3.6.

Recall finally from Theorems 3.5 and 3.11 that

ρho
c (Y ) ≤ c · ‖Y‖ ≤ c · 1

λ
ρsd

λ (|Y |)

and

ρsd
λ (Y ) ≤ (‖1‖∗ + λ

) ‖Y‖ ≤ (‖1‖∗ + λ
)
ρho

c (|Y |)
to establish the remaining relations. �
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Example 4.8 (Dutch risk measure, cf. Example 3.14) As an application for the general con-
stant (38) consider the Dutch risk measure (27). By applying the relations (27) and (40) from
the previous theorem to the norm ‖·‖1 it follows that

E[Y ] + λ · E [
(Y − E[Y ])+

] ≤ AV@R λ
1+λ

(Y ). (42)

The critical risk level λ
1+λ

is the smallest possible risk level, for which (42) holds true. In
contrast to the estimates already presented in Example 3.14 this is a global and tight upper
bound for the Dutch risk measure.

To obtain a tight lower bound one may apply (38) and (36) to compute the constant
K (cf. (28)), resulting in

AV@Rα(Y ) ≤ 1

(1 − α)(1 + αλ)
· ρsd

λ,1(|Y |) (Y ∈ L+).

This bound is tight, as can be seen by considering Y = 1A with P(A�) = α.
For the crucial risk level α = λ

1+λ
the lower, tight bound is

AV@R λ
1+λ

(Y ) ≤ 1 + 2λ + λ2

1 + λ + λ2
· (
E[|Y |] + λ · E [

(|Y | − E[|Y |])+
])

.

This results further in the sandwich inequality

3

4
AV@Rα(Y ) ≤ E[|Y |] + α

1 − α
· E

[(|Y | − E[|Y |])+
]

≤ AV@Rα(|Y |)

forα ≤ 1
2 ,which demonstrates that theDutch riskmeasure is basically—up to amultiplicative

error of 25%—an Average Value-at-Risk with critical risk level α. This may give rise in
some applications for replacing the more complicated AV@R in optimization problems by
the simple semideviation risk measure, or vice versa.

4.3 The associated functional

Associated with the distortion risk measure and the distortion function σ(·) is the functional

ρ∗
σ (Y ) := sup

α<1

AV@Rα(Y )

1
1−α

∫ 1
α

σ (u)du
. (43)

The associated functional naturally provides the upper bound

AV@Rα(Y ) ≤ 1

1 − α

∫ 1

α

σ (u)du · ρ∗
σ (|Y |),

which holds for all α < 1 (note that ρ∗
σ (Y ) is not necessarily nonnegative).

The functional (43) satisfies the axioms of a risk measures (Definition 2.1), except trans-
lation equivariance (RT) and thus is not a risk measure.

As a corollary of Theorem 4.2 we have the following relations for the constant ρ∗
σ .

Corollary 4.9 For Y ≥ 0 it holds that

ρ∗
σ2

(Y ) ≤ K · ρ∗
σ1

(Y ),

where K is the constant (32) (Theorem 4.2).
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Proof ‖Y‖σ := ρσ (|Y |) and ‖Z‖∗
σ := ρ∗

σ (|Z |) are norms, which are dual to each other (cf.
Pichler 2013a) with respect to the bilinear form (Y, Z) �→ E[Y Z ]. From the Hahn–Banach
theorem it follows that

ρ∗
σ2

(|Z |) = sup
{
E[Y Z ] : ‖Y‖σ2 ≤ 1

} = sup
{
E[Y Z ] : ρσ2(|Y |) ≤ 1

}

≤ sup
{
E[Y Z ] : ρσ1(|Y |) ≤ K

} = K · ρ∗
σ1

(|Z |),
which is the assertion. �
4.4 Nonlinear upper bounds for the distortion risk functional

Approximations of the Average Value-at-Risk, which have been proposed in the literature,
include

AV@Rτ
α(Y ) := inf

x∈R

{
x + 1

1 − α
E

[
(Y − x)τ,+

]
}

where yτ,+ = 1
2

(
y + √

y2 + 4τ 2
)
(we refer to Luna et al. 2016 discussing also other variants

of approximating y+ by some yτ,+). In this setting it holds that x+ ≤ xτ,+ ≤ τ + x+. This
approximation apparently generalizes for the higher order risk measure

ρho
p,τ (Y ) := inf

x∈R

{
x + c · ∥∥(Y − x)τ,+

∥∥
p

}
,

and consequently ρho
p (Y ) ≤ ρho

p,τ (Y ) ≤ ρho
p (Y ) + τc. The functional ρho

p,τ (Y ) is transla-
tion equivariant, but not positively homogeneous. The particular advantage of the functional
ρho

p,τ (·) is given by the fact that the approximation y �→ yτ,+ is strictly convex and differen-
tiable, while y �→ y+ is only subdifferentiable.
Distortions—upper bounds derived from Fenchel–Young inequality The upper bound

ρσ (Y ) ≤ E[h(Y )] +
∫ 1

0
h∗(σ (u))du (44)

is valid for every (measurable) function h : R → R. (44) follows from the Fenchel–Young
inequality σ(U ) · Y ≤ h(Y ) + h∗(σ (U )), where h∗(σ ) := supy∈R σ · y − h(y) is the
usual convex conjugate function of the function h. Pichler (2013b) demonstrates that the
relation (44) is sharp, that is, for every random variable Y ∈ L there exists a function h such
that equality holds in (44).

5 Composite and conditional risk measures

The risk measures considered in the previous sections are defined on a probability space with
a sigma algebra. Extensions to filtered probability spaces are considered in several places, to
the best of our knowledge the earliest occurrence is Artzner et al. (2007) in this journal. These
risk measures are designed to capture the evolution of risk in a multistage environment, such
that general results as Bellman’s principle can be used and adapted to multistage situations.
Examples are given in Ruszczyński and Shapiro (2006), Ruszczyński and Yao (2015) and
Densing (2014). Shapiro (2016) elaborates properties of these risk measures in the context of
convex analysis, while Dentcheva et al. (2016) investigate statistical properties of composite
risk measures.
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Continuing the intention of the previous sections we develop bounds for composite risk
measures by using the relations with norms developed in the previous sections. Having
practical implementations in mind we restrict ourselves to higher order measures and the
higher order semideviation. We employ conditional expectations to handle these conditional
risk measures efficiently and to compare them with the respective norms.

Throughout this section we assume that F1 is a sub-sigma algebra, F1 ⊆ F . With F0 :=
{∅, �} we denote the trivial sigma algebra, so that F0 ⊆ F1 ⊆ F .

5.1 Higher order measures

For the definition of higher order risk measures we refer to Ruszczyński (2010, Example 3)
and the references given therein.

Definition 5.1 The conditional higher order measure is

ρho
c,p (Y,F1) := ess inf x�F1

{
x + c · E[

(Y − x)
p
+ |F1

]1/p
}

, (45)

where c � F1. We write x � F1 (c � F1, resp.) for x (c, resp.) being measurable with
respect to the sigma algebra F1. For convenience it is accepted in the literature to write also
ρho

c,p (Y |F1) := ρho
c,p (Y, F1), which is in line with the notation of conditional expectation.

Remark 5.2 For the trivial sigma algebraF0 = {∅, �} it holds that ρho
c,p (Y ) = ρho

c,p (Y, F0),
this is the higher order measure introduced in (14). The composite risk measure Y �→
ρho

c,p

(
ρho

c,p (Y,F1)
)
is a functional satisfying (RM)–(RH), but it is not version independent

(i.e., (RD) is not satisfied).

We have the following comparison with the norm.

Theorem 5.3 For the composite risk measure it holds that

‖Y‖p ≤ ρho
c0,p

(
ρho

c1,p (|Y |, F1)
)

≤ c0 · ‖c1‖q · ‖Y‖p ,

where c0�F0 is deterministic, c1�F1 and q is the exponent conjugate to p, i.e., 1
p + 1

q = 1.

Proof One may repeat the computations from the proof of Theorem 3.8 conditioned on F1

to see that
E

(|Y |p| F1
)1/p ≤ ρho

c1,p (|Y |, F1) ≤ c1 · E (|Y |p |F1
)1/p

. (46)

It follows that

‖Y‖p
p = E

[
E

(|Y |p |F1
)] =

∥∥∥E
(|Y |p |F1

)1/p
∥∥∥

p

p

≤
∥∥∥ρho

c1,p (|Y | ,F1)

∥∥∥
p

p
≤ ρho

c0,p

(
ρho

c1,p (|Y | ,F1)
)p

by (46) and (15), and this is the first claim. As for the second observe that

ρho
c0,p

(
ρho

c1,p (|Y |,F1)
)

≤ c0
∥∥∥ρho

c1,p (|Y |,F1)

∥∥∥
p

≤ c0
∥∥∥c1E

(|Y |p |F1
)1/p

∥∥∥
p

≤ c0 · ‖c1‖q · (
E

[
E

(|Y |p |F1
)])1/p = c0 · ‖c1‖q · ‖Y‖p

by (16) and (46) again and Hölder’s inequality. This proves the second assertion. �
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Example 5.4 (Composition of AV@R) An example of a conditional higher order risk mea-
sure, which is been frequently addressed in the literature (cf., for example, Shapiro 2010 or
Philpott and Matos 2012), is the conditional Average Value-at-Risk,

AV@Rα(Y,F1) := ρho
c1,1(Y,F1), (47)

where c1 is the constant function c1(·) = 1
1−α

.
The Average Value-at-Risk is monotone, provided that the risk level is adapted to the

stage. We have the following comparison (cf. Xin and Shapiro 2012).

Proposition 5.5 For α, β ∈ [0, 1) it holds that

AV@Rα

(
AV@Rβ(Y |F1)

) ≤ AV@Rα+β−αβ(Y ).

Proof The statement is immediate from

AV@Rα

(
AV@Rβ(Y |F1)

) = sup
EZ=1, 0≤Z≤ 1

1−α

E

(
Z · ess sup

E(Z ′|F1)=1, 0≤Z ′≤ 1
1−β

E(Y Z ′|F1)
)

(48)

(cf. (13)). Note that Z satisfying the constraints can be chosen F1 adapted (as the essen-
tial supremum is F1-adapted), and it follows thus that E

[
Z Z ′] = EE(Z Z ′|F1) =

E
[
Z(EZ ′|F1)

] = 1. It obviously holds that 0 ≤ Z Z ′ ≤ 1
1−α

1
1−β

and thus the assertion. �
Comparions with the Average Value-at-Risk The nested Average Value-at-Risk allows
a comparison with the Average Value-at-Risk on the positive cone. Indeed, for α, β and
γ ∈ [0, 1) it holds that

(1 − γ ) · AV@Rγ (Y ) ≤ AV@Rα

(
AV@Rβ(Y |F1)

) ≤ 1

1 − β
AV@Rβ(Y ) (49)

provided that Y ≥ 0 (the bounds in (49) are known for not being sharp.
To accept the inequality recall first that EY ≤ AV@Rα(Y ) ≤ 1

1−α
EY . Then the first

inequality follows by monotonicity

(1 − γ ) · AV@Rγ (Y ) ≤ EY = E
(
E(Y |F1)

) ≤ EAV@Rβ(Y |F1)

≤ AV@Rα

(
AV@Rβ(Y |F1)

)
,

while for the second inequality we find that

AV@Rα(AV@Rβ(Y |F1)) ≤ AV@Rα

(
1

1 − β
E(Y |F1)

)
≤ 1

1 − β
AV@Rβ(Y ),

the latter inequality being due to Dentcheva and Ruszczyński (2003, Corollary 6.30). A
simpler version of the right hand inequality in (49) can be found in Xin and Shapiro (2012).

5.2 Higher order semideviation

Higher order risk measures are defined by Ruszczyński (2010, Example 2) and Collado et al.
(2012, (3)).

Definition 5.6 The conditional higher order semideviation measure is

ρsd
λ,p (Y,F1) := E (Y |F1) + λ · E(

(Y − E (Y |F1))
p
+ |F1

)1/p
.
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Remark 5.7 The higher order semideviation risk measure introduced in Theorem 3.9 is
ρsd

λ,p (Y ) = ρsd
λ,p (Y, F0), where again F0 := {∅, �} is the trivial sigma algebra.

Remark 5.8 ρ(Y ) := ρsd
λ,p

(
ρsd

λ,p (Y,F1)
)
is a risk functional satisfying (RM)–(RH), but not

version independent (i.e., (RD) is not valid).

We have the following multistage analog of Theorem 3.12.

Theorem 5.9 For λ0 � F0 deterministic and λ1 � F1 it holds that

‖Y‖1 ≤ ρsd
λ,1

(
ρsd

λ,1 (Y,F1)
)

≤ (1 + λ0) · ‖1 + λ1‖∞ · ‖Y‖1
and

λ0 · (ess inf λ1) · ‖Y‖p ≤ ρsd
λ0,p

(
ρsd

λ1,p (Y,F1)
)

≤ kλ0,p · ∥
∥kλ1,p

∥
∥

q · ‖Y‖p ,

where the constants kλ,p are as in Theorem 3.12.

Proof The first claim is analogously to the second, so we prove only the second claim.
One may repeat the computations from the proof of Theorem 3.12 conditioned on F1 to

see that

E (|Y ||F1) ≤ ρsd
λ1,1 (|Y |, F1) ≤ kλ0,p · E (|Y | |F1)

and
λ1 · E (|Y |p|F1

)1/p ≤ ρsd
λ1,p (|Y |, F1) ≤ (

1 + λ
q
1

)1/q · E (|Y |p |F1
)1/p

. (50)

It follows that

λ
p
0 · ess inf λ

p
1 · ‖Y‖p

p = λ
p
0 · ess inf λ

p
1 · E [

E
(|Y |p |F1

)]

≤ λ
p
0 ·

∥∥∥λ1 · E (|Y |p ,F1
)1/p

∥∥∥
p

p

≤ λ
p
0 ·

∥∥∥ρsd
λ1,p (|Y | ,F1)

∥∥∥
p

p
≤ ρsd

λ0,p

(
ρsd

λ1,p (|Y | ,F1)
)p

by (50) and (21), and this is the first inequality. As for remaining inequality observe that

ρsd
λ0,p

(
ρsd

λ1,p (|Y |,F1)
)

≤ kλ0,p ·
∥∥∥ρho

λ1,p (|Y |,F1)

∥∥∥
p

≤ kλ0,p ·
∥∥∥kλ1,pE

(|Y |p |F1
)1/p

∥∥∥
p

≤ kλ0,p · ∥∥kλ1,p
∥∥

q · ‖Y‖p

by (22) and (50), the second assertion. �
Aggregation of risk—independent sigma algebras The inequalities in Theorems 5.3
and 5.9 are given for a general random variable Y and a sigma algebra F1. The constants
in these inequalities improve significantly, if the random variable Y is independent from the
sigma algebraF1 (i.e., P(A∩ B) = P(A) · P(B) for every A ∈ F1 and B ∈ σ(Y ), the sigma
algebra generated by Y ) and λ � F0 constant. In this situation it holds that

ρsd
λ,p (Y,F1) = E(Y |F1) + λ · E(

(Y − E(Y |F1))
p
+ |F1

)1/p

≡ E[Y ] + λ · E(
(Y − E[Y ])p

+
)1/p = ρsd

λ,p(Y )
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and

ρho
c,p (Y,F1) ≡ ρho

c,p(Y )

(for c � F0 constant), i.e., the conditional risk measures are constant variables.
For Y2 independent from F1 and c2 constant it thus holds that

ρho
c1,p

(
Y1 + ρho

c2,p (Y2|F1)
)

= ρho
c1,p (Y1) + ρho

c2,p (Y2) (51)

by (RT), and this identity gives rise to apply conditional risk functionals in a dynamic setting.
If, in addition,Y1 ismeasurablewith respect toF1 (Y1�F1) and c1, c2�F0, then the equalities
extend to

ρho
c1,p

(
ρho

c2,p (Y1 + Y2,F1)
)

= ρho
c1,p

(
Y1 + ρho

c2,p (Y2,F1)
)

= ρho
c1,p

(
Y1 + ρho

c2,p (Y2)
)

= ρho
c1,p (Y1) + ρho

c2,p (Y2) ,

the risk can be aggregated in an additive way. Apparently, the same is true for the semi-
deviation risk measure ρsd

λ,p .

5.3 The conditional Entropic Value-at-Risk

The Entropic Value-at-Risk is a further risk measure, which allows a conditional version
based on conditional expectation by setting

EV@Rα(Y |F1) = ess inf t>0, t�F1

1

t
log

1

1 − α
E

(
etY |F1

)

(cf. (39)).
By altering the risk levelαwehave the following inequality on the composition of Entropic

Value-at-Risks, which is in line with Proposition 5.5.

Proposition 5.10 (Composition of entropic risk measures) For deterministic risk levels
α, β < 1 we have that

EV@Rα

(
EV@Rβ(Y |Ft )

) ≤ EV@Rα+β−αβ(Y ).

Proof Let t be optimal in (39) to compute the Entropic Value-at-Risk for the trivial sigma
algebra F = {∅,�}. Then it follows from the tower property of the conditional expected
value that

EV@Rα+β−αβ(Y ) = 1

γ
log

1

1 − α − β + αβ
Eeγ Y

= 1

t
log

1

1 − α
E exp

(
t · 1

t
log

1 − α

(1 − α)(1 − β)
E

(
etY |F1

))

= 1

γ
log

1

1 − α
E exp

(
γ · 1

γ
log

1

1 − β
E

(
eγ Y |F1

))

≥ 1

γ
log

1

1 − α
E exp

(
γ · ess inf0≤γ ′�F

1

γ ′ log
1

1 − β
E

(
eγ ′Y |F1

))

= 1

γ
log

1

1 − α
E exp

(
γ · EV@Rβ

(
Y |F1

))

≥ EV@Rα

(
EV@Rβ(Y |F1)

)
,

which concludes the proof. �
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5.4 The general conditional risk measure

The composite risk measures in the previous subsections are based on conditional expecta-
tion. This is enough to introduce a conditional version of the AverageValue-at-Risk (cf. (47)).
The methods addressed, however, do not constitute a general rule of defining a conditional
risk measure based on a given risk measure. But to extend the theory of the previous sections
it is necessary to have conditional risk functionals available. Cheridito and Kupper (2011)
describe conditional risk functionals and Asamov and Ruszczyński (2014) give characteriza-
tions of coherent (and time-consistent) risk measures, but the definitions in Pflug and Pichler
(2016), for example, differ, although the conditional Average Value-at-Risk is the same in all
references given. For this reason we add a constructive definition of a general, conditional
risk functional here, which is again useful in providing estimates.

The Average Value-at-Risk, as introduced in Example 5.4, is well-defined for α a F1-
measurable randomvariable. By noting that the normcorresponding to theAV@R is ‖·‖1 with
dual ‖·‖∗

1 = ‖·‖∞ one may repeat the arguments in Theorem 3.1 and obtain the alternative
formulation

AV@Rα(Y |F1) = ess sup

{
E(Y Z |F1) : Z ≥ 0, E(Z |F1) = 1 and Z ≤ 1

1 − α

}
. (52)

The dual representation of a general coherent risk measure,

ρS(Y ) = sup
σ∈S

{
E[Y Z ] : Z ≥ 0, E[Z ] = 1 and AV@Rα(Z) ≤ 1

1 − α

∫ 1

α

σ (u)du,

0 ≤ α < 1} ,

can be employed to define the following variant of a conditional risk functional.

Definition 5.11 The conditional risk measure ρS(·|F1) corresponding to the risk measure
ρS(Y ) := supσ∈S

∫ 1
0 σ(u)F−1

Y (u)du and the sigma algebra F1 is

ρS(Y |F1) := ess supσ∈S

{

E(Y Z |F1)

∣
∣∣
∣∣

Z ≥ 0, E(Z |F1) = 1 and
AV@Rα(Z |F1) ≤ 1

1−α

∫ 1
α

σ (u)du for all 0 ≤ α < 1

}

.

(53)
We shall write ρσ (Y |F1) if S = {σ }.

The idea in the preceding definition is to repeat the same risk profile on every atom of F1.
This corresponds to the definition of the conditional Average Value-at-Risk, for example,
where the risk level α is repeated at every node. With this definition the results of Sect. 4
extend analogously and naturally, in line with the results already mentioned for the higher
order measure (Sect. 5.1) and the higher order semideviation (Sect. 5.2).

We finally have the following estimates for compositions of risk measures. Note, that all
these estimates are actually global comparisons of risk functionals.

Theorem 5.12 (Global comparison of conditional risk functionals) It holds that

(i) E [ρσ (Y |F1)] ≤ ρσ (Y ),

(ii) ρS
(
E (Y |F1)

) ≤ ρS(Y ), and
(iii) ess supAV@Rα (Y |F1) ≤ ‖Y‖∞ .

Remark 5.13 The relation (i) holds for distortion functionsρσ and theAverageValue-at-Risk,
but it does not extend to general risk functionals ρS .
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Proof We prove the statement for the (conditional) Average Value-at-Risk first. For α � F0

a fixed constant it follows with (45) that

AV@Rα (Y |F1) = ess inf x�F1

{
x + 1

1 − α
· E(

(Y − x)+ |F1
)
}

≤ ess inf x∈R
{

x + 1

1 − α
· E(

(Y − x)+ |F1
)
}

,

and by taking expectations that

E
[
AV@Rα (Y |F1)

] ≤ E

[
ess inf x∈R x + 1

1 − α
· E(

(Y − x)+ |F1
)
]

≤ inf
x∈R

{
E

(
x + 1

1 − α
· E(

(Y − x)+ |F1
)
)}

= AV@Rα (Y ) . (54)

Now recall Kusuoka’s theorem and that ρσ (Y ) = ∫ 1
0 AV@Rα(Y )dμ(α) for the measure

μ(A) := σ(0)δ0(A) + ∫
A 1 − udσ(u) [cf. Pflug and Pichler (2014, Section 3.2)]. By inte-

grating (54) with respect to the measure μ and by interchanging the order of integration we
obtain

E [ρσ (Y |F1)] = E

[∫ 1

0
AV@Rα (Y |F1) μ(dα)

]

=
∫ 1

0
E

[
AV@Rα (Y |F1)

]
μ(dα) ≤

∫ 1

0
AV@Rα (Y ) μ(dα) = ρσ (Y ),

the assertion.
The other assertions are obvious. �

Remark 5.14 It is worth noticing that AV@Rα(Y ) �≤ ‖AV@Rα (Y |F1)‖∞. As a coun-
terexample consider P(Y = 0) = 75%, P(Y = 20) = 5% and P(Y = 10) = 20%,
such that AV@R75%(Y ) = 12. But with F1 = σ ({Y �= 10} , {Y = 10}) it holds that
AV@R75%(Y | Y �= 10) = 5 and AV@R75%(Y | Y = 10) = 10.

6 Conclusion and summary

This paper elaborates a natural relation between risk measures and norms of a corresponding
Banach space. The relation established is one-to-one in the sense that every risk measure
defines a norm, and conversely, every appropriate norm specifies a risk measure. We use
these observations to establish continuity relations between risk functionals and norms.

A comprehensive collection of examples of important riskmeasures is included, for which
precise upper and lower bounds are given, if available. In this way we obtain (tight) inequali-
ties, relating all commonly used risk functionals. Applications involving risk functionals thus
can be simplified by replacing the risk functional by another one, which is more convenient
or simpler in implementations.

The second part of the paper addresses compositions of conditional risk functionals. Based
on bounds of its components we elaboratemultiplicative bounds for composite riskmeasures.
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