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Abstract An individual investor has to decide how to allocate his/her savings from a retire-
ment perspective. This problem covers a long-term horizon. In this paper we consider a
40-year horizon formulating a multi-criteria multistage program with stochastic dominance
constraints in an intermediate stage and in the final stage. As we are dealing with a real
problem and we have formulated the model in cooperation with a commercial Italian bank,
the intermediate stage corresponds to a possible withdrawal allowed by the Italian pension
system. The sources of uncertainty considered are: the financial returns, the interest rate evo-
lution, the investor’s salary process and a considerable withdrawal event. We include a set of
portfolio constraints according to the pension plan regulation. The objective of the model is
to minimize the Average Value at Risk Deviation measure and to satisfy wealth goals. Three
different wealth target formulations are considered: a deterministic wealth target (i.e. a com-
parison between the accumulated average wealth and a fixed threshold) and two stochastic
dominance relations—the first order and the second order—introducing a benchmark port-
folio and then requiring the optimal portfolio to dominate the benchmark. In particular, we
prove that solutions obtained under stochastic dominance constraints ensure a safer allocation
while still guaranteeing good returns. Moreover, we show how the withdrawal event affects
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the solution in terms of allocation in each of the three frameworks. Finally, the sensitivity
and convergence of the stochastic solutions and computational issues are investigated.

Keywords Individual pension problem · Multistage stochastic programming · Stochastic
dominance constraints · Average value at risk deviation

Mathematics Subject Classification 90C15 · 90C29 · 91B28 · 91B30

1 Introduction

The pension system has become increasingly complex and structured throughout Europe in
the last few decades. Because of the financial and social crisis, several countries have imple-
mented strong reforms in their state welfare systems to reduce pension costs and improve
the state budget balance. Furthermore, they have allowed, indeed encouraged, the establish-
ment of private pension facilities. We have to consider three pillars. The first concerns the
state pension system. The second concerns the relationship between the employer and the
employee. The third pillar consists of individual investment plans issued mainly by insurance
companies.

In general, a private pension fund is an investment fund which receives periodic contribu-
tions from a private investor and then provides an annuity during the person’s retirement. As
a public pension does not always give pensioners a sufficient income, a reasonable aim for
private pensions is to guarantee the integration of the public retirement pension so that the
total income before and after retirement does not differ substantially. To satisfy this target,
it is crucial to understand the difference between the Defined Benefit Fund (DBF) and the
Defined Contribution Fund (DCF). DBFs are characterized by a mutual structure, meaning
that the benefit during retirement is fixed and independent of the total amount of the contribu-
tion accumulated in the fund. This implies that if the final wealth is not sufficient to support
the benefit, the fund draws money from the current contributions of younger investors. DCFs
establish the level of the contribution. In this case, the benefit during retirement depends
on the total accumulated wealth and on some actuarial considerations. DCFs thus become
similar to private savings in the sense that the subscriber bears the risk (see e.g. Gerrard et al.
2004, 2006).

This research has been conducted in collaboration with a commercial Italian bank which
offers a second pillar DCF pension plan to its employees. In particular, the bank would like to
propose a tool for its employees that could suggest the optimal dynamic strategy from a pen-
sion perspective according to their specific characteristics. Therefore, some of the features of
the model have been required directly by the bank managers. Such a model faces the individ-
ual investment issue. The individual asset allocation problemwas first investigated byMerton
(1969, 1971), who introduced the concept of consumption and optimal investment through
a dynamic programming approach in order to maximize the utility for a private investor over
a fixed time horizon. Richard (1975) introduces the concept of lifetime uncertainty, labour
and insured wealth as further elements to be taken into account. Berger and Mulvey (1998)
propose a tool named the Home Account Advisor, a multistage model which optimizes the
investor’s financial objective considering jointly investments, savings and borrowings. Sev-
eral contributions have addressed individual asset allocation, not necessarily from a pension
perspective. However, they establish the common approaches for the description of all those
variables that characterize the investor’s investment, i.e. the salary process, consumption,
borrowings, etc. (see for example Consiglio et al. 2004, 2007; Consigli 2007; Medova et al.
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2008). An individual investor typically has more than one goal, for instance to obtain suitable
retirement wealth while minimizing risk. The models proposed in the literature consider this
issue in different ways. A common approach is to split the portfolio into sub-portfolios and
dedicate each of these to a specific target (e.g. Brunel 2003; Chhabra 2005). However, recent
works propose multi-criteria models without sub-portfolios. For example Cai and Ge (2012)
consider a loss-aversion objective which minimizes a loss risk measure and maximizes the
final wealth, having as a constraint a minimum level of expected wealth in order to main-
tain the recipient’s lifestyle. Our model follows this approach, as well as that proposed in
Kilianová and Pflug (2009), adopting a multi-criteria framework.

In the individual investment problem, the main features of a retirement perspective port-
folio allocation are: a particular asset universe composed of pension funds, the definition
of a long-term horizon strategy and the stochastic elements we address (see Milevsky and
Young 2007; Horneff et al. 2008; Consigli et al. 2012; Gerrard et al. 2012). An overview of
the individual pension problem can be found in Bertocchi et al. (2010).

The model we introduce considers as stochastic sources all the financial and monetary
processes, i.e. returns on the pension funds and investor’s salary. Moreover, we also take
into account the investor’s withdrawal decision which is one of the most effective investor
behaviours in a pension strategy as it usually concerns an important part of the wealth
accumulated in the pension plan. In determining an individual investor’s strategies, it is
imperative to know theway inwhich the investor takes a decision (seeKahneman andTversky
1979).Manyworks have addressed behavioural finance and proposedmodels which translate
behaviours into constraints (see Blake et al. 2013).

To face sources of uncertainty and the bank’s request to define a dynamic strategy over
a long-term horizon, we apply the instruments provided by Stochastic Programming. In
particular, we formulate a multistage stochastic program that allows rebalancing and with-
drawals at given time points. Moreover, in contrast to all previous papers, we enrich the
model with stochastic dominance constraints which offer an attractive way of comparing the
investment strategy (static or dynamic) with a given benchmark. Indeed, while mean-risk
approaches compare portfolios only in terms of mean returns and measures of risk for the
returns (losses), stochastic dominance relations employ the whole probability distribution
of the returns. Finally, stochastic dominance relations are consistent with utility theory (see
Levy 2016 and references therein); for example, a portfolio dominates a benchmark in the
sense of second order stochastic dominance if and only if every non-satiable and risk-averse
decision maker either prefers the portfolio to the benchmark or is indifferent between them.

The notion of stochastic dominancewas introduced in statisticsmore than 50years ago and
it was first applied in the field of Economics and Finance inQuirk and Saposnik (1962), Hadar
andRussell (1969) andHanoch andLevy (1969). Later on, second order stochastic dominance
constraints were applied to static stochastic programs in Dentcheva and Ruszczynski (2003)
and Luedtke (2008) and to portfolio efficiency analysis (see Kuosmanen 2004; Dupačová and
Kopa 2012 and, more recently, Kopa and Post 2015). Similarly, first order stochastic domi-
nance constraints were used in Kuosmanen (2004), Dentcheva and Ruszczyński (2004) and
Dupačová and Kopa (2014). In multistage stochastic programming, second order stochas-
tic dominance constraints were applied to asset-liability modelling in Yang et al. (2010)
and to mixed-integer programming in Escudero et al. (2016). Moving on from these works,
our purpose is to apply first and second order stochastic dominance to portfolio allocation
from a long-term horizon pension perspective and compare the results of three models (with
expectation type constraints, first order stochastic dominance constraints and second order
stochastic dominance constraints). Examining the pension problem with stochastic domi-
nance constraints becomes much more complex and computationally demanding, but we
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show that the problem can remain tractable and be enhanced with more attractive results in
terms of the reward/risk performance of the final wealth.

The paper is structured as follows. First, in Sect. 2, we define the objectives, the stochastic
dominance constraints and the other elements of the model. Then, Sect. 3 describes the main
settings of the problem, the stochastic tree structure and the generation of the stochastic
processes. In particular we dedicate a paragraph to the short-term interest rate modelling and
one to a heuristic historical extraction for the pension fund returns. Section4 presents the
results of the investment problem models, discussing the differences between the proposed
formulations and the main improvements achieved by including stochastic dominance con-
straints. This is followed by sensitivity and convergence analysis (including computational
issues) in Sect. 5. The paper concludes with Sect. 6.

2 Individual pension model

The aim of themodel is to define the optimal allocation among pension funds for an employee
from a retirement perspective. Thus, we face a multi-criteria problem in satisfying different
investors’ targets. We deal with three main features: a long-term horizon with a fixed and
given sequence of portfolio rebalancing stages, a comparison to a specific benchmark port-
folio strongly required by the bank with which we cooperate, and an uncertain environment
regarding: the returns on the pension funds, the salary process and the investor’s withdrawal
choice. These elements naturally lead to a multistage stochastic programming approach
involving policy constraints, inventory balance constraints and cash balance constraints.
There are many approaches to comparing the optimal solution with a given benchmark. Of
these, to consider the whole distribution of the wealth rather than a set of statistics, we adopt
stochastic dominance constraints.

2.1 Stochastic dominance

The basic definition of first order stochastic dominance (FSD) is as follows: a random vari-
able A first order stochastically dominates a random variable B if the cumulative probability
distribution function of A is below that of B. Alternatively, A first order stochastically domi-
nates B if and only if the expected utility of A is greater than or equal to the expected utility of
B for all utility (non-decreasing) functions; hence, every non-satiated investor prefers A to B
or is indifferent between them. Finally, using quantile functions, A first order stochastically
dominates B if and only if the quantile function of A is above the quantile function of B.
For further detail, see Levy (2016) and references therein. In this paper, we consider ran-
dom variables (representing randomwealth) having a discrete distribution with equiprobable
scenarios (realizations). Under this assumption, it is useful to formulate the FSD conditions
using a permutation matrix formulation as proposed in Kuosmanen (2004). The random
wealth of the portfolio (with realizations wtint = (wtint ,1, . . . , wtint ,S)

′) first order stochas-
tically dominates the random wealth of the benchmark (BM) portfolio (with realizations
wBM
tint = (wBM

tint ,1
, . . . , wBM

tint ,S
)′) at the intermediate stage if and only if

wtint ≥ Ptint · wBM
tint (1)

for at least one permutation matrix Ptint and, similarly, at the final stage if and only if

wT ≥ PT · wBM
T (2)

for at least one permutation matrix PT where all elements of the permutation matrices are
binary variables satisfying conditions (3) and (4).
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∑

i

Pi, j = 1 ∀ j (3)

∑

j

Pi, j = 1 ∀i. (4)

Similarly, the basic definition of second order stochastic dominance (SSD) is as follows:
a random variable A second order stochastically dominates a random variable B if the inte-
grated cumulative probability distribution function of A is below that of B. Alternatively, A
second order stochastically dominates B if and only if the expected utility of A is greater than
or equal to the expected utility of B for all concave utility functions; hence, every non-satiated
and risk-averse investor prefers A to B or is indifferent between them. Finally, using quantile
functions, A second order stochastically dominates B if and only if the integrated quantile
function of A is above the integrated quantile function of B. Assuming again discrete dis-
tributions of random wealth with equiprobable scenarios, following Kuosmanen (2004), the
random wealth of the portfolio (with realizations wtint = (wtint ,1, . . . , wtint ,S)

′) second order
stochastically dominates the random wealth of the benchmark portfolio (with realizations
wBM
tint = (wBM

tint ,1
, . . . , wBM

tint ,S
)′) at the intermediate stage if and only if

wtint ≥ Qtint · wBM
tint (5)

and similarly at the final stage if and only if

wT ≥ QT · wBM
T (6)

for some square double stochastic matrices Qtint and QT , i.e. satisfying the following condi-
tions

∑

i

Qi, j = 1 ∀ j (7)

∑

j

Qi, j = 1 ∀i (8)

Qi, j ≥ 0 ∀i, j. (9)

The only, very crucial, difference between matrices Q and matrices P is that the elements of
Q do not have to be binary, but just have to belong to the interval [0, 1], so each row and each
column represents a convex combination.

2.2 Objective function

According to the bank’s requirements, the problem needs to consider multiple criteria, which
are:

1. to minimize a coherent risk deviation functional of the final wealth produced by the
optimal allocation,

2. to maximize the expected wealth at an intermediate stage,
3. to maximize the expected wealth at the final stage (end horizon).

In many financial applications the risk is accounted as tail risk. In a similar application,
Kilianová and Pflug (2009) suggests adopting the Average Value at Risk (AV@R), which
is the average of the distribution below a certain threshold, computed according to a fixed
confidence level, such threshold being theValue at Risk (V@R).More specifically, Kilianová
and Pflug (2009) uses the distance between the expected value of the random wealth and its
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AV@R, i.e. the AV@R Deviation of the random wealth at t-th stage Wt , AV@RD(Wt ) =
E(Wt ) − AV@R(Wt ). Considering the discrete distribution of Wt given by scenarios wt,s

(where t = t0, . . . , T represents the stage and s = 1, . . . , S represents the scenarios) taken
with probabilities ps , the formulation of the minimization of the AV@RD at the last stage T
for a given confidence level α is

min
S∑

s=1

(
wT,s · ps

) − a + 1

α

S∑

s=1

(zs · ps) (10)

s.t. − a + wT,s + zs ≥ 0, zs ≥ 0 (11)

As we are dealing with a discrete distribution, we implement the AV@R computation as sug-
gested in Rockafellar and Uryasev (2000, 2002) and thus the discrete definition of AV@RD
needs inequalities (11) in order to define jointly the variables a and zs .

As suggested in Dupačová et al. (2002), we adopt the ε-Constrained Approach to include
the other two criteria, i.e. the following wealth targets

S∑

s=1

wtint ,s · ps ≥ �tint (12)

S∑

s=1

wT,s · ps ≥ �T (13)

The first wealth target (12) forces the average of the accumulated wealth at an intermediate
stage (tint ) to be greater than or equal to a fixed amount, �tint . Similarly, the final wealth
target (13) is fixed at the level �T .

Assuming we observe a benchmark portfolio the wealth wBM
t,s of which evolves through

the stages t and along each scenario s, we define the values of �tint and �T in (14) and (15)
as the expected value of the benchmark portfolio’s wealth:

�tint = 1

S

S∑

s=1

wBM
tint ,s (14)

�T = 1

S

S∑

s=1

wBM
T,s . (15)

We refer to the model which includes (12) and (13) as the Deterministic Wealth Target
(DWT)model . Furthermore, we propose two additional formulations using Stochastic Dom-
inance (SD). In particular, we refer to the FSD model in which (12) and (13) are replaced
with the FSD conditions as follows

wtint ,s �FSD wBM
tint ,s (16)

wT,s �FSD wBM
T,s . (17)

Also, we refer to the SSDmodel in which (12) and (13) are replaced with the SSD conditions
as follows

wtint ,s �SSD wBM
tint ,s (18)

wT,s �SSD wBM
T,s . (19)
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In these two distinct models, the SD constraints compare the whole distribution of the accu-
mulated wealth of the optimal solution to that of the benchmark portfolio’s wealth at an
intermediate and at the final stage.

2.3 Other constraints

We suppose that the decision times correspond to all stages except the last, in which we
just compute the accumulated final wealth. The investment universe is composed of five
different pension funds which are the sub-portfolios composing the pension plan. We define
the following non-negative variables where the index i = 1, . . . , 5 represents the pension
fund, t = t0, . . . , T represents the stage and s = 1, . . . , S represents the scenario:

ci,t,s expresses the level of contribution saved by the investor in the pension fund i at
stage t in scenario s;
x+
i,t,s and x−

i,t,s are the rebalancing variables that allow the redistribution of the accumu-
lated wealth among the chosen pension funds. These two variables quantify respectively
how much the investor buys and how much he/she sells of each fund i in scenario s at
the beginning of each stage t , i.e. before adding the contribution.

Finally, we can list the set of constraints in order to express the regulatory bounds and the
cash balance conditions.

2.3.1 Salary process

Given an initial level salt0,s equal to the actual salary of the employee and having generated
the salary growth rate ρsal

t,s , we can easily describe the salary process as follows

salt,s = salt−1,s · (1 + ρsal
t,s ), ∀t > t0,∀s. (20)

2.3.2 Maximum contribution level

In each stage, the employee does not want to invest more than a certain maximum percent-
age of his/her salary. Therefore, we introduce the parameter propensity to save (λ) and the
parameter employer contribution (e) which represents a supplementary contribution added
by the employer as a percentage of the employee’s contribution. Moreover, the time structure
of the problem defines the stages every Δt years, but in real life the contribution is added to
the pension fund yearly (sometimes also monthly). Therefore, considering the growth rate
of the salary to be constant over each period and equal to the discount rate and assuming
that the contribution is paid at the beginning of each year, we compute the actual value of a
growing annuity paying one euro for Δt years and multiplying by Δt . Thus, the constraint
describing the maximum contribution level is

n∑

i=1

ci,t,s ≤ salt,s · λ · (1 + e) · Δt, ∀t, s. (21)

2.3.3 Total minimum contribution

The bank requires a minimum contribution m from the employee who decides to enter into
the pension plan.
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n∑

i=1

ci,t,s ≥ m, ∀t, s. (22)

2.3.4 Portfolio balance

We define the set of constraints that describes the portfolio allocation, the rebalancing deci-
sions and the wealth account. For this purpose, we introduce the returns ρi,t,s on the pension
funds and the holding variable hi,t,s , which represents the amount we hold in each pen-
sion fund. Moreover, we define the initial cash parameter w0 and the initial portfolio vector
hi,0. The choice to withdraw an amount of money from the pension fund is represented by
the coefficient dt,s . According to the Italian rules, the investor can withdraw a considerable
amount of money only for specific reasons (e.g. housing or health) and only after a minimum
period spent in the pension plan. Therefore, we assume that this decision can be made in
one predetermined stage with a certain probability. In particular, dt,s = 1 − b for a given
withdrawal percentage, b, at a certain stage with a certain probability and dt,s = 1 otherwise.

hi,t0,s = hi,0 + ci,t0,s + x+
i,t0,s

− x−
i,t0,s

, ∀i, s (23)
n∑

i=1

x+
i,t0,s

=
n∑

i=1

x−
i,t0,s

+ w0, ∀s (24)

x−
i,t0,s

≤ hi,0, ∀i, s (25)
n∑

i=1

x−
i,t0,s

≤ θ

n∑

i=1

hi,0, ∀s (26)

hi,t,s = hi,t−1,s · (1 + ρi,t,s) · dt,s + ci,t,s + x+
i,t,s − x−

i,t,s, ∀t ∈ (t0, T ),∀i, s (27)

wt,s =
n∑

i=1

(hi,t−1,s · (1 + ρi,t,s)), ∀t > t0,∀s (28)

n∑

i=1

x+
i,t,s =

n∑

i=1

x−
i,t,s, ∀t ∈ (t0, T ),∀s (29)

x−
i,t,s ≤ hi,t−1,s · (1 + ρi,t,s), ∀t ∈ (t0, T ),∀s, i (30)
n∑

i=1

x−
i,t,s ≤ θ · wt,s, ∀t ∈ (t0, T ),∀s (31)

x+
i,t,s ≥ 0, x−

i,t,s ≥ 0, ci,t,s ≥ 0, ∀i, t, s. (32)

Equation (23) defines the holding in the first stage for each pension fund as the sum of
the initial portfolio allocation hi,0, the first period contribution ci,t0,s , the reallocation of
purchased assets x+

i,t0,s
and sold assets x−

i,t0,s
. Equation (24) is the cash balance of the initial

wealth w0. Equation (25) is the inventory balance of the first stage portfolio and (26) is its
turnover constraint. For next stages, Eq. (27) defines the holding hi,t,s for each pension fund as
the sum of the capitalization of the previous holding hi,t−1,s (reduced by the withdrawal dt,s),
the contribution ci,t,s , the reallocation of the accumulated wealth x+

i,t,s and x−
i,t,s . Equations

(29), (30) and (31) describe the portfolio reallocation. Moreover, (26) and (31) define the
turnover constraints through the parameter θ which states that we cannot sell more than a
fixed percentage θ of the portfolio. Finally, Eq. (28) computes the accumulated wealth in
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each stage for each scenario. According to this wealth variable we build the target constraints
and the objective function.

Using the stochastic tree structure, we must ensure that the decision variables depend
only on the past values of the stochastic processes. Therefore, we include the following set
of non-anticipativity constraints

ci,t,ṡ = ci,t,s̃, ∀i, t (33)

x+
i,t,ṡ = x+

i,t,s̃, ∀i, t (34)

x−
i,t,ṡ = x−

i,t,s̃, ∀i, t (35)

for each couple of scenarios, ṡ and s̃, which share the same history until stage t .
The formulation described produces a Linear Program (LP) in the DWT and SSD cases.

The formulation with FSD produces a Mixed Integer Program (MIP) problem in which the
computational complexity largely increases because of the high number of binary variables.

2.4 Benchmark portfolio definition

Tomake aproper comparison, the benchmarkportfolio evolves in the same stochastic environ-
ment as the optimal dynamic strategy but with a fixed allocation which is the 1/n suggested
in DeMiguel et al. (2009), i.e. an equally distributed portfolio among the available asset.
Indeed, the benchmark portfolio is assumed to be affected by the same withdrawal event
and to return the average of the pension fund returns, i.e. ρBM

t,s = 1/n
∑n

i=1 ρi,t,s, ∀t, s.
Moreover, as in the optimal portfolio, the benchmark portfolio periodically receives con-
tributions. Whereas for the optimal solution the contribution level is a decision variable
controlled with Eq. (21), the benchmark rises according to the maximum allowed con-
tribution, i.e. CBM

t,s = salt,s · λ · (1 + e) · Δt, ∀t, s. Starting from the initial wealth
wBM
0 = ∑n

i=1 hi,0 + w0, ∀s, the evolution of the benchmark portfolio wealth is given
by the following conditions

hBM
t0,s = wBM

0 + CBM
t0,s ∀s (36)

hBM
t,s = hBM

t−1,s · (1 + ρBM
t,s ) · dt,s + CBM

t0,s ∀t > t0,∀s (37)

wBM
t,s = hBM

t−1,s · (1 + ρBM
t,s ) ∀t > t0,∀s. (38)

3 Numerical study

We implement the DWT, SSD and FSD models for the case of a 30-year-old Italian man
with an expected working life of 40years. The two wealth goals he wants to achieve are an
intermediate objective after 8years and a final pension benefit in 40years. The 8-years target
is due to the Italian rules, which allow the withdrawal of money only after 8years following
subscription to the pension plan contract. Then, the investor wants to have at least a minimum
amount of expected wealth in case he will withdraw from his pension position at a given time
tint . For these reasons, we create a stochastic scenario tree with six stages, each equal to 8
years, i.e. Δt = 8 and then t = 0, 8, 16, 24, 32, 40 and tint = 8.

The asset universe is composed by one guaranteed capital and 4 risky pension funds.
The stochasticity concerns the pension fund returns, the salary evolution and the investor’s
withdrawal choice and it is represented by a discrete scenario tree composed of S paths
and characterized by regular branching. The number of scenarios is chosen according to the
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Table 1 Vasicek model
estimation using the EURIBOR
3-month series

Whole period
from 01/01/1999
to 31/12/2015

Pre-crisis period
from 01/01/1999
to 31/12/2008

Post-crisis period
from 01/01/2009
to 31/12/2015

α 0.066 0.065 1.634

β 0 0.025 0.003

ν 0.003 0.004 0.002

trade-off between computational tractability and a reasonable representation of the stochastic
variables aswediscuss extensively in Sect. 5. The tree is generated assuming that the scenarios
are equiprobable, i.e. ps = 1/S.

3.1 Short-term rate model

The first pension fund is a guaranteed capital investment with a risk-free return. We assume
the risk-free rate to be represented by a short-term interest rate. In the European setting,
the EURo InterBank Offered Rate (EURIBOR) represents the average interest rate at which
banks in the eurozone lend funds to other banks. Therefore we adopt the EURIBOR 3-month
rate as an approximation of the risk-free rate. To model short-term rate dynamics, several
models have been proposed during the last decades. Their evolution has been linked to the
evolution of economic theory, which through the second part of the last century hypothesized
a long-term equilibrium rate and the impossibility of negative rates. Some of them, such as
Rendleman andBartter (1980) andHo and Lee (1986), do not include amean-reverting effect,
while others do not allow negative interest rates, for instance Cox et al. (1985), Black et al.
(1990) and Black and Karasinski (1991). Vasicek (1977) proposes a model which describes
a mean-reverting process and allows the interest rate to become negative which is nowadays
a common situation for real interest rates. The Vasicek model describes the interest rate
dynamic as follows

drt = α(β − rt )dt + νdWt , ∀t (39)

where Wt is the Wiener process. There have been some extensions of the Vasicek model
in order to describe a full yield curve, for instance Hull and White (1990). However, as we
need to create scenarios only for the short-term interest rate, we adopt the Vasicek model to
describe and forecast the EURIBOR 3-month interest rate.

We analyse the historical series of the EURIBOR 3-month rate from 1st January 1999 to
31st December 2015. We perform a Maximum Likelihood Estimation for all the parameters
and obtain the results reported in Table1 according to three different estimation periods. In
particular, we split the whole EURIBOR 3-month historical data into a pre-crisis period and
one post-crisis period.

The estimations made for the post-crisis period and the whole period produce a very
low parameter β. Then, as the Vasicek model parameters, we adopt those estimated for the
pre-crisis period as an equilibrium interest rate equal to 2.5% seems more reasonable for a
40-year horizon problem.

The salary stochasticity is modelled assuming that its process follows the risk-free rate
plus a constant risk premium. The salary stochastic process follows the risk-free rate process
plus a constant premium of 2%. In this way, we account for a reasonable link between the
evolution of the salary and economy growth approximated by the risk-free rate.
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3.2 Risky asset returns

The other four pension funds are related to risky assets for which we have historical data
series composed of daily observations of daily prices. As we want to avoid distribution
assumptions but still want to consider the correlation structure and periodical changes in
the return structures, we generate scenarios through an extraction from historical series. The
extraction implies that for each nodewe draw the return of a single day for all the assets. In this
way, we take care of the correlation structure. The drawing is not completely random and is
differentiated between nodes in the second stage and nodes in the next stages. For the second
stage nodes, i.e. the returns which describe the evolution between the here-and-now stage
and the second stage we propose Algorithm 1. For further stages we suggest Algorithm 2.

Algorithm 1 Stage 2 nodal return generation
Input: dailyTseries � Daily observations of asset return

branching � Branching structure of the tree
aYear � Number of days per year
dt � Stage length

Output: r � Asset nodal returns
t � Time points associated to nodes
compTseries � Two-year compounded time series

Using: delete(x[k]) � Deletes from vector x the element in position k
index(x) � Returns the sorted position of the elements of a given vector x
int(x) � Returns the integer part of a given number x
length(x) � Returns the number of elements of a given vector x
random() � Returns a random number extracted from a uniform [0, 1)
replicate(x, z) � Appends to a given matrix x itself for a given number of times z
sort(x) � Returns the given vector x sorted
x .. z � Indicates elements from position x to position z

k ← branching[2] � Number of nodes in the second stage
m ← length(dailyTseries) � Number of observed days in the historical series
h ← m − int(m/k) × k + 1 � Adjusts sample size to fit the branching
multiTseries ← dailyTseries[h .. m] � Takes the more recent observations
multiTseries ← replicate(multiTseries, int(2 × aYear/m + 1))
for d = 1 to m do � Computes the two-year returns for each observed day

compTseries[d] ← 1
for j = 1 to 2 × aYear do

compTseries[d] ← compTseries[d] × (1 + multiTseries[j + d])
end for

end for
s ← m/k � Number of days considered to fill each node of the second stage
for n = 1 to k do � Describes the empirical distribution of each sub-series

sortedTseries[n, 1 .. s] ← sort(compTseries[n × s − s + 1 .. n × s])
sortedTSindex[n, 1 .. s] ← index(compTseries[n × s − s + 1 .. n × s])

end for
candidates ← 1 .. k
q ← int(s/k) � Number of days of each sub-series considered to fill each node of the second stage
for n = 1 to k do � Draws a random day for each node from a different partition within each sub-series

p ← int(random() × q) + 1
u ← int(random() × length(candidates)) + 1
r[n] ← (1 + sortedTseries[n, candidates[u] × q − q + p])^(dt/2) � Computes equivalent rate
t[n] ← (n − 1) × s + sortedTSindex[n, candidates[u] × q − q + p]
delete candidates[u]

end for
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Algorithm 2 Further Stages nodal return generation
Input: t � Time points associated to nodes

compTseries � Two-year compounded time series
branching � Branching structure of the tree
aYear � Number of days per year
dt � Stage length

Output: r � Asset nodal returns
Using: children(x) � Returns the children nodes of a given node x

index(x) � Returns the sorted position of the elements of a given vector x
int(x) � Returns the integer part of a given number x
length(x) � Returns the number of elements of a given vector x
random() � Returns a random number extracted from a uniform [0, 1)
replicate(x, z) � Appends to a given matrix x itself for a given number of times z
sort(x) � Returns the given vector x sorted
x .. z � Indicates elements from position x to position z

comptseries ← replicate(comptseries, int(length(comptseries)/(2×aYear× length(branching)))+
1)
for i = 2 to length(branching) − 1 do � For each stage of the tree

for n = 1 to branching[i] do � For each node in the considered stage
partseries[n, 1 .. 2 × aYear] ← comptseries[t[n] + aYear + 1 .. t[n] + 2 × aYear]
sortedtseries[n, 1 .. 2 × aYear] ← sort(partseries[n, 1 .. 2 × aYear])
sortedTSindex[n, 1 .. 2 × aYear] ← index(partseries[n, 1 .. 2 × aYear])
s ← 2 × aYear/k � Number of days considered to fill each node in the subsequent stage
child := children(n) � Children of the considered node in the subsequent stage
for h = 1 to length(child) do � Draw a random day for each children from a different partition

p = int(random() × s) + 1
r[child[h]] ← (1 + sortedtseries[n, h × s − s + p])^(dt/2) � Compute equivalent rate
t[child[h]] ← t[n] + aYear + sortedTSindex[n, h × s − s + p] + 1

end for
end for

end for

By adopting these two algorithms, we consider that the financial markets show cycles
and each path from the root node should correspond to a different point of the cycle. Then,
within each cycle we consider good and bad scenarios by dividing the empirical distributions.
The methodology described is designed for single asset scenario generation, but it is easily
possible to extend it to a multiple asset scenario generation having as historical series the
daily return observations of a set of assets. In summary:

– we consider the correlation drawing the return for each node from a single day’s obser-
vation;

– the whole historical series is split into sub-periods and the second stage nodes are drawn
from different sub-periods considering the financial cycles;

– the descendant nodes consider the time path followed by the cycle;
– in splitting the empirical distribution, we consider all the parts of the distributions.

The described procedure is relatively easy in the case that the scenario tree follows regular
branching. However, it could also be extended for non-regular branching. Moreover, the
chosen window sizes and the compounding periods strongly depend on the time structure of
the problem. Considering the features of our model and its time structure, from the observed
daily prices we compute the 2-year returns and then the equivalent 8-year returns.

The four risky pension funds are related to: the Dow Jones Equal Weight US Issued
Corporate Bond Index, the Merrill Lynch US High Yield BB Corporate Bond Index, the
FTSE100 Index and the S&P500 Index, respectively. For each index, we have daily returns on
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Table 2 Statistics of the 2-year returns

Index Mean (%) St. dev. (%)

Dow Jones Equal Weight U.S. Issued Corporate 2.88 6.78

Merrill Lynch US High Yield BB Corporate Bond −3.70 31.07

FTSE100 index 3.11 22.07

S&P500 index 8.53 26.04

a daily basis from1st January 1999 to 31stDecember 2015. Thus,we have a dataset composed
of 4178 price observations for each index. The chosen indices are well differentiated in terms
of the risk/reward profile, as shown in Table 2.

3.3 Parameter and initial portfolio settings

In the Italian job market framework, the average initial net salary for a young employee is
roughly 15,000 euros, i.e. salt0,s = 15,000. In (21) we assume that the propensity to save
parameter is λ = 7%, while the employer contribution is e = 50%, in line with the usual
Italian context. According to the regulation of the pension plan we are considering, the total
minimum contribution in (22) is m2 = 300 euros. We suppose that the investor’s initial
portfolio is composed as follows: hi,0 = [0 1000 1000 5000 5000]; we also suppose the
investor has no initial wealth, i.e. w0 = 0. Although the pension plan does not impose any
turnover bound, we set the turnover coefficient to θ = 50% in order to make the solution
smoother. These settings concern Eqs. (23)–(31).

In the objective function (10) theAV@RD is computed using the confidence levelα = 5%.
As already explained, in the Italian pension system, a huge percentage of money can be with-
drawn after eight years following subscription to the pension plan. For this reason, we set the
intermediate target after eight years, i.e. tint = 8, and in the case that the investor withdraws,
the amount withdrawn corresponds to 70% of the accumulated wealth, i.e. dt,s = 0.70. We
assume that the withdrawal event occurs with probability 50% and that it is independent of
the other stochastic sources.

4 Results

To compare the three formulations, DWT, FSD and SSD, we consider the following three
models:

DWT: (10)–(11), (12)–(13), (20)–(38);
SSD: (10)–(11), (18)–(19), (20)–(38);
FSD: (10)–(11), (16)–(17), (20)–(38).

For each of these models, we present in-sample results and we analyse the sensitivity of the
optimal allocation with respect to the withdrawal event.

In the following sections, in the dynamic allocation and dynamic wealth figures, guaran-
teed capital is depicted in white, and each grade of the greyscale corresponds to a specific
pension fund from the less risky one (light grey) to the most risky one (dark grey). For the
comparison between the empirical distributions of the final wealth, the grey line stands for
the benchmark portfolio and the black line for the optimal solution.
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Fig. 1 Dynamic allocation—DWT

4.1 No-withdrawal case

4.1.1 Deterministic wealth target (DWT)

Figure1 shows the solution of the DWT case in terms of the percentage optimal allocation.
The solution presented for each stage is the average solution over all nodes of that stage.

The here-and-now solution is well diversified among the four risky assets. The dynamic
strategy includes the guaranteed capital pension fund from the third stage. Getting closer to
the final horizon the portfolio continues to have a diversified allocation, slightly enlarging
the portion invested in the equity pension fund. This behaviour is not in conflict with the
common result of decreasing risk exposure as the evolution of the pension fund follows the
historical financial cycles of the last 15years, in which, during some periods, equity assets
were less risky than bond assets. In Fig. 2, we present the average optimal allocation, showing
the increasing average wealth over all scenarios in each particular stage.

The wealth process shows a positive trend thanks to the long-term horizon, which induces
a vast amount of contributions and financial gains. All the assets are proportionally enriched
at each decisional stage (stages: 1, 2, 3, 4, 5, corresponding to times: 0, 8, 16, 24, 32). The
final wealth distribution and its statistics are shown in Fig. 3. The statistics for the final wealth
show that the optimal allocation is more risky than the benchmark portfolio in terms of the
standard deviation, but is definitely better in terms of V@R and AV@R, with values almost
twice those of the benchmark portfolio. The mean values are equal, highlighting that the
deterministic target constraint is active. In summary, the AV@RD minimization under DWT
constraints ensures a portfolio which is preferred to the 1/N portfolio: the expected wealth
achieved is equal and the tail risk is substantially reduced.

In Fig. 4 we propose a comparison between the quantile function of the benchmark wealth
and of the final wealth accumulated by the investor. In Fig. 5 we show their integrated quantile
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Fig. 2 Dynamic wealth—DWT

Fig. 3 Final wealth distribution and related statistics, DWT

functions. The figures show that the final wealth of the DWT model (black line) does not
dominate the final wealth of the benchmark portfolio (grey line) either by FSD or by SSD.

The optimal strategy appears suitable according to the investor’s features. His young age
allows an aggressive allocation in the here-and-now solution. The comparison between the
empirical cumulative distribution functions in Fig. 4 shows that the DWT portfolio suffers
in the right tail of the distribution. On the one hand, for these scenarios, the benchmark
produces higher wealth. On the other hand, the minimization of the objective risk measure
allows efficient control of the left tail in which the optimal portfolio reduces the huge losses
of the benchmark portfolio.
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Fig. 4 Quantile function—DWT

Fig. 5 Integrated quantile function—WT

4.1.2 Second order stochastic dominance (SSD)

In Fig. 6 we present the optimal solution of the SSD case as the percentage allocation. As in
the previous case, the solution presented for each stage is the average solution over all the
nodes of that stage.
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Fig. 6 Dynamic allocation—SSD

The SSD here-and-now solution invests slightly more in the equity pension funds (33.4%)
than the DWT option (30.8%). Through the stages, the optimal solution is well diversified
and remains more aggressive than the DWT. However, the guaranteed capital pension fund is
included from the second stage. In Fig. 7 we present the average optimal allocation showing
the increasing wealth. The wealth evolution is aligned with the portfolio allocation. As in the
DWT case the long-term horizon induces a high contribution level and remarkable financial
gains,which increase thewealth accumulated in the pensionplan.Thefinalwealth distribution
and its statistics are shown in Fig. 8. The final wealth distribution statistics show that the
optimal portfolio reaches on average the same wealth as the benchmark portfolio. Moreover,
the SSD leads the optimal portfolio to be far less risky than the benchmark portfolio and the
DWT solution, having a lower standard deviation and a higher median. Thus, the final wealth
for SSD is less volatile than for DWT, while V@R and AV@R are slightly smaller (worse)
in the SSD case. In particular, as the SSD model’s feasible region is smaller than that of the
DWT model, the AV@RD has to be higher, but we observe only very small differences. To
summarize, the solution for SSD has almost the same tail risk as for DWT and it reaches an
equal expected wealth, but with a substantially higher median and a lower standard deviation.
Moreover, of course, the SSD model guarantees that the portfolio dominates the benchmark
in a specific and stronger sense than the DWT, that is, every non-satiated and risk-averse
investor prefers the SSD optimal final wealth to the benchmark final wealth.

In Fig. 9 we propose a comparison between the quantile function of the benchmark wealth
and of the final wealth accumulated by the investor. In Fig. 10 we show their integrated
quantile functions.

The SSD relationship between the final wealth of the optimal SSD portfolio and of the
benchmark portfolio is clearly satisfied, as shown in Fig. 10, while FSD is not requested and
is therefore not fulfilled (see Fig. 9).
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Fig. 7 Dynamic wealth—SSD

Fig. 8 Final wealth distribution and related statistics, SSD

4.1.3 First order stochastic dominance (FSD)

In Fig. 11 we present the FSD optimal solution as a percentage allocation. As in the previous
cases, the solution presented for each stage is the average solution over all the nodes of that
stage.

The FSD allocation in the first stage is even more concentrated in the equity pension fund
than in the DWT and the SSD cases. The portfolio is well diversified and the guaranteed
capital pension fund is again included from the third stage (as in the DWT case), with a
share consistently smaller than in the other two cases. The aggressive allocation of the FSD
portfolio is induced by the FSD constraint. Indeed, the other two cases suffer a drawback
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Fig. 9 Quantile function—SSD

Fig. 10 Integrated quantile function—SSD

in the right tail of the distribution but the FSD requires the optimal portfolio to beat the
benchmark over all scenarios. Thus, the portfolio must look for higher returns and must
opt for a riskier allocation. In Fig. 12 we present the average optimal allocation showing
the increasing wealth. The wealth process takes advantage of the financial markets thanks
to the equity pension funds which compose a remarkable part of the portfolio until the last
decision stage. The finalwealth distribution and its statistics are shown in Fig. 13. The strategy
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Fig. 11 Dynamic allocation—FSD

Fig. 12 Dynamic wealth—FSD

requires an increase in the right-tail of the distribution to fulfil the FSD constraint. Therefore,
its average final wealth is the highest compared to the benchmark, DWT and SSD cases.
However, both V@R and AV@R are lower than in the DWT and SSD cases, but still higher
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Fig. 13 Final wealth distribution and related statistics, FSD

Fig. 14 Quantile function—FSD

than the benchmark portfolio. The standard deviation is slightly lower than for the benchmark
portfolio and remarkably lower than in the DWT case. Of course, as the feasible region is
smaller than for the other models, the AV@RD is larger than in the SSD and the DWT cases.
To summarize, the FSD model achieves a higher average final wealth than the other models,
the volatility is lower than in the DWT model and the tail risk is relatively high, but still
smaller than that of the benchmark model. Of course, the FSD ensures the optimal portfolio
beats the benchmark portfolio in a very strict sense, that is, every non-satiated investor has
to prefer the FSD final wealth to the benchmark final wealth.

In Fig. 14we propose a comparison between the quantile function of the benchmarkwealth
andof thefinalwealth accumulatedby the investor. InFig. 15we show their integratedquantile
functions. Figure14 confirms that the required FSD relationship is satisfied.
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Fig. 15 Integrated quantile function—FSD

4.2 Withdrawal case

In the following section, we develop the analysis of the optimal investment according to the
three proposed formulations, also including the possibility that a withdrawal event might
occur. Clearly, we assume that the same event occurs also for the benchmark portfolio wealth
in order to make a fair comparison; otherwise, it would be impossible to reach the wealth
targets. Moreover, the withdrawal event is assumed to be independent of the other stochastic
processes and in particular of the salary.

4.2.1 Deterministic wealth target (DWT)

Figure16 shows the DWT optimal solution as the percentage allocation considering the
withdrawal event. The solution presented for each stage is the average solution over all the
nodes of that stage.

The dynamic optimal allocation prefers the high-yield bond pension fund to the global
bond fund. Thus, to achieve reasonable wealth in the case of withdrawal, the portfolio is
more risky than in the no-withdrawal case. After the withdrawal stage, the portfolio shits
more to the guaranteed capital pension fund in order to reduce the total riskiness. In Fig. 17
we present the average optimal allocation showing the increasing wealth.

In the wealth process, the impact of withdrawal is demonstrated in the third stage. The
dynamic is structured as follows: in the second stage, the investor makes the contribution
and reallocation choice, taking account of the accumulated wealth and deciding whether to
withdraw or not. Finally, in the case that the withdrawal is done at the end of the second stage,
the wealth of the third stage is below its natural trend. We recall that the withdrawal consists
of 70% of the wealth accumulated in the second stage and the event occurs with a probability
of 50%. The remaining portfolio is invested primarily in the high-yield pension fund and its
return partially mitigates the withdrawal. Therefore, in the third stage we observe a reduction
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Fig. 16 Dynamic allocation—WT withdrawal

Fig. 17 Dynamic wealth—DWT withdrawal

in the wealth but the trend continues to be positive. The final wealth distribution and its
statistics are shown in Fig. 18. The portfolio allocation guarantees an average return in line
with the benchmark portfolio, i.e. the deterministic target constraint is active. The standard
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Fig. 18 Final wealth distribution and related statistics, DWT withdrawal

Fig. 19 Quantile function—DWT withdrawal

deviation of the DWT portfolio is slightly lower than that of the benchmark portfolio, and the
V@R and AV@R of the DWT portfolio indicate the good quality of the solution compared
to the benchmark portfolio.

In Fig. 19we propose a comparison between the quantile function of the benchmarkwealth
andof thefinalwealth accumulatedby the investor. InFig. 20we show their integratedquantile
functions.

The optimal solution does not guarantee either the FSD or the SSD relationship. In partic-
ular, it suffers some drawbacks both in the right part of the distribution and also in the central
part.
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Fig. 20 Integrated quantile function—DWT withdrawal

Fig. 21 Dynamic allocation—SSD withdrawal

4.2.2 Second order stochastic dominance (SSD)

In Fig. 21 we display the SSD optimal portfolio as the percentage allocation considering the
withdrawal event. As in the previous case, the result presented for each stage is the average
solution over all the nodes of that stage.
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Fig. 22 Dynamic wealth—SSD withdrawal

The here-and-now solution makes a shift onto the high-yield bond pension fund, but not
as strongly as for the DWT case. Then, through the stages, the allocation remains diversified
but the portion invested in the guaranteed capital pension fund is slightly lower than in the
DWT case and starts only from the third stage. In Fig. 22 we present the average wealth of
the optimal allocation.

The evolution of the wealth is again affected by the withdrawal event as for the DWT
solution. However, as the target wealth is reached in the fifth stage (after 32years), the
last decision focuses mainly on risk reduction, making the final wealth less risky. The final
wealth distribution and its statistics are shown in Fig. 23. The statistics for the final wealth
distribution highlight a well-balanced portfolio which is able to beat the benchmark portfolio
in all respects. Themedian is higher, the standard deviation is lower and the tail risk measures
are also better than for the benchmark portfolio. The comparison between the SSD and the
DWT illustrates that the two solutions are similar in terms of V@R and AV@R, but the
SSD portfolio is less risky in terms of the standard deviation and its median is higher. Thus,
also for the withdrawal case, the SSD portfolio generally performs better than the DWT,
guaranteeing the same expected return but with a much lower risk distribution.

In Fig. 24we propose a comparison between the quantile function of the benchmarkwealth
andof thefinalwealth accumulatedby the investor. InFig. 25we show their integratedquantile
functions.

The solution still shows some drawbacks with respect to the benchmark portfolio for the
right tail of the distribution, but not as substantial as in the DWT case. In contrast to the DWT
solution, the SSD option outperforms the benchmark portfolio also in the middle part of the
distribution.
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Fig. 23 Final wealth distribution and related statistics, SSD withdrawal

Fig. 24 Quantile function—SSD withdrawal

4.2.3 First order stochastic dominance (FSD)

In Fig. 26 we present the FSD optimal solution as the percentage allocation considering the
withdrawal event. As in the previous cases, the solution for each stage is the average solution
over all the nodes of that stage. The FSD optimal here-and-now allocation is equal to the
here-and-now allocation of the no-withdrawal case. Thismeans that the FSD constraints force
the optimal solution independently of a possible withdrawal, which changes the solution in
the subsequent stages. In particular the dynamic strategy appears more conservative than in
the no-withdrawal case. In Fig. 27 we exhibit the average optimal allocation showing the
increasing wealth. Again, the withdrawal effect is clear in the third stage. The final wealth
distribution and its statistics are shown in Fig. 28. The optimal portfolio beats the benchmark
portfolio in terms of average final wealth, standard deviation and tail risk measures. As in
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Fig. 25 Integrated quantile function—SSD withdrawal

Fig. 26 Dynamic allocation—FSD withdrawal

the no-withdrawal case, because of the smaller feasible region, the V@R and AV@R values
are lower than in the DWT and SSD cases.

In Fig. 29 we propose a comparison between the cumulative distribution function of the
benchmark wealth and the final wealth accumulated by the investor. In Fig. 30 we show their
cumulative distribution functions.
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Fig. 27 Dynamic wealth—FSD withdraw

Fig. 28 Final wealth distribution and related statistics, FSD withdrawal

It is hard to satisfy the FSD constraints from both a financial and a computational point
of view. The optimal portfolio must be able to beat the benchmark in any scenario. Thus, the
FSD solution guarantees a portfolio far better than the benchmark portfolio for any possible
realization of the stochastic variables. Comparing the FSD solution to the DWT and the SSD
solutions, it provides higher final wealth in terms of the mean and median, but at the cost of
a substantially higher standard deviation and tail risk (no matter whether measured by V@R
or AV@R).
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Fig. 29 Quantile function—FSD withdrawal

Fig. 30 Integrated quantile function—FSD withdrawal

5 Sample size, convergence and sensitivity analysis

Thedefinition of the problem instance and the generationof the stochastic treewere performed
in MATLAB R2013b, while the optimal solution for both the linear problem and the mixed
integer problem was estimated in GAMS using Cplex 12.1.0 algorithms. Using an Intel(R)
Xeon(R) 2.40GHz with 8.00GB RAM virtual machine running Windows 8.1, we were able
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Fig. 31 In-sample stability analysis of the optimal objective values for DWT (on the left), SSD (in themiddle)
and FSD (on the right) for each sample dimension. The stars represent the optimal solution of the selected
cases described in Sect. 4

to solve FSD problems with a maximum of 200 scenario, i.e. 40025 binary variables and
6330 constraints. For more scenarios, both the DWT and the SSD can easily be solved, but
we limited our research according to FSD limits. Then, to make a fair comparison, for all the
formulations we adopted regular branching equal to 5-5-2-2-2 for the five periods. To support
this branching choice, we performed an in-sample stability analysis for the no-withdrawal
case.

For each sample dimension, we generated 100 different scenario trees and solved the
DWT, the SSD and the FSD models. In Fig. 31, we report the optimal values in box-plot
form highlighting the minimum, the maximum and the 25th, 50th and 75th percentiles
of the optimal value distribution. As a larger instance implies a smaller feasible region,
we expect that by increasing the sample size the average solution increases. Moreover, a
richer stochastic tree produces a more accurate solution and thus the spread between the
minimum and the maximum decreases as the number of scenarios increases. The DWT and
SSD solutions are very close for a large number of instances and only for a few of them
is the SSD optimal solution slightly worse than the DWT solution. The FSD model has
stronger stochastic dominance constraints and includes the complexity induced by the binary
variables. Therefore, the FSD solutions are considerably worse than the other two models.
However, for all three models, with an increase in the number of scenarios the box plots
shrink, confirming the goodness of the convergence. Comparing the results of the box plots,
we find that the branching choice 5-5-2-2-2, i.e. 200 scenarios, guarantees the good quality of
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Fig. 32 In-sample stability analysis for DWT (on the left) and SSD (on the right) for each sample dimension

the solution from a statistical point of view, producing a satisfactory reduction in the optimal
value volatility for all cases. Moreover, the instance considered in Sect. 4 produces a value for
the optimal solution of approximately 1.4× 105 for both DWT and SSD and approximately
1.5 × 105 for FSD, which corresponds to the 75th percentile of the distribution. Therefore,
it is reasonably representative of the other possible instances and is not an extreme case, as
shown in Fig. 31. In Fig. 32, only for the DWT and the SSD cases, we extend the analysis
to a larger sample dimension: 500 and 1000 scenarios. The convergence is strengthened.
However, the choice of 200 scenarios forced by the tractability of the FSD case remains a
well-balanced approximation.

In Table3 we include the model statistics for the three formulations and for increasing
bushiness of the stochastic tree. The DWT and the SSD models are linear programming
problems and the execution time is relatively low for both. As shown in Sect. 2.1, the SD
constraints require the definition of a double stochastic square matrix that implies a supple-
mentary number of variables and constraints. For instance, for the 1000 scenarios case, the
SSD formulation has more than 1 million variables and the execution time is significantly
longer than in the DWT case. In the FSD model, the double stochastic matrix is also a per-
mutation matrix, i.e. all its elements are binary. Thus, the total number of variables is equal to
the SSD, but most of them are integers. Thus, the solver is not able to find a feasible solution
in a reasonable time (less than one day) and for this reason we analysed the case with 200
scenarios.

Finally, we analyse the sensitivity of the here-and-now solution to changes in some of
the model parameters. Some of these affect both the investor’s strategy and the benchmark
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Table 4 Here-and-now allocation and statistics for final wealth

No-withdrawal case Withdrawal case

DWT SSD FSD BM DWT SSD FSD BM

Asset 1 (%) 0 0 0 20 0 0 0 20

Asset 2 (%) 47.6 45.0 31.6 20 4.1 28.9 31.6 20

Asset 3 (%) 21.5 21.5 28.8 20 65.0 39.2 28.8 20

Asset 4 (%) 10.6 10.6 16.6 20 10.6 10.6 16.6 20

Asset 5 (%) 20.3 22.9 22.9 20 20.3 21.3 22.9 20

Mean (e+05) 2.73 2.73 2.92 2.73 1.89 1.89 2.09 1.89

Median (e+05) 1.67 2.14 2.16 2.06 1.38 1.66 1.68 1.60

SD (e+05) 3.99 1.78 2.25 2.30 1.48 0.94 2.06 1.68

V@R0.05 (e+05) 1.50 1.50 1.41 0.87 0.99 0.96 0.89 0.59

AV@R0.05 (e+05) 1.35 1.35 1.31 0.77 0.88 0.86 0.79 0.53

Kurtosis 83.0 23.2 16.6 15.4 19.9 6.5 54.9 42.8

Skewness 8.1 3.6 3.1 3.0 3.5 1.7 6.4 5.3

portfolio. In particular, if we modify the propensity to save, the employer contribution and/or
the total minimum contribution, we observe a consequent change in the accumulated total
wealth but not in the optimal percentage allocations. A decrease in the turnover coefficient
produces a slightly riskier here-and-now strategy, preferring the equity pension funds as the
portfolio must satisfy the wealth benchmark at the expense of the riskiness of the portfolio. If
the turnover is increased, the portfolio shifts clearly onto the high-yield bond pension fund.
This is common to all models. In the proposed setting, the withdrawal event is assumed to
be independent of the other stochastic processes. We also analysed two cases in which the
withdrawal event is realized according to the salary level. First, in the scenarios in which
the investor’s salary is not high enough to meet his/her goals, he/she decides to withdraw
money from the pension plan. Second, contrary to the previous dependence, if the salary
is relatively high, the investor decides on withdrawal because his/her classic savings will
be sufficient to maintain his/her standard of living in the future. In both cases our analysis
showed that the choice to link the withdrawal event to the salary has no relevant impact
either on the here-and-now solution or on the dynamic strategy. However, our investigation
concerns the framework of an Italian pension plan and therefore the regulations of other
countries which allow for multiple withdrawals during such contracts or earlier than 8years
following subscription could highlight a sensitivity of the solution to the dependence of the
withdrawal to other stochastic processes.

6 Conclusion

In this paper we have analysed the pension problem from the point of view of the individual
investor who faces the issue of allocating his/her savings from a retirement perspective. The
model has to consider a long-term choice and some elements of uncertainty. Therefore, we
applied a stochastic programming approach.

The individual investor’s problem in the basic form (DWT, no-withdrawal) has already
been introduced and analysed in the literature. Our contribution consists of: (i) the heuristic
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historical extraction for the risky pension fund returns over a long-term horizon, (ii) the com-
parison between the withdrawal and no-withdrawal cases and (iii) employing the stochastic
dominance formulations in themodel. Stochastic dominance constraints aremore demanding
in terms of modelling, formulation and time computation. However, the solutions highlight
a tangible difference both in the allocation and in the quality of the risk/return profile of the
portfolio. As shown in Table4, for the no-withdrawal case the SSD model produces a less
risky solution in terms of the standard deviation (1.78e+05) with respect to the other two
models (3.99e+05 for DWT and 2.25e+05 for FSD) and it is almost equal to the DWT in
terms of V@R (1.50e+05) and AV@R (1.35e+05). Moreover, every non-satiated and risk-
averse investor prefers the final wealth of the SSD strategy to that of the benchmark, contrary
to the DWT strategy already analysed in the literature. In the no-withdrawal case, the results
are similar but the FSD strategy becomes more risky than the DWT as far as the standard
deviation and tail risk of the final wealth are concerned. Since the SD conditions ensure that
we obtain a portfolio that is preferred to the dominated one for a large class of investors
and for this reason is automatically better than the DWT. Even if the SD relationships were
not the sufficient reason to convince an investor to adopt the related portfolios, we can see
directly from the statistics that the SSD model produces a solution that is less volatile than
the DWT model and the FSD model identifies a solution slightly more risky but with higher
final wealth in terms of the mean and median.

Once the preference for the SD conditions versus the expected wealth target has been
shown, we can conclude that the choice to introduce SSD or FSD constraints depends mainly
on what the investor is looking for in terms of risk/reward targets.

Alternatively, the investor may adopt higher order stochastic dominance relations as dis-
cussed in Post and Kopa (2013) and more recently in Branda and Kopa (2016) and Post
and Kopa (2016). Moreover, a decreasing absolute risk aversion (DARA) stochastic dom-
inance, as analysed in Post et al. (2015), may be employed. Finally, the analysis may be
enriched by making the stochastic dominance relations more robust following Dentcheva
and Ruszczynski (2010) or Kopa (2010). However, all these modifications would bring addi-
tional complexity and the problemwould become computationally intractable for the number
of scenarios considered.
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