
Ann Oper Res (2018) 265:305–317
https://doi.org/10.1007/s10479-016-2376-0

CS AND OR IN BIG DATA AND CLOUD COM

Improved performance optimization for massive small
files in cloud computing environment

Chang Choi1 · Chulwoong Choi2 · Junho Choi3 ·
Pankoo Kim1

Published online: 17 November 2016
© Springer Science+Business Media New York 2016

Abstract Hadoop uses the Hadoop distributed file system for storing big data, and uses
MapReduce to process big data in cloud computing environments. Because Hadoop is opti-
mized for large file sizes, it has difficulties processing large numbers of small files. A small
file can be defined as any file that is significantly smaller than the Hadoop block size, which
is typically set to 64MB. Hadoop is optimized to store data in relatively large files, and
thus suffers from name node memory insufficiency and increased scheduling and process-
ing time when processing large numbers of small files. This study proposes a performance
improvement method for MapReduce processing, which integrates the CombineFileInput-
Format method and the reuse feature of the Java Virtual Machine (JVM). Existing methods
create a mapper for every small file. Unlike these methods, the proposed method reduces
the number of created mappers by processing large numbers of files that are combined by
a single split using CombineFileInputFormat. Moreover, to improve MapReduce processing
performance, the proposed method reduces JVM creation time by reusing a single JVM to
run multiple mappers (rather than creating a JVM for every mapper).

Keywords Massive small files · Hadoop · MapReduce · JVM reuse ·
CombineFileInputFormat

B Pankoo Kim
pkkim@chosun.ac.kr

Chang Choi
enduranceaura@gmail.com

Chulwoong Choi
sentilemon02@gmail.com

Junho Choi
xdman@chosun.ac.kr

1 Department of Computer Engineering, Chosun University, Gwangju, South Korea

2 Department of Software Convergence Engineering, Chosun University, Gwangju, South Korea

3 Division of Undeclared Majors, Chosun University, Gwangju, South Korea

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-016-2376-0&domain=pdf

306 Ann Oper Res (2018) 265:305–317

1 Introduction

With theproliferationof smartphones and the expansionof social networking services (SNSs),
numerous types of data are being generated in massive quantities by a vast array of sources;
this has ushered in the era of big data. Because the amount of data is so vast and the types of
data are so varied, existing systems, which have been developed only very recently, are unable
to effectively process big data. Thus, an appropriate new system to process big data is required
(Choi et al. 2014). Cloud computing is amore advanced technology for distributed processing,
e.g., a thin client and grid computing, which is implemented by means of virtualization
technology for servers and storages, and advanced network functionality (Ogiela and Ogiela
2003, 2010; Choi et al. 2014). Hadoop (Zikopoulos and Eaton 2011; Shvachko et al. 2010;
Bhandarkar 2010) is a representative technology that stores and processes big data. Because
Hadoop is optimized for big data’s large files sizes, it has difficulty processing large numbers
of small files. A small file can be defined as any file that is significantly smaller than the
Hadoop block size, which is usually set to 64MB. Hadoop encounters two core problems
when it attempts to process large numbers of small files. The metadata of data files is stored
in an in-memory database by name node when data files are stored in Hadoop blocks in
HDFS. The first problem is the lack of name node memory that occurs when large numbers
of small files are stored (Zhou et al. 2015). Therefore, files in the data node cannot be stored
even if memory space is sufficient. The second problem is the deterioration of scheduling and
processing performance. For example, HDFS builds a mapper for each block that is stored,
so 1000 mappers are needed if 1000 files are built.

In this paper, we propose a performance improvement method forMapReduce processing,
which integrates theCombineFileInputFormatmethod and the reuse feature of the JavaVirtual
Machine (JVM). MapReduce processing performance is improved by allowing multiple
mappers to reuse a single JVM, rather than creating a JVM for every mapper; this reduces
JVM creation time.

2 Related work

2.1 MapReduce

MapReduce is a programming model (and associated implementation) for processing and
generating large data sets using a parallel, distributed algorithm on a cluster (Dean and
Ghemawat 2008). MapReduce is composed of a Map() procedure that performs filtering and
sorting and a Reduce() method that performs a summary operation (https://en.wikipedia.org/
wiki/MapReduce). MapReduce is a model for processing keyed, value-based data in parallel,
and consists of two steps: theMap task, which uses input data sources to create interim results,
and the Reduce task, which uses the interim results as input to obtain the final results (Choi
et al. 2013), as shown in Fig. 1. The input data are divided into a plurality of data; as a result,
the Map task can be carried out in a plurality of nodes. Each Map task stores the results of
processing the input data allocated thereto in the local file system of each node. To provide
the final results, the Reduce task receives the interim results stored in the plurality of nodes,
and carries out integrated processing. If possible, task distribution is implemented so that data
can be processed in the node where they are placed, in order to minimize network traffic. To
this end, data are divided in consideration of the status and location of data storage (Choi
et al. 2013).

123

https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/MapReduce

Ann Oper Res (2018) 265:305–317 307

Fig. 1 MapReduce process

2.2 JVM reuse method in MapReduce

Enabling the JVMreuse featuremay reduce JVMstartup and shutdownoverhead and improve
performance, as the JVM spends less time interpreting Java bytecode. Typically, the JVM
reuse feature is beneficial in cases in which a workload contains a large number of very short
tasks. The JVM reuse feature can be used tomodify the parameter in the Hadoop environment
file. Table 1 shows the value of the JVM reuse parameter (mapred.job.reuse.jvm.num.tasks).

Table 2 shows the settings for JVM reuse. The settings indicate the number of sequential
execution tasks in JVM. Default value 1means that the JVM is not reused, and−1means that
all tasks are executed using the JVM only. Finally, a user set value indicates that a number
of input tasks will be reused in the JVM.

Figure 2 describes the JVM reuse process in MapReduce; in this case, the user set value
is three. In Fig. 2, three mappers (Map tasks) are performed by setting the appropriate JVM
reuse value.

Table 1 JVM Reuse Parameter
(mapred-site.xml) <configuration>

<property>

<name>mapred.job.reuse.jvm.num.tasks</name>

<value>3</value> // Set Value

</property>

</configuration>

123

308 Ann Oper Res (2018) 265:305–317

Table 2 mapred.job.reuse.
jvm.num.tasks parameter set
value

Setting value Description

1(default) Do not use the reuse JVM

−1 Unlimited USE

User set Number of tasks to be processed on a single
JVM

Fig. 2 JVM reuse process in MapReduce (Set Value: 3)

2.3 CombineFileInputFormat method

CombineFileInputFormat works efficiently with small files, which enables FileInputFormat
to create a split for each file. CombineFileInputFormat packs many files into each split, so
each mapper has more to process. CombineFileInputFormat can also provide benefits when
processing large files. Basically, it decouples the amount of data that a mapper consumes
from the block size of the files in HDFS (http://www.ibm.com/developerworks/library/bd-
hadoopcombine/). Figure 3 describes the Combine File Input Format process. In Fig. 3, files
are integrated until their combined size reaches 64MB, and split files are performed first.
Therefore, the number of mappers is reduced and performance is improved.

123

http://www.ibm.com/developerworks/library/bd-hadoopcombine/
http://www.ibm.com/developerworks/library/bd-hadoopcombine/

Ann Oper Res (2018) 265:305–317 309

Fig. 3 CombineFileInputFormatProcess (64MB)

2.4 The problems with small files in Hadoop

In this paper, a small file is defined as any file that is significantly smaller than the Hadoop
block size, which is usually set to 64MB (such as in the example in Fig. 4).

The metadata of data files is stored in an in-memory database by name node when data
files are stored in Hadoop blocks in HDFS. The first problem is the lack of memory for
name nodes when many small files are stored. Therefore, files in data nodes cannot be stored
even if there is sufficient memory space. Another problem is deterioration in scheduling and
processing performance. For example, HDFS builds a mapper for each block that is stored,
so 1000 mappers are needed if 1000 files are built (Fig. 5).

3 Improved performance optimization for massive small files

In this section,wedescribe amethod for improvedperformanceoptimizationwhenprocessing
large numbers of small files, as shown in Fig. 6. This method uses the CombineFileInput-
Format class and the reuse feature of the JVM.

123

310 Ann Oper Res (2018) 265:305–317

Fig. 4 SmallFile in Hadoop

Fig. 5 Problem of increasing time in Hadoop

123

Ann Oper Res (2018) 265:305–317 311

Fig. 6 Proposed method based on CombineFileInputFormat and JVM reuse

The process of the proposed method is as follows:

1. Various types of files are used to create a dataset; these include small files of fixed sizes,
small files of mixed sizes, and small and large files of mixed sizes.

2. Dataset of (1) is stored in HDFS blocks.
3. Data blocks are loaded in HDFS, and these blocks are transferred to the map task by data

splits according to the size specified for CombineFileInputFormat.
4. Map task transforms the files of (3) based on JVM reuse settings.
5. The output of the map task is sorted and merged.
6. The values are extracted by the user after a shuffle process.
7. The output data is stored after a reducing process in HDFS.

123

312 Ann Oper Res (2018) 265:305–317

3.1 Applied method of CombineFileInputFormat

Hadoop can create a split for each input file. However, the CombineFileInputFormat method
can also process a split that contains several files. By processing large numbers of files
combined into a single split, CombineFileInputFormat reduces the number of mappers that
must be created.

In line 5, the file size is set to 128MB. The RecordReader method performs pair (Key,
Value) formatting for the mapper based on the input format of smallcombinewritable in line
7. isSplitable is the method used for the input format class in line 15. The file is divided by
block if this method is true.

3.2 Applied method of CombineFileInputFormat

The JVM reuse function improvesMapReduce processing performance by allowingmultiple
mappers to reuse a single JVM, rather than creating a JVM for every mapper; this reduces
JVM creation time.

The mapred.job.tracker parameter stores the address of the job tracker in line 8, and the
data node requests the MapReduce task. The mapred.job.reuse.num.tasks parameter must be
set for JVM reuse in lines 12 and 13.

3.3 Proposed framework

Figure 7 shows the proposed framework for improving performance. The process of the
proposed framework is as follows:

1. A large number of small files are loaded into HDFS.
2. The size of the loaded dataset is set according to a split based onCombineFileInputFormat

(64MB).
3. The split is transferred to a mapper.
4. Three mappers are executed by setting the appropriate JVM reuse value.

4 Improved performance optimization for massive small files

4.1 Experiment environment

This study compares the performance of the proposedmethod against existingmethods based
on CombineFileInputFormat and JVM reuse. Table 3 shows the experimental environments,
which contained six servers.

The mixed files consisted of large and small files. The experimental dataset, which was
created using the split command in Linux, contained the contents of large and small files.
Table 4 shows the experimental dataset; its total size was 11GB, and it consisted of 4, 5,
and 6MB files. The 4MB files were categorized as small files. The experimental dataset
contained three-to-seven ratios of large/small files, or three-to-seven ratios of small/large
files (Tables 5, 6).

4.2 Performance evaluation

In this study, three types of experiments were performed. The first test involved searching
for the optimal block size in CombineFileInputFormat. This test consisted of six block sizes,

123

Ann Oper Res (2018) 265:305–317 313

Fig. 7 Proposed framework

Table 3 Combine Class based on CombineFileInputFormat

1 public class smallcombinefileinputformat
2 extends CombineFileInputFormat<smallcombinewritable, Text> {
3 public smallcombinefileinputformat (){
4 super();
5 setMaxSplitSize(134217728); // setting value of 128MB
6 }
7 public RecordReader<smallcombinewritable,Text>
8 createRecordReader(InputSplit split,
9 TaskAttemptContext context) throws IOException {
10 return new
11 CombineFileRecordReader<smallcombinewritable,
12 Text>((CombineFileSplit)split, context,
13 smallcombinerecordreader.class);
14 }
15 protected boolean isSplitable(JobContext context, Path file){
16 return false;
17 }
18 }

e. g., 32, 66, 128, 256, 512, and 1024MB. Figure 8 shows the results. In Fig. 8, the 256MB
block size is the optimal result for CombineFileInputFormat.

Performance improved as the number of small files increased. Moreover, using small files
produced better results than using mixed-size files, because larger files already had the same

123

314 Ann Oper Res (2018) 265:305–317

Table 4 Environment setting file for JVM reuse

1 <?xml version="1.0"?>
2 <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
3
4 <!-- Put site-specific property overrides in this file. -->
5
6 <configuration>
7 <property>
8 <name>mapred.job.tracker</name>
9 <value>oracle:9001</value>
10 </property>
11 <property>
12 <name>mapred.job.reuse.jvm.num.tasks</name>
13 <value>-1</value>
14 </property>
15 </configuration>

Table 5 Experiment
environment (6 Servers)

List Description

H/W

CPU(core) Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz

RAM 2GB

HDD 200GB

S/W

Virtual machine VMware 8.0.2

O.S CentOS 6.6

Hadoop version Hadoop 1.2.1

Table 6 Data set (11GB) List Files

Big files 22

Small files

4MB 2879

5MB 2305

6MB 1922

Mixed files (4, 5 and 6MB) 2374

Mixed data (big & small files)

Big file (7) : Small file (3) 877

Big file (3) : Small file (7) 2024

file size. In this experiment, using 4MB files produced the best results in CombineFileIn-
putFormat. The next test involved searching for the optimal JVM reuse setting. This test
consisted of 11 setting values, from −1 to 11. Figure 9 shows the results. A value of −1
produced the best JVM reuse results in the test depicted in Fig. 9. All of the results were
improved, because the setting for the number of files was important.

123

Ann Oper Res (2018) 265:305–317 315

Fig. 8 Result of process time in CombineFileFormat

Fig. 9 Result of process time in JVM reuse

The most important test compared the processing time required by the proposed method
and the other methods. In this experiment, a value of −1 was used as the JVM reuse setting,
and a block size of 256MB was used in CombineFileInputFormat. The processing times
required by the proposed method and the other methods (CombineFileInputFormat, JVM
reuse, and MapReduce) were evaluated; the results are shown in Fig. 10. The proposed
method produced good results.

123

316 Ann Oper Res (2018) 265:305–317

Fig. 10 Result of proposed method

5 Conclusion

In this paper, we proposed a MapReduce performance improvement method that integrates
the CombineFileInputFormat method and JVM reuse feature. Previous methods need a sig-
nificant amount of preprocessing, and require Hadoop resources such as the distributed
cache method. However, the proposed method does not require preprocessing, and additional
Hadoop resources were not used. In addition, the proposed method requires less processing
time. Furthermore, the proposed method produced good results when we compared it against
other methods (CombineFileInputFormat, JVM reuse and MapReduce). In future work, we
plan to improve the algorithms in CombineFileInputFormat and JVM reuse, in order to opti-
mize them for data size. In addition, we plan to support the Combine Class and RecordReader
method in the Java library.

Acknowledgement This research was supported by Basic Science Research Program through the National
Research Foundation of Korea(NRF) funded by the Ministry of Education (2015R1D1A3A01019642) and
Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the
Ministry of Science, ICT & Future Planning (2015R1C1A1A02037515).

References

Bhandarkar, M. (2010). MapReduce programming with apache Hadoop. Parallel & Distributed Processing
(IPDPS), 2010 IEEE International Symposium on. IEEE, 2010.

Choi, C., Choi, J., & Kim, P. (2014). Ontology based access control model for security policy reasoning in
cloud computing. Journal of Supercomputing, 67(3), 711–722.

Choi, J., Choi, C., Ko, B., & Kim, P. (2014). A method of DDoS attack detection using HTTP packet pattern
and rule engine in cloud computing environment. Journal of Soft Computing, 18(9), 1697–1703.

Choi, J., Choi, C., Yim, K., Kim, J., & Kim, P. (2013). Intelligent recongurable method of cloud computing
resources for multimedia data delivery. Journal of Informatica, 24(3), 381–394.

Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications
of the ACM, 51(1), 107–113.

Heger, D. (2013). Hadoop performance tuning-a pragmatic & iterative approach. CMG Journal, 4, 97–113.
Ogiela, M.R., & Ogiela, U. (2003). Linguistic Approach to Cryptographic Data Sharing. In The 2nd Interna-

tional Conference on Future Generation Communication and Networking(FGCN) (Vol. 1, pp. 377–380),
December 2008.

123

Ann Oper Res (2018) 265:305–317 317

Ogiela, M. R., & Ogiela, U. (2010). Grammar encoding in DNA-like secret sharing infrastructure. Lecture
Notes in Computer Science, 6059, 175–182.

Shvachko, K., et al. (2010). The hadoop distributed file system. Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on. IEEE, 2010.

Zhou, F., Pham, H., Yue, J., Zou, H., & Yu, W., (2015). SFMapReduce: An Optimized MapReduce Framework
for Small Files, Networking, Architecture and Storage (NAS). In 2015 IEEE International Conference on,
(pp. 23–32), August 2015.

Zikopoulos, P., & Eaton, C. (2011). Understanding big data: Analytics for enterprise class hadoop and
streaming data. New York: McGraw-Hill Osborne Media.

123

	Improved performance optimization for massive small files in cloud computing environment
	Abstract
	1 Introduction
	2 Related work
	2.1 MapReduce
	2.2 JVM reuse method in MapReduce
	2.3 CombineFileInputFormat method
	2.4 The problems with small files in Hadoop

	3 Improved performance optimization for massive small files
	3.1 Applied method of CombineFileInputFormat
	3.2 Applied method of CombineFileInputFormat
	3.3 Proposed framework

	4 Improved performance optimization for massive small files
	4.1 Experiment environment
	4.2 Performance evaluation

	5 Conclusion
	Acknowledgement
	References

