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Abstract This paper addresses design and planning of an integrated forward/reverse logistics
network over a planning horizon with multiple tactical periods. In the network, demand for
new products and potential return of used products are stochastic. Furthermore, collection
amounts of used products with different quality levels are assumed dependent on offered
acquisition prices to customer zones. A uniform distribution function defines the expected
price of each customer zone for one unit of each used product. Using two-stage stochastic
programming, a mixed-integer linear programming model is proposed. To cope with demand
and potential return uncertainty, Latin Hypercube Samplingmethod is applied to generate fan
of scenarios and then, backward scenario reduction technique is used to reduce the number
of scenarios. Due to the problem complexity, a novel simulation-based simulated annealing
algorithm is developed to address large-sized test problems. Numerical results indicate the
applicability of the model as well as the efficiency of the solution approach. In addition,
the performance of the scenario generation method and the importance of stochasticity are
examined for the optimization problem. Finally, several numerical experiments including
sensitivity analysis on main parameters of the problem are performed.

Keywords Stochastic programming · Integrated forward/reverse logistics network ·
Mixed-integer linear programming · Simulated annealing · Simulation

1 Introduction

Design of logistics networks is one of the main planning processes in supply chain manage-
ment (Melo et al. 2009). Design decisions such as location, number, and capacity of supply
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chain’s facilities have long-term effects on the performance of a company in terms of costs
and customer service level. Logistics networks can be categorized into three main groups
including: forward logistics networks (FLNs), reverse logistics networks (RLNs), and finally,
integrated forward/reverse logistics networks (IFRLNs).

During the last decade, due to the stringent pressures from environmental regulations
and economic beneficial from remanufacturing and recovery activities, many companies
such as Dell, Kodak, GM, and Xerox have emphasized on designing RLNs (see Easwaran
and Üster 2010; Fleischmann et al. 2000). The RLNs are often designed for the purpose
of collecting used, refurbished, or defective products from customers and then carrying out
some recovery activities. Final destination of collected products in these networks is often
recovery, remanufacturing, disposal centers, or secondary markets. Reverse and forward
logistics networks have usually influence to each other and many resources, such as transport
and warehouse capacity can be share between them (see Fleischmann et al. 2001; Lee and
Dong 2008). Therefore, the design of IFRLNs has gained significant attention in both practice
and academia during the recent years that is also considered in this paper.

In reverse networks, acquisition or collection of used products is introduced as a main
part of product recovery management (Guide et al. 2003). Several companies offer financial
incentives to holders of used products in order to influence quantity and quality of returns.
The amount of financial incentive paid by a company to collect one unit of a used product
is called unit acquisition price (Aras et al. 2008). Acquisition prices are critical decisions in
product recovery management playing two main roles: they determine the cost for buying
per unit of each used product, and through a relationship between the acquisition price and
return amount of each used product, they can change the required network’s facilities and
their capacities for performing recovery activities. Figure 1 illustrates the relation between
strategic design decisions and acquisition price decisions in recovery or reverse networks.

Figure 1 illustrates the importance of integrating design and acquisition price decisions in
RLNs. Additionally, as mentioned by Guide (2000), market-driven product-acquisition man-
agement approaches have been applied by many remanufacturing firms. In 1997, Xerox
Europe implemented an end-of-life equipment take-back and reprocessing program and

Strategic design decisions:
Location and capacity

of reverse/recovery
network’s facilities

Tactical decision:
Acquisition prices
for used products

Relationship between acquisition prices
and return amounts of used products

Available capacity for recovery network

Required capacity for recovery network

Carrying out recovery or
remanufacturing activities

Return amount of used products

Available
budget

Cost Cost & Revenue

Maximizing the net income of reverse network

Fig. 1 The relationship between strategic design decisions and acquisition price decisions in reverse logistics
networks
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obtained more than $80million savings (Maslennikova and Foley 2000). However, in the
related literature, a few studies including (Aras et al. 2010, 2008), and (Keyvanshokooh
et al. 2013) have addressed location and acquisition price decisions simultaneously in an
integrated optimization problem. In Aras et al. (2010, 2008), location decisions are made
for collection centers in a considerably simplified RLN. Keyvanshokooh et al. (2013) pro-
posed a deterministic MILP model to design an IFRLN and they solved the problem using a
commercial solver for small-sized test problems. In this paper, for the first time, we consider
acquisition price decisions in a comprehensive model for design and planning of an IFRLN
under stochastic demands and potential returns of customer zones. In addition, we propose
an efficient solution approach for solving the problem.

In logistics network design, strategic decisions should be viable to function well under
complex and stochastic business environments for many years. Stochastic IFRLN design
have been addressed by several research studies (See Listeş 2007; Lee et al. 2010; Pishvaee
et al. 2009; Lee and Dong 2009; De Rosa et al. 2013) and most of them created stochastic
optimizationmodels using two-stage stochastic programming. In spite ofmany advantages of
using two-stage stochastic programs, there exist two main difficulties with this methodology.
Firstly, creating scenarios and obtaining their associated probabilities could be a problematic
and cumbersome task. Secondly, an adequate number of scenarios could lead to a large-
scale optimization problem. In the area of IFRLN design under stochastic parameters, a
few studies have simultaneously addressed these difficulties. In this paper, to overcome the
first issue, LHS is applied to generate a fan of scenarios and backward scenario reduction
technique is used to reduce the number of scenarios. To overcome the second one, a novel
simulation-based simulated annealing (SA) algorithm is proposed as a solution approach.
Additionally, to capture the time variable probabilistic behavior of stochastic parameters, a
planning horizon with multiple tactical periods is taken into account and a dynamic pricing
approach for collecting used products is developed.

The remainder of this paper is organized as follows: in Sect. 2, a literature review in the
related area is represented. Section 3 defines the problem’s characteristics. The mathematical
model is developed in Sect. 4. Simulation-based SA is proposed in Sect. 5 to solve the
stochastic problem, and the scenario generation technique is described in Sect. 6. In Sect. 7,
computational results are presented. Finally, Sect. 8 concludes the paper and suggests future
research directions.

2 Literature review

Based on the presented surveys in the area of supply chain network design and closed loop
supply chains(See, Akçalı et al. 2009; Melo et al. 2009; Govindan et al. 2015), there are
few works that have dealt with IFRLN design under uncertainty by using scenario-based
stochastic programs. In this section, the research studies related to this area are reviewed.

Sheppard (1974) was one of the first research studies that used a scenario approach for
a FL problem and then, this approach has been used for designing logistics networks. In
the presented literature review, the studies are classified based on the supply chain structure,
decisions, and objective. In addition, a discussion about optimization issues related to these
works is presented.

In IFRLN design, the main characteristics of logistics networks are the types of echelons
and the echelons in which location decisions should be determined. In general, the echelons
related to the forward direction consist of suppliers, plants, warehouses, and distribution cen-
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ters, whereas the echelons corresponding to the reverse direction include collection centers,
disposal centers, and recovery/remanufacturing centers (Govindan and Fattahi 2015). Nowa-
days, both strategic and tactical decisions should be determined simultaneously in designing
logistics networks to achieve an integrated and efficient system (Goetschalckx et al. 2002).
In the area of IFRLN design, capacity and supplier selection as strategic planning decisions
and transportation and inventory decisions as tactical ones have been included in the problem
in addition to classical location-allocation decisions. A few studies have considered stochas-
tic parameters in the problem with a multi-period planning horizon. Lee and Dong (2009),
Cardoso et al. (2013), and De Rosa et al. (2013) considered multiple strategic periods to deal
with dynamic design of IFRLNs. However, in order to capture time variability of problem’s
parameters, (Zeballos et al. 2014) such as our case addressed a stochasticmulti-period IFRLN
design in which periods were tactical planning intervals.

Most of the studies in this area proposed mixed-integer linear programming models
(MILP) using two-stage stochastic programming (see e.g. Lee and Dong 2009; De Rosa
et al. 2013; Zeballos et al. 2014). Furthermore, the presented optimization models have two
common objective functions: cost minimization and profit maximization, and a few stud-
ies such as (Ramezani et al. 2013a) examined the problem with multiple objectives. In this
area, a sufficient number of scenarios for scenario-based stochastic programs can lead to
an extremely large-scale optimization problem. Therefore, it is essential to propose a solu-
tion approach for solving the stochastic programs. Unfortunately, the majority of studies did
not attempt to deal with this issue and used commercial solvers to solve their mathematical
models. Listeş (2007) and Khatami et al. (2015) have used Benders’ decomposition to solve
problems with simple IFRLN under stochastic demand and return.

Heuristic and meta-heuristic algorithms can also be developed for solving logistics net-
work design problems (Melo et al. 2009), and in this area, (Lee and Dong 2009) developed a
solution approach by integrating sample average approximation (SAA) with a heuristic algo-
rithm. However, these approaches for stochastic RLN or IFRLN design are very scarce. SA
as a local-search based meta-heuristic is presented by Kirkpatrick (1984). The local-search
based meta-heuristics unlike constructive and population-based algorithms work with only
one individual (see Glover and Kochenberger 2003; Blum and Roli 2003). In deterministic
decision-making environments, the SA is applied for solving logistics network design prob-
lems by Pishvaee et al. (2010b), Fattahi et al. (2015a), and Hsu and Li (2011) and in this
paper, a novel simulation-based SA algorithm is developed to solve the stochastic IFRLN
design problem. In Table 1, studies related to IFRLN design with stochastic parameters are
classified in terms of above-mentioned features.

From the presented literature review and Table 1, we can conclude that stochastic models
for planning and designing IFRLNs are still scarce in the related literature. Moreover, a few
models can capture stochasticity of parameters over a planning horizon with multiple tactical
intervals. Additionally, proposing efficient solution approaches will be required in this area.
To the best of our knowledge, no work has integrated the acquisition price decisions for
collecting used products and location decisions in a stochastic model. Therefore, it is crucial
to conduct this study to address the mentioned gaps.

3 Problem description

The IFRLN discussed in this paper is a multi-stage and multi-product logistics network.
In the forward network, suppliers, production/recovery centers, and distribution centers are
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Forward flow
Backward flow

Production/recovery
centers

Collection centers

Distribution centers

Hybrid collection/
distribution centers

Disposal centers

Customer zones

Suppliers

Fig. 2 The IFRLN structure

considered whereas the reverse network includes collection centers, disposal centers and pro-
duction/recovery centers. In the integrated network, hybrid facilities are considered in which
both production and recovery facilities are established at the same location. As mentioned
by Lee and Dong (2009), hybrid facilities may produce significant cost savings in compar-
ison with separate production or recovery centers. Several studies (See e.g. Easwaran and
Üster 2010; Pishvaee et al. 2010a) considered logistics networks with hybrid production and
recovery centers. Furthermore, (Lee et al. 2010) and (Salema et al. 2010) considered hybrid
facilities for real-life case studies related to an international electronic company and a glass
closed loop supply chain, respectively. The structure of the IFRLN is illustrated in Fig. 2.

As shown in Fig. 2, in the forward network, the required raw materials are shipped from
suppliers to production/recovery centers. New products are produced in production/recovery
centers with consideration of their pre-specified bill of materials and then, the products are
delivered to customer zones via distribution centers. Here, customer zones’ demands for
multiple products are assumed stochastic in multiple tactical periods.

In the reverse direction, the return amount of used products from each customer zone
is dependent on the financial incentive offered by the company. In accordance with quality
levels of the used products, they are classified into different types and thereupon, various
acquisition prices can be offered for each used product with different qualities. Furthermore,
the potential amounts of used products with different quality levels are considered stochastic
in multiple periods. Collection centers collect the returned products from customer zones and
after inspection, divide them into scrapped and recoverable products. The scrapped products
are shipped to disposal centers for recycling or proper disposal. The recoverable products
are sent to production/recovery centers. It is worth noting that the recoverable products
after recovery activities (remanufacturing or de-manufacturing) are forwarded to distribution
centers as new ones.

The transformation of used products into usable products again may take different forms
consist of recycling, repair, de-manufacturing and remanufacturing (Fleischmann et al. 2000).
In this paper, such as some real-life recovery systems, recovered products after remanufac-
turing or de-manufacturing are the same as new produced ones, and several studies (see e.g.
Pishvaee et al. 2010a; Listeş 2007; Salema et al. 2010; Cardoso et al. 2013) proposed their
models in accordance with this assumption. Furthermore, examples of real-life case studies
for such a recovery system are cleaning of polluted sands (Barros et al. 1998), recovering
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Suppliers Production/
recovery centers

Distribution
ceneters Customer zones

Collection
centersDisposal centers Scrapped used products

Recoverable used products

Inspection and
sorting

Proper disposal or
recycling

De-manufacturing Remanufacturing

Acquisition prices for used products

Logistics centers

Reverse logistics processes

Fig. 3 The processes of IFRLN

lead/acid used batteries (Subulan et al. 2014) and (Kannan et al. 2010), remanufacturing of
electronic equipment (Listeş 2007). Figure. 3 illustrates the process of IFRLN in this paper.

The other underlying main assumptions of the model are as follows:

• The locations of customer zones, suppliers, production/recovery centers, and disposal
centers are predetermined and fixed.

• The strategic design decisions consist of the locations of distribution centers, collection
centers, and hybrid distribution-collection facilities. Furthermore, these design decisions
are under an available budget limitation.

• The tactical decisions consist of the amount of production, transportation flows through
the network, inventory levels of products at distribution centers, and acquisition prices
for used products.

• All types of facilities are considered capacitated.
• The objective is tomaximize the net income of the IFRLNover amultiple tactical periods.
• It is notmandatory to satisfy all customer zones’ demands. In order to satisfy the demands,

the products can only be forwarded to them from the distribution centers.
• The expected price of customer zones for returning one unit of each used product, cus-

tomer zones’ willingness to return used products, is described by uniform distribution.
• Regarding quality levels of returned products, their remanufacturing costs are different.

3.1 Dynamic pricing for collection of used products

In this paper, return amounts of used products from customer zones are dependent to the cor-
responding acquisition prices that are offered by the company. In addition, the used products
have different quality levels in accordance with their usage rate and duration. Therefore, a
set of discrete quality levels Q, q ∈ Q, is considered for each used product m ∈ M , and the
used products with quality level 1 and |Q| have the highest and lowest quality, respectively.

Each customer having a used product with quality level q ∈ Q has an expected price for
returning it. Moreover, because of diversity of customers in each customer zone, the expected
price of customer zone i ∈ C for returning one unit of used product m ∈ M with quality
level q ∈ Q is described by uniform distribution

[
Ai,m,q , Bi,m,q

]
(see Keyvanshokooh et al.

2013). For each used product with lower quality, the values of Ai,m,q and Bi,m,q are less.
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Fig. 4 The relation between acquisition price value and proportion return of used product m with quality
levels q and q ′ form customer zone i(q ′ > q)

In Fig. 4, the relations between the offered acquisition prices and proportion returns of used
product m ∈ M with quality levels q, q ′ ∈ Q,

(
q ′ > q

)
, from customer zone i ∈ C are

illustrated.
Let APRt

i,m,q and PREt
i,m,q be the offered acquisition price to customer zone i ∈ C and

proportion return from customer zone i ∈ C for used product m ∈ M with quality level
q ∈ Q in tactical period t ∈ T , respectively and Ai,m,q ≤ APRt

i,m,q ≤ Bi,m,q , then,

PREt
i,m,q = APRt

i,m,q − Ai,m,q

Bi,m,q − Ai,m,q
, ∀i ∈ C, ∀m ∈ M, ∀q ∈ Q, ∀t ∈ T . (1)

The uniform distribution for reservation incentives of customer zones makes the mathemati-
cal model nonlinear. Furthermore, it is desirable to restrict the acquisition prices of the used
products to a finite set in real applications. Therefore, L = {1, 2, . . . , l, . . . , NL} is consid-
ered as a set of acquisition price levels for buying used products and we discretize acquisition
prices into NL disjoint levels from Ai,m,q to Bi,m,q .

Let θ ti,m,q,l be binary decision variables that are equal to one if the price level l ∈ L is
chosen for buying per unit used product m ∈ M with quality level q ∈ Q from customer
zone i ∈ C , in tactical period t ∈ T . Then, APRt

i,m,q and PREt
i,m,q can be obtained by using

the following constraints:
∑

l∈L
θ ti,m,q,l = 1 ∀i ∈ C, ∀m ∈ M, ∀q ∈ Q, ∀t ∈ T (2)

APRt
i,m,q = Ai,m,q +

∑

l∈L
θ ti,m,q,l

(
l − 1

NL − 1

) (
Bi,m,q − Ai,m,q

)

∀i ∈ C, ∀m ∈ M, ∀q ∈ Q, ∀t ∈ T (3)

PREt
i,m,q =

∑

l∈L

(
l − 1

NL − 1

)
θ ti,m,q,l ∀i ∈ C, ∀m ∈ M, ∀q ∈ Q, ∀t ∈ T (4)

4 Mathematical modeling

In this section, an MILP model is presented for the problem using two-stage stochastic
programming with recourse. The general formulation for two-stage stochastic programs is
as follows:
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Min
x∈X cT x + E (Q (x)) . (5)

In optimization problem (5), x, X and Q (x) are the vector of first stage decisions, a non-empty
set of feasible decisions, and the recourse function. The stochastic parameters are assumed
as a discrete and finite sample space, in this paper. The sample space can be presented by
ζ = {

ζ 1, ζ 2, . . . , ζ |S|} with corresponding probabilities π1, π2, . . . , π |S| and ζ s is a given
realization of the stochastic parameters that depends on scenario s ∈ S. Therefore, E (Q (x))
in problem (5) can be calculated as

∑

s∈S
π s × Q (x, ζ s), where,

Q
(
x, ζ s) = min

ys

{(
qs

)T ys : Wsys = hs − T sx, ys ≥ 0
}

.

Here, ys and ζ s = (qs,Ws, T s,hs) represent the vector of recourse decisions and particular
realization of stochastic parameters for scenario s ∈ S, respectively. For more information
about the two-stage stochastic programs, one can refer to Birge and Louveaux (2011). Here,
the required notations for our two-stage stochastic programming formulation are introduced.

4.1 Two-stage stochastic programming formulation

In this subsection, the problem is formulated using two-stage stochastic programing. The
stochastic parameters in our problem are potential return (RE) and demand (DE) of customer
zones and we have ζ s = (DEs,REs) as a specific realization of the uncertain parameters in
scenario s ∈ S. Here, x, y, z, θ represent binary variables, the first stage decisions, in which
the indices are omitted.

Max: BU −
∑

i∈J

CDi xi −
∑

i∈J

CCi yi −
∑

i∈J

CHi zi +
∑

s∈S
π s × Q

(
x, y, z, θ , ζ s). (6)

Subject to:

xi + yi + zi ≤ 1, ∀i ∈ J, (7)
∑

i∈J

CDi xi +
∑

i∈J

CCi yi +
∑

i∈J

CHi zi ≤ BU, (8)

x, y, z, θ ∈ {0, 1} . (9)

In which Q (x, y, z, θ , ζ s) is the solution of the following second-stage problem:

Q
(
x, y, z, θ , ζ s)

= Max:

(
∑

i∈J

∑

i ′∈C

∑

m∈M

∑

t∈T
SPt

m f t,si,i ′,m

)

−
(

∑

i∈K

∑

i ′∈P

∑

r∈R

∑

t∈T
CBt

i,rw
t,s
i,i ′,r

)

−
(

∑

i∈P

∑

m∈M

∑

t∈T
CPt

i,mn
t,s
i,m

)

−
⎛

⎝
∑

i∈P

∑

m∈M

∑

q∈Q

∑

t∈T
CRt

i,m,qg
t,s
i,m,q

⎞

⎠

−
(

∑

i∈J

∑

m∈M

∑

t∈T
CHDi,mh

t,s
i,m +

∑

i∈P

∑

i ′∈J

∑

m∈M

∑

t∈T
CHDi ′,m

(
f t,si,i ′,m/2�i i ′

))

−
(

∑

i∈J

∑

i ′∈C

∑

m∈M

∑

t∈T
CPFt

i,m f t,si,i ′,m

)

−
⎛

⎝
∑

i∈C

∑

i ′∈J

∑

m∈M

∑

q∈Q

∑

t∈T
CPBt

i,mv
t,s
i,i ′,m,q

⎞

⎠
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−
⎛

⎝
∑

i∈J

∑

i ′∈D

∑

m∈M

∑

q∈Q

∑

t∈T
CDSti,mv

t,s
i,i ′,m,q

⎞

⎠

−

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

∑

i∈K
∑

i ′∈P

∑

r∈R

∑

t∈T
CTRi,i ′,rw

t,s
i,i ′,r + ∑

i∈P

∑

i ′∈J

∑

m∈M
∑

t∈T
CTFi,i ′,m f t,si,i ′,m

+ ∑

i∈J

∑

i ′∈C
∑

m∈M
∑

t∈T
CTFi,i ′,m f t,si,i ′,m

∑

i∈C
∑

i ′∈J

∑

m∈M
∑

q∈Q
∑

t∈T
CTBi,i ′,mv

t,s
i,i ′,m,q + ∑

i∈J

∑

i ′∈D
∑

m∈M
∑

q∈Q
∑

t∈T
CTBi,i ′,mv

t,s
i,i ′,m,q

+ ∑

i∈J

∑

i ′∈P

∑

m∈M
∑

q∈Q
∑

t∈T
CTBi,i ′,mv

t,s
i,i ′,m,q

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

−
⎛

⎝
∑

i∈C

∑

m∈M

∑

q∈Q

∑

l∈L

∑

t∈T

(
Ai,m,q +

(
l − 1

|L| − 1

)
(
Bi,m,q − Ai,m,q

)
)

×
((

l − 1

|L| − 1

)
REt,s

i,m,q

)
× θ ti,m,q,l

)
−

(
∑

i∈C

∑

m∈M

∑

t∈T
CSti,mu

t,s
i,m

)

. (10)

Subject to:

∑

m∈M
BMr,mn

t,s
i,m =

∑

i ′∈K
w

t,s
i ′,i,r , ∀i ∈ P, ∀r ∈ R, ∀t ∈ T, (11)

∑

i ′∈P

w
t,s
i,i ′,r ≤ SCt

i,r , ∀i ∈ K , ∀r ∈ R, ∀t ∈ T, (12)

nt,si,m +
∑

q∈Q
gt,si,m,q =

∑

i ′∈J

f t,si,i ′,m, ∀i ∈ P, ∀m ∈ M, ∀t ∈ T, (13)

∑

m∈M
γ P
i,mn

t,s
i,m +

∑

m∈M
γ R
i,m

⎛

⎝
∑

q∈Q
gt,si,m,q

⎞

⎠ ≤ PCt
i , ∀i ∈ P, ∀t ∈ T, (14)

∑

i ′∈P

f t,si ′,i,m + ht−1,s
i,m =

∑

i ′∈C
f t,si,i ′,m + ht,si,m, ∀i ∈ J, ∀m ∈ M, ∀t ∈ T, (15)

∑

i ′∈J

f t,si ′,i,m + ut,si,m = DEt,s
i,m, ∀i ∈ C, ∀m ∈ M, ∀t ∈ T, (16)

∑

m∈M
γ S
i,m ×

(
∑

i ′∈P

(
f t,si ′,i,m/�i ′i

)
+ ht,si,m

)

≤ HCi xi + HCHi zi , ∀i ∈ J, ∀t ∈ T, (17)

∑

m∈M

(

γ PF
i,m

∑

i ′∈C
f t,si,i ′,m

)

≤ FCi xi + FCHi zi , ∀i ∈ J, ∀t ∈ T, (18)

(
1 − βm,q

) ∑

i ′∈C
v
t,s
i ′,i,m,q =

∑

i ′∈D
v
t,s
i,i ′,m,q , ∀i ∈ J, ∀m ∈ M, ∀q ∈ Q, ∀t ∈ T, (19)

βm,q

∑

i ′∈C
v
t,s
i ′,i,m,q =

∑

i ′∈P

v
t,s
i,i ′,m,q , ∀i ∈ J, ∀m ∈ M, ∀q ∈ Q, ∀t ∈ T, (20)

gt,si,m,q =
∑

i ′∈J

v
t,s
i ′,i,m,q , ∀i ∈ P, ∀m ∈ M, ∀q ∈ Q, ∀t ∈ T, (21)
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∑

m∈M

⎛

⎝γ PB
i,m

⎛

⎝
∑

i ′∈C

∑

q∈Q
v
t,s
i ′,i,m,q

⎞

⎠

⎞

⎠ ≤ CCAi yi + CCHi zi , ∀i ∈ J, ∀t ∈ T, (22)

∑

l∈L
θ ti,m,q,l = 1, ∀i ∈ C, ∀m ∈ M, ∀q ∈ Q, ∀t ∈ T, (23)

∑

i ′∈J

v
t,s
i,i ′,m,q ≤

∑

l∈L

(
l − 1

L − 1

)
θ ti,m,q,l RE

t,s
i,m,q , ∀i ∈ C, ∀m ∈ M, ∀q ∈ Q, ∀t ∈ T,

(24)

w, f , v, n, u, g, h ≥ 0. (25)

The objective function (6) is the sum of unspent available budget for designing the
IFRLN and the expected net income of the logistics network over the planning hori-
zon. The objective function of the second-stage (10) is equal to the total revenue from
selling the final products to customer zones minus the total tactical costs. The tacti-
cal costs consist of ten parts: (1) costs of buying raw materials form suppliers, (2) the
production costs, (3) the remanufacturing costs, (4) the storage costs, (5) the process-
ing costs to forward products from distribution centers and hybrid facilities to customer
zones, (6) the processing costs on used products in collection centers and hybrid facil-
ities, (7) the disposal costs, (8) the transportation costs, (9) costs of buying used
products from customer zones, (10) shortfall penalty for unsatisfied customer zones’
demands.

Constraints (7) guarantee that in each potential location, at most one type of facilities
can be opened. Budget constraint (8) limits the allowed capital for locating new facilities
in the logistics network to the available budget. Constraints (9) state that the corresponding
variables are binary.

Constraints (11) assure that each production/recovery center receives an enough amount
of each raw material from suppliers to produce different products, in each tactical period.
Constraints (12) guarantee that in each tactical period, the raw material flows forwarding
from each supplier does not exceed the corresponding capacity of that supplier. In accor-
dance to constraints (13), in each tactical period, all produced and remanufactured products
in each production/recovery center, should be forwarded to distribution centers or hybrid
facilities. Capacity of production/recovery centers are restricted by constraints (14). Con-
straints (15) and (16) are balance constraints in the forward direction. Constraints (15)
ensure that in each tactical period and for each product, the input product flows plus the
product amount that is stored at the end of the previous period in any distribution center
or hybrid facility is equal to the output product flows plus the quantity of the product that
is stored at the end of the current tactical period. Constraints (16) state that the customer
zone’s demand for each product should be partially or completely satisfied in each tactical
period. In accordance to constraints (17), each open distribution center or hybrid facility
must not hold the finished products more than its storage capacity, in each tactical period.
Constraints (18) limit each open distribution center or hybrid facility to not forward prod-
ucts to customer zones more than its processing capacity, in each tactical period. Constraints
(19–21) are balance constraints in the reverse direction. Constraints (22) limit the amount
of collected used products to the capacity of processing used products in each collection
center or hybrid facility, in each tactical period. Constraints (23) assure that in each tactical
period and for each customer zone, only one level for acquisition price should be selected
for each used product with each quality level. In accordance to constraints (24), in each
tactical period, the amount of used products forwarded from each customer zone to col-
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Sets
I Set of all entities in the network including suppliers, production/recovery centers, disposal

centers, customer zones, and potential locations for distribution, collection centers, and
hybrid facilities,

(
i, i ′ ∈ I

)
,

K Set of suppliers (K ⊂ I ),
P Set of production/recovery centers (P ⊂ I ),
J Set of potential locations for distribution centers, collection centers, and hybrid facilities

(J ⊂ I ),
C Set of customer zones (C ⊂ I ),
D Set of disposal centers (D ⊂ I ),
M Set of products (m ∈ M),
L Set of price levels for buying used products (l ∈ L) and the number of price levels is NL,
R Set of raw materials (r ∈ R),
Q Set of quality levels of used products (q ∈ Q),
T Set of tactical periods (t ∈ T ),
S Set of scenarios (s ∈ S).
Costs
CDi Fixed cost of opening a distribution center at potential location i ∈ J ,
CCi Fixed cost of opening a collection center at potential location i ∈ J ,
CHi Fixed cost of opening a hybrid facility at potential location i ∈ J ,
CBti,r Cost of buying one unit of raw material r ∈ R from supplier i ∈ K , in tactical period t ∈ T ,
CTRi,i ′,r Cost of transporting one unit of raw material r ∈ R from supplier i ∈ K to

production/recovery center i ′ ∈ P ,
CTFi,i ′,m Cost of transporting one unit of product m ∈ M between entities i and i ′ in forward direction,
CTBi,i ′,m Cost of transporting one unit of product m ∈ M between entities i and i ′ in reverse direction,
CPti,m Cost of producing one unit of product m ∈ M in production/recovery center i ∈ P , in tactical

period t ∈ T ,
CPFti,m Cost of processing to forward one unit of product m ∈ M from distribution center or hybrid

facility i ∈ J , in tactical period t ∈ T ,
CHDi,m Cost of holding one unit of product m ∈ M in distribution center or hybrid facility i ∈ J ,
CSti,m Cost of penalizing one unit of non-satisfied product m ∈ M for customer zone i ∈ C , in

tactical period t ∈ T ,
CRti,m,q Cost of recovering one unit of recoverable product m ∈ M with quality level q ∈ Q in

production/recovery center i ∈ P , in tactical period t ∈ T ,
CPBti,m Cost of processing one unit of used product m ∈ M in collection center or hybrid facility

i ∈ J , in tactical period t ∈ T ,
CDSti,m Cost of disposing one unit of scrapped product m ∈ M in disposal center i ∈ D, in tactical

period t ∈ T .

lection centers is less than or equal to the purchased amount of that used product. Finally,
Constraints (25) restrict corresponding variables from taking negative values. In the next
section, the simulation-based SA algorithm for solving the stochastic optimization problem
is presented.

5 Solution approach

The considered problem includes the capacitated location problem which is known to be NP-
complete (Davis and Ray 1969) and the IFRLN design problem is an NP-hard optimization
problem (Pishvaee et al. 2010a). Therefore, commercial solvers such as CPLEX cannot
solve the proposed model in a reasonable time for large-sized networks or a large number
of scenarios. In this section, a simulation-based solution approach on the basis of simulated
annealing (SA) is proposed to solve the problem.
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Other input parameters
DEt,si,m Demand of customer zone i ∈ C for product m ∈ M ,in tactical period t ∈ T and scenario

s ∈ S,
REt,si,m,q Potential return amount of used product m ∈ M with quality level q ∈ Q from customer

zoned i ∈ C , in tactical period t ∈ T and scenario s ∈ S,
Ai,m,q Lower endpoint of uniform distribution related to expected price of customer zone i ∈ C for

one unit of used product m ∈ M with quality level q ∈ Q
Bi,m,q Upper endpoint of uniform distribution related to expected price of customer zone i ∈ C for

one unit of used product m ∈ M with quality level q ∈ Q,
BMr,m Required amount of raw material r ∈ R for producing one unit of product m ∈ M ,

SPtm Selling price for one unit of product m ∈ M , in tactical period t ∈ T ,

SCt
i,r Capacity of supplier i ∈ K for raw material r ∈ R, in tactical period t ∈ T ,

PCt
i Capacity of production/recovery center i ∈ P , in tactical period t ∈ T ,

HCi Storage capacity of potential location i ∈ J , if a distribution center is opened at location i ,

HCHi Storage capacity of potential location i ∈ J , if a hybrid facility is opened at location i ,
FCi Processing capacity of potential location i ∈ J for forwarding finished products to customer

zones, if a distribution center is opened at location i ,
FCHi Processing capacity of potential location i ∈ J for forwarding finished products to customer

zones, if a hybrid facility is opened at location i ,
CCAi Capacity of potential location i ∈ J for processing returned products, if a collection center is

opened at location i ,
CCHi Capacity of potential location i ∈ J for processing returned products, if a hybrid facility is

opened at location i ,
�i i ′ Number of forward deliveries between entities i ∈ P and i ′ ∈ J in each tactical period,

γ P
i,m Coefficient for using capacity of production/recovery center i ∈ P to produce one unit of

product m ∈ M ,
γR
i,m Coefficient for using capacity of production/recovery center i ∈ P to remanufacture one unit

of product m ∈ M ,
γ S
i,m Coefficient for using storage capacity of distribution center or hybrid facility i ∈ J to stock

one unit of finished product m ∈ M ,
γ PF
i,m Coefficient for using capacity of distribution center or hybrid facility i ∈ J to handle one unit

of finished product m ∈ M ,
γ PB
i,m Coefficient for using capacity of collection center or hybrid facility i ∈ J to handle one unit

of used product m ∈ M ,
βm,q Average recoverable fraction of used product m ∈ M with quality level q ∈ Q
BU The available budget for opening facilities in the network,
π s The probability of scenario s ∈ S.

(x, y, z, θ) are the first stage decisions in the proposed two-stage stochastic program and
should be made before the realization of uncertain parameters. Furthermore, these decisions
are binary variables and for any feasible solution of them, the resulting problem would
be linear and can be solved simply by using commercial solvers. Variables θ are multi-
dimensional binary variables and make the optimization problem too complex. However,
in accordance with our implementations, these variables have smaller implication on the
problem’s objective in comparisonwithmajor configuration decisions (x, y, z), and if we relax
variables θ to be continuous between 0 and 1, an upper bound problem would be obtained
that is very close to the original problem in terms of the objective value. As a consequence,
in the proposed solution approach, the SA algorithm is applied to swiftly search the feasible
domain of variables (x, y, z). Then, a developed linear-relaxation based heuristic obtains the
binary and feasible values for variables θ in accordance with the best solution found by the
SA algorithm.
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Binary variables
θ ti,m,q,l 1 if the price level l ∈ L is selected for purchasing per unit used product m ∈ Mwith quality

level q ∈ Q from customer zone i ∈ C , in tactical period t ∈ T ,
xi 1 if a distribution center is established at potential location i ∈ J ,
yi 1 if a collection center is established at potential location i ∈ J ,
zi 1 if a hybrid facility is established at potential location i ∈ J .
Continuous variables
w
t,s
i,i ′,r Amount of raw material r ∈ R shipped from supplier i ∈ S to production/recovery center

i ′ ∈ P ,in tactical period t ∈ T , and scenario s ∈ S,
f t,si,i ′,m Amount of finished product m ∈ M shipped from entity i ∈ I to entity i ′ ∈ I in forward

direction, in tactical period t ∈ T , and scenario s ∈ S,
(
i ∈ P, i ′ ∈ J

)
or

(
i ∈ J, i ′ ∈ C

)
,

v
t,s
i,i ′,m,q Amount of used product m ∈ M with quality level q ∈ Q shipped from entity i ∈ I to entity

i ′ ∈ I in reverse direction, in tactical period t ∈ T , and scenario
s ∈ S,

(
i ∈ C, i ′ ∈ J

)
or

(
i ∈ J, i ′ ∈ D

)
or

(
i ∈ J, i ′ ∈ P

)
,

nt,si,m Amount of product m ∈ M produced at production/recovery center i ∈ P in tactical period
t ∈ T and scenario s ∈ S,

ut,si,m Un-satisfied demand of product m ∈ M for customer zone i ∈ C in tactical period t ∈ T and
scenario s ∈ S,

gt,si,m,q Amount of used product m ∈ M with quality level q ∈ Q remanufactured at
production/recovery center i ∈ P in tactical period t ∈ T and scenario s ∈ S,

ht,si,m Amount of product m ∈ M held at distribution center or hybrid facility i ∈ J in tactical
period t ∈ T and scenario s ∈ S.

The proposed solution approach has three main steps. In the first step, we relax binary
variables θ to be continuous between 0 and 1 and assume that these variables are scenario
dependent as second stage decisions to obtain an upper bound problem. In the second step,
we use the SA algorithm to find the best solution for the upper bound problem. The SA
algorithm searches on the feasible domain of variables (x, y, z) and applies a simulation
approach to calculate the objective function of the upper bound problem. In the simulation
phase of the SA, after finding each feasible solution for variables (x, y, z), the solution is
fixed in the upper bound problem and the obtained linear programming problem is solved
separately for each scenario using any LP solver (e.g., CPLEX) to determine the objective
function and the optimal values for the rest of continuous variables (w, f , v, n, u, g, h, θ).
Finally, in the last step of the solution algorithm, we use a fixing procedure and then, solve a
simple MILP model to obtain the binary values for variables θ and the problem’s objective
in accordance with the best solution of the SA algorithm.

5.1 Encoding scheme and decoding procedure for the SA

A 2×|J |matrix containing numbers between 0 and 1 is assumed as an encoding scheme. |J |
is the number of potential locations for distribution centers, collection centers, and hybrid
facilities. Figure 5 shows the encoding scheme for an illustrative example with eight potential
locations. Here, γ j and γ ′

j are the values in the first row and j th column, and second row
and j th column in the solution representation matrix, respectively. (e.g. γ2 = 0.5601 and
γ ′
5 = 0.7389)
A decoding procedure is developed to generate feasible solutions for (x, y, z) from the

encoding matrix. The binary values for (x, y, z) should not violate the budget constraint,∑

i∈J
CDi xi + ∑

i∈J
CCi yi + ∑

i∈J
CHi zi ≤ BU , that the presented decoding procedure handles

this issue. In Fig. 6,
(
x̂, ŷ, ẑ

)
are the obtained values for binary decisions (x, y, z).
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0.2134 0.5601 0.0341 0.9087 0.8097 0.1123 0.5902 0.1985

0.5992 0.7541 0.8913 0.0013 0.7389 0.9013 0.3887 0.0198

Number of columns = Number of potential locations

Fig. 5 The solution representation matrix for an illustrative example

Fig. 6 The pseudo code of developed decoding procedure for the SA algorithm

In the decoding procedure, parameter α has a predetermined value between 0 and 1 that is
used to generate a solution for (x, y, z) in accordancewith the values of the SA’s representation
matrix. Furthermore, as another strategy, namely strategy II, we can use max

(
γi , γ

′
i

)
in

section a of the decoding procedure instead of γi + γ ′
i . Both of these strategies are examined

in the computational results part.
After finding a feasible solution for binary variables (x, y, z), by fixing their values in the

upper bound problem in which variables θ is assumed to be scenario-dependent and continu-
ous between 0 and 1, a linear programming (LP) problemwould be obtained. This LP problem
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is separable for each scenario and hence, we can solve it for each scenario using CPLEX
solver to determine the objective and values of continuous variables (w, f , v, n, u, g, h, θ ).

5.2 SA’s framework

Local searching on a solution has a main impact on the SA’s performance. Here, we use
normal distribution function as a popular probabilistic distribution function for searching on
a continuous search space. Therefore, a randomly generated 2 × |J | matrix from a normal
distribution with mean parameter μ and standard deviation σ is added to the elements of
the previous solution representation matrix to obtain a new solution in its neighborhood.
Moreover, in the new solution, the matrix elements are prevented from taking values more
than one or less than zero and therefore, after local searching, the value of an element should
be set to zero, if it is less than zero and one, if it is more than one. In this paper, in accordance
with a large number of empirical experiments, the values of μ and σ are considered 0 and
0.15, respectively. Additionally, most of the matrix’s elements take a value between 0 and 1
by these values for μ and σ .

The acceptance probability is computed for a new worse solution in the SA algorithm
after a local searching by using relation (26). f new and f old are the objective values of the
current and new solutions in relation (26) in which f new < f old. Moreover, c and τ represent
the coefficient of the temperature and the temperature, successively.

PA = exp
(− (

f old − f new
)
/(c × τ)

)
. (26)

In the SA algorithm, if a randomly generated number between (0, 1) is less than PA, the
new solution will be accepted. Furthermore, a cooling scheme by which a new temperature
is equal to the previous temperature minus one, τ new = τ − 1, is utilized.

5.3 A heuristic for obtaining pricing variables

In this section, a heuristic as the last step of the solution approach is developed to obtain
binary and near-optimal values for variables θ . The values for variables θ that are obtained
from the best solution of the SA algorithm are continuous between 0 and 1 and scenario
dependent. Here, these relaxed values are demonstrated by θ̃ , and θ̃

t,s
i,m,q,l is the obtained

value for price level l ∈ L to buy per unit used product m ∈ M with quality level q ∈ Q
from customer zone i ∈ C , in tactical period t ∈ T and scenario s ∈ S. Afterward, we
can compute the approximate values (θ̄) for variables θ that are not dependent to scenarios
by using relation (27). It is worth noting that, these approximate values are still continuous
between 0 and 1.

θ̄ ti,m,q,l =
∑

s∈S
πs × θ̃

t,s
i,m,q,l ∀i ∈ C, ∀m ∈ M, ∀q ∈ Q, ∀l ∈ L , ∀t ∈ T (27)

As previously mentioned, the SA’s objective is related to the objective value of the upper
bound problem. In the last step of the solution approach, using the developed heuristic, the
binary values for variables θ and the value of original problem’s objective should be obtained.

The heuristic, in accordance to the best SA’s solution, fixes variables (x, y, z) in the original
MILP model. In addition, variables θ in which their approximate values (θ̄) are more than ε,
should be fixed to 1 in the model. Here, ε is a threshold parameter with predetermined value
between 0 and 1. Afterward, the objective value and binary values for the rest of variables
θ are achieved by solving the model using CPLEX solver. It is worth noting that in the
computational results section, we set a proper value for ε based on the empirical experiments
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Fig. 7 The framework of the proposed solution approach

and investigate its impact on the performance of the heuristic. The main framework of the
solution approach is presented in Fig. 7.

6 Modeling demand and potential return uncertainty

In this paper, a two-stage stochastic programming model is developed in which the second
stage has multiple periods. In such a stochastic program, one of the main concerns is to obtain
an efficient fan of discrete scenarios for stochastic parameters and estimate their probabilities.
Here, two stochastic processes are assumed to model customer zones’ demands and potential
returns in multiple periods. The stochastic processes are based on a modified autoregressive
model of first order that is presented by Sodhi (2005). In our case, in tactical period t ∈ T
and for scenario s ∈ S, the demand of customer zone i ∈ C for product m ∈ M and the
potential return of customer zone i ∈ C for product m ∈ M with quality level q ∈ Q are
obtained by relation (28) and (29), respectively.

DEt,s
i,m − μt

i,m = ρi,m

[
DEt−1,s

i,m − μt−1
i,m

]
+ ε

t,s
i,m, (28)

REt,s
i,m,q − μ′t

i,m,q = ρ′
i,m,q

[
REt−1,s

i,m,q − μ′t−1
i,m,q

]
+ ε

′t,s
i,m,q . (29)
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Fig. 8 Error generation for a scenario fan

In relations (28) and (29), ρ and ρ′ are autoregressive parameters,μ andμ′ are predetermined
time’s parameters to capture life cycle and seasonality of the new products and potential
returns over the planning horizon, ε and ε′ are error terms that are assumed to be normal
distribution functions with mean zero and variance σ 2

ε, σ
′2
ε′ , respectively. It is worth noting

that in the first period,
[
DE0,s

i,m − μ0
i,m

]
and

[
RE0,s

i,m,q − μ′0
i,m,q

]
are considered to be zero.

To make different scenarios, the error terms should be generated and Fig. 8 illustrates the
process of error term’s generation in which |T | and |S| are the numbers of tactical periods
and scenarios, respectively. In this paper, such as (Fattahi et al. 2015b) and (Govindan and
Fattahi 2015), LHS method is applied for generating ε and ε′.

A large number of scenarios will make the stochastic program complex in terms of com-
putational tractability. Therefore, after generating a fan of scenarios, backward scenario
reduction technique is used to reduce the number of scenarios. Forward and backward sce-
nario reduction methods are two types of well-known scenario reduction techniques. For
more detailed explanations about these techniques, one can refer to Dupačová et al. (2003).

7 Computational results

In this section, the stochastic model and solution approach are examined, carefully. Further-
more, the developed pricing heuristic for the solution approach is investigated, separately.
Finally, the importance of considering stochasticity in the problem is discussed, and the
scenario generation method is examined in terms of out-of-sample and in-sample stability.

7.1 Assessing the performance of the stochastic model and solution algorithm

To investigate the performance of the solution approach and MILP model, commercial soft-
ware GAMS 24.1.2 using CPLEX solver is used to solve the mathematical model and the
solution approach is coded with MATLAB R2012a software and CPLEX 12. A personal
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Table 2 Characteristics of test
problems

Test problems |K | |P| |J | |C | |D| |M | |T |

P1 1 2 5 6 1 3 4

P2 1 3 5 6 2 3 4

P3 2 3 6 8 2 4 4

P4 2 4 6 8 2 4 4

P5 3 4 6 10 3 4 4

P6 3 4 8 10 3 4 4

P7 3 4 8 12 3 4 4

P8 3 4 10 12 3 4 4

P9 3 4 10 14 3 4 4

P10 3 4 12 14 4 4 4

P11 3 5 12 15 4 4 4

P12 3 5 12 16 4 5 4

P13 3 5 14 16 4 5 4

P14 4 5 15 18 5 5 4

P15 4 5 16 20 5 5 4

P16 4 5 16 22 5 5 4

P17 4 6 18 24 6 5 4

P18 4 6 18 25 6 5 4

P19 4 6 20 28 6 5 5

P20 4 8 24 30 6 5 5

P21 5 10 28 35 8 5 5

P22 5 10 35 40 8 6 5

P23 6 12 38 45 10 6 5

P24 6 12 42 50 10 8 5

computer with Intel Core i7-640M CPU (2.8GHz), with 4.00GB of RAM, is used for all
implementations.

Several test problems with different sizes including small-, medium- and large-sized tests
are generated. In the test problems, we assume that |R| = 6, |Q| = 2, |L| = 5, and |S| = 15,
and other characteristics of them are illustrated in Table 2, and the method of generating
test problems’ parameters using the uniform distributions is explained in “Appendix 1”.
Moreover, to obtain scenario fans for the test problems, we generate 300 scenarios by the
LHS method, and then, reduce the number of them to 15 scenarios by the backward scenario
reduction technique.

Here, parameter α in the SA’s decoding procedure and threshold ε in the pricing heuristic
are set to 0.5 and 0.9, respectively. The solution approach had a good performance with these
parameters’ values in enormous empirical experiments. Furthermore, the performance of the
pricing heuristic with this threshold value is examined later.

The SA’s performance in the solution approach is dependent to its controllable factors.
Here, these factors are the acceptance probability, initial temperature, temperature’s coef-
ficient, and cooling scheme. In this paper, the factors are set for the SA algorithm using
Taguchi experimental design (see Montgomery et al. 1984; Taguchi 1986). The orthogonal
arrays L9(34) and two criteria, relative percentage deviation (RPD) and signal-to-noise (S/N)
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Table 3 The values of controllable factors of the SA

Initial temperature Acceptance
probability

Cooling scheme Temperature’s
coefficient

160 A random uniform
number <PA

New temperature is equal to
the previous temperature
minus one

5000

ratio, are considered for the Taguchi method to calibrate these factors such as Zarandi et al.
(2013) and Fattahi et al. (2015a). One can refer to those research studies for more information
about this issue. The final levels of them are reported in Table 3.

The results from solving the problem with the solution approach and the MILP model
with the CPLEX solver are reported for the generated test problems in Table 4. Furthermore,
both developed decoding strategies are examined for solving the test problems. It should be
noted that the reported relative gaps of the CPLEX solver is based on the difference between
the lower and upper bound of its branch and cut algorithm and hence, does not mean the
diversion from the optimal objective value. Moreover, the maximum allowable CPU time is
set to 6h for solving the model using CPLEX solver. Optimal solutions are achieved in some
test problems using the CPLEX solver. Therefore, the results of the solution approach are
compared to the optimal objective values in these test problems to make sure that the solution
approach is efficient for our optimization problem. The reported optimality gaps for these
test problems are calculated using relation (30).

Solution approach’s optimality gap = Optimal objective − Solution approach’s objective

Optimal objective
×100%. (30)

As illustrated in Table 4, when the sizes of test problems become large, the CPLEX solver
cannot find their optimal solutions in a reasonable time.Moreover, in test problems P21–P24,
the CPLEX solver cannot start its solving procedure because of the out of memory error.

As reported in Table 4, the proposed solution approach has a good performance in solving
the stochastic program in terms of the objective value and computational time. Figure 9
shows how the SA algorithm converges to the steady state after some limited iterations for
test P15. Furthermore, the average optimality gap of the solution approach with decoding
strategy I and II are 3.12 and 3.10%, respectively. Figure 10 compares the optimality gaps
of the solution approach with decoding strategy I and II.

7.2 Investigating the presented heuristic in the solution algorithm

In the solution approach, SA algorithm obtains the objective function of the upper bound
problem. Furthermore, in the last step of the solution approach, the presented heuristic deter-
mines the final objective for the original problem and binary values for acquisition price
decisions. The closeness between the SA’s and final objective value, final objective/SA’s
objective ×100%, shows the heuristic’s performance. The comparison between them is
reported in Table 5 for several test problems.

The average closeness between SA and final objective values in the considered test prob-
lems is 98.59%. Moreover, the time of performing the heuristic is negligible in comparison
with the solution approach’s CPU time. Therefore, we can conclude that the presented heuris-
tic in the solution approach performs well.

123



Ann Oper Res (2017) 253:193–225 213

Ta
bl
e
4

C
om

pa
ri
so
n
be
tw
ee
n
re
su
lts

of
th
e
so
lu
tio

n
ap
pr
oa
ch

an
d
C
PL

E
X
so
lv
er

Te
st

pr
ob
le
m
s

C
PL

E
X

ob
je
ct
iv
e

C
PL

E
X
re
la
-

tiv
e
ga
p
(%

)
C
PL

E
X

C
PU

tim
e

So
lu
tio

n
ap
pr
oa
ch

w
ith

de
co
di
ng

st
ra
te
gy

I
So

lu
tio

n
ap
pr
oa
ch

w
ith

de
co
di
ng

st
ra
te
gy

II

O
bj
ec
tiv

e’
s
va
lu
e

C
PU

tim
e
(s
)

O
pt
im

al
ity

ga
p
(%

)
O
bj
ec
tiv

e’
s
va
lu
e

C
PU

tim
e
(s
)

O
pt
im

al
ity

ga
p
(%

)

P1
4.
34
43
E
+0

6
0

77
4
s

4.
30
48
E
+0

6
43
5

0.
90
92

4.
29
88
E
+0

6
36
2

1.
04
73

P2
5.
88
72
E
+0

6
0

34
7
s

5.
79
91
E
+0

6
52
3

1.
49
65

5.
76
25
E
+0

6
55
7

2.
11
82

P3
7.
69
49
E
+0

6
0

10
62

s
7.
50
21
E
+0

6
56
6

2.
50
56

7.
49
41
E
+0

6
53
4

2.
60
95

P4
6.
38
80
E
+0

6
0

61
6
s

6.
14
23
E
+0

6
61
2

3.
84
63

6.
09
81
E
+0

6
68
4

4.
58
82

P5
8.
23
12
E
+0

6
0

31
98

s
8.
13
23
E
+0

6
71
4

1.
29
15

8.
15
13
E
+0

6
77
8

0.
97
07

P6
7.
49
53
E
+0

6
0

27
91

s
7.
32
30
E
+0

6
74
3

2.
29
88

7.
36
90
E
+0

6
72
0

1.
68
51

P7
8.
77
85
E
+0

6
0

88
92

s
8.
61
36
E
+0

6
79
8

1.
87
85

8.
09
40
E
+0

6
80
4

7.
79
75

P8
7.
39
44
E
+0

6
0

97
31

s
7.
14
00
E
+0

6
81
7

3.
44
04

7.
09
32
E
+0

6
81
2

4.
07
34

P9
9.
17
66
E
+0

6
0

95
34

s
8.
89
93
E
+0

6
99
6

3.
02
18

8.
96
63
E
+0

6
10
04

2.
29
17

P1
0

1.
03
24
E
+0

7
0

11
,2
23

s
9.
89
17
E
+0

6
11
88

4.
18
73

1.
01
64
E
+0

7
11
39

1.
54
98

P1
1

1.
04
87
E
+0

7
0

13
,2
21

s
1.
03
76
E
+0

7
11
58

1.
05
85

1.
02
20
E
+0

7
11
97

2.
54
60

P1
2

1.
17
49
E
+0

7
0

19
,2
76

s
1.
11
23
E
+0

7
13
95

5.
32
81

1.
16
77
E
+0

7
14
35

0.
61
28

P1
3

1.
35
42
E
+0

7
0

18
,6
64

s
1.
31
64
E
+0

7
15
53

2.
79
31

1.
33
61
E
+0

7
15
25

1.
33
66

P1
4

1.
17
85
E
+0

7
0

19
,6
53

s
1.
14
68
E
+0

7
17
85

2.
68
99

1.
15
02
E
+0

7
17
68

2.
40
14

P1
5

1.
20
42
E
+0

7
<
0.
01

6
h

1.
12
00
E
+0

7
19
51

6.
99
30

1.
12
11
E
+0

7
20
49

6.
90
08

P1
6

1.
11
17
E
+0

7
0

17
,5
33

s
1.
07
82
E
+0

7
21
64

3.
01
34

1.
06
98
E
+0

7
22
13

3.
76
90

P1
7

1.
19
82
E
+0

7
<
0.
01

6
h

1.
17
81
E
+0

7
25
60

1.
67
75

1.
16
18
E
+0

7
25
09

3.
03
79

P1
8

1.
08
97
E
+0

7
<
0.
01

6
h

1.
03
70
E
+0

7
25
95

4.
83
62

1.
02
31
E
+0

7
26
66

6.
11
18

P1
9

1.
44
29
E
+0

7
<
0.
01

6
h

1.
39
11
E
+0

7
36
61

3.
59
00

1.
37
93
E
+0

7
38
91

4.
40
78

P2
0

1.
85
00
E
+0

7
<
0.
1

6
h

1.
74
81
E
+0

7
37
67

5.
50
81

1.
80
90
E
+0

7
40
10

2.
21
62

P2
1

O
ut

of
m
em

or
y

–
–

1.
65
00
E
+0

7
57
70

–
1.
68
87
E
+0

7
58
62

–

P2
2

O
ut

of
m
em

or
y

–
–

1.
94
82
E
+0

7
10

,
02
9

–
1.
95
99
E
+0

7
98
54

–

P2
3

O
ut

of
m
em

or
y

–
–

2.
11
62
E
+0

7
11

,7
94

–
2.
09
44
E
+0

7
12

,5
07

–

P2
4

O
ut

of
m
em

or
y

–
–

2.
68
46
E
+0

7
22

,3
02

–
2.
67
87
E
+0

7
23

,5
83

–

123



214 Ann Oper Res (2017) 253:193–225

20 40 60 80 100 120 140 160

0.9

0.95

1

1.05

1.1

1.15
x 10

7

Iterations

O
b

je
ct

iv
e

 f
u

n
ct

io
n

 v
a

lu
e

Fig. 9 The convergence of the SA algorithm with decoding strategy I for P15
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Fig. 10 The comparison between decoding strategy I and II

As mentioned before, the value of threshold ε is set to 0.9 in the solution approach based
on several empirical experiments. The value of threshold has a main role on the performance
of the heuristic. In Table 6, in several test problems with randomly fixed binary values for
decisions (x, y, z), different threshold values are set for the heuristic and then, the final
objective for the problem after performing the heuristic are obtained.

From Table 6, we can conclude that threshold value 0.9 is suitable for the heuristic in
terms of optimality and CPU time.

7.3 Assessing the importance of stochasticity in the problem

To evaluate the importance of parameters’ stochasticity in the IFRLN design problem, the
expected value of perfect information (EVPI) and value of stochastic solution (VSS), as two
well-known criteria, are calculated for the stochastic model in several test problems. TheVSS
measures the difference between the objective value of the two-stage stochastic program and
the expected value of deterministic problems’ objectives for different discrete scenarios in
which first stage decisions are fixed based on solving a problem with the expected value
of stochastic parameters. Furthermore, a decision-maker can earn a maximum amount by
accurate and complete information about the future stochastic parameters; this amount is
equal to EVPI. In stochastic optimization problems, the EVPI reveals potential worth of
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Table 5 The closeness between final objective value of the solution approach and SA’s objective

Test problems Solution
algorithm’s
objective

Last step of the
algorithm
CPU time (s)

SA’s objective before
the last step of the
solution algorithm

Closeness of solution
approach and SA
objective function (%)

P1-Strategy I 4.3048E+06 1.8 4.42E+06 97.50

P1-Strategy II 4.2988E+06 1.9 4.35E+06 98.92

P3-Strategy I 7.5021E+06 4.1 7.58E+06 98.93

P3-Strategy II 7.4941E+06 3.6 7.61E+06 98.47

P6-Strategy I 7.3230E+06 4.9 7.49E+06 97.82

P6-Strategy II 7.3690E+06 4.2 7.43E+06 99.14

P8-Strategy I 7.1400E+06 5.8 7.22E+06 98.90

P8-Strategy II 7.0932E+06 6.8 7.12E+06 99.61

P12-Strategy I 1.1123E+07 25 1.12E+07 98.92

P12-Strategy II 1.1677E+07 17 1.19E+07 98.12

P15-Strategy I 1.1200E+07 27 1.14E+07 98.43

P15-Strategy II 1.1211E+07 56 1.13E+07 98.90

P18-Strategy I 1.0370E+07 20 1.05E+07 98.39

P18-Strategy II 1.0231E+07 21 1.04E+07 98.60

P20-Strategy I 1.7481E+07 42 1.77E+07 98.81

P20-Strategy II 1.8090E+07 66 1.82E+07 99.44

P21-Strategy I 1.6500E+07 62 1.66E+07 99.40

P21-Strategy II 1.6887E+07 82 1.71E+07 98.92

P22-Strategy I 1.9482E+07 166 1.97E+07 98.92

P22-Strategy II 1.9599E+07 351 1.96E+07 99.80

P23-Strategy I 2.1162E+07 194 2.13E+07 99.18

P23-Strategy II 2.0944E+07 267 2.12E+07 98.99

P24-Strategy I 2.6846E+07 1661 2.89E+07 92.83

P24-Strategy II 2.6787E+07 877 2.70E+07 99.33

more accurate forecasts for stochastic parameters. For more explanations about EVPI and
VSS, one can refer to “Appendix 2” and (Birge and Louveaux 2011). Table 7 illustrates EVPI
and VSS for some test problems.

As illustrated in Table 7, the meaningful values of VSS and EVPI show that it is important
to capture stochasticity of demands and potential returns of customer zones in designing the
IFRLN.

7.4 Assessing in-sample and out-of-sample stability for scenario generation
procedure

In this paper, LHS is applied to generate scenarios and then, the number of scenarios is
reduced by using backward scenario reduction technique. Because of randomness nature
of the LHS, by implementing scenario generation procedure several times with the same
input parameters, different scenario fans will be obtained. In-sample stability of a sce-
nario generation procedure assures that whichever of these scenario fans is used in the
stochastic optimization problem, the optimal objective value is (approximately) the same
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Table 7 Values of EVPI and VSS for some test problems

Test problems Optimal objective function value EVPI VSS

P1 4.3443E+06 1.08E+05 1.23E+04

P3 7.6949E+06 1.42E+05 1.82E+04

P6 7.4953E+06 1.20E+05 2.50E+04

P8 7.3944E+06 1.94E+05 3.24E+04

P12 1.1749E+07 1.77E+05 4.90E+04

P15 1.2042E+07 3.21E+05 5.29E+05

(Lium et al. 2009; Govindan and Fattahi 2015). Here, different scenario fans including 15
scenarios are obtained by using the scenario generation procedure for several test problems
and their optimal objective values are reported in Table 8.

Out-of-sample stability assures that true objective values for first stage decisions in two-
stage stochastic programs are also approximately same as the models’ objective values.
Generally, out-of-sample stability can be evaluated using simulation (Lium et al. 2009).
Here, the optimal first stage decisions from solving several test problems are simulated by
1000 scenarios. To simulate them, first stage decisions are fixed in the MILP model and then,
the obtained linear programming problem is solved for each scenario. In Table 8, simulation
results are also reported.Here, (x, y, z, θ)variables are first stage decisions. For an acceptable
scenario generation procedure, out-of sample and in-sample stability are necessary properties.

As illustrated in the last column of Table 8, for each test problem, the difference between
the maximum and minimum objective values for different scenario fans with 15 scenarios is
relatively small. Furthermore, the average difference between simulation value and objective
function value for considered test problems is 0.48%. Therefore, we can conclude that the
scenario generation procedure has in-sample and out-of-sample stability, relatively. The fre-
quency analysis function from simulating the optimal first stage decisions of P15 with 1000
scenarios is also shown in Fig. 11.

In Fig. 11b, we can see the true distribution function of the IFRLN’s net income for optimal
solution of the optimization problem.

7.5 Discussion about acquisition price decisions

In this section, an illustrative example is generated with |K | = 2, |P| = 3, |J | = 8, |C | =
12, |D| = 2, |M | = 3, |R| = 6, |T | = 4, |Q| = 2, |L| = 5, and |S| = 15 in which the
available budget for IFRLN design (BU) is equal to 40,000. The optimal solution for this
hypothetical example is achievedbyusing theCPLEXsolver. In the obtainedoptimal solution,
the available capacities for forwarding finished products in open distribution centers/hybrid
facilities and handling used products in open collection centers/hybrid facilities are 23,991
and 19,019, successively. For the presented example, these results can highlight the financial
importance of reverse and forward networks in the IFRLN in comparison to each other.

The financial benefits from forward and reverse networks in the IFRLN are sensitive
to costs of buying raw materials. In the example, to investigate this issue, we consider a
multiplier coefficient for these costs and change their values to perform a sensitivity analysis.
The optimal capacities for forwarding finished products and collecting used products with
different values for costs of buying raw materials are illustrated in Fig. 12.

As demonstrated in Fig. 12, in the example, when costs of buying raw materials increase,
the optimal capacities for forwarding finished products decrease and for collecting used
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Fig. 11 Comparison between
simulation response and objective
values for each scenario in P15.
a The optimal objective value for
each scenario in P15.
b Simulation responses for
optimal first stage decisions of
P15
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Fig. 12 Sensitivity of optimal IFRLN capacities to costs of buying raw materials

products increase. In the IFRLN, both of forward and reverse networks have main impacts
on the network’s net income and in some situations, the investment on reverse network is
more beneficial than forward one and vice versa.

In the hypothetical example, Fig. 13 illustrates changes of optimal acquisition prices
offered to customer zone 4 for collecting used product 3 with different quality levels over
the planning horizon.

In order to investigate, the importance of dynamic pricing in comparison with static one,
we can add constraints (31) into the model. Here, η is a possible change in acquisition prices
between two consequent tactical periods and sensitivity of optimal objective value to η is
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Fig. 15 Sensitivity of the optimal objective value to parameter η′

illustrated in Fig. 14 for the hypothetical example. For more information about the impor-
tance of dynamic pricing in comparison with static pricing, one can refer to Keyvanshokooh
et al. (2013).

(
Bi,m,q − Ai,m,q

)
∣∣∣∣∣

∑

l∈L
θ t+1
i,m,q,l

(
l − 1

|L| − 1

)
−

∑

l∈L
θ ti,m,q,l

(
l − 1

|L| − 1

)∣∣∣∣∣
≤ η

∀i ∈ C, ∀m ∈ M, ∀q ∈ Q, ∀t ∈ T \ {NT } (31)

Moreover, we can impose constraints (32) into themodel to prevent from offering different
acquisition prices to different customer zones for collecting used products. Here, for each
used product, η′ is a possible difference between acquisition prices offered to two different
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customer zones.
∣
∣
∣
∣
∣

∑

l∈L
θ ti,m,q,l

(
l − 1

|L| − 1

)
(
Ai,m,q − Bi,m,q

) −
∑

l∈L
θ ti ′,m,q,l

(
l − 1

|L| − 1

)
(
Ai,m,q − Bi,m,q

)
∣
∣
∣
∣
∣

≤ η′ ∀i, i ′ ∈ C,∀m ∈ M,∀q ∈ Q,∀t ∈ T (32)

In Fig. 15, the sensitivity of objective value to η′ is illustrated.

8 Conclusion

In this paper, a multi-commodity, multi-period IFRLN design problem under demand and
return uncertainty is proposed. This stochastic optimization problem, in contrary to previous
studies in this area, assumed that the amounts of returned products with different quality
levels are dependent on acquisition prices in the reverse direction. An MILP model using
two-stage stochastic programmingwas developed for the problem. Themodel simultaneously
considered the strategic and tactical planning decisions in the IFRLN. Location decisions
of distribution centers, collection centers, and hybrid facilities as strategic decisions and
acquisition price decisions as tactical decisions were considered as first stage decisions.
Other tactical decisions were considered scenario-dependent and as second stage decisions.
The presented model can only be solved to optimality for small- and medium-sized test
problems using CPLEX solver. To cope with the problem’s intractability, a simulation-based
SA algorithmwas proposed. Furthermore, to deal with uncertain parameters and construct an
efficient fan of scenarios, the LHS and backward scenario reduction technique were applied.

In the computational results, it was shown that the gap between the optimal objective value
and the approximate one obtained by using the simulation-based SA was reasonably low.
In addition, the scenario generation method had a good performance in terms of in-sample
and out-of-sample stability. Meaningful values for EVPI and VSS in several test problems
illustrated the main importance of considering uncertainty in the IFRLN design. We also
discussed about the significance of the proposed model and driven some managerial insights
using several numerical experiments including sensitivity analysis on the main parameters
of the problem.

In the simulation phase of the presented solution approach, LP problems should be solved
using an LP solver for each scenario and hence, proposing a heuristic method to determine the
approximate objective function and second stage decisions without solving LP problems can
improve the solution approach in terms of the computational time. As another future research
direction, one can examine the optimization problem in which a normal distribution function
defines the expected price of each customer zone for one unit of each used product.Moreover,
there are also many opportunities to extend exact, heuristic and other meta-heuristic solution
approaches for the IFRLN design under uncertainty. Finally, an interesting extension would
be to consider environmental and social aspects in the problem’s objective or constraints to
have a sustainable logistics network.

Appendix 1

See Tables 9, 10.
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Table 10 Available budgets for
the test problems

Test problems BU

P1–P2 45,000

P3–P6 50,000

P7–P9 55,000

P10–P13 58,000

P14–P16 60,000

P17–P18 62,000

P19–P20 64,000

P21 67,000

P22 90,000

P23 95,000

P24 110,000

Appendix 2

In order to calculate EVPI and VSS, the optimization problem (33) for each scenario is
defined as follows:

F
(
x, ζ s) = Min

x∈X cT x + Q
(
x, ζ s) , ∀s ∈ S. (33)

Here, WS, wait-and-see solution, can be calculated as follows:

WS =
∑

s∈S
π s × F

(
x, ζ s)

The EVPI is the difference between the optimal objective value of the recourse problem (RP),
optimization problem (5), and WS as:

EVPI = RP − WS.

By considering the expected values of stochastic parameters instead of them in problem (5),
the Expected Value problem (EV) is defined as:

EV = Min
x∈X cT x + Q

(
x, ζ̄

)
.

The optimal solution of the EV is x̄
(
ζ̄
)
and hence, the expected objective value of using the

EV solution (EEV) and VSS can be determined as:

EEV = cT x̄
(
ζ̄
) +

∑

s∈S
π s×Q

(
x̄

(
ζ̄
)
, ζ s) ,

VSS = EEV − RP.
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Subulan, K., Baykasoğlu, A., Özsoydan, F. B., Taşan, A. S., & Selim, H. (2014). A case-oriented approach
to a lead/acid battery closed-loop supply chain network design under risk and uncertainty. Journal of
Manufacturing Systems, 37(1), 340–361.

Taguchi, G. (1986). Introduction to quality engineering: designing quality into products and processes. Tokyo:
Asian Productivity Organization.

Zarandi, M. F., Mosadegh, H., & Fattahi, M. (2013). Two-machine robotic cell scheduling problem with
sequence-dependent setup times. Computers & Operations Research, 40(5), 1420–1434.

Zeballos, L. J.,Méndez, C.A., Barbosa-Povoa,A. P.,&Novais, A.Q. (2014).Multi-period design and planning
of closed-loop supply chains with uncertain supply and demand. Computers & Chemical Engineering,
66, 151–164.

123

http://dx.doi.org/10.1016/j.tre.2006.11.003
http://dx.doi.org/10.1016/j.ejor.2008.05.007
http://dx.doi.org/10.1016/j.cor.2009.09.018
http://dx.doi.org/10.1016/j.cor.2009.09.018
http://dx.doi.org/10.1111/j.1937-5956.2005.tb00010.x
http://dx.doi.org/10.1111/j.1937-5956.2005.tb00010.x

	Integrated forward/reverse logistics network design under uncertainty with pricing for collection of used products
	Abstract
	1 Introduction
	2 Literature review
	3 Problem description
	3.1 Dynamic pricing for collection of used products

	4 Mathematical modeling
	4.1 Two-stage stochastic programming formulation

	5 Solution approach
	5.1 Encoding scheme and decoding procedure for the SA
	5.2 SA's framework
	5.3 A heuristic for obtaining pricing variables

	6 Modeling demand and potential return uncertainty
	7 Computational results
	7.1 Assessing the performance of the stochastic model and solution algorithm
	7.2 Investigating the presented heuristic in the solution algorithm
	7.3 Assessing the importance of stochasticity in the problem
	7.4 Assessing in-sample and out-of-sample stability for scenario generation procedure
	7.5 Discussion about acquisition price decisions

	8 Conclusion
	Appendix 1
	Appendix 2
	References




