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Abstract This paper addresses the problem of feature selection forMulti-class Support Vec-
tor Machines. Two models involving the �0 (the zero norm) and the �2–�0 regularizations
are considered for which two continuous approaches based on DC (Difference of Con-
vex functions) programming and DCA (DC Algorithms) are investigated. The first is DC
approximation via several sparse inducing functions and the second is an exact reformu-
lation approach using penalty techniques. Twelve versions of DCA based algorithms are
developed on which empirical computational experiments are fully performed. Numerical
results on real-world datasets show the efficiency and the superiority of our methods versus
one of the best standard algorithms on both feature selection and classification.

Keywords Feature selection · MSVM · DC programming · DCA · DC approximation ·
Exact penalty

1 Introduction

One of challenges of Machine Learning is the handling of the input datasets with very
large number of features. The so called feature selection has been widely studied to address
this challenge. The goals are to remove the irrelevant and redundant features, reduce store
space and execution time, and avoid the course of dimensionality to improve the prediction
performance (Le Thi et al. 2008b).
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The research on feature-selection methods is very active in recent years, and an excellent
review can be found in the book by Guyon et al. (2006). Generally speaking, feature selection
can be classified into three categories: filter approaches, wrapper approaches, and embedded
approaches.Wrappermethods exploit amachine learning algorithm to evaluate the usefulness
of features. Filter methods rank the features according to some discrimination measure and
select features having higher ranks without using any learning algorithm (it utilizes the
underlying characteristics of the training data to evaluate the relevance of the features or
feature set by some independent measures such as distance measure, correlation measures,
consistency measures Chen et al. 2006). The wrapper approach is generally considered to
produce better feature subsets but runs much more slowly than a filter. In contrast to the filter
and wrapper approaches, the embedded approach of feature selection does not separate the
learning from the feature selection part. It integrates the selection of features in the model
building. For instance, for feature selection in classification, an embedded method uses a
machine learning algorithm to search a classifier that uses as few features as possible while a
filter method selects the features by optimizing a measure criterion and then finds a classifier
defined on the selected features.

Feature selection is often applied to high-dimensional data prior to classification learning.
In this paper, we are interested in the feature selection task for Multi-class Support Vector
Machine (MSVM) in the framework of embedded approaches. The objective is to simultane-
ously select a subset of features (representative features) and construct a good classifier, i.e.
we search a sparseMSVM.Whereas most feature selection methods were initially developed
for binary-Support Vector Machine (SVM) classification (see e.g. Bradley and Mangasarian
1998; Fan and Li 2001; Hermes and Buhmann 2000; Hui 2006; Le Thi et al. 2008a, b; Neu-
mann et al. 2005; Rakotomamonjy 2003; Wang et al. 2007), several extensions to feature
selection for MSVM are recently investigated (see e.g. Cai et al. 2011; Chapelle 2008; Chen
et al. 2006; Deng et al. 2013; Duan et al. 2005; Huang et al. 2013; Hsu and Lin 2002; Lee
et al. 2006, 2004; Li et al. 2004; Wang and Shen 2003; Weston and Watkins 1999; Weston
et al. 2003; Wu et al. 2007; Zhang et al. 2008; Zou 2006; Zhou and Tuck 2007; Zhou et al.
2010). However, an extension from the binary case to the multi-category case (Q classes) is
not trivial. Indeed, as will be seen in the next section, the decision rule in MSVM has to be
determined from Q decision functions (but not one decision function as in SVM) and each
selected feature should be associated with Q coefficients in Q decision functions.

For the feature selection purpose, we use a natural concept dealing with sparsity, that is
the zero norm (denoted �0 or ‖.‖0). The zero norm of a vector is defined as the number of its
nonzero components. The function �0, apparently very simple, is lower-semicontinuous on
R

n, but its discontinuity at the origin makes nonconvex programs involving ‖.‖0 challenging.
During the last two decades, research is very active in optimization models and methods
involving the zero norm. Works can be divided into three categories according to the way to
treat the zero norm: convex approximation (the �0-norm is replaced by a convex function,
for instance the �1-norm Tibshirani 1996 or the conjugate function Pham Dinh and Le Thi
2014), nonconvex approximation (a continuous nonconvex function is used instead to the
�0-norm, usual sparse inducing functions are introduced in Bradley andMangasarian (1998),
Fan and Li (2001), Le Thi (2012), Le Thi et al. (2015b), Peleg andMeir (2008), Weston et al.
(2003)), and nonconvex exact reformulation (with the binary variables ui = 0 if wi = 0
and ui = 1 otherwise, the original problem is formulated as a combinatorial optimization
problem which is equivalently reformulated as a continuous nonconvex program via exact
penalty techniques (Le Thi et al. 2015a)). An extensive overview of these approaches can be
found in Le Thi et al. (2015b). When the objective function (besides the �0-term) is convex,
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convex approximation techniques result in a convex optimization problem which is so far
”easy” to solve.

Whilst nonconvex approximation approaches have been widely used for feature selection
in SVM, most of works on feature selection in MSVM are based on convex approximations,
especially on �1 regularization. In this work, we study two models of sparse MSVM using
the �0 and/or the �2–�0 regularization. Our motivation to consider the �2–�0 regularization is
that it can reduce overfitting. Due to the �0 term, the resulting problems are nonsmooth and
nonconvex. We tackle these problems by the two nonconvex approaches, both are based on
Difference of Convex functions (DC) programming and DC Algorithms (DCA), powerful
tools in the nonconvex programming framework which were introduced by Pham Dinh Tao
in their preliminary form in 1985 and have been extensively developed since 1994 by Le Thi
Hoai An and Pham Dinh Tao and become now classic and increasingly popular (see, e.g. Le
Thi and Pham Dinh 2005; Le Thi 2005; Pham Dinh and Le Thi 1997, 1998, and references
therein).

Our motivating arguments to use the �0-norm are multiple. Firstly, even though using the
�1 is the simplest way to deal with the sparsity, the �1 can encourage the sparsity in only
some cases with restrictive assumptions (see Gribonval and Nielsen 2003). In particular, for
feature selection purpose, the �1 penalty has been shown to be, in certain cases, inconsistent
and biased (Zou 2006). Secondly, the �0-norm is the most natural and suitable concept for
modelling the sparsity, and nonconvex approximations of the �0-norm are, in general, deeper
than the �1-norm, and can then produce better sparsity. Especially, for feature selection in
SVM, solutions of the �0 -norm penalty problem have been shown to be much sparser than
those of �1-norm approach in several previous works (see e.g. Le Thi et al. 2008a, 2015a, b;
Ong and Le Thi 2013). Thirdly, although we are faced with nonconvex problems, the power
of DCA can be exploited to efficiently solve these hard problems, knowing that DCA has
been successfully developed in a variety of works in Machine Learning (see e.g. Collobert
et al. 2006; Krause and Singer 2004; Le Thi et al. 2006, 2007, 2008a, b, 2015a, b; Le Thi
and Phan 2016a, b; Liu et al. 2005; Liu and Shen 2006; Ronan et al. 2006 and the list of
reference in Le Thi (2005)), in particular to feature selection in SVM (Le Thi et al. 2008a, b,
2015a, b; Neumann et al. 2005; Ong and Le Thi 2013).

In our first approach, the �0-norm is approximated by a DC function that leads to a DC
program for which a DCA scheme is investigated. This general DCA scheme is developed
to various sparse inducing DC approximation functions: the piecewise exponential function
(Bradley and Mangasarian 1998), the SCAD penalty function (Fan and Li 2001), the loga-
rithm function (Weston et al. 2003), the capped-�1 function (Peleg and Meir 2008) and the
piecewise linear function recently proposed in Le Thi (2012). In the second approach, the
original problem is equivalently reformulated, via an exact penalty technique in DC pro-
gramming (Le Thi et al. 2012), as a DC program. Hence, using a unified DC programming
framework, we unify all solution methods into DCA, and then convergence properties of
our algorithms are guaranteed thanks to general convergence results of the generic DCA
scheme. Specific convergence properties of each DCA secheme are also studied. We perform
empirical comparative numerical experiments of 12 versions of DCA based algorithms, with
various approximate functions as well as with the exact continuous reformulation. We are
interested in several questions from both algorithmic and numerical points of view: what is
better between the �0 or �2–�0 regularization?Whatmight be the approach advised—the non-
convex approximation or the nonconvex exact penalty reformulation? And in the nonconvex
approximation approaches, what is the best approximation among several sparse inducing
functions? Such questions are useful for researchers in the choice of the algorithm to be
applied to their problems among various versions offered in this paper.
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The remainder of the paper is organized as follows. Section 2 contains the introduction
of two models of sparse MSVM using �0 and �2–�0 regularizations, followed by a brief
presentation of DC Programming and DCA. The approximation approach is presented in
Sect. 3 while the exact penalty approach is developed in Sect. 4. Computational experiments
are reported in Sect. 5 and finally Sect. 6 concludes the paper.

2 Models and methodology

2.1 Sparse MSVM models

For beginning, let us introduce the model of MSVM proposed by Weston and Watkins
(1999), a direct approach (without using binary-SVM) for learning multiclass, known to be
appropriate to capture correlations between the different classes, which can be described as
follows.

Let X be a set of vectors in IRd and Y = {1, . . . , Q} be a set of class labels. Given a
training dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)} ∈ R

n×(d+1), where xi ∈ X , yi ∈
Y, i = {1, . . . , n}. The task is to learn a classification rule f : X �→ Y that maps an element
x to a class label y ∈ Y .

In a more natural way than the classical SVM based approaches for multi-classification,
Weston and Watkins (1999) proposed to construct a piecewise linear separation that gives
the decision function:

f (x) = arg max
1≤i≤Q

fi (x), (1)

where fi stands for the hyperplane fi (x) = 〈wi , x〉+bi , withwi ∈ R
d , bi ∈ R, i = 1, . . . , Q.

Let w = (
w1, w2, . . . , wQ

)
be the vector in R

Q×d and let b = (bi )
Q
i=1 ∈ R

Q . Then the
MSVM model given in Weston and Watkins (1999), the first “all-together” implementation
of multi-class SVM, is a single optimization problem of the form:

min

⎧
⎨

⎩
C

n∑

i=1

∑

k 	=yi

ξik +
Q∑

k=1

‖wk‖22 : (w, b, ξ) ∈ Ω

⎫
⎬

⎭
, (2)

where

Ω =
{

(w, b, ξ) ∈ R
Q×d × R

Q × R
n×Q
+ :

〈wyi − wk, xi 〉 + byi − bk ≥ 1 − ξik, ∀1 ≤ i ≤ n, 1 ≤ k 	= yi ≤ Q

}
,

and ξ ∈ R
n×Q
+ is a slack variable. In the objective function, C

∑n
i=1

∑
k 	=yi

ξik is the hinge
loss term which presents the training classification errors. The remaining term is known as
a regularization. C is a parameter that presents the trade-off between the hinge loss and the
regularizer term.

For feature selection in MSVM, we consider the two sparse MSVM models obtained
from (2) by replacing the second term in the objective function with the �0 and/or the �2–�0
regularization, that lead to the so called �0-MSVM and �2–�0 -MSVM problems defined
respectively by

min
(w,b,ξ)∈Ω

C
n∑

i=1

∑

k 	=yi

ξik +
Q∑

k=1

‖wk‖0 (�0 − M SV M) (3)
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and

min
(w,b,ξ)∈Ω

C
n∑

i=1

∑

k 	=yi

ξik + β

Q∑

k=1

‖wk‖22 +
Q∑

k=1

‖wk‖0 (�2 − �0 − M SV M). (4)

The backbone of our methods is DC programming and DCA whose brief overview will
be given below.

2.2 A brief presentation of DC programming and DCA

DC programming and DCA constitute the backbone of smooth/nonsmooth nonconvex pro-
gramming and global optimization. A general DC program takes the form:

inf{F(x) := G(x) − H(x) : x ∈ R
n}, (Pdc)

where G and H are lower semicontinuous proper convex functions on IRn . Such a function
F is called DC function, and G − H , DC decomposition of F while G and H are DC
components of F . The convex constraint x ∈ C can be incorporated in the objective function
of (Pdc) by using the indicator function on C denoted χC which is defined by χC (x) = 0 if
x ∈ C;+∞ otherwise:

inf{ f (x) := G(x) − H(x) : x ∈ C} = inf{χC (x) + G(x) − H(x) : x ∈ IRn}.
A convex function θ is called convex polyhedral if it is the sum of the maximum of a finite

set of affine functions and the indicator of a nonempty polyhedral convex set K , i.e.,

θ(x) = max
i=1,...,m

{〈ai , x〉 + b, ai ∈ R
n} + χK (x).

Polyhedral DC program occurs when either G or H is polyhedral convex. This class of DC
programs, which is frequently encountered in practice, enjoys interesting properties (from
both theoretical and practical viewpoints) concerning local optimality and the convergence
of DCA (Le Thi and Pham Dinh 2005; Pham Dinh and Le Thi 1997).

A point x∗ is said to be a local minimizer of G − H if G(x∗) − H(x∗) is finite and there
exists a neighbourhood U of x∗ such that

G(x∗) − H(x∗) ≤ G(x) − H(x), ∀x ∈ U . (5)

The necessary local optimality condition for (primal) DC program (Pdc) is given by

∅ 	= ∂ H(x∗) ⊂ ∂G(x∗). (6)

The condition (6) is also sufficient (for local optimality) in many important classes of DC
programs, for example, when (Pdc) is a DC polyhedral program with H being polyhedral
convex function, or when f is locally convex at x∗ (see Le Thi and Pham Dinh 2005; Pham
Dinh and Le Thi 1997, 1998).

A point x∗ is said to be a critical point of G − H if

∂ H(x∗) ∩ ∂G(x∗) 	= ∅. (7)

The relation (7) is in fact the generalized KKT condition for (Pdc) and x∗ is also called a
generalized KKT point.
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DCA is based on local optimality conditions and duality in DC programming. The main
idea of DCA is simple: each iteration of DCA approximates the concave part−H by its affine
majorization (that corresponds to taking yl ∈ ∂ H(xl)) and minimizes the resulting convex
function.

The generic DCA scheme can be described as follows:

DCA-General scheme
Initializations: let x0 ∈ R

n be a best guess, l ← 0.
Repeat

1. Calculate yl ∈ ∂ H(xl).

2. Calculate xl+1 ∈ arg min{G(x) − H(xl) − 〈x − xl , yl〉 : x ∈ IRn}.
3. l ← l + 1.

Until convergence of {xl}.

Convergence properties of DCA and its theoretical basics have been described in Le Thi
and Pham Dinh (2005), Pham Dinh and Le Thi (1997, 1998). However, it is worthwhile to
report the following properties that are useful in the next section (for simplicity’s sake, we
omit here the dual part of these properties).

i) DCA is a descentmethod (without line search): the sequences {G(xl)−H(xl)} is decreas-
ing.

ii) If G(xl+1) − H(xl+1) = G(xl) − H(xl), then xl is a critical point of G − H . In such a
case, DCA terminates at l-th iteration.

iii) If the optimal value α of problem (Pdc) is finite and the sequences {xl} is bounded then
every limit point x∗ of the sequences {xl} is a critical point of G − H .

iv DCA has a linear convergence for general DC programs, and has a finite convergence
for polyhedral DC programs.

v) If H is polyhedral convex and H is differentiable at x∗, then x∗ is a local minimizer of
(Pdc).

A deeper insight into DCA has been described in Le Thi and Pham Dinh (2005), Pham
Dinh and Le Thi (1997), Pham Dinh and Le Thi (1998), Pham Dinh and Le Thi (2014). For
instant it is crucial to note the main features of DCA: DCA is constructed from DC compo-
nents and their conjugates but not the DC function f itself which has infinitely many DC
decompositions, and there are as many DCA as there are DC decompositions. Such decom-
positions play a critical role in determining the speed of convergence, stability, robustness,
and globality of sought solutions. It is important to study various equivalent DC forms of
a DC program. This flexibility of DC programming and DCA is of particular interest from
both a theoretical and an algorithmic point of view. Moreover, with suitable DC decompo-
sitions DCA generates most standard algorithms in convex and nonconvex optimization For
a complete study of DC programming and DCA the reader is referred to Le Thi and Pham
Dinh (2005), Pham Dinh and Le Thi (1997), Pham Dinh and Le Thi (1998), Pham Dinh and
Le Thi (2014) and the references therein.

In the last decade, a variety of works in Machine Learning based on DC programming
and DCA have been developed. The efficiency and the scalability of DCA have been proved
in a lot of works (see e.g. Collobert et al. 2006; Krause and Singer 2004; Le Thi et al. 2006,
2007, 2008a, b, 2015a, b; Le Thi and Phan 2016a, b; Liu et al. 2005; Liu and Shen 2006;
Neumann et al. 2005; Ong and Le Thi 2013; Le Thi and Pham Dinh 2005; Pham Dinh and
Le Thi 1997, 1998, 2014; Ronan et al. 2006).
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3 DC approximation approaches

For simplifying the presentation, we will consider the following common optimization prob-
lem:

min

⎧
⎨

⎩
F(w, b, ξ) +

Q∑

k=1

‖wk‖0 : X = (w, b, ξ) ∈ Ω

⎫
⎬

⎭
, (8)

where F stands for F1 in the �0-MSVM problem, and for F2 in the �2–�0-MSVM problem,
say

F1(w, b, ξ) := C
n∑

i=1

∑

k 	=yi

ξik, (9)

F2(w, b, ξ) := C
n∑

i=1

∑

k 	=yi

ξik + β

Q∑

k=1

‖wk‖22. (10)

Here F1 is a linear function while F2 is a quadratic convex function.
We introduce in this section a class of DC approximation functions of the �0 norm. Define

the step function s : R → R by

s(x) = 1 for x 	= 0 and s(x) = 0 for x = 0.

Then for X ∈ R
n we have ‖X‖0 = ∑n

i=1 s(Xi ). Let ϕθ : R → R be a function depending
on the parameter θ which approximates s(x), say

lim
θ→+∞ ϕθ (x) = s(x), ∀x ∈ R. (11)

For symplifying the presentation, in the sequel, we will omit the parameter θ when this
doesn’t cause any ambiguity. Suppose that ϕ can be expressed as a DC function of the form

ϕ(x) = g(x) − h(x), x ∈ R (12)

where g and h are convex functions. Using this approximation, the �0 term in (8) can be
written as

Q∑

k=1

‖wk‖0 ≈
Q∑

k=1

d∑

j=1

ϕ(wk j ) =
Q∑

k=1

d∑

j=1

g(wk j ) −
Q∑

k=1

d∑

j=1

h(wk j ), (13)

and the problem (8) can be represented as follows:

min
{

G(X) − H(X) : X ∈ R
Q×d × R

Q × R
n×Q

}
, (14)

where

G(X) = χΩ(X) + F(X) +
Q∑

k=1

d∑

j=1

g(wk j ); H(X) =
Q∑

k=1

d∑

j=1

h(wk j ).

Since the functions F, g and h are convex, G and H are convex too. Therefore (14) is a
DC program. Thanks to the general DCA scheme given in Sect. 2, DCA applied on (14) can
be described as follows.
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DCA-dcApp
Initializations: Let τ be a tolerance sufficiently small, set l = 0. Let X0 = (w0, b0, ξ0) be
an initial point.
Repeat

Step 1. Compute wl
k j ∈ ∂h(wl

k j ) ∀k = 1, . . . , Q, j = 1, . . . , d and set Y l = (wl , 0, 0).

Step 2. Compute Xl+1 = (wl+1, bl+1, ξ l+1) by solving the convex optimization problem

min

⎧
⎨

⎩
F(X) +

Q∑

k=1

d∑

j=1

g(wk j ) −
Q∑

k=1

d∑

j=1

wl
k jwk j : X = (w, b, ξ) ∈ Ω

⎫
⎬

⎭
. (15)

Step 3. l ← l + 1.
Until‖ Xl−1 − Xl ‖≤ τ(1+ ‖ Xl ‖).

We consider now usual sparse inducing DC approximation functions ϕ and develop the
corresponding DCA-dcApp to solve the resulting DC program.

First of all, we observe that the implementation of Algorithm DCA-dcApp according to
each specific function ϕ differs from one to another by the computation of wl

k j ∈ ∂h(wl
k j ) in

the step 1, and the subproblem (15) in the step 2.On the other hand,with the same approximate
function ϕ, DCA-dcApp applied on �0-MSVM and on �2–�0-MSVM problems share the
same step 1 and distinguish only on the step 2. We will itemize below the computation of
wl

k j ∈ ∂h(wl
k j ) in the step 1 and the subproblem (15) in the step 2 of Algorithm DCA-dcApp

in each specific case.

3.1 A piecewise exponential approximation

The piecewise exponential function introduced in Bradley andMangasarian (1998) is defined
as follows.

ϕ(x) =
{
1 − ε−αx if x ≥ 0,
1 − εαx if x < 0,

α > 0.

ϕ can be expressed as a DC program of the form

ϕ(x) = g(x) − h(x), g(x) = max{αx,−αx}, h(x) =
{

αx − 1 + ε−αx if x ≥ 0
−αx − 1 + εαx if x ≤ 0.

Clearly, the function h is differentiable and the computation of wl
k j = ∇h(wl

k j ) in the
step 1 of DCA-dcApp is given by

wl
k j =

⎧
⎨

⎩

α
(
1 − ε

−αwl
k j

)
if wl

k j ≥ 0

−α
(
1 − ε

αwl
k j

)
if wl

k j < 0,
k = 1, . . . , Q, j = 1, . . . , d. (16)

The step 2 of DCA-dcApp applied on the �0-MSVM (3) consists in solving the following
convex program

min
(w,b,ξ)∈Ω

C
n∑

i=1

∑

k 	=yi

ξik +
Q∑

k=1

d∑

j=1

max(αwk j ,−αwk j ) −
Q∑

k=1

d∑

j=1

wl
k jwk j (17)
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which can be transformed equivalently to the next linear program

min
w,b,ξ,t

{
C

∑n
i=1

∑
k 	=yi

ξik + ∑Q
k=1

∑d
j=1 tk j − ∑Q

k=1

∑d
j=1 wl

k jwk j

s.t. (w, b, ξ) ∈ Ω, t ≥ αw, t ≥ −αw.
(18)

Finally, DCA-dcApp for solving the �0-MSVM problem (3) with piecewise exponential
(PiE) approximation can be described as follows:

Algorithm 1: �0-DCA_PiE
Initializations: Let ε > 0 be given and X0 = (w0, ξ0, b0) be an initial point. Select α, C
and set l = 0;
Repeat

Step 1. Compute wl via (16) and set Y l = (wl , 0, 0).
Step 2. Compute Xl+1, an optimal solution of the linear program (18).
Step 3. l ← l + 1.

Until ‖Xl−1 − Xl‖ ≤ ε‖Xl‖. For �2–�0-MSVM problem (4), as indicated above, DCA-

dcApp differs from Algorithm 1 by the convex subproblem in the step 2. It is now defined
by

min
w,b,ξ,t

{
β

∑Q
k=1 ‖wk‖22 + C

∑n
i=1

∑
k 	=yi

ξik + ∑Q
k=1

∑d
j=1 tk j − ∑Q

k=1
∑d

j=1 wl
k j wk j

s.t. (w, b, ξ) ∈ Ω, t ≥ αw, t ≥ −αw.
(19)

Hence, DCA-dcApp for solving the �2–�0-MSVM problem (4) with PiE approximation is
depicted below:

Algorithm 2: �2–�0-DCA_PiE
Initializations: Let ε > 0 be given and X0 = (w0, ξ0, b0) be an initial point. Select α, β, C
and set l = 0;
Repeat

Step 1. Compute wl via (16) and set Y l = (wl , 0, 0).
Step 2. Compute Xl+1, an optimal solution of the convex quadratic program (19).
Step 3. l ← l + 1.

Until ‖Xl−1 − Xl‖ ≤ ε‖Xl‖.
3.2 Capped-�1 approximation

The Capped-�1 approximation proposed in Peleg and Meir (2008) is given by

ϕ(x) = min{1, α|x |} = 1 + α|x | − max{1, α|x |}, α > 0.

Let g and h be the functions defined by

g(x) = 1 + α|x |, h(x) = max{1, α|x |}.
Clearly, ϕ = g − h and g, h are convex. Therefore ϕ is a DC function. The computation of
wl

k j ∈ ∂h(wl
k j ) in the step 1 of DCA-dcApp is given by

wl
k j =

⎧
⎪⎨

⎪⎩

0 if − 1/α ≤ wl
k j ≤ 1/α

α if wl
k j > 1/α

−α if wl
k j < −1/α

k = 1, . . . , Q, j = 1, . . . , d. (20)
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Now, the convex subproblem in the step 2 of DCA-dcApp becomes

min

⎧
⎨

⎩
C

n∑

i=1

∑

k 	=yi

ξik +
Q∑

k=1

d∑

j=1

α|wk j | −
Q∑

k=1

d∑

j=1

wl
k jwk j : (w, b, ξ) ∈ Ω

⎫
⎬

⎭
. (21)

The last problem, like (17), is equivalent to the next linear program

min
w,b,ξ,t

{
C

∑n
i=1

∑
k 	=yi

ξik + ∑Q
k=1

∑d
j=1 tk j − ∑Q

k=1

∑d
j=1 wl

k jwk j

s.t. (w, b, ξ) ∈ Ω, t ≥ αw, t ≥ −αw.
(22)

Hence, DCA-dcApp applied on (3) with Capped-�1 approximation is given below.

Algorithm 3: �0-DCA_Cap-l1
Initializations: Let ε > 0 be given and X0 = (w0, b0, ξ0) be an initial point. Select α, C
and set l = 0;
Repeat

Step 1. Compute wl via (20) and set Y l = (wl , 0, 0).
Step 2. Compute Xl+1, an optimal solution of the linear program (22).
Step 3. l ← l + 1.

Until ‖Xl−1 − Xl‖ ≤ ε‖Xl‖.
In case of �2–�0-MSVM problem (4), the convex subproblem takes the form

min
w,b,ξ,t

{
C

∑n
i=1

∑
k 	=yi

ξik + β
∑Q

k=1 ‖wk‖22 + ∑Q
k=1

∑d
j=1 tk j − ∑Q

k=1

∑d
j=1 wl

k jwk j

s.t. (w, b, ξ) ∈ Ω, t ≥ αw, t ≥ −αw.

(23)
ThenDCA-dcApp for solving (4)withCapped-�1 approximation can be presented as follows.

Algorithm 4: �2–�0-DCA_Cap-l1
Initializations: Let ε > 0 be given and X0(w0, b0, ξ0) be an initial point. Select α, β, C and
set l = 0;
Repeat

Step 1. Compute wl via (20) and set Y l = (wl , 0, 0).
Step 2. Compute Xl+1, an optimal solution of the quadratic program (23).
Step 3. l ← l + 1.

Until ‖Xl−1 − Xl‖ ≤ ε‖Xl‖.
3.3 A new piecewise linear approximation

We consider now a new and efficient approximation of �0-norm introduced in Le Thi (2012)
(see also Le Thi et al. 2015b). Let a and b be positive constants, 0 ≤ a < b. Then the
approximate function ϕ(x) is defined as follows (Le Thi 2012):

ϕ(x) = min

{
1,max

{
0,

|x | − a

b − a

}}
.

The function ϕ(x) can be expressed as

ϕ(x) = 1 + max
(
0, |x |−a

b−a

)
− max

(
1, |x |−a

b−a

)

=
(
1 + 1

b−a max(a, |x |)
)

−
(

1
b−a max(b, |x |)

)
.
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Let g and h be the functions defined by

g(x) = 1 + 1

b − a
max(a, |x |); h(x) = 1

b − a
max(b, |x |).

They are clearly convex, and so, ϕ(x) = g(x) − h(x) is a DC function.
Similarly to the case of Capped-�1 approximation, the computation of wl

k j ∈ ∂h(wl
k j ) in

the step 1 of DCA-dcApp is given by

wl
k j =

⎧
⎪⎨

⎪⎩

0 if |wl
k j | ≤ b

1
b−a if wl

k j > b
−1

b−a if wl
k j < −b

k = 1, . . . , Q, j = 1, . . . , d. (24)

The convex subproblem at the step 2 of DCA-dcApp now has the form

min
(w,b,ξ)∈Ω

1

b − a

Q∑

k=1

d∑

j=1

max(a, |wk j |) + C
n∑

i=1

∑

k 	=yi

ξik −
Q∑

k=1

d∑

j=1

wl
k jwk j , (25)

which is equivalent to the following linear program

min
w,b,ξ,t

{
C

∑n
i=1

∑
k 	=yi

ξik + 1
b−a

∑Q
k=1

∑d
j=1 tk j − ∑Q

k=1

∑d
j=1 wl

k jwk j

s.t. (w, b, ξ) ∈ Ω, t ≥ a, t ≥ w, t ≥ −w.
(26)

The description of the DCA-dcApp for solving problem (3) with the piecewise linear (PiL)
approximation is shown below.

Algorithm 5: �0-DCA_PiL
Initializations: Let ε > 0 be given and X0 = (w0, b0, ξ0) be an initial point. Select a, b, C
and set l = 0;
Repeat

Step 1. Calculate Y l = (wl , 0, 0) via (24).
Step 2. Calculate Xl+1, an optimal solution of the linear program (26).
Step 3. l ← l + 1.

Until ‖Xl−1 − Xl‖ ≤ ε‖Xl‖.
For the �2–�0-MSVM problem (4), at the step 2 of DCA-dcApp we have to solve the

following convex quadratic program

min
w,b,ξ,t

{
1

b−a
∑Q

k=1
∑d

j=1 tk j + β
∑Q

k=1 ‖wk‖22 + C
∑n

i=1
∑

k 	=yi
ξik − ∑Q

k=1
∑d

j=1 wl
k j wk j

s.t. (w, b, ξ) ∈ Ω, t ≥ a, t ≥ w, t ≥ −w
. (27)

The description of DCA-dcApp for solving (4) with the PiL approximation is depicted in
the algorithm 6 below.

Algorithm 6: �2–�0-DCA_PiL
Initializations:Let ε > 0 be given and X0 = (w0, b0, ξ0)be an initial point. Selecta, b, β, C
and set l = 0;
Repeat

1. Calculate Y l = (wl , 0, 0) via (24).
2. Calculate Xl+1, an optimal solution of the quadratic program (27).
3. l ← l + 1.

Until ‖Xl−1 − Xl‖ ≤ ε‖Xl‖.
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3.4 SCAD (Smoothly clipped absolute deviation) approximation

The well-known SCAD penalty function as studied in Fan and Li (2001) is defined by

ϕ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λx if 0 ≤ x ≤ λ,

− x2−2αλx+λ2

2(α−1) if λ < x ≤ αλ,

(α+1)λ2

2 if x > αλ,

ϕ(−x) if x < 0,

where λ > 0 and α > 2 are parameters. Let g and h be the functions given by

g(x) = λ|x | and h(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if 0 ≤ x ≤ λ

1
2(α−1) (x − λ)2 if λ < x ≤ αλ

λx − (α+1)λ2

2 if x > αλ

h(−x) if x < 0.

It is easy to verify that g and h are convex functions and ϕ(x) = g(x) − h(x), so ϕ is a DC
function. Moreover, h is differentiable and the computation of wl

k j = ∇h(wl
k j ) in the step 1

of DCA-dcApp is given by the following expression

wl
k j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if |wl
k j | ≤ λ

(wl
k j − λ)/(α − 1) if λ < wl

k j ≤ αλ

(wl
k j + λ)/(α − 1) if − αλ ≤ wl

k j < −λ

λ if wl
k j > αλ

−λ if wl
k j < −αλ

k = 1, . . . , Q; j = 1, . . . , d.

(28)
As with the cases of PiL approximation and Capped-�1 approximation, the step 2 of DCA-
dcApp applied to problem (3) consists of solving the following linear program

min
w,b,ξ,t

{
C

∑n
i=1

∑
k 	=yi

ξik + ∑Q
k=1

∑d
j=1 tk j − ∑Q

k=1

∑d
j=1 wl

k jwk j

s.t. (w, b, ξ) ∈ Ω, t ≥ λw, t ≥ −λw.
(29)

Finally, theDCA-dcApp applied to the �0-MSVMproblem (3)with theSCADapproximation
is described as follows:

Algorithm 7: �0-DCA_SCAD
Initializations: Let ε > 0 be given and X0 = (w0, b0, ξ0) be an initial point. Select α, λ, C
and set l = 0;
Repeat

Step 1. Calculate Y l = (wl , 0, 0) via (28).
Step 2. Calculate Xl+1, an optimal solution of the linear program (29).
Step 3. l ← l + 1.

Until ‖Xl−1 − Xl‖ ≤ ε‖Xl‖.
For problem (4), we need only to replace the linear program in the step 2 of Algorithm 7

with the following convex quadratic program

min
w,b,ξ,t

{
C

∑n
i=1

∑
k 	=yi

ξik + β
∑Q

k=1 ‖wk‖22 + ∑Q
k=1

∑d
j=1 tk j − ∑Q

k=1

∑d
j=1 wl

k jwk j

s.t. (w, b, ξ) ∈ Ω, t ≥ λw, t ≥ −λw.

(30)
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Hence, the DCA-dcApp for solving the �2–�0-MSVM problem (4) with SCAD approxima-
tion is presented in the algorithm 8 below.

Algorithm 8: �2–�0-DCA_SCAD
Initializations: Let ε > 0 be given and X0 = (w0, b0, ξ0) be an initial point. Select
α, λ, β, C and set l = 0;
Repeat

1. Calculate Y l = (wl , 0, 0) via (28).
2. Calculate Xl+1, an optimal solution of the convex quadratic program (30).
3. l ← l + 1.

Until ‖Xl−1 − Xl‖ ≤ ε‖Xl‖.
3.5 A logarithm approximation

Consider now the logarithm (Log) approximation function defined by

ϕ(x) = ρτ log

(
1 + |x |

τ

)
,

where ρτ = 1

log
(
1+ 1

τ

) with τ > 0 being a parameter. This approximation has been used for

feature selection in Weston et al. (2003) and compressed sensing in Candès et al. (2008).
Since log(·) is an increasing function, by introducing the variable v ∈ R

Q×d
+ we can

rewrite the problem (8) as

min
(w,b,ξ,v)∈Ω̃

F(w, b, ξ) +
Q∑

k=1

d∑

j=1

ϕ(vk j ), (31)

where Ω̃ = {(w, b, ξ, v) : (w, b, ξ) ∈ Ω,−v ≤ w ≤ v}.
Let g(x) = 0 and h(x) = −ρε log(1 + x/ε). Clearly, ϕ(x) = g(x) − h(x) and g, h are

convex functions on R+. Then we can express the problem (31) as a DC program

min
{

G̃(X̃) − H̃(X̃) : X̃ = (w, b, ξ, v) ∈ R
Q×d+Q+n×Q+Q×d

}
, (32)

where G̃(X̃) = χΩ̃(X̃)+ F(w, b, ξ) and H̃(X̃) = ∑Q
k=1

∑d
j=1 h(vk j ) are convex functions

on Ω̃ .
DCA applied on the problem (31) amounts to computing, at each iteration l, a subgradient

Ỹ l = (0, 0, 0, vl) ∈ ∂ H̃(X̃ l) with vl
k j = ∂h(vl

k j ) (k = 1, . . . , Q, j = 1, . . . , d) and then,
solving the convex program

min{F(w, b, ξ) − 〈Ỹ l , X̃〉 : X̃ = (w, b, ξ, v) ∈ Ω̃}. (33)

It can be seen that H̃ is differentiable and ∇ H̃(w, b, ξ, vl) = (0, 0, 0, vl), where

vl
k j = ∇h

(
vl

k j

)
= − ρε

vl
k j + τ

, k = 1, . . . , Q, j = 1, . . . , d. (34)

For the �0-MSVM problem (3), i.e. F stands for F1 in (31), problem (33) becomes the
following linear program

min

⎧
⎨

⎩
C

n∑

i=1

∑

k 	=yi

ξik −
Q∑

k=1

d∑

j=1

vl
k jvk j : (w, b, ξ, v) ∈ Ω̃

⎫
⎬

⎭
. (35)
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Hence, DCA for solving the �0-MSVMproblem (3)with Log approximation can be described
as follows.

Algorithm 9: �0-DCA_Log
Initialization Let ε be a sufficiently small tolerance, and X̃0 = (w0, b0, ξ0, v0) be a guess.
Select τ, C and set l = 0;
Repeat

Step 1. Compute vl via (34).
Step 2. Compute X̃ l+1 = (

wk+1, bk+1, ξ k+1, vk+1
)
by solving linear program (35).

Step 3. l ← l + 1.
Until ‖X̃ l−1 − X̃ l‖ ≤ ε‖X̃ l‖.

For the �2–�0-MSVM problem (4), F will stand for F2 in (31). Thus, problem (33) now
becomes the following quadratic program

min

⎧
⎨

⎩
C

n∑

i=1

∑

k 	=yi

ξik + β

Q∑

k=1

‖wk‖22 −
Q∑

k=1

d∑

j=1

vl
k jvk j : (w, b, ξ, v) ∈ Ω̃

⎫
⎬

⎭
. (36)

Consequently, DCA for solving the �2–�0-MSVM problem (4) with Log approximation is
presented below.

Algorithm 10: �2–�0-DCA_Log
Initializations: Let ε > 0 be given and X̃0 = (

w0, b0, ξ0, v0
)
be an initial point. Select

τ, β, C and set l = 0;
Repeat

Step 1. Compute vl via (34).
Step 2. Compute X̃ l+1 = (

wk+1, bk+1, ξ k+1, vk+1
)
, an optimal solution of the convex

quadratic program (36).
Step 3. l ← l + 1.

Until ‖X̃ l−1 − X̃ l‖ ≤ ε‖X̃ l‖.

3.6 Convergence properties

Theorem 1 (Convergence properties of the above 10 DCA based algorithms)

(i) The sequence {G(Xl) − H(Xl)} (resp. {G̃(X̃ l) − H̃(X̃ l)}) is monotonously decreasing.
(ii) In algorithms �0-DCA_PiE, �0-DCA_Cap-l1, �2–�0-DCA_Cap-l1, �0-DCA_PiL, �2–

�0-DCA_PiL, �0-DCA_SCAD (resp. algorithm �0-DCA_Log), the sequences {Xl =
(wl , ξ l , bl)} and {Y l = (wl , 0, 0)} (resp. {X̃ l = (wl , bl , ξ l , vl)} and {Ỹ l = (0, 0, 0, vl)})
converge respectively to X∗ = (w∗, ξ∗, b∗) and Y ∗ = (w∗, 0, 0) (resp. X̃∗ =
(w∗, b∗, ξ∗, v∗) and Ỹ ∗ = (0, 0, 0, v∗)) after a finite number of iterations. Moreover, X∗
(resp. X̃∗) is almost always a local minimizer of problem (3) (resp. (31)).
Especially, for algorithms �0-DCA_Cap-l1 and �2–�0-DCA_Cap-l1 (resp. �0-DCA_PiL
and �2–�0-DCA_PiL), if

w∗
k j /∈

{
− 1

α
,
1

α

}(
resp. w∗

k j /∈ {−b, b}
)

∀k = 1, . . . , Q, j = 1, . . . , d, (37)

then X∗ is actually a local minimizer of problem (3).

Proof (i) is a consequence of the DCA’s convergence property i) mentioned in Sect. 2. We
are going to prove (ii).
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For algorithm �0-DCA_Cap-l1, the second DC component of (14), says H , is polyhedral
convex, so (14) is a polyhedral DC program. By using the DCA’s convergence properties
iv) and v) mentioned in Sect. 2, �0-DCA_Cap-l1 has finite convergence; moreover, if H is
differentiable at X∗, e.g. if the condition (37) holds, then X∗ is a local minimizer of problem
(3). Since a polyhedral convex function is almost always differentiable, say, it is differentiable
everywhere except on a set of measure zero, we can say that X∗ is almost always a local
minimizer of problem (3).
The same arguments are also applied to the cases of �2–�0-DCA_Cap-l1, �0-DCA_PiL and
�2–�0-DCA_PiL.

For algorithm �0-DCA_PiE, since the first DC component G is polyhedral convex, (14)
is a DC polyhedral program, so �0-DCA_PiE has a finite convergence. We consider the dual
problem of (14) in which the second DC component G∗, the conjugate1 of G, is polyhedral
convex. By the same arguments as for algorithm �0-DCA_Cap-l1, we conclude that Y ∗ is
almost always a local minimizer of the dual problem. According to the property of trans-
portation of local minimizers in DC programming (see Pham Dinh and Le Thi 1997; Le Thi
and Pham Dinh 2005), we deduce that X∗ is almost always a local minimizer of problem (3).

For algorithms �0-DCA_SCAD and �0-DCA_Log, the proof is similar. ��

4 A continuous reformulation approach via exact penalty techniques

In this section we reformulate equivalently the problem (8) in the form of a DC program
and develop two DCA based algorithms for solving it. Denote by e the vector of ones in the
appropriate space.

Let u ∈ R
Q×d be the binary variable defined by:

ukj =
{
1 if wk j 	= 0
0 if wk j = 0,

∀k = 1, . . . ; Q, j = 1, . . . , d. (38)

We have
Q∑

k=1

‖wk‖0 =
Q∑

k=1

d∑

j=1

ukj = 〈e, u〉. (39)

Suppose that Ω is bounded in the variable w, i.e. Ω ⊂ [−B,B]Q×d ×R
Q ×R

n×Q
+ for some

B > 0. Then the problem (8) can be expressed as
⎧
⎨

⎩

min(w,b,ξ,u) F(w, b, ξ) + 〈e, u〉
s.t. (w, b, ξ) ∈ Ω,

| wk j |≤ Bukj , ukj ∈ {0, 1}, ∀k = 1, . . . , Q; j = 1, . . . , d.

(40)

Let p : RQ×d ×R
Q ×R

n×Q ×[0, 1]Q×d → R be the function defined as p(w, b, ξ, u) =
p(u) with p : RQ×d → R, p(u) := ∑Q

k=1

∑d
j=1 ukj (1 − ukj ), and let � be the polyhedral

convex set determined by

� :=
{
(w, b, ξ, u) ∈ Ω × [0, 1]Q×d : |wk j | ≤ |Bukj |, ∀k = 1, . . . , Q; j = 1, . . . , d,

}
.

(41)

1 The conjugate G∗ of a convex function G is defined by G∗(Y ) := sup
X

{〈X, Y 〉 − G(X)}.
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We observe that p is concave and p(w, b, ξ, u) ≥ 0∀(w, b, ξ, u) ∈ �. By dint of the exact
penalty technique developed recently in Le Thi et al. (2012), the problem (40 ) is equivalent
to the following continuous optimization problem, with sufficient large positive numbers
η > η0 ≥ 0 (called penalty parameters)

min {F(w, b, ξ) + 〈e, u〉 + ηp(u) : X = (w, b, ξ, u) ∈ �} (42)

We investigate now a DCA scheme for solving (42). Let G and H be the functions defined
by

G(X ) := F(X) + χ�(X )

and

H(X ) := η

Q∑

k=1

d∑

j=1

u2
k j − (η + 1)

Q∑

k=1

d∑

j=1

ukj .

The problem (42) can be expressed as:

min
{

G(X ) − H(X ) : X = (w, b, ξ, u) ∈ R
Q×d+Q+n×Q+Q×d

}
. (43)

Obviously, G and H are convex functions and so ( 43) is a DC program. DCA applied on
(43) consists of computing, at each iteration l,

Yl ∈ ∂ H(X l), X l+1 ∈ argmin
{

G(X ) − 〈Yl ,X 〉 : X ∈ �
}

.

Clearly, H is differentiable and Yl = ∇ H(X l) can be computed directly

Yl = (0, 0, 0, ul), with ul
k j = 2ηul

k j − (η + 1), ∀k = 1, . . . , Q; j = 1, . . . , d. (44)

And X l+1 = (wl+1, bl+1, ξ l+1, ul+1) is an optimal solution of the convex optimization
problem

min
{

F(X) − 〈ul , u〉 : X ∈ �
}

. (45)

Hence, the DCA applied to (43) when F = F1 (the �0 -MSVM problem) is described below.

�0-DCA-Econ
Initializations: Let τ > 0 be given and X 0 = (w0, b0, ξ0, u0) be an initial point. Select
η,B, C and set l = 0.
Repeat

Step 1. Calculate Yl via (44).
Step 2. Calculate X l+1, an optimal solution of the linear program

min

⎧
⎨

⎩
C

n∑

i=1

∑

k 	=yi

ξik − 〈ul , u〉 : X = (w, b, ξ, u) ∈ �

⎫
⎬

⎭
.

Step 3. l ← l + 1.
Until ‖X l−1 − X l‖ ≤ τ‖X l‖.

Remark 1 Note that since G is polyhedral convex, ( 43) is a polyhedral DC program and
then �0-DCA-Econ has a finite convergence. Furthermore, by considering the dual problem
of (43) in which the second DC component is polyhedral convex and using the property v)
mentioned in Sect. 2, we can prove that �0-DCA-Econ converges almost always to a local
minimizer of (43).
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Similarly, theDCAapplied to (43)when F = F2 (the �2–�0-MSVMproblem) is described
as follows:

�2–�0-DCA-Econ
Initializations: Let τ > 0 be given and X 0 = (w0, b0, ξ0, u0) be an initial point. Select
η,B, β, C and set l = 0.
Repeat

Step 1. Calculate Yl via (44).
Step 2. Calculate X l+1, an optimal solution of the convex quadratic program

min

⎧
⎨

⎩
C

n∑

i=1

∑

k 	=yi

ξik + β

Q∑

k=1

‖wk‖22 − 〈ul , u〉 : X = (w, b, ξ, u) ∈ �

⎫
⎬

⎭
.

Step 3. l ← l + 1.
Until ‖X l−1 − X l‖ ≤ τ‖X l‖.

5 Numerical experiments

We have implemented the algorithms in the V.SC++v6.0 environment and performed the
experiments a Intel CoreTM I7 (2× 2.2Ghz) processor, 4GBRAM. The purpose is to clarify
themultiple questions: the �0 or �2–�0 regularizationwhichone is better?What is the approach
advised—the DC approximation or the continuous exact reformulation? And in the DC
approximation approaches, what is the best approximation among several sparse inducing
functions? Is there the consistency among features that are selected from different DCAbased
algorithms?

5.1 Datasets

We consider eight popular datasets often used for feature selection: Lung Cancer (LUN),
Optical Recognition ofHandwrittenDigits (OPT), LibrasMovement (MOV), SemeionHand-
written Digit (SEM), Multiple Features (MFE), CNAE-9 (CNA), Internet Advertisement
(ADV), and ADN. The first 7 datasets are taken from UCI Machine Learning Repository
while the last can be found at ftp://genbank.bio.net. Each dataset is divided into two parts—
the training set and the test set, except for the LUN dataset which contains a very small
number of samples, therefore the whole dataset is used as the training set as well as the test
set. For the OPT dataset, both training set and test set are given in UCI Machine Learning
Repository. For the other 6 datasets, training and test sets are randomly sampled from the
original data with 60% for training and the remaining 40% for testing. We repeat 10 times
this random procedure and get 10 couple of training/test sets of each dataset. These datasets
are described in details in the Table 1.

5.2 Experiment setting

The CPLEX 12.5 solver is used to solve linear and convex quadratic problems.
The parameters are taken as follows: for all methods, the most appropriate values of the

parameter C are chosen by a five-folds cross-validation; β, the coefficient of the �2 term is
set to 0.01; the tolerance τ (in the stopping criterion of DCA) is set to 10−6.

Observe that, theoretically speaking, the larger value of α is, the better DC approximation
of �0-norm would be, while practically, when α is large, the algorithms give sometimes bad
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Table 1 The description of the
datasets

Dataset #Feature #Class #Train #Test

LUN 56 3 16 16

OPT 63 10 3823 1797

ADN 60 3 1913 1273

MOV 90 15 225 135

SEM 256 10 960 633

MFE 649 10 1200 800

CNA 856 9 648 432

ADV 1558 2 1967 1312

local minima. Hence, we use an α updating procedure during the algorithms. Starting with a
small value ofα0,we increase it at each iteration l byαl+1 = αl +Δα until a given thresholdα.
For �0-DCA_PiE and �2–�0-DCA_PiE,α0 = 1.5 andΔα = 0.5, α = 5.5. For �0-DCA_Cap-
l1 and �2–�0-DCA_Cap-l1we setα0 ∈ {0.7, 0.8, 0.9},Δα = 0.2, α = 5.5. For �0-DCA_PiL
and �2–�0-DCA_PiL, we take a = 10−6 and b ∈ {10−4, 10−3, . . . , 10−1, 0.2, 0.3}. The
parameters α and λ in �0-DCA_SCAD and �2–�0-DCA_SCAD are, respectively, set to 3.4
and 0.4 as proposed by Fan and Li (2001). In �0-DCA_Log and �2–�0-DCA_Log, ε is set to
10−4. Finally, for �0-DCA_Econ and �2 -�0-DCA_Econ, the starting value of η is chosen in
{10, 20, . . . , 50} and η is doubled at each iteration until 10, 000. The parameter B is set to
1000.

The starting point w0, u0 and v0 of the DCA based algorithms are randomly chosen in
[−0.5, 0.5]Q×d .

We compare our methods with one of the best algorithms for feature selection in MSVM,
called the Adaptive Sub-Norm (ASN) method (see Zhang et al. 2008 for more details). To
select relevant features, we first compute the feature ranking score c j , j = 1, . . . , d for each
feature (Duan et al. 2005) as follows

c j =
Q∑

i=1

|wi j |.

This ranking score is then normalized. Let ς = max j c j , we compute c j = c j
ς

for each
j = 1, . . . , d . Then, we remove the features j for which c j is smaller than a given threshold
( 0.01 in our experiments). After removing features, for computing the accuracy of classifier,
we apply again �2-MSVM (2) on the new training datasets and calculate the classification’s
accuracy on the new test sets.

5.3 Numerical results

The comparative results of 12 versions of the DCA based algorithms and the concurrent ASN
method are presented in Table 2 (the number and the percentage of selected features) and
Table 3 (the accuracy of classifiers and the CPU time in seconds). On each given couple of
training/test set, each algorithm is performed 10 times. In these tables, the average result (on
10 running times for LUN and OPT, and on 100 running times for the six remaining data)
and its standard deviation are reported.

For an easy observation, the number of selected features and the corresponding accuracy
of classifiers on the �0 model are shown in the Figs. 1 and 2.
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Fig. 1 Selected features (%) of �0-DCAs and ASN

Fig. 2 Accuracy of classifiers (%) of �0-DCAs and ASN

It is interesting to study the consistency of features that are selected from different DCA
based algorithms. In the six last columns of Table 4 we report, respectively, the number of
features selected by six (6Algo), five (5Algo), four (4Algo), three (3Algo), two (2Algo), one
(1Algo) algorithm(s). Here ”Best” (resp. ”Worst”) stands for the number of selected features
of the best (resp. worst) algorithm in terms of sparsity.

5.4 Comments on numerical results

Generally speaking, all the DCA based algorithms applied on the �0 models (�0-DCA) give
a good sparsity of solutions. The percentage of selected features varies from 0.33 to 52.49%.
For the �2–�0 models, the DCA based algorithms (�2–�0-DCA) give similar results to (but
slightly less good than) those of �0-DCA. Both �0-DCA and �2–�0-DCA not only provide
a good performance in term of feature selection, but also give a high accuracy of classifiers
(from 68.75 to 96.88% for the �0 model and from 68.75 to 96.89% for the �2–�0 model).

123



296 Ann Oper Res (2017) 249:273–300

Table 4 Frequency of selected features by 6 DCA based algorithms

Dataset Best Worst 6Algo 5Algo 4Algo 3Algo 2Algo 1Algo

LUN 4 9 2 2 3 2 3 1

OPT 20 37 19 5 4 5 6 5

ADN 5 15 5 1 1 5 0 4

MOV 23 33 4 9 10 8 9 15

SEM 21 70 10 4 4 16 14 31

MFE 15 53 11 19 3 18 23 0

CNA 15 76 4 27 4 7 17 26

ADV 5 33 2 4 5 9 12 21

More specifically, it is worth to mention the following observations which contribute to
clarify the several questions indicated at the beginning of this section.

5.4.1 DCA based algorithms versus ASN

All the DCA based algorithms are better than ASN in terms of feature selection. The gain of
sparsity (the difference of the percentage of selected features) of �0-DCA (resp. �2–�0-DCA)
varies from 1.2 to 46.47% (resp. from 0.47 to 46.45%). The accuracy of classifier of DCA
based algorithms is also better thanASN inmost of cases (except for the logarithmapproxima-
tion Log), and the best DCAversion is always better thanASNon all datasets.More precisely,
�0-DCA (resp. �2–�0-DCA) with PiE, Cap-l1, PiL, SCAD approximation and the exact
penalty continuous approach (Econ) is better than ASN on 6/8, 6/8, 4/8, 7/8, and 5/8 (resp.
6/8, 6/8, 5/8, 7/8, and 6/8) datasets, respectively. As for the computation time, all �0-DCAs are
generally faster than ASN. More precisely, �0-DCA_Log and �0-DCA_Econ are faster than
ASN on 8/8 datasets and the 4 remaining �0-DCAs are faster than ASN on 6/8 datasets. The
gain ratio grows up to 43.32 times (�0-DCA_PiL on MOV dataset). Likewise, all (resp. 5/6)
�2–�0-DCAs are faster than ASN on ADV (resp. OPT) dataset. On the remaining datasets,
some �2–�0-DCAs aremore expensive thanASN: 3/6 (resp. 4/6) �2–�0-DCAs are slower than
ASN on CNA and MFE (resp. MOV and SEM) datasets. The size of the LUN dataset is very
small, hence the difference on CPU running time between the algorithms is not significant.

5.4.2 Approximation approaches versus the exact penalty approach

Numerically, the results are comparable in terms of sparsity and classification accuracy,
i.e. there is no a great difference between these two approaches. This can be justified by a
theoretical result proved in Le Thi et al. (2015b): with a suitable parameter, the resulting
approximation problems using Cap-l1 or SCAD are equivalent to the exact penalized con-
tinuous problem (see Le Thi et al. 2015b for more details). Meanwhile, in some cases the
exact penalty approach is very fast, the gain ratio can grow up to 12 times (SEM dataset, in
comparing with �0-DCA_PiE).

5.4.3 �0 regularization versus �2–�0 regularization

Based on the same approximation function, �0-DCAs are better than �2–�0-DCAs in term
of sparsity on 7/8 (resp. 4/8) datasets with PiE, Cap-l1, PiL, SCAD (resp. Log). Likewise,
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�0-DCA_Econ is better than �2–�0-DCA_Econ on 6/8 datasets. Meanwhile, the accuracy
of classifiers of �2–�0-DCAs are slightly better than that of �0-DCAs (in 6/8 datasets with
PiE, SCAD, Econ, 5/8 datasets with Capped-�1, PiL, and 4/8 datasets with Log). This result
justifies the utility of the �2–�0 regularization, in particular to overcome overfitting. As for the
rapidity, not surprisingly, the �0-DCAs are faster than �2–�0-DCAs, because that �0-DCAs
solve one linear program while �2–�0-DCAs solve one convex quadratic program at each
iteration.

5.4.4 About sparse inducing functions

The classification accuracy of DCA based algorithms with different approximation functions
are comparable: the difference from one to another is less than 3%, except for SEM dataset
where Cap-l1 is considerably better than the others (from 6.45 to 10.66%). Cap-l1, followed
by PiL, gives the best accuracy in most of cases.

However the approximation functions influenced more considerably on the sparsity: the
difference of selected feature varies from 1.16 to 18%.

Overall, Cap-l1 seems to be the best approximation in the sense that it realizes a good
trade-off between sparsity and accuracy. Once again, this result confirms the consistency
property of Cap-l1 proved in Le Thi et al. (2015b).

Concerning the computation time, the comparative results are quite different among the
height datasets and there is no ”winner” on all datasets. Each of �0-DCA_Log and �2–
�0-DCA_Log is the fastest on 3 datasets. For the remaining dataset, each of DCA-PiE,
DCA-Cap-l1, DCA-PiL and DCA-SCAD is the fastest one time.

5.4.5 The consistency of the selected features from different versions of DCA

The results in Table 4 show that there is a consistency of the selected features from different
versions of DCA. Some features are selected by all or most of all algorithms. The high
frequency selection of the features allows us to identify ”important” features.

5.4.6 The connection between the testing datasets and different versions of DCA

We identify only one “strong” connection: �0-DCA_Cap-l1 and �2–�0-DCA_Cap-l1 are
preferred to SEM dataset. Indeed, DCA_Cap-l1 are considerably better than the others on
both classification accuracy (from 6.47 to 10.66%) and sparsity (from 11.94 to 18.04%).
Otherwise, we can say that �0-DCA_PiL is preferred to MFE dataset since it is better than
the others, from2.91 to 5.44%on sparsity and in termsof classification accuracy �0-DCA_PiL
and the exact penalty approach give the best results (with a litle difference 0.53%).

As for the relation between the dataset and CPU running time, for the multi-classification
(i.e. the number of classes is at least 3), the CPU running time depends on the size (the number
of classes × the number of features × the number of samples in the train set) of the dataset.
In general, with the same model (�0 or �2–�0 regularization) the larger size of dataset is, the
more important computation time will be. Indeed, we observe that for all algorithms (except
for �0-DCA-Cap-l1) the MFE dataset (10 × 649 × 1200) is the most expensive among 8
datasets, followed by SEM (10 × 256 × 960) and then OPT (10 × 63 × 3823). The CNA
dataset (9 × 856 × 464) is special, its size is quite large but is not expensive.

Finally, we observe that DCA based algorithms work well on both balanced (the sizes
of classes are relatively equal) and unbalanced datasets. For instance, these algorithms give
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good results for the ADV dataset which has the size of two classes are respectively 319 and
1960.

6 Conclusion

We have developed efficient approaches based on DC programming and DCA for fea-
ture selection in multi-class support vector machine. Based on appropriate approximation
functions of zero-norm and an exact penalty technique, the �0-MSVM and �2–�0-MSVM
problems are reformulated as DC programs. It fortunately turns out that the corresponding
DCA consists in solving, at each iteration, one linear program (in �0 regularization) or one
convex quadratic program (in �2–�0 regularization).Moreover, severalDCAbased algorithms
converge, after a finite number of iterations, almost always to a local solution. Numerical
results on several real datasets showed the robustness, the effectiveness of the DCA based
schemes.We are convinced that DCA is a promising approach for feature selection inMSVM.

By proposing twelve DCA based algorithms we offered to the users a large choice of
suitable algorithms according to their learning situations. From both theoretical and algorith-
mic points of view, �0-DCA is a very efficient approach because that it results in polyhedral
DC programs for which the corresponding DCA requires solving one linear program at each
iteration, and converges after a finite number of iterations to not only a critical point but also
a local minimizer in almost always cases. Especially, the sparse inducing functions such as
Capped-�1 and Piecewise linear are interesting since an explicit local sufficient condition is
available. Overall, to get a good trade-off between sparsity and accuracy by a fast algorithm,
the �0-DCA-Cap-l1 as well as the exact penalty approach �0-DCA-Econ are the best choices.
In particular, Capped-�1 followed by Piecewise linear approximation are very recommended
while Logarithm function is to avoid when the classification accuracy is the most important
criterion, and �2–�0-DCA is not recommended either when the sparsity is the most important
criterion or for massive datasets.

Another important contribution of this paper lies on the determination of the most impor-
tant features in the dataset via the high frequency of selected featureswhen performing several
DCA based algorithms.

This research can be extended to the nonlinear separable case by introducing a kernel in
the MSVM model. Work in this direction is in progress.
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