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Abstract The study proposes a cold chain location-allocation configuration decision model
for shippers and customers by considering value deterioration and coordination by using big
data approximation. Value deterioration is assessed in terms of limited shelf life, opportunity
cost, and units of product transportation. In this study, a customer can be defined as a member
of any cold chain, such as cold warehouse stores, retailers, and last mile service providers.
Each customer only manages products that are in a certain stage of the product life cycle,
which is referred to as the expected shelf life. Because of the geographical dispersion of
customers and their unpredictable demands as well as the varying shelf life of products,
complexity is another challenge in a cold chain. Improved coordination between shippers
and customers is expected to reduce this complexity, and this is introduced in the model
as a longitudinal factor for service distance requirement. We use big data information that
reflects geospatial attributes of location to derive the real feasible distance between shippers
and customers. We formulate the cold chain location-allocation decision problem as a mixed
integer linear programming problem, which is solved using the CPLEX solver. The proposed
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decision model increases efficiency, adequately equates supply and demand, and reduces
wastage. Our study encourages managers to ship full truck load consignments, to be aware
of uneven allocation based on proximity, and to supervise heterogeneous product allocation
according to storage requirements.

Keywords Location-allocation problem · Cold chain configuration · Coordination ·
Big data

1 Introduction

Changes in lifestyle and income increases in developed and developing countries have esca-
lated the demand for healthy and nutritious food products. The demand for frozen food,
currently valued at US$224.74 billion, is projected to reach US$293.75 billion by 2019
(Meneghetti andMonti 2015). Fruits, vegetables, and pharmaceutical goods are typical exam-
ples of perishable products that tend to deteriorate exponentially over time (Bai and Kendall
2008); therefore, monitoring and controlling storage temperature is essential to enhance the
safety and quality of such products. The objective of cold chain configuration design is to
protect perishable products while minimizing cost, waste, and energy. Currently, cold chain
configuration is neither adequately developed nor applicable to bottom line users, who are
highly fragmented and characterized by the many geographically dispersed primary produc-
ers and intermediaries followed by manufacturers, retailers, and so forth. The major reason
for this fragmentation is the supply and demand mismatch which arises from a seasonal
production but a year-long demand requirement. The few attempts that have been made
to equate cold chain demand with supply have resulted in searches for suppliers beyond
regional boundaries. Regulations on products imported by sea are typically different from
those imposed when the same product is produced and consumed locally. This differentiation
is a crucial characteristic to be considered when designing a cold chain distribution network
configuration strategy because the product value and deterioration depends on the product’s
age and not its durability. The specific requirements for storage and transportation configu-
ration under controlled conditions further amplify the complexity that requires customized
strategies to enable efficient functioning of cold chain operations.

High safety and quality requirements for perishable products, particularly food products,
have resulted in considerable wastage, leading to economic and social losses. This is a major
concern in emerging economies, specifically in China, where 370 million tons of fruits and
vegetables (worth 75 billion Yuan), which can feed 200 million people, are wasted annually.
Similarly, in India, poor infrastructure and inadequate monitoring results in substantial (35–
40%) wastage of fruits and vegetables (Shih andWang 2016). The effects of temperature and
time on the internal characteristics of food products are irreversible, which places stringent
requirements on preserving food safety and quality. Food loss is primarily attributed to
inadequate storage infrastructure and inappropriate handling and transportation. Decision
makers at all stages of food manufacturing must differentiate between appropriate use of
frozen storage and cool storage. The aforementioned factors also lead to misinterpretation of
information by multiple actors at various stages (Thakur and Forås 2015).

Food supply chains are similar to value chains except in that the deployment of appropri-
ate refrigeration technology is critical to maintaining the quality, nutritional, and financial
value of the product (Dodd and Bouwer 2014). Although effective cold chain management
primarily decelerates the deterioration of harvested products, it may not necessarily enhance
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the nutritional value. Some attributes that increase the complexity of cold chain are distance,
change of transport, and storage units, as well as other trade and border regulations.

Involvement of heterogeneous customers further complicates the operation and function-
ing of cold chains. The standard location–allocation problem in a conventional supply chain
includes aggregating demand and service requirements by customers rather than by prod-
ucts. However, to develop a suitable cold chain configuration for perishable products, shelf
life and stringent storage requirements are critical factors that must be considered in the
location—allocation decision.

We propose a decision model for analyzing how certain customers identify cold storage
locations and allocate according to the demand for perishable products. In addition to shelf
life,we consider four other factors that aremost essential in location allocation for cold chains:
coordination among fragmented and heterogeneous customers, opportunity cost in terms of
deterioration of value with time, units of product transportation, and distance calculation by
using big data approximation. A critical aspect considered in the model is the difference
between product value and market price. Shelf life represents the marketable life of a product
and not necessarily its physical condition or deterioration rate (Wang et al. 2009).

The present study contributes to the literature on location—allocation by integrating the
aspect of perishability in decision-making. Location—allocation studies that have addressed
durable products have been modeled using customer service requirements. In this study, a
customer is any member of a cold chain, such as cold warehouse stores, retailers, and last-
mile service providers. Each customer can manage only products that are in a certain stage
of the product life cycle, which is referred to as the expected shelf life (ESL). Moreover,
the same product might be required by various customers with different ESL and different
product value on account of order frequency, proximity from point of use (PoU), and selling
market. Geographically fragmented customers with different ESL increase the complexity
of coordination necessary for satisfying demands. Coordination is achieved by selecting and
allocating storage locations that satisfy the ESL of customers. This is incorporated into the
model by translating ESL into a service distance requirement. The proposed model allows
both discrete and continuous transportation units for products. For example, a piecewise
product flows in discrete units, whereas weight (in kilograms) flows in continuous units.
Value for perishable products deteriorates with time (Coelho and Laporte 2014) and unmet
demand for perishable products can then be considered opportunity cost. We define opportu-
nity cost as a value of product ESL perceived by customers that determines the bundling of
products when storage capacity is limited. The study utilizes big data information that reflects
geospatial attributes of location to derive the real feasible distance between shippers and cus-
tomers. The conceptual description of the problem is detailed in Sect. 3. The results of this
study provide several valuable insights into aspects such as full truck load (FTL) shipments,
uneven allocation based on proximity, and heterogeneous product allocation according to
storage requirements. Finally, the role of opportunity cost is illustrated under capacity allo-
cation decision. The optimization model facilitates coordination by encapsulating the service
distance requirement of perishable products to a heterogeneous group of customers.

The remainder of the paper is organized as follows: Sect. 2 presents a discussion of the
literature on cold chain storage requirement and coordination concerns, location–allocation
problem, and summary of the gaps in literature. Section 3 provides a conceptual description
of the problem and is followed by mathematical formulation in Sect. 4 and an illustrative
example in Sect. 5. Finally, the results are discussed in Sect. 6, and the conclusions, prospects
for future research, and limitations of the study are presented in Sects. 7, 8, and 9, respec-
tively.
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2 Literature review

2.1 Cold chain storage requirement and coordination concerns

Cold chain creates customer value by merging logistics activities related to perishable prod-
ucts with prevalent business processes (Shih and Wang 2016). Cold supply chains require
storage and transportation of associated products in temperatures approximately equal to or
less than their freezing points; this places emphasis on appropriate temperature settings in
refrigerated warehouses and trucks to fulfill the needs of the customers. Refrigerant energy
leakage is proportional to the cooling capacity of the system. In conventional supply chains,
the warehouse capacity is dependent on throughput (demand rate) and actual stock-keeping
capacity. However, the operating cost for cold storage increases drastically with the addition
of a refrigeration system; this means that warehouse capacity is influenced by demand pat-
tern, inventory policy, and customer service requirements as well as actual physical capacity
(Saif and Elhedhli 2016). Consideration of customer service requirement is driven by the
shelf life of products: acceptable safety and quality levels should be maintained when the
products reach the customer.

The quality of food products is dependent on the temperature, time, and atmosphere of stor-
age, all ofwhich affect-depending on the sensitivity of the product to time and temperature-the
degree of deterioration of products. The average storage time at distribution centers depends
upon the batch size of transfer between producers and distributors, which influences variable
cost, whereas fixed cost depends on the set-up costs for cooling and treatment units (Zanoni
and Zavanella 2012).

Consolidation in storage for durable products is mostly influenced by external features
such as shape, size, weight, and volume of the products. The ability to share the same storage
space depends on compatibility in terms of the modular design of products, which differs
between perishable and durable products. Different holding temperature requirements restrict
the combining of cold items for shipment and storage. Clustering of cold items, such as dairy
products (milk and chocolate milk) can be facilitated by enabling sharing of storage and
transportation capacity to fulfill the demand requirements (Bozorgi 2016).

Speed, reliability, and specialized transportation and storage units impose additional
requirements on a food supply chain. Modern food chains entail multiple products with
multiple temperature requirements, defying the notion of “one size fits all.” Food contam-
ination depends on external factors (humidity, temperature) and internal factors (microbial
contamination and composition) as well as the duration of exposure to these conditions
(Thakur and Forås 2015).

Chen et al. (2016) identified that uncertain factors, such as weather, temperature, and
customer preferences, influence the demand for agriculture products. China, with its decen-
tralized and complex agriculture configuration, requires an organized farming structure, such
as the facility agricultural supply chain prevalent in EasternChina. The operation of organized
farming is structured to allow supermarkets to order from the facility agricultural enterprises
according to the demand. This further enables the development of a plan for upstream farm
producers through adequate coordination. In China, shortages of third-party logistics (3PL)
warehousing for cold chains are because of the following reasons: (i) low capacity and low
space utilization rate, (ii) low utilization rate per year due to seasonality of the products, (iii)
difficulties in guaranteeing product quality, and (iv) low operational efficiency due to manual
entry and untimely updates (Zhang et al. 2012).
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Dissimilar products should have different types of service levels. Warehouse locations
for frozen products may be located closer to either the harvest (or production) center or
the market. Temperature control ensures food product quality and safety. On the basis of
temperature control, food products can be classified as frozen (lower than −18 ◦C), ambient
(room temperature), and chilled (0−15 ◦C) products, with further diversification or clustering
(Fredriksson and Liljestrand 2015). Frozen food stores in Germany are classified as follows:
(1) plant cold stores (number [n] = approximately 20, temperature [T]< −20 ◦C); (2) central
cold stores (n = approximately 80, T < −24 ◦C); distribution cold stores (n = approximately
200, T< −20 ◦C); freezing cabinets in retail (n = approximately 2×105, T = approximately
−18 ◦C). TheBritish Frozen Food Federation has differentiated primary cold stores for frozen
foods as those with temperatures ranging between−20 and−28 ◦C, with the ability to reduce
the temperature to−18 ◦C andwith a tolerance of 3 ◦C in primary distribution. TheAmerican
Society of Heating, Refrigerating and Air-Conditioning Engineers require temperatures for
frozen food storage to be between−23 and−29 ◦C, whereas the Italian Frozen Food Institute
guidelines suggest a maximum storage temperature of −22 ◦C (Arduino et al. 2015). The
difference in temperature requirements for different countries, stages, and measuring units of
temperature increases complexity in coordination because of the presence of multiple actors
and potential for misinterpretation of information.

Producers and farmers face greater risks and lower margins primarily because of a low
level of consolidation. This has resulted in higher bargaining power possessed by a small
number of retailers in fresh fruits and vegetables supply chains. Farmers are seekingmeasures
to grow either individually or in associated groups or cooperatives to benefit from high levels
of consolidation. The integration needs to be complemented by simultaneous collaboration
with downstream partners. Planning of production associated with farmers is influenced by
external factors related to demand forecasting as well as by internal factors that pertain to the
distribution of demand among associated members. The cooperative structure is not effective
because of asymmetric information and decentralized control, which are primarily attributed
to farmers’ reluctance to share cost structures and expected outputs (Mason and Villalobos
2015).

2.2 Location-allocation problem

Location problems can be depicted on a graph network with nodes (location) and arcs
(distance between locations). Locations on networks are differentiated as either tree-like
structures or with cycles (Tansel et al. 1983). The tree-like structures are utilized when cycles
are expensive, for example, to depict interstate highways. The functions of distance for tree-
like structures functions are often convex, whereas those for cyclic networks are non-convex.
In Daskin et al. (1992), determination of planning horizon for the first period decision served
as an efficient tool for the dynamic uncapacitated fixed-charge location problem.

Facility location problems are of two types: number of facility locations, which is a p-
median problem, and service levels (based on distance), which is set covering problem. Other
types of problems are formulated by combining these aspects with additional criteria. Owen
and Daskin (1998) reviewed decision making methods for facility location problems, includ-
ing p-median, set covering, and p-center problems, and established that the robustness of a
facility location model depends on uncertain future events and changes in the state of the
system. Long-term planning characterizes the complexity and importance of facility location
as it involves high initial investment and uncertainty. Substantial reduction in computational
time was achieved in solving such complex problems by sequential arrangement of inher-
ent quality. Inventory costs at distribution centers and economies of scale associated with
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transportation cost are expected to help in solving the facility location problem (Daskin et al.
2002). Ghaderi and Jabalameli (2013) provided a solution for the longitudinal uncapacitated
facility location-network design problem with budget constraints for opening the facility
and creating links during each period of planning horizon and demonstrated the practical
feasibility of the proposed approach by applying it to health care facilities in Iran.

Warehouse site selection is a strategic decision with high initial investment and requires a
process that integrates both tangible and intangible criteria into the decision-making process.
The analytical hierarchical process (AHP), which is used to link corporate objectives with
site selection criteria in the form of hierarchical relationships, facilitates the prioritization of
warehouse sites (decision alternatives) (Korpela and Tuominen 1996). Fischer (2002) mod-
eled duopolistic location planning with variable locations and prices to reach an equilibrium
price and a sequential problem with the leader assessing the actions of the follower to make
pricing decisions. The effect of knowledge spillovers on location choice for newentrants in the
United States from 1985 to 1994 revealed that firms tend to align physically with locations of
high academic innovationwhile also considering the impact of outward knowledge spillovers.
Technological factors are also attributed to the selection of location sites: less technologically
advanced regions emphasize industrial innovative regions andmore technologically advanced
regions avoid such regions to reduce outward spillover to competitors (Alcácer and Chung
2007). The function for weightage of demand point with time enabled the identification of
optimal locations, relocation times, and total cost (Farahani et al. 2009). Avella et al. (2012)
performed a clustering analysis wherein p facilities (medians) were located by minimizing
the sum of distances from each facility to the nearest facility. Clustering involves grouping
a set of similar patterns into clusters to reduce the size of the problem and further solving
each cluster as a p-median problem. The material location–allocation problem in dual ware-
houses for allocating material quantity between owned warehouses and those rented from
3PL would be beneficial when the storage capacity constraint of manufacturer’s warehouse
requires renting a 3PL warehouse, which incurs storage rental and transportation costs and
excludes the initial investment for the site (Wutthisirisart et al. 2015). Drexl and Schneider
(2015) highlighted using planar locations, instead of any location on plane, to eliminate the
problem of forbidden regions. The authors also emphasized the need for integrating other
logistical factors with the problem to apply a more holistic approach.

2.3 Analyzing real-time data in the cold chain perspective

Tracking technologies vary from paper-based entry to computer-based information technolo-
gies and highly sophisticated biological technologies. Qualitative traceability involves the
ability to trace the physical flow along with additional information on ingredients, quantity,
supplier, producer, and the linkage among them. Moreover, identifying the source of conta-
mination and assessment of variance in quality is helpful. Most food products are treated as
commodities that can be easily substituted, thereby complicating the tracing process (Turi
et al. 2014).

Wang et al. (2015) emphasized the development of real-time environment monitoring to
maintain the safety and quality of perishable food products. Transportation and storage con-
ditions, such as the state of motion of the transporting vehicle, vibrations, unexpected fall,
loading, unloading, and power management in non-joined status, are critical factors affecting
value added attributes of food products. Although installed thermometers and humidity sen-
sors capture the macroscopic environment in warehouses and vehicles, they fail to provide
continuous and microscopic information. The categories and their respective information
attribute characteristics in a food supply chain are as follows: (i) environmental conditions:
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temperature, humidity, and carbon dioxide concentration; (ii) state of motion: abnormal
vibration, unexpected fall, excessive tilt, and illegal opening; (iii) location: geographical
positioning system (GPS) and (iv) network status: voltage network topology.

Various studies have employeddatabases andonline application of temperaturemonitoring
through the application of temperature monitoring technologies. Thakur and Forås (2015)
developed an approach for online temperature monitoring and traceability in a cold chain.
Electronic Product Code Information Services (EPCIS), aweb-based temperaturemonitoring
system, was deployed during various phases of product flow for monitoring temperature and
tracking. Gogou et al. (2015) developed a cold chain database (CCD) tool to manage and
evaluate food products. The tool estimated the product shelf life on the basis of existing or
user-defined kinetic data. Grunow and Piramuthu (2013) estimated the remaining product
shelf life using radio frequency identification (RFID) for waste reduction. Applicability of
RFID use among retailers, distributors, and customers was compared with barcode using
return on investment as a (ROI) measure. Derens-Bertheau et al. (2015) used the real-time-
temperature profile of a Frisbee field test to measure the time–temperature performance of
chilled food.

2.4 Summary of research gaps

An analysis of the literature provided the following insights into the unexplored area of
the location–allocation problem in cold chain configuration, which requires development to
preserve value by ensuring acceptable shelf life quality (Wang and Shih 2016) and empha-
sizing specific storage requirements (Saif and Elhedhli 2016; Zanoni and Zavanella 2012):
First, the necessity to characterize cold chain service requirement on the basis of the product
level (Fredriksson and Liljestrand 2015) with emphasis on addition of touch points to avoid
wastage and uninterrupted supply; second, the misinterpretation of information, because of
different temperature requirements at various stages (Arduino et al. 2015), and asymmet-
ric information and decentralized control (Mason and Villalobos 2015) require coordination
with an initiative originating from mature downstream members; finally, the necessity to
monitor the temperature-time relationship requires the sophisticated use of technology to
ensure safety and quality of products. However, most studies (Wang et al. 2015; Thakur and
Forås 2015; Gogou et al. 2015; Grunow and Piramuthu 2013; Derens-Bertheau et al. 2015
have been conducted at an operational level and not at a planning level. The incorporation
of perishability and deterioration at the planning stage would facilitate the design of a robust
system and form a suitable framework for incorporating such technologies.

The accumulation of extensive quantum diverse datasets in an analytics environment
requires decision makers to devise a mechanism for integrating the two aspects in the eval-
uation of alternatives. Hazen et al. (2016) suggested the need to bridge the gap between
operations research/supply chainmanagement and big data analytics by synergizing decision-
making with quantitative results, transitioning to business analytics, enhancing data quality,
diversifying team structure, and defining a structured plan for alternative selection. Recent
research on big data sets in the operations management domain includes the studies byWang
et al. (2016) which focused on developing a capacitated network design to locate distribution
centers for scattered demand points and Tail and Singh (2016) which focused on the facility
layout problem. Aloysius et al. (2016) investigated the role of technology enablers and pri-
vacy inhibitors in big data customer transactions in the realization of competitive advantage
by retailers. The role of decision-making is altered with the advent of big data, and reading
relevant information is an asset that is expected to assist in achieving the appropriate results
for gaining a competitive advantage.
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The location–allocation problem is a long-range decision problemwith high initial invest-
ment (Owen and Daskin 1998); the addition of product-related aspects (Wutthisirisart et al.
2015) in site selection and allocation requires more attention. Few studies (e.g., Ghaderi and
Jabalameli 2013) have used period data to investigate location–allocation problems under
different environments, thereby complicating the use of such data in cold chain configuration
with a longitudinal product characteristic (shelf life). The use of a seed or potential locations
as input parameters in the model is expected to not only lead to more practical results by
avoiding the possible selection of forbidden locations (Drexl and Schneider 2015) but also
to simplify the modeling of such problems. The attributes of cold chain storage requirements
and coordination aspects are illustrated in Tables 1 and 2, respectively.

Given the gaps in the literature, the current study addresses the following concerns for the
location–allocation problem in cold chain configuration:

(a) Incorporation of perishable product attributes (shelf life, age-based value, or opportunity
cost)

(b) Heterogeneous product-service requirements by different customers
(c) Use of big data in incorporating practical parameters
(d) Coordination to reduce complexity due to fragmentation

3 Problem description

The location–allocation problem in cold chain configuration requires the consideration of
inherent product attributes, such as transient shelf life, storage time at warehouse, and time-
dependent product value. Traditional location–allocation problems have focused specifically
on locations with aggregate weight to minimize the total weighted average distance, which is
subject to demand satisfaction. Product characteristic is a crucial characteristic for location
allocation in cold chains. In this study, we consider a heterogeneous group of customers.
Each customer only manages products that are in a certain stage of the product life cycle,
which is referred to as ESL.

Theobjective of the problem is to identify location(s) on the basis of customer requirements
to meet product demands. Traditional location–allocation problems use location points on a
two dimensional plane and evaluate them numerically to identify these locations. Drexl and
Schneider (2015) suggested that potential locations, instead of locations on the plane, be used
to avoid the problem of forbidden locations. For example, the potential search outcome from
location allocation may result in an isolated location with inadequate infrastructure and other
capabilities. Therefore, understanding the importance of these locations is imperative because
they involve high initial investment and long-term benefits. The existing warehouse(s) along
with a set of seed locations are the potential locations in the model. Furthermore, prospective
potential locations along with existing warehouse(s) are chosen in sufficient numbers and are
densely scattered along the demand grid. We use big data, which actually transforms textual
data into sensible information, for distance calculation to include shelf life in the problem;
detailed descriptions are provided in Sects. 3.1 and 3.2.

3.1 Haversine formula for distance calculation

Sinnott (1984) devised the Haversine formula to calculate the distance between two locations
on the basis of latitude and longitude. The use of Euclidean distance, which is based on point-
to-point straight-line distance, provides the shortest distance between two locations.However,
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the Haversine formula considers the spherical shape of the earth for a more realistic distance
calculation. The distance DistAB between two points A and B using the Haversine formula
is defined as follows in Eq. (1):

DistAB = 2 × R × arcsin

√(
sin2

(Xb−Xa)

2
+ cos (Xa) cos (Xb) sin2

(Yb−Ya)

2

)
(1)

where Xa and Xb are latitudes and Ya and Yb are longitudes for A and B, respectively. R is
the radius of earth in kilometers (km), approximated as 6371 km. We converted latitude and
longitude units from degrees to radians by multiplying the radians terms by (π/180). The
use of latitude and longitude for locations enabled in calculating distance without employing
the use of distance engines with reasonable accuracy compared to actual road distance. It
offered considerable benefit over straight-line distance and adequate approximation of actual
road distance.

Customer service requirement for a product in terms of ESL is translated into a service dis-
tance requirement. The identification of many potential location sites requires determination
of distance matrix from each warehouse to each customer. For instance, with “m” customers
and “n” potential locations, the input requirement would be an m*n distance matrix from
each potential location to each customer. Determining actual road distance from an open
search engine, such as Google, would require considerable time and effort to retrieve sen-
sible information from smaller areas. For example, a smaller area with 10 locations and 20
customers would have 200 possible combinations. In addition, Google has a per day data
retrieval limitation: 2500 times per customer (Google Maps API 2016). Hence, the use of
big data approximation, such as the Haversine formula, will substantially reduce the effort
to transform the distance information from a small combination of (m+n) customers and
warehouse locations.

3.2 Incorporating shelf life in the problem

Perishability of products can be classified in terms of using the product at the right time with-
out considering deterioration, such as previous year’s calendar, and the deterioration of the
product (such as fruits, vegetables, and medicines) with respect to time (Coelho and Laporte
2014). Our model addresses the second category, namely deterioration of product value with
respect to time or before the expiry date. The inability to use the product within the shelf life
results in wastage of the product. Therefore, to reduce the wastage of perishable products,
researchers and practitioners worldwide should address the issue at a strategic or design
level. The location–allocation process typically begins with the identification of location(s);
the selection of location depends on the product of total weighted distance and aggregate
demand. The concern of similar and different products perishability along with heteroge-
neous shelf life is considered in the location–allocation problem. Our model is applicable at
a strategic level and is expected to aid in future location selection.

Our model derives the time dimension from four sources, such as distance, average speed
of the vehicle, shelf life, and ESL. We assume that the shelf life of a product includes three
phases: storage time at the warehouse (or location), transit time, and ESL requirement for
customer, as demonstrated in Fig. 1. The service distance is calculated using Eq. (2). The
allocation of customer and product to a particular location is competed on the basis of the
comparison between actual and service distance and is expected to be less than or equal to
service distance. The difference between shelf life and ESL provides the maximum available
time for transportation, which is used as service distance requirement in the problem.
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Shipper 
Storage time at 

Warehouse 

Transit time 
(If Actual 

distance <= 
Service 

distance) 

Customer 
ESL for product 

Shelf life of product 

Fig. 1 Shelf life distribution of a product required at customer point

Fig. 2 Market price versus expected shelf life of Product A for various customers

Service Distance Requirement = (Shel f li f e − ESL)X Avg. speed of vehicle (2)

For example, consider a product “A” with a shelf life of “T” time units reaching storage
location at time “t”. The location–allocation problem is based on the remaining time (T–t)
for product A. Product A is required by a heterogeneous group of customers with different
remaining shelf life requirement (ESL) according to order frequency and proximity from the
PoU and different product values according to market price. The market price versus remain-
ing shelf life requirement (ESL) for product A for different customers is shown in Fig. 2.

Shelf life is the marketable life of a product and may not necessarily represent the deteri-
oration rate of the product (Wang et al. 2009). Product value is different from market price
because it captures the deterioration effect with respect to increase in time. The rate of product
value deterioration depends on the controlled environment that the product is stored in. The
linear relationship assumption between deterioration and time for products with a shelf life
of 5 period units deteriorate at a rate of US$10 per period is shown in Fig. 3. The aforemen-
tioned factor is considered in the model as opportunity cost that includes the combined effect
of ESL and opportunity cost factor per period. Figure 2 shows that product value depends on
market price. The model can be used to determine the optimal bundling of products on the
basis of the cost function. In other words, considering opportunity cost prioritizes cumulative
product value for customers to identify relative worth of fulfilling versus not fulfilling the
demand. The preceding scenario is applicable when the capacities of potential warehouses
that provide the product to the customer are less than the demand for the product.
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Fig. 3 Illustration of deterioration of product value with time

3.3 Assumptions

Cold chain location–allocation problem is formulated on the basis of the following set of
assumptions:

(i) Transportation cost is directly proportional to the distance. Similarly, aggregate demand
and FTL deliveries tariff charge is directly proportional to the distance.

(ii) All locations, inclusive of potential warehouses and customer points, are located within
a bounded habitual region. This is to satisfy the land transportation mode.

(iii) The shelf life for a product denotes the duration of time left for the product after it
reaches the storage location (fixed in this case) by incorporating time spent in upstream
operations. Thus, the product always reaches with the same shelf life at the storage
location.

(iv) The product value decreases linearly with time because of deterioration.
(v) Products are constantly available in cold storage for instant allocation.

4 Mathematical formulations

The cold chain location–allocation configuration is formulated as a mixed integer linear
programming (MILP) problem for location selection and allocation of products based on
customer service requirements with warehouse storage capacity constraints. The inclusion of
ESL and service requirements allows coordination between warehouse and customer points.
Tables 3, 4, 5, and 6 depict indices, set of entities, input parameters, and decision variables
used in the model, respectively.

SDR jip = (SL p − ESLip) × AvgSpeed, ∀ j ∈ W, i ∈ D, p ∈ P (3)

Dist ji = 2 ×R × arcsin

√
sin2

(
Xi − X j

2

)
+ cos(Xi)×cos(X j) × sin2

(
Y i − Y j

2

)
,

∀ j ∈ W, i ∈ D (4)
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Table 3 Model indices Index Description

i Customer points

j Potential locations (g) and existing warehouse (h)

k Locations

p Products

Table 4 Set of entities used in
model

Sets Description

D Set of m customer points

W Set of n warehouse locations with n1 potential (G) and
n2 existing warehouse locations (H), n = n1 + n2

L Set of all locations, L = D ∪ W

P Set of |P| products

Table 5 Model input parameters

Notations Description

Xk Latitude of location k, k ∈ L

Yk Longitude of location k, k ∈ L

LocT ypk Type of location k(demand or storage), k ∈ L

ProdT ypp Type of product p (continuous or discrete), p ∈ P

UoMtoKgp Conversion factor for Unit of Measure (UoM) of product p to Kg, p ∈ P

SL p Shelf life of product p, p ∈ P

ECper H Rp Energy consumed per Hour for cold storage of product p, p ∈ P

AvgSpeed Average speed of vehicle

UBCap j Annual upper bound for capacity of warehouse j , j ∈ W

FixCostg Fixed Cost for opening of new warehouse g, g ∈ G

ClosCosth Cost for closing of existing warehouse h, h ∈ H

EnerCostperUnit j Energy cost per unit of warehouse j , j ∈ W

Demip Annual demand for product p by customer point i , i ∈ D, p ∈ P

ESLip Remaining Shelf life (ESL) for product p by customer point i ,
i ∈ D, p ∈ P

OpporCostip Opportunity cost for product p by customer point i per period per unit,
i ∈ D, p ∈ P

AggOpporCostip Aggregate Opportunity cost for product p by customer point i ,
i ∈ D, p ∈ P

Dist ji Distance between warehouse j and customer point i , j ∈ W, i ∈ D

EnergyConsum jip Energy consumed for product p stored at warehouse j moved to customer
point i , j ∈ W, i ∈ D, p ∈ P

BigMi A large value for customer point i based on total demand for all products
and maximum service distance, i ∈ D

θ j i p Service level parameter for serving customer i from warehouse j for
product p within desired distance, j ∈ W, i ∈ D, p ∈ P
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Table 6 Decision variables

Notations Description

WHOpeng Boolean variable for opening of warehouse g, g ∈ G

WHClosh Boolean variable for closing of existing warehouse h, h ∈ H

ShipBVjip Boolean variable to indicate a positive flow from warehouse j to customer point i for
product p, j ∈ W, i ∈ D, p ∈ P

ShipQty jip Quantity flown from warehouse j to customer point i for product p (Discrete or
continuous based on product p), j ∈ W, i ∈ D, p ∈ P

UnmetDemip Unmet demand for customer point i for product p (Discrete or continuous based on
product p), i ∈ D, p ∈ P

θ j i p =
{
1, i f Dist j i ≤ SDR jip

0, otherwise
, ∀j ∈ W, i ∈ D, p ∈ P (5)

EnergyConsum jip =ECper H Rp×
(
SL p−ESLip−

(
SDR jip−Dist ji

AvgSpeed

))
×θ j i p,

∀ j ∈ W, i ∈ D, p ∈ P (6)

BigMi =Max

⎧⎨
⎩

⎛
⎝ |P|∑

p=1

Demip×Max{Dist ji }
⎞
⎠ , Max{FixCostg}, Max{ClosCosth}

⎫⎬
⎭,

∀i ∈ D (7)

AggOpporCostip = OpporCostip × ESLip × BigMi ,∀i ∈ D, p ∈ P (8)

Equations (3) and (4) calculate service distance requirement and actual distance, as illustrated
in Sects. 3.1 and 3.2. Equation (5) indicates service level parameter θ j i p for serving a customer
when actual distance is less than or equal to service distance requirement. Equation (6)
evaluates energy consumption on the basis of the duration of a product at the warehouse.
From Sect. 3.2, we can calculate storage time at the warehouse by deducting ESL and transit
time from shelf life. Equation (7) is the big value for each customer and is estimated as the
maximum value among all other cost components apart from opportunity cost to derive an
appreciably higher value in the objective function. Equation (8) is aggregate opportunity cost
for a product unsold with remaining ESL. It uses the BigM factor to calculate the opportunity
cost for not meeting the demand. However, when the warehouse capacity under the service
requirement is limited, this coefficient determines the least costly product bundling given the
capacity constraints. Perishable products are valued on the basis of age and opportunity cost,
which denotes the loss incurred for not selling a particular valued product (Assumption iv in
Sect. 3.3). The derived parameters in Eqs. (3)–(8) represent approximation of big data used
in the model.

The location–allocation MILP problem is formulated with the objective of minimizing
transportation cost (weighted distance), opportunity cost (unmet demand), cost incurred in
consumption of energy, fixed cost for opening a newwarehouse, and cost incurred for closing
an existing warehouse. The objective function for the problem is presented the Eq. (9).

Minimize:

TotalCost = TransCost + OpportunityCost + NewWHOpenCost

+ ExistW HClosCost + EnergyCost (9)
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subject to

n∑
j=1

ShipBVjip ≤
n∑
j=1

WHOpen j ,∀i ∈ D, p ∈ P (10)

ShipBVjip ≤ WHOpen j × θ j i p,∀ j ∈ W, i ∈ D, p ∈ P (11)

ShipQty jip ≤ (ShipBVjip × Demip × θ j i p), j ∈ W, i ∈ D, p ∈ P (12)
m∑
i=1

|P|∑
p=1

(ShipQty jip ×UoMtoKgp) ≤ (WHOpen j ×UBCap j ),∀ j ∈ W (13)

n∑
j=1

ShipQty jip +UnmetDemip = Demip,∀i ∈ D, p ∈ P (14)

WHOpenh + WHClosh = 1,∀h ∈ H (15)

TransCost =
n∑
j=1

m∑
i=1

(Dist ji ×
|P|∑
p=1

ShipQty jip) (16)

OpporCost =
m∑
i=1

|P|∑
p=1

(UnmetDemip × AggOpporCostip) (17)

NewWHOpenCost =
n1∑
g=1

(WHOpeng × FixCostg) (18)

ExistW HClosCost =
n2∑
h=1

(WHClosh × ClosCosth) (19)

EnergyCost =
n∑
j=1

⎛
⎝EnerCost PerUnit j

×
m∑
i=1

|P|∑
p=1

(ShipQty jip × EnergyConsum jip)

⎞
⎠ (20)

ShipQty jip andUnmetDemip decision variables may be either continuous or discrete (float
or integer), depending on the type of the product illustrated by parameter ProdT ypp . The
model ensures allocated quantity flow between warehouse and customer point depending on
the product type. Hence, although all types of products are incorporated, allocation is based
on product type.

Constraint (10) imposes restriction on the allocation of a product to a customer point
from among maximum number of open warehouses. Constraint (11) imposes a restriction
on customer points served by open warehouses when the actual distance is less than or equal
to the service distance constraint. Constraint (12) imposes the same restriction on quantity
dispatched from open warehouses to a customer point to be less than or equal to the demand
for the product. The aforementioned two constraints are related to perishability, ensuring
that the customer point receives the product at acceptable quality (i.e., within the ESL), thus
enabling coordination between the warehouse and customer point.
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Table 7 Location information

Location ID Location description Location type Latitude (◦) Longitude (◦)

C1 Customer Demand 29.87 121.54

C2 Customer Demand 30.89 120.09

C3 Customer Demand 29.71 116.00

C4 Customer Demand 29.99 120.59

WH1 Potential location Warehouse 30.27 120.16

WH2 Potential location Warehouse 30.75 120.76

WH3 Potential location Warehouse 28.68 115.86

WH4 Existing cold storage Warehouse 29.99 122.21

WH5 Potential location Warehouse 28.86 121.15

WH6 Potential location Warehouse 27.99 120.70

WH7 Potential location Warehouse 28.66 121.42

WH8 Potential location Warehouse 29.27 117.18

WH9 Potential location Warehouse 29.08 119.65

WH10 Potential location Warehouse 28.47 119.92

Constraint (13) ensures that the warehouse storage capacity is within the upper bound
capacity. Different products might have different units of measurement (UoM) and are there-
fore multiplied by the UoM factor for converting all units into kilogram (kg). Constraint
(14) is the demand-balance equality. Constraint (15) identifies the existing warehouses that
are closed. The objective function includes the demand fulfillment cost (transportation cost),
unmet demand cost (opportunity cost), energy cost, and fixed cost for opening and closing
the warehouse. Because the value of opportunity cost is relatively lesser in magnitude when
compared with the other costs, the model optimizes by not meeting the demand because the
cost of meeting demand exceeds that of the unmet demand. Constraints (16)–(20) represent
various cost components that are used for minimizing total cost in the objective function.
The bounds for decision variables are stratified by type in Table 6.

5 An illustrative example

A hypothetical location–allocation problem is illustrated using real-time geographical coor-
dinates of locations in the Zhejiang and Jiangsi provinces in China. The current configuration
comprises an existing cold storagewarehouse serving as amajor customer point. The increase
in both magnitude and number of customer points along with storage facility capacity con-
straint results in more wastage and loss of sales. In addition to the existing warehouse, a
set of nine warehouse sites, evenly distributed across the region, is considered as potential
locations for establishing storage facilities. Location information with latitude and longitude
are depicted in Table 7. The geographical distribution of locations is presented in Fig. 4.
The product information in Table 8 describes whether a product is continuous or discrete;
the UoM, a factor for converting demand into kg and shelf life into hours; and energy con-
sumed per hour. The shelf life denotes the time left for the product after it reaches the storage
location. Tables 9 and 10 denote the demand and warehouse data. The average speed of the
transport vehicle is assumed to be 50km/h.
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Fig. 4 Geographical presence of locations

Table 8 Product attributes

Product ID Product type Product UoM Demand conver-
sion factor (kg)

Shelf life (h) Energy consumed
per Hour

P1 Continuous Liter 0.9 12 0.026

P2 Discrete EA 1.1 8 0.010

P3 Discrete EA 1.5 4 0.059

Table 9 Demand data

Customer ID Product ID Quantity Expected Shelf Life
(ESL) (h)

Opportunity Cost ($
per unit per period)

C1 P1 449 4 1.7

C1 P2 400 2 0.8

C2 P3 80 1 2.2

C3 P2 200 2 0.5

C4 P2 350 4 1.2

6 Results and discussions

6.1 Computational result

The location–allocationMILPproblem is solved using the IBMconcert technology onC#.Net
platform using a library from CPLEX 12.5 solver. The computations are executed on a
system equipped with 4GB RAM, and input data is read from the MS Access database.
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Table 10 Warehouse data

Warehouse ID Upper cap. bound
(kg)

Fixed cost ($) Closing cost ($) Energy cost per
unit ($/(KW-h))

WH1 600 1,000,000 0 0.555

WH2 400 1,000,000 0 0.555

WH3 400 1,000,000 0 0.537

WH4 500 0 100,000,000 0.555

WH5 500 800,000 0 0.555

WH6 390 743,000 0 0.555

WH7 350 890,000 0 0.555

WH8 400 1,000,000 0 0.537

WH9 95 650,000 0 0.555

WH10 178 950,000 0 0.555

Results of the allocation of demand quantity to a warehouse are depicted and summarized in
Table 11. The results suggest that when warehouses WH1, WH3, and WH6 were opened in
addition to the existing warehouse (WH4), the total cost incurred was US$2,887,489, with
fixed cost component contributing 95% to the value of $2,743,000. The transportation cost
measured as weighted average amounted to $144,465, but it might substantially vary from
the actual transportation cost depending on factors such as shipping schedule, tariffs, and
load.

6.2 Managerial implications

6.2.1 Operational constraint for small shipments

The solution reveals that a small proportion of demand for product P1 allocated to customer
point C1 was divided between WH1 and WH6, primarily because of the total cost reduction.
The crucial point to be considered in this situation is assessing the operational complexity
of coordination for such small shipments with multiple storage locations. The consideration

Table 11 Summary of allocation quantity for customer points with warehouses

Customer
ID

Product ID Warehouse
ID

Distance (Km) Quantity allo-
cated (UoM)

Quantity UoM Quantity
allocated (kg)

C1 P1 WH1 141 0.44 L 0.40

C1 P1 WH4 65 448 L 403.20

C1 P1 WH6 224 0.56 L 0.50

C1 P2 WH1 141 86 kg 94.60

C1 P2 WH4 65 88 kg 96.80

C1 P2 WH6 224 226 kg 248.60

C2 P3 WH1 69 80 kg 120.00

C3 P2 WH3 115 200 kg 220.00

C4 P2 WH1 52 350 kg 385.00
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of product compatibility during storage and transportation should be considered further to
evaluate the possibility of combining P1 and P2 for C1 from these locations, which might
offset the disadvantage of small loads. If such combining is not possible, then the evaluation
of opportunity cost allows for eliminating the product with a lesser value. The absolute cost
magnitude might not reveal the actual situation, but a relative comparison of cost structures
is an adequate indicator for such analysis involving site selection.

6.2.2 Multiple sourcing and warehouse capacity planning

Figure 5 provides insights into warehouse site selection, mapping of customer with ware-
house, and distance coverage for each warehouse (maximum service distance). Customer
point C1 was served by warehouses WH1, WH4, and WH6, with different distances for two
products P1 and P2. Although product P1 was served from the nearest warehouse (WH4),
product P2 was served by the three warehouses, with the majority of demand allocated to
the highly distant warehouse (WH6). Therefore, several aspects should be considered during
allocation and warehouse capacity planning.

The model utilizes constraints on capacity for warehouse and service distance of product
in allocating demand to multiple warehouses. Both products P1 and P2, having different
storage requirements, were sourced from three warehouses, and the decision makers had to
consider the allocation of storage capacity for these products to ensure operational feasibility.

The initial fixed cost related to land and equipment was an approximation and decision
makers had to further evaluate deployment of storage equipment type with its capacity.

Fig. 5 Location allocation flow and maximum service distance for warehouses
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Fig. 7 Percentage of product type allocated to each warehouse

Warehouses close to customers fully used their capacity compared with the distant
warehouses having ineffective capacity utilization (Fig. 6). This aspect provides valu-
able insights regarding the amount of investment for land area on the basis of capacity.
Because closer warehouses (WH1 and WH4) are fully utilized, evaluating the possibility
of leasing or buying more land space at those locations must be considered. Similarly, the
prospect of reducing capacity for distant warehouses (WH3 and WH6) must be evaluated.
Because demand volumes are predicted by considering the growth in future requirements,
utilizing unwanted buffer may not be necessary. Storage capacity should be maintained
at a higher utilization rate (approximately 75–80%) for distant warehouses. Intuitively,
maintaining greater capacity at near locations, particularly for perishable products, is rea-
sonable.
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Amajor aspect of allocation and capacity decision-making is identifying storage allocation
for different products. The demand for product P2 was uniform across regions, whereas that
for products P3 and P1 was higher in the north and east region, respectively, based on
warehouse locations (Fig. 7). The market distribution of products across geography will
further aid in determining the capacity for storage equipment.

The aforementioned aspects, particularly relating to the capacity utilization for selected
warehouses and product category distribution across regions, are expected to refine the deci-
sions in the allocationof storage capacity for different equipment.Thedecisionsmust consider
the technology aspect of storage and the possibility of product consolidation.

6.2.3 Product allocation under limited capacity

Various opportunity costs are associated with different products. To understand the effect of
opportunity cost, we must consider the capacity limitations; namely, if the same capacity is
to be allocated among two product categories, then the demand has to be met by fulfilling the
product that has a higher opportunity cost. Therefore, we modified the inputs in our problem
by introducing the demand for products P1 and P2 for customer C2 with 200 units each,
with the ESL of 8 and 4 time units and opportunity cost per period per unit as US$1.7 and
US$1.2, respectively. Furthermore, warehouse WH2 was removed and the capacity of WH1
was reduced to 400kg. Thus, we had customer C2 with a demand for all three products P1,
P2, and P3 and only one prospective warehouse to serve the demand. The model was run
with modified input parameters to understand the effect of opportunity cost under capacity
limitations. The results revealed that the demand of product P3 for customer C2 was not
satisfied because it had least opportunity cost per unit among the three products.

The practical implication of the preceding illustration is relevant when the potential sites
offer limited capacity and the appropriate bundling of products to be allocated is determined
with minimal loss of opportunity cost. Although the role of transportation cost is questioned
at this instance, because we primarily focus on perishability and have allocated an extremely
high penalty for not meeting the demand, compared with that for not meeting the other costs,
the effect of opportunity cost is evident only among the product.

7 Conclusions

The location–allocation problem for perishable products in a cold chain configuration war-
rants focus on specific attributes, such as shelf life, physical demand locations, and units of
product transportation, while emphasizing the need for safety and quality of products. The
study contributes to the location–allocation literature by including an additional dimension
of perishability. Location–allocation studies have modeled durable products using customer
service requirements. This study is formulated a MILP problem with the aim of minimiz-
ing transaction costs in occupying new resources (warehouses) or discarding of existing
resources (existing warehouse) with coordination between the entities (in the form of shelf
life). The study incorporated big data as a substitute to real data, the retrieval of which might
require more effort and time. Various big data approximations, such as the Haversine for-
mula to calculate distance between two locations, service level computation, storage time, and
consideration for deterioration of value (opportunity cost), are used in the model. Previous
studies on perishable products have primarily focused on inventory and planning problems
with longitudinal data. The existing location–allocation solutions for the identification of the
most suitable location site have been based on Greenfield analysis and aggregate demand.
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The current study attempts to combine the location–allocation of perishable products for
heterogeneous demand customers with varied requirements. The common goal of demand
satisfaction, in addition to quality and safety requirements, requires institutional innovation
between members to ensure fulfillment. The study applies a logical location–allocation sys-
tem for cold chain configuration. The cold chain configuration model can help managers to
identify prospective alternatives (location sites) from among a set of potential locations in
appreciable time with big data approximations and cold chain characteristics for rapid and
reliable results.

8 Future research directions

The location–allocation problem provides an alternative solution for the selection of loca-
tion site from among a set of prospective locations and allocation between customer points.
The result provides an efficient solution by considering capacity, deterioration, and shelf life
(customer service requirement), which are typical characteristics of a cold chain. The study
addresses the unexplored gap in cold chain and location–allocation literature by incorporating
practical aspects with aid of real location data. However, the study is built on certain assump-
tions, which must be considered during its application. The problem provides a directional
result that requires additional evaluations with alternate analysis at tactical and operational
levels. The transportation cost evaluated at a flat level can become more evident if there is
an estimation of cost function with distance based on road infrastructure, logistic service
providers (LSPs) accessibility, tariffs, and other factors. Another area that can increase the
robustness of the model is the identification of the deterioration rate function for different
products under a controlled environment. This will enable in evaluating value on the basis
of age, opportunity cost of lost sales, and waste. Multiple touch points, rather than a single
touch point, can be introduced to allocate demand for widely scattered customers at remote
locations. Testing the model and its variants using large datasets and various instances, with
a focus on reduction of the computational effort and identification of ill conditioning, is also
a major prospect for future studies.

9 Limitations of study

The preceding discussions have highlighted the boundaries of cold chain location–allocation
problem. The location–allocation model is widely considered a strategic decision problem
and can be extended to understand tactical- and operational-level decisions. The result is a
directional indication of the prospective locations and must be verified with other operational
costs related to transportation and inventory. The transportation cost is calculated on the basis
of high level assumptions of positive linear dependency with distance, without applying
differential tariff rates. However, in practical situations, the tariffs are charged on the basis of
weight bracket for shipment of less than truck load (LTL) and as a flat tariff for FTLs. The cold
chain location–allocation problem does not consider the frequency of shipments, differential
rate structures based on route, and storage aspects. Therefore, location–allocation must be
used in conjugation with other tactical approaches in choosing relevant alternatives from
among a set of decision alternatives. Moreover, the perishability of products in a controlled
environment may not be linear, and the determination of deterioration rate would provide a
more accurate insight into the fulfillment of service level.
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