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Abstract We study a single machine scheduling problem with two competing agents and
earliness measures. Given a common deadline for all the jobs of both agents, the objective
function isminimizing the total weighted earliness of the first agent, subject to an upper bound
on the maximum earliness of the jobs of the second agent. This problem was recently proved
to be NP-hard, leaving the question of the complexity class open. We introduce a pseudo-
polynomial dynamic programming algorithm, implying that the problem is NP-hard in the
ordinary sense. An extensive numerical study indicates that the dynamic programming is very
effective for solving medium size instances. We also propose an efficient heuristic, which is
shown numerically to produce very close-to-optimal schedules. The dynamic programming
algorithm is extended to any (given) number of agents, proving NP-hardness in the ordinary
sense of the general multi-agent setting. Finally, we study the inverse problem of minimizing
themaximumearliness of one agent subject to an upper bound on themaximum totalweighted
earliness of the second agent. We introduce a pseudo-polynomial dynamic programming
algorithm, a simple greedy-type heuristic and a lower bound. Our numerical tests verify that
the heuristic produces very small optimality gaps.

Keywords Two-agent scheduling · Single machine · Earliness · Dynamic programming

1 Introduction

The area ofmulti-agent scheduling deals with a setting of several agents (producers) using the
same processor (machine). Each of the agents has a set of jobs, and each aims to minimize
a scheduling measure depending on the completion times of his jobs. A growing number
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of papers (starting with Baker and Smith 2003 and Agnetis et al. 2004), studying various
models of multi-agent problems, have been published in the last decade. A list of representing
papers contains: Agnetis et al. (2007), Wan et al. (2010), Mor and Mosheiov (2011), Li and
Hsu (2012), Cheng et al. (2013), Donatas and T’kindt (2014), Gawiejnowicz and Suwalski
(2014), and Oron et al. (2015). We refer the reader to a recently published book (Agnetis
et al. 2014), which summarizes the current knowledge in this area.

In this paper we study a two-agent scheduling problemwith earlinessmeasures. It appears
that very few researchers have studied multi-agent scheduling settings in a Just-In-Time
environment (where the objective function consists of both earliness and tardiness). The
short list of relevant references contains: Zuobao andWeng (2005), and Gerstl andMosheiov
(2013, 2014). According to Agnetis et al. (2014), only two published papers focused solely
on earliness measures: Mor and Mosheiov (2010) studied two-agent problems, where one
agent minimizes the maximum or the total (weighted) earliness, given an upper bound on
the maximum earliness of the second agent; and Yin et al. (2012) studied similar problems
with linear deterioration of the job processing times. More recently, Cheng (2014a) studied
another version of the above problem with time-dependent job deterioration, and Cheng
(2014b) focused on a setting where the second agent’s earliness and tardiness are bounded.
The following problem was studied in the former two papers: given a common deadline for
all the jobs of both agents, the objective function is minimizing the total weighted earliness
of the first agent subject to a common upper bound on the maximum earliness of the jobs of
the second agent. Mor and Mosheiov (2010) proved that this problem is NP-hard, and the
question whether the problem is NP-hard in the ordinary sense remained open.

We focus here on this two-agent problem. First, we prove that the problem is NP-hard in
the ordinary sense by an introduction of a pseudo-polynomial dynamic programming (DP)
algorithm. We perform an extensive numerical study in order to measure the running time
of the DP as a function of the input size. Problems of 200 jobs (of each of the two agents)
with job processing times bounded by 100 were solved in less than 37s, utilizing no more
than 3GB. We also introduce an efficient heuristic, which produced very small optimality
gaps: the average optimality gap, for example, for 200-job problems was 1.002. Then, we
extend the setting to that of multi-agents. Mor and Mosheiov (2010) proved that the case of
an arbitrary number of agents is NP-hard in the strong sense.We extend the abovementioned
(pseudo-polynomial) DP to a setting of a given number of agents, implying that this more
general setting remains NP-hard in the ordinary sense. In the last section, we study the inverse
problem ofminimizing themaximum earliness of one agent, subject to an upper bound on the
maximumweighted earliness of the other agent. We introduce a pseudo-polynomial dynamic
programming for this (NP-hard) problem aswell. Our numerical tests indicate that theDPwas
not practical for large size problems (the running time required for solving a 50-job problem
was about 30 s). We thus introduce a simple greedy-type heuristic and a lower bound. The
heuristic was tested numerically against the tight lower bound, and was shown to produce
very close-to-optimal schedules (e.g., the average optimality gap for 200-job problems was
1.002). Given the above results, we claim that the construction of the Pareto optimal set is
obtained in pseudo-polynomial time as well.

It should be noted that there is some symmetry between the problem studied here (min-
imum total weighted earliness of one agent subject to an upper bound on the maximum
earliness of the second agent), and the problem of minimizing total weighted job completion
times of one agent subject to an upper bound on the maximum completion time of the second
agent. The latter was proved by Agnetis et al. (2004) to be NP-hard. Kellerer and Struse-
vich (2010) introduced a pseudo-polynomial dynamic programming for the problem, and
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designed a fully polynomial-time approximation scheme. Despite the symmetry, the solution
procedures of the two problems appear to be quite different.

In Sect. 2 we introduce the formulation of both problems. Section 3 contains the DP
algorithm, and a report on its numerical performance. In Sect. 4 we introduce the heuristic
and the results of our numerical study. Section 5 addresses the general setting of multi-agents.
Section 6 focuses on the inverse problem, and contains an introduction of the relevant DP,
the greedy heuristic and the lower bound.

2 Formulation

Two agents, denoted A and B, share a common processor. Agent A has a set J A of nA

jobs. Similarly, Agent B has a set J B of nB jobs. The processing time of job j in the sets
J A and J B is denoted by pA

j , j = 1, . . . , nA, and pBj , j = 1, . . . , nB , respectively. Let

PA = ∑nA

j=1 p
A
j

(
PB = ∑nB

j=1 p
B
j

)
denote the total processing time of the jobs of Agent

A (B). Also, let pA
max = max

{
pA
j , j = 1, . . . , nA

}
and pBmax = max

{
pBj , j = 1, . . . , nB

}

denote the maximal processing time among all the A-jobs and the B-jobs, respectively.
Following Mor and Mosheiov (2010), we assume a common deadline for all the jobs of both
agents, denoted by D. (In order to guarantee feasibility we require D ≥ PA + PB . Note
that D > PA + PB leads to an optimal schedule with a single idle time interval prior to the
first job, and no idle time between consecutive jobs. We thus, assume for convenience that
D = PA + PB , implying that all the jobs are processed continuously in the interval [0, D].)

For a given job sequence, CA
j

(
CB

j

)
denotes the completion time of job j of Agent

A (B). The earliness of job j ∈ J A is given by E A
j = max

{
0, D − CA

j

}
. Similarly, the

earliness of job j ∈ J B is given by EB
j = max

{
0, D − CB

j

}
. Let wA

j denote the weight

of job j ∈ J A. The total weighted earliness of Agent A is given by
∑nA

j=1 wA
j E

A
j . Let

EB
max = max

{
EB

j , j = 1, . . . , nB
}
denote the maximum earliness incurred by any of the

B-jobs.
The first problem studied in this paper is, as mentioned above, of minimizing the total

weighted earliness of the A-jobs, subject to an upper bound (U ) on the maximum earliness
value of the B-jobs. (We assume that U < D − pBmax . Otherwise, a trivial solution is
obtained by scheduling all the B-jobs first, followed by the A-jobs. On the other hand, in
order to guarantee feasibility U ≥ PB − pBmax .) Formally, we solve the following problem:

1/d j = D(deadline)/
∑nA

j=1
wA

j E
A
j : EB

max .

The second problem studied here is the inverse problem, i.e., that of minimizing the
maximum earliness of Agent B subject to an upper bound (U ) on the total weighted earliness
of Agent A:

1/d j = D (deadline)/EB
max :

∑nA

j=1
wA

j E
A
j .
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3 A dynamic programming algorithm for 1/d j= D(deadl ine)/
∑nA

j=1w
A
j E

A
j :EB

max

We start by introducing several properties of an optimal schedule. The proofs are provided
in “Appendix 1”.

Property 1 An optimal schedule exists in which all the jobs of Agent B are scheduled (con-
tinuously) in a single block.

Property 2 An optimal schedule exists in which the largest B-job is scheduled first in the
block of the B-jobs.

Property 3 An optimal schedule exists in which the A-jobs are scheduled in (at most) two
blocks, and the jobs in each block are ordered in a non-increasing order of pA

j /wA
j .

Based on these properties, we propose in the following a pseudo-polynomial dynamic
programming (DP) solution algorithm. We assume first that the starting time of the block of
the B-jobs (denoted by t) is given. The completion time of the B-block (by Property 1) is
t + PB . We now specify all the relevant t values. Recall that U is the maximum allowable
earliness value on the B-jobs. Thus, let the first scheduled B-job be completed at time D−U .
Given Property 2, we assume that the largest B-job (whose processing was denoted pBmax )
is scheduled first. This case clearly reflects the minimal possible starting time of the B-
block: tmin = D −U − pBmax (since any schedule containing a B-block starting prior to tmin

violates the upper bound constraint.) It follows that t ≥ tmin . The maximum possible t value
is specified in the following:

Property 4 An upper bound on the starting time t of the B-block in an optimal solution is
given by tmin + max

{
pA
max , p

B
max

}
.

Based on Property 4, we claim that in order to find an optimal schedule, our proposed DP
should be repeated for all relevant t-values: tmin ≤ t ≤ tmin + max

{
pA
max , p

B
max

}
. Due to

Property 3 we sort the A-jobs in a non-decreasing order of pA
j /wA

j . For this sorted sequence,

we calculate the partial sums: PA
j = ∑ j

i=1 p
A
j , j = 1, . . . , nA.

For a given block of the B-jobs in the interval [t, t + PB], we introduce a DP consisting
of the following state variables:

j− the number of A−jobs already scheduled;
e− the total load (i.e., total processing time) of the A-jobs scheduled already after the

B-block. (Note that the completion time of this subset of A jobs is exactly D, and its starting
time is D − e. It follows that the remaining A-jobs, which are processed continuously, are
completed at time t and start at time t − (PA

j − e); see Fig. 1.)

Let ft ( j, e) denote the optimal total weighted earliness of the jobs j + 1, j + 2, . . . , nA

(of Agent A), given a total load e of the A-jobs scheduled after the B-block that starts at time
t .

At each stage, the DP considers two options (for given t, j and e): (i) schedule the next
A-job as late as possible after the B-block (i.e., to be completed at time D − e), or (i i)
schedule the next A-job as late as possible prior to the B-block (i.e., to be completed at time
t−(PA

j −e)). Note that for a particular t-value, it is possible that both options (i) and (i i) are
feasible, that only option (i) is feasible, that only option (i i) is feasible, or that both options
are infeasible.

123



Ann Oper Res (2017) 253:227–245 231

Fig. 1 The state variables and the relevant measures of the DP for minimizing total weighted earliness of the
jobs of Agent A, given an upper bound (U ) on the maximum earliness of the jobs of Agent B

The recursion is given in the following:

ft ( j, e)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
ewA

j+1 + ft
(
j + 1, e + pA

j+1

)

∞

}
i f t + PB + pA

j+1 + e ≤ D
otherwise

{(
D − t +

(
PA
j − e

))
wA

j+1 + ft ( j + 1, e)

∞

}
i f P A

j+1 − e ≤ t
otherwise

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

The boundary conditions are:

ft
(
nA, e

)
= 0, e = 0, 1, . . . , D − (t + PB).

The solution is given by: ft (0, 0).
As mentioned above, the DP needs to be repeated for all relevant t-values (tmin ≤ t ≤ tmin+
max

{
pA
max , p

B
max

})
, and the global optimum is obtained by:

min
{
ft , tmin ≤ t ≤ tmin + max

{
pA
max , p

B
max

}}
.

Theorem 1 The DP finds the optimal solution in O
((
nA

)2
pA
maxmax

{
pA
max , p

B
max

})
time.

Proof Eachexecutionof theDP (for a given t-value) requiresO
(
nAP A

) = O
((
nA

)2
pA
max

)
,

since j is bounded by n and e is bounded by PA. The DP is repeated no more than

max
{
pA
max , p

B
max

}
times. It follows that the total running time is: O

((
nA

)2
pA
maxmax

{
pA
max , p

B
max

})
. ��

We refer the reader to “Appendix 2” for a numerical example (Example 1) demonstrating a
solution of a problem consisting of 7 A-jobs and 7 B-jobs.

Numerical Tests: We performed a numerical study in order to evaluate the performance of
the proposed DP. Specifically, we measured the running time and storage requirement as a
function of the number of the (A) jobs, and the maximum processing time. We considered
nA = nB = 25, 50, 75, 100, 125, 150, 175, 200. The job processing times of both agents A
and B were generated uniformly in the interval [1, 100]. (Note that, in fact, for Agent B only
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Table 1 Average and worst case
running times and memory usage
of the DP algorithm as a function
of the number of (Agent A) jobs

nA Average running
time (s)

Worst case running
time (s)

Memory
usage (MB)

25 0.58 0.62 51

50 2.29 2.73 198

75 4.88 5.23 440

100 9.00 9.81 778

125 13.75 15.93 1211

150 19.68 20.90 1739

175 25.31 26.61 2363

200 33.54 36.42 3082

the total job processing time and the maximum processing time are relevant pieces of data.)
The job weights (of Agent A) were generated uniformly in the interval [1, 100]. After the
processing times were generated, the total loads (PA, PB and D) were computed, and the
upper bound on the maximum earliness of Agent B was generated uniformly in the interval
[PB − pBmax , D − pBmax ].

For each nA value, 20 instances were generated and solved, and the running time was
measured. Table 1 contains the average and the worst case running times, and the RAM
(Random Access Memory) usage for each problem set. The DP was programmed in C, and
executed on a Macintosh with a 2.8GHz Intel Core i7 processor.

Table 1 indicates that the DP solves relatively large problems in very reasonable time.
Specifically, solving problems of 200 jobs of Agent A and 200 jobs of Agent B required
33.5 s on average, and the worst case running time did not exceed 36.4 s. In terms of storage
requirements, solving these instances required 3.01GB.
Comment: Note that the entire Pareto optimal set is obtained in pseudo-polynomial time. The
DP should be repeated for all possible U values. Recall that PB − pBmax ≤ U < D − pBmax .
It follows that the DP should be performed O(PA) times.

4 A heuristic

The above numerical study verifies that the proposedDP appears to performwell for instances
of up to 200 jobs. For larger instances, the DP becomes impractical, and an efficient heuristic
seems to be necessary. Mor andMosheiov (2010) proposed an O(nlogn) heuristic for a more
general case of multi-agents, based on assigning the jobs of the B-agents as early as possible,
and then scheduling the A jobs from D backwards in a non-decreasing order of pA

j /wA
j . We

adapted this heuristic for the special case of two agents: we first scheduled the B-block as
early as possible (with the largest B-job scheduled first in the block), subject to the upper
bound on their maximum earliness. Then we scheduled the A jobs (which are sorted in a
non-decreasing order of pA

j /wA
j ) from D backwards. If a positive time interval still remains

after the B-block, the starting time of the B-block is delayed, such that this interval is closed.
Then, the remaining A jobs are scheduled backwards until time zero. The formal algorithm
(denoted Heuristic 1) is provided in the following:
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Theorem 2 Heuristic 1 runs in O(n logn) time.

Proof Heuristic 1 consists of n iterations, each one is performed in constant time. Hence,
the total running time is O(n logn) (due to the initial sorting procedure). ��

Since the optimality gaps in some test cases were not sufficiently small, we propose in the
following a simple and fast improvement procedure.When scheduling the A-jobs backwards,
we reach the point where the current A-job in the list cannot be assigned to the remaining
interval after the B block (the interval is smaller than the job’s processing time). We now
look for the next A job in the list, which is sufficiently small to be assigned to this interval. If
such a job exists, it is scheduled in the interval. If a positive time interval still remains after
the B block, then, as above, the starting time of the B block is delayed, such that this interval
is closed. Then, the remaining A jobs are scheduled backwards until time zero. It should
be emphasized that although in most cases this additional procedure improves the results,
for some instances the value of the weighted earliness may increase. We thus, perform this
additional procedure, and clearly choose the new schedule only in case of improvement. The
formal algorithm (denoted Improved Heuristic 1) is provided in the following:
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Table 2 Optimality gaps obtained by Heuristic 1 and Improved Heuristic 1

nA Heuristic 1 Improved Heuristic 1

#opt Av. opt gap Worst case #opt Av. opt gap Worst case

25 11 1.021 1.090 11 1.009 1.049

50 3 1.023 1.077 8 1.007 1.041

75 1 1.017 1.044 4 1.004 1.020

100 4 1.013 1.034 5 1.005 1.022

125 3 1.009 1.021 3 1.003 1.010

150 0 1.008 1.024 0 1.002 1.004

175 0 1.007 1.019 0 1.002 1.007

200 0 1.006 1.013 0 1.002 1.012

Theorem 3 Improved Heuristic 1 runs in O(n logn) time.

Proof The additional procedure of moving a single job to be processed after the B-block
clearly does not change the running time, which remains O(n logn). ��
Numerical Tests: We tested both Heuristic 1 and Improved Heuristic 1. We compared the
heuristics’ results with those obtained by the DP. Again, we considered nA = nB =
25, 50, 75, 100, 125, 150, 175, 200. As above, the job processing times of both agents A and
B and the job weights of Agent Awere generated uniformly from the interval [1, 100]. Given
the job processing times and the total loads (PA, PB and D), the upper bound (U ) on themax-
imum earliness of Agent B was generated uniformly in the interval [PB − pBmax , D− pBmax ].

For a given nA value, 20 problems were generated. Each problem was solved first by
Heuristic 1 and by the dynamic programming algorithm. The optimality gap was calculated.
Then, Improved Heuristic 1 was performed, and the new optimality gap was calculated. For
each problem set, the number of optimal schedules obtained by the heuristics, and the average
and the worst case optimality gaps were calculated. The results are reported in Table 2.

Table 2 indicates that Improved Heuristic1 performs extremely well. For example, the
average optimality gap for 100-job problems (which were solved in less than 1ms) was
1.005. Given these results, it seems clear that Improved Heuristic1 is a practical procedure,
which is appropriate for real-life settings.

5 A general multi-agent setting

In the following we focus on the more general setting of multi agents. We define A-type
agents as agents who need to minimize the total weighted earliness of their jobs. Similarly,
each of the B-type agents has an upper bound on the maximum earliness of his jobs.

First, consider a setting of several A-type agents and a single B-type agent. This setting is
easily shown to be reduced to a two-agent setting, since all the jobs of the A-type agents can
be aggregated into one set of a single (A) agent. Even the more general case, where different
A-agents have different weights, can be reduced to a two-agent problem. Consider the case
of two A-agents with weights θ1 and θ2, respectively. The objective function is minimum

θ1

(∑nA1

j=1 w
A1
j E A1

j

)
+θ2

(∑nA2

j=1 w
A2
j E A2

j

)
. This function can be replaced by:

∑nA

j=1 wA
j E

A
j

where wA
j = θ1w

A1
j for j ∈ J A1 and wA

j = θ2w
A2
j for j ∈ J A2 .
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Consider now a setting of m B-type agents and a number of A-type agents. First, as
explained above, the A-type agents are aggregated into a single agent. The problem is reduced
to that of m B-type agents and a single A-type agent. If m is not part of the input (i.e., is
not a given constant) the problem is known to be NP-hard in the strong sense (see Mor and
Mosheiov 2010). We thus consider in the following the case of a given m(≥ 2) value. We
show that the pseudo-polynomial DP introduced in Sect. 3 can be extended to a setting of two
or more B-agents, implying that this more general problem remains NP-hard in the ordinary
sense.

For ease of exposition we focus in the following on the case of two B-agents (m = 2). [For
the case of general m (m ≥ 2), we refer the reader to “Appendix 3”.] We extend the notation
accordingly. Agent Bi has a set J Bi of nBi jobs, i = 1, 2. The processing time of job j in the

set J Bi is denoted by pBij , j = 1, . . . , nBi , i = 1, 2. Let PBi = ∑nBi
j=1 p

Bi
j denote the total

processing time of the jobs of Agent Bi , i = 1, 2. Let pBimax = max
{
pBij , j = 1, . . . , nBi

}

denote the maximal processing time of the jobs of Agent Bi , i = 1, 2. The common deadline
for all the jobs of all agents is D = PA + ∑2

i=1 P
Bi . Let Ui be the upper bound on the

maximum earliness of Bi agent , i = 1, 2. Let ti denote the starting time of block Bi , i = 1, 2.
First, we claim that Properties 1, 2 and 3 are easily extended to this new setting as

follows:

Property 1 (m = 2): An optimal schedule exists in which all the jobs of agents B1 and B2

are scheduled (continuously) in a single block, respectively.

Property 2 (m = 2): An optimal schedule exists in which for both agents B1 and B2, the
largest job is scheduled first in his block, respectively.

Property 3 (m = 2): An optimal schedule exists in which the A-jobs are scheduled in (at
most) 3 blocks, and the jobs in each block are sequenced in a non-increasing order of pA

j /wA
j .

It should be noted that according to Property 3 (m = 2) the number of B-blocks may
reduce to one. This will happen when the two B-blocks are processed continuously with no
A-jobs among them.

Without loss of generality we assume t1 ≤ t2 (the B-blocks are renumbered according to

their processing order). Thus, a lower bound on t1 is given by: t B1min =
{
D −U1 − pB1max

}
.

An upper bound (to avoid a trivial solution, see Property 4) is t B1min +
{
pA
max , p

B1
max

}
. For any

realization of t1, a lower bound on t2 is t
B2
min = max

{
D −U2 − pB2max , t1 + PB1

1

}
. Thus, the

upper bound on t2 is t
B2
min + max

{
pA
max , p

B2
max

}
. Formally,

Property 4 (m = 2): An optimal schedule exists such that the starting times of the Bi -

blocks are bounded by: t B1min ≤ t1 ≤ t B1min + max
{
pA
max , p

B1
max

}
, and t B2min ≤ t2 ≤ t B2min +

max
{
pA
max , p

B2
max

}
.

As mentioned, the A-jobs are scheduled in (at most) 3 blocks. For convenience we denote
them by A1 (the earliest), A2 and A3 (the latest). Following the DP introduced for two agents,
our extended DP assigns A-jobs in each block from the end towards the beginning. Hence
we initially sort the jobs in a non-decreasing order of pA

j /wA
j (Property 3). The extended DP

requires the following state variables:
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j The number of A−jobs already scheduled;
e1 The total processing time of the A-jobs scheduled after block B1 and prior to block B2.
e2 The total processing time of the A-jobs scheduled after block B2.

Note that PA
j − e1 − e2 is the total processing time of the A-jobs scheduled prior to block

B1. All three A-blocks are scheduled in non-increasing order of job processing times. The

first block of the A-jobs is processed in the interval [t1 −
(
PA
j − e1 − e2

)
, t1]. The second

block of the A-jobs is processed in the interval [t2 − e1, t2]. The third block of the A-jobs is
processed in the interval [D − e2, D].

Let ft1,t2 ( j, e1, e2) denote the optimal total weighted earliness of the jobs j + 1, j +
2, . . . , nA (of Agent A), given a total load of ei of the A-jobs scheduled in block Ai (after
the Bi -block that starts at time ti ), i = 1, 2.

At each stage, the DP considers 3 options: (i) schedule the next A-job as late as possible
prior to the first A block; or (i i) schedule the next A-job as late as possible prior to the second
A block; or (i i i) schedule the next A-job as late as possible prior to the third A block. The
recursion is given in the following:

ft1,t2 ( j, e1, e2)

= min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ (
D − t1 +

(
PA
j − e1 − e2

))
wA

j+1 + ft1,t2 ( j + 1, e1, e2)

∞

}
i f P A

j+1 − e1 − e2 ≤ t1
otherwise

{
(D − t2 + e1) wA

j+1 + ft1,t2
(
j + 1, e1 + pA

j+1, e2
)

∞

}
i f t1 + PB1 + e1 + pA

j+1 ≤ t2
otherwise

{
e2wA

j+1 + ft1,t2
(
j + 1, e1, e2 + pA

j+1

)

∞

}
i f t2 + PB2 + e2 + pA

j+1 ≤ D
otherwise

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The boundary conditions are:

ft1,t2 = ft1,t2
(
nA, e1, e2

)
= 0, e1, e2 = 0, 1, . . . , PA, e1 + e2 ≤ PA.

The solution is given by: ft1,t2 (0, 0, 0).
TheDPneeds to be executed for all relevant combinations of t1 and t2, leading to the following
total running time:

Theorem 4 TheDPfinds theoptimal solution in O
((
nA

)3
(pA

max )
2 ×

(
max

{
pA
max , p

B1
max

})

×
(
max

{
pA
max , p

B2
max

}))
time.

Proof Each execution of the DP (for given t1 and t2) requires O
(
nA

(
PA

)2
)

=
O

((
nA

)3
(pA

max )
2
)
. The DP is repeated no more than

(
max

{
pA
max , p

B1
max

})

×
(
max

{
pA
max , p

B2
max

})
times. Therefore, the total running time is:

O

((
nA

)3
(pA

max )
2 ×

(
max

{
pA
max , p

B1
max

})
×

(
max

{
pA
max , p

B2
max

}))

.

��

As mentioned above, we refer the reader to “Appendix 3” for generalization of the DP to the
setting of any given m (m ≥ 2) B-Agents.
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6 A dynamic programming algorithm for 1/d j = D(deadl ine)/

EB
max : ∑nA

j=1w
A
j E

A
j

In this section we focus on the inverse problem of minimizing the maximum earliness of
Agent B, subject to an upper bound on the total weighted earliness of Agent A. This problem
is NP-hard since the original problem was proved to be NP-hard. (Recall that the recognition
version of both problems is identical:

1/d j = D (deadline)/EB
max ≤ U1 : ∑nA

j=1 wA
j E

A
j ≤ U2 for two given upper boundsU1 and

U2.) We thus introduce a dynamic programming algorithm, which is an adaptation of the DP
introduced in Sect. 3. First, it is easily verified that Property 1 (a single B-block), Property 2
(the largest B-job is scheduled first), andProperty 3 (A-jobs are scheduled in a non-increasing
order of pA

j /wA
j ), continue to hold. The new Property 4 (referring to the possible starting

time t of the B-block) is the following:

Property 4′ The starting time t of the B-block is bounded to bewithin the interval [0, D−PB].
Proof Trivial. Due to the common deadline D, the B-block cannot start after D − PB .

Given these properties, we propose in the following a dynamic programming algorithm
which is a minor modification of the one introduced in Sect. 3. For a given t value, we use
the same state variables: j–the number of A−jobs already scheduled; e–the total processing
time of the A-jobs scheduled after to the B-block. As above, ft ( j, e) denotes the optimal
total weighted earliness of the jobs j + 1, j + 2, . . . , nA (of Agent A), given a total load e of
the A-jobs scheduled after the B-block that starts at time t . The recursion and the boundary
conditions remain valid. The optimal total weighted earliness (for a given t) is given by
ft (0, 0). After performing the DP for a given t-value, we check whether the solution is
feasible: if ft (0, 0) ≤ U2 then the solution is feasible and is registered. The DP is repeated
for all relevant t values (according to Property 4′), and the optimal t value is given by:
topt = argmax{ ft (0, 0) ≤ U2; t = 0, . . . , D − PB}. The optimal maximal earliness of
Agent B is given by EB

max = D − topt − pBmax . (Note that ft (0, 0) is not necessarily
monotone in t , implying that a binary search is not sufficient, and all the t values in the
interval [0, D − PB] need to be checked.) ��
Theorem 5 The DP finds the optimal solution in O

((
nA

)3 (
pA
max

)2
)
time.

Proof The running timeof theDP for a given t-value remainsO
(
nAP A

) = O
((
nA

)2
pA
max

)
.

The DP is repeated D − PB = PA times, implying that the total running time is:

O
((
nA

)2
pA
max P

A
)

= O
((
nA

)3 (
pA
max

)2
)
. ��

Heuristic and Lower Bound: While the pseudo-polynomial DP proves that

1/d j = D(deadline)/EB
max : ∑nA

j=1 wA
j E

A
j is NP-hard in the ordinary sense, it appears to

be not very practical. A 25-job problem (where job processing times are generated uniformly
from the interval [1, 100]) is solved in 3.7 s on average, and the worst case requires 4.4 s. A
50-job problem requires 29.6 s on average, and the worst case time becomes 36.8 s. We thus
introduce in the following a simple heuristic and a lower bound.

The proposed heuristic is of a greedy type. We start with an initial solution in which all
the jobs of Agent A are scheduled continuously (in a non-increasing order of pA

j /wA
j ), in

the interval [0, PA]. The B-block is scheduled after the A jobs, in the interval [PA, D]. The
total weighted earliness of Agent A is calculated, and if it exceeds the upper bound (i.e., if
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∑nA

j=1 wA
j E

A
j > U ), the last scheduled A job (immediately preceding the B-block) and the

B-block are replaced. It is clear that the new schedule has a smaller
∑nA

j=1 wA
j E

A
j value, (but

larger EB
max value). The new weighted earliness of Agent A is calculated, and if it becomes

feasiblewe stop. Otherwise, another replacement is performed. The procedure continues until
a feasible schedule is reached. The formal algorithm (denoted Heuristic 2) is the following:

Theorem 6 Heuristic 2 runs in O(n logn) time.

Proof Step 2 is performed at most n times, and each iteration requires constant time, leading
to an O(n) effort. Hence, the total running time is O(n logn) (due to the initial sorting
procedure). ��

In order to evaluate the heuristic’s performance a tight lower bound is required. Such a
lower bound is trivially obtained by considering the initial sequence of the A-jobs (sorted in a
non-increasingorder of pA

j /wA
j ), and assigning the B-block as late as possible,while allowing

job preemption. Formally, we start with the B-block assigned to the interval [PA, D], and at
each iteration it is moved to start a single unit of time earlier. The lower bound is obtained
when a (preempted) schedule is reached with total weighted earliness of Agent A, which is
not larger than the upper bound U .
We refer the reader to “Appendix 2” for a numerical example (Example 2). In this example
all relevant values are calculated: the optimum obtained by the DP, the result of Heuristic 2
and the value of the lower bound.
Numerical tests: we tested the performance of Heuristic 2 against the above proposed lower
bound. As above, we considered nA = nB = 25, 50, 75, 100, 125, 150, 175, 200, the job
processing times of both agents A and B and the job weights of Agent A were generated
uniformly in the interval [1, 100], and the upper bound (U ) on the maximum earliness of
Agent B was generated uniformly in the interval [PB − pBmax , D − pBmax ].

Again, for a given nA value, 20 problems were generated. Each problem was solved
by Heuristic 2 and the lower bound was calculated. The optimality gap (EB

max/LB) was
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Table 3 Optimality gaps
obtained by Heuristic 2 nA Average optimality gap Worst case

25 1.0200 1.0383

50 1.0107 1.0189

75 1.0058 1.0102

100 1.0047 1.0074

125 1.0041 1.0071

150 1.0028 1.0060

175 1.0027 1.0043

200 1.0020 1.0039

computed. For each problem set, the average and the worst case optimality gaps are reported
in Table 3. The results verify that bothHeuristic 2 and the lower bound are extremely accurate.
(It should be noted that the heuristic complexity is O(nlogn) time only, and the actual average
running time required for solving a 200-job problem, for example, was 0.003ms.)

7 Conclusion

We studied a single machine two-agent scheduling problem where the objective function is
minimum totalweighted earliness of the first agent subject to an upper bound on themaximum
earliness of the jobs of the second agent. In a recent paper, Mor andMosheiov (2010) studied
this problem and proved NP-hardness. In this paper we introduced a pseudo-polynomial
dynamic programming algorithm, proving NP-hardness in the ordinary sense. We showed
that theDP performswell even for relatively large instances. TheDPwas extended to a setting
of any (given) number of agents, proving that this more general setting remains NP-hard in
the ordinary sense. A simple heuristic was also introduced and tested numerically. We also
studied the inverse problem of minimizing the maximum earliness of one agent, subject to an
upper bound on the maximumweighted earliness of the other agent.We introduced a pseudo-
polynomial dynamic programming for this (NP-hard) problem, a greedy-type heuristic and
a tight lower bound based on the preemptive schedule. Our numerical tests led to extremely
small optimality gaps.

Extending the problems studied in this paper to more general machine settings (starting
with parallel identical machines) is a potential topic for future research. Also, considering a
different earliness measure for Agent B (total earliness, total weighted earliness, number of
early jobs) appears to be a challenging line of research.

Acknowledgements This research was supported by the Israel Science Foundation (grant No.1286/14). The
third author was supported in part by the Recanati Fund of The School of Business Administration, and
Charles I. Rosen Chair of Management, The Hebrew University of Jerusalem, Israel.

Appendix 1: Proofs of Properties 1–4

Proof of Property 1 Consider an optimal schedule, say q , in which an A-job is scheduled
between B-jobs. By moving this A job to be scheduled after all the B-jobs, we obtain a
new feasible schedule q ′, with a strictly smaller total weighted earliness of the A-jobs. This
contradicts the optimality of schedule q . ��
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Proof of Property 2 Consider an optimal schedule q consisting of a single block of the B-
jobs (Property 1), in which the first B-job (say k) is not the largest, and the largest B-job (say
l) is scheduled later. Assume that this block starts at time t . Clearly, the maximum earliness
of the B-jobs is given by D − (t + pk). Create a new schedule q ′ by moving job l to be first
and start at t . q ′ is clearly feasible (the maximum earliness becomes smaller: D − (t + pl)),
with no impact on the total weighted earliness of the A-jobs, implying that q ′ is optimal as
well. ��
Proof of Property 3 The two-block claim follows Property 1. The order of the jobs within
each block is easily proved by a standard pair-wise interchange argument. ��
Proof of Property 4 Consider an optimal schedule q with t > tmin + max

{
pA
max , p

B
max

}
.

Create a new schedule q ′ by replacing the last A-job scheduled prior to the B-block with the
B-block. It is clear that q ′ is feasible since the new t value is larger than the original (and in
particular not smaller than tmin). Moreover, the total weighted earliness of the A-jobs in q ′
is strictly smaller than that of q , contradicting the optimality of q . ��

Appendix 2: numerical examples

Example 1 (for problem 1/d j = D(deadline)/
∑nA

j=1 wA
j E

A
j : EB

max ):
Consider a 2-agent problem, where each agent needs to process 7 jobs. The job processing

times of Agent A are: pA
1 = 1, pA

2 = 2, pA
3 = 7, pA

4 = 8, pA
5 = 4, pA

6 = 5, pA
7 = 6. The

weights of the jobs of Agent A are: wA
1 = 8, wA

2 = 2, wA
3 = 7, wA

4 = 1, wA
5 = 3, wA

6 =
4, wA

7 = 2. The job processing times of Agent B are: pB1 = 8, pB2 = 2, pB3 = 1, pB4 =
3, pB5 = 7, pB6 = 2, pB7 = 4. The upper bound on the maximum earliness of Agent B is
U = 33. It follows that PA = 33, PB = 27, and D = PA+PB = 60. The smallest possible
starting time of the B-block is tmin = D − U − pBmax = 19. The largest possible starting
time of the B-block is tmin +max

{
pA
max , p

B
max

} = 27. The optimal solution obtained by the
DP given in Sect. 3 (see Fig. 2) consists of the following job sequence: Job 4 of Agent A is
first (starts at zero and is completed at 8); Job 7 of Agent A (completed at 14); Job 6 of Agent
A (completed at 19); The block of all the B-jobs (in the interval [19, 46]); Job 5 of Agent A
(completed at 50); Job 3 ofAgent A (completed at 57); Job 2 ofAgent A (completed at 59); Job
1 of Agent A (completed at D = 60). The total cost (weighted earliness of Agent A) is 361.

Fig. 2 The optimal solution of the two-agent problem solved in Example 1
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Fig. 3 a The optimal solution of the two-agent problem solved in Example 2, b the schedule obtained by
Heuristic 2 in Example 2, c the lower bound obtained in Example 2 based on a preemptive schedule

Example 2 (for problem 1/d j = D (deadline)/EB
max : ∑nA

j=1 wA
j E

A
j ):

We use the same data of Example 1 (processing times of both agents, andweights of Agent
A). As above, PA = 33, PB = 27, D = PA + PB = 60. The upper bound on the total
weighted earliness of Agent A isU = 310. The interval of a feasible t-values is [0, 33]. The
optimal solution obtained by the DP given in Sect. 6 (see Fig. 3a) consists of the following
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job sequence: Job 4, Job 7, Job 2, the B-block, Job 5, Job 6, Job 3, Job 1. topt = 16. The
optimal maximal earliness of Agent B is EB

max = D − topt − pBmax = 60 − 16 − 8 = 36.
We now solve the problem using Heuristic 2. The schedule obtained by the heuristic (see

Fig. 3b) consists of the following job sequence: Job 4, Job 7, the B-block, Job 5, Job 6, Job
3, Job 2, Job 1. theur = 14. Thus, the maximal earliness of Agent B obtained by Heuristic 2
is EB

max = D − pBmax = 60 − 14 − 8 = 38. Note that the total weighted earliness of Agent
A is 252 (smaller than U = 310).

Finally, we calculate the lower bound obtained by the following preempted schedule (see
Fig. 3c): Job 4, Job 7, Job 5 (starts at time 14 and is preempted at time 17 by the B-block),
the B-block (which starts at time 17 and is completed at time 44), the last unit of time of Job
5, Job 6, Job 3, Job 2, Job 1. t LB = 17. The lower bound on the maximal earliness of Agent
B is EB

max = D − t LB − pBmax = 60 − 17 − 8 = 35.
In summary: the optimal EB

max in Example 2 (obtained by the DP) is 36, the heuristic
value is 38, and the lower bound is 35.

Appendix 3: a dynamic programming for the case of m B-agents

We now assume that each Agent Bi has a set J Bi of nBi jobs, i = 1, . . . ,m. The above
definitions of pBij , PBi , pBimax , D, Ui and ti remain unchanged, i = 1, . . . ,m. Clearly,
Properties 1–3 remain valid. Similar to the case of m = 2, the number of B-blocks may
reducewhen two (ormore) B-blocks are processed continuouslywith no A-jobs among them.
Again, without loss of generality we assume t1 ≤ t2 ≤ · · · ≤ tm . A lower bound on ti is given

by: t Bimin = D−Ui − pBimax . An upper bound is t
Bi
min +max

{
pA
max , p

Bi
max

}
, i = 1, . . . ,m. The

extension of Property 4 to the setting of m agents is that an optimal schedule exists such that

the starting times of the Bi -blocks are bounded by: t Bimin ≤ ti ≤ t Bimin + max
{
pA
max , p

Bi
max

}
,

i = 1, . . . ,m.
The A-jobs are scheduled in (at most) m + 1 blocks. We sort the jobs in a non-decreasing

order of pA
j /wA

j . The updated state variables are the following:

j The number of A−jobs already scheduled;
ei The total processing time of the A-jobs scheduled after block Bi and prior to block Bi+1,

i = 1, . . . ,m − 1
em The total processing time of the A-jobs scheduled after block Bm .

PA
j − ∑m

i=1 ei is the total processing time of the A-jobs scheduled prior to block B1.
Let ft1,...,tm ( j, e1, . . . , em) denote the optimal total weighted earliness of the jobs j +1, j +
2, . . . , nA (of Agent A), given a total load of ei of the A-jobs scheduled after the Bi -block,
i = 1, . . . ,m.
The DP compares m + 1 options at each iteration: schedule the next A-job as late as pos-
sible after block Bi , i = 1, . . .m, or as late as possible prior to block B1. The recursion
becomes:
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ft1,...,tm ( j, e1, . . . , em )

= min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ (
D − t1 +

(
PA
j − ∑m

i=1 ei
))

wA
j+1 + ft1,...,tm ( j + 1, e1, . . . , em )

∞

}
i f P A

j+1 − ∑m
i=1 ei ≤ t1

otherwise
{

(D − t2 + e1) wA
j+1 + ft1,...,tm

(
j + 1, e1 + pA

j+1, e2, . . . , em
)

∞

}
i f t1 + PB1 + e1 + pA

j+1 ≤ t2
otherwise

{
(D − t3 + e2) wA

j+1 + ft1,...,tm

(
j + 1, e1, e2 + pA

j+1, . . . , em
)

∞

}
i f t2 + PB2 + e2 + pA

j+1 ≤ t3
otherwise

. . .

. . .

. . .{
emwA

j+1 + ft1,...,tm

(
j + 1, e1, . . . , em−1, em + pA

j+1

)

∞

}
i f tm + PBm + em + pA

j+1 ≤ D

otherwise

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The boundary conditions are:

ft1,...,tm = ft1,...,tm (nA, e1, . . . , em)=0, e1, . . . , em =0, 1, . . . , PA, e1 + . . . + em ≤ PA.

The solution is given by: ft1,...,tm (0, 0, . . . , 0).
The DP needs to be executed for all relevant combinations of ti , which leads to the following:

Theorem 7 For the general setting of m B-agents, the running time of the DP is:

O
((
nA

)m+1
(pA

max )
m × (

max
{
pA
max , p

B
max

})m
)

time, where pBmax =
max

{
pBimax , i = 1, . . .m

}

Proof ei , i = 1, . . . ,m is bounded by PA, which is bounded by nA pA
max . Therefore, for

given t1, t2, . . . , tm , the running time is O
((
nA

)m+1
(pA

max )
m
)
. The DP is repeated up to

(
max

{
pA
max , p

B
max

})m
times. Thus, the total running time is:

O

((
nA

)m+1
(pA

max )
m ×

(
max

{
pA
max , p

B
max

})m
)

.

��
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