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Abstract This study addresses the problem of locating distribution centers in a single-
echelon, capacitated distribution network. Such network consists of several potential
distribution centers and various demand points dispersed in different regional markets. The
distribution operations of this network generate massive amounts of data. The problem is
how to utilize big data generated to identify the right number of distribution centers to open
and the right assignment of customers to opened distribution centers while minimizing the
total handling and operation costs of distribution centers, transportation, and penalty. Restric-
tions on both network capacity and single sourcing strategy are also considered. This study
formulates this problem as mixed-integer nonlinear program. The effects of different sce-
narios on distribution-center locations as demand, the operation costs of distribution centers
and outbound transportation, and the number of customers are analyzed through simulation
on randomly generated big datasets. Empirical results indicate that the model presented is
appropriate and robust. The operational value of big data in the distribution network design
is revealed through a case study in which several design alternatives are evaluated.

Keywords Big data - Capacitated network design - Service levels -

Mixed-integer nonlinear programming - Simulation

1 Introduction

As globalization advances, distribution networks of many manufacturers have evolved into

large networks of plants, warehouses and/or distribution centers (DCs), and demand points
worldwide. Various products flow through supply chains at a surprisingly fast rate. As such,
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these fixed networks cannot adapt to the constantly changing supply chain operations. More-
over, complex supply chains are generating huge amounts of dynamic data in different formats
(i.e., structured and unstructured), which create new challenges for supply chain design and
redesign. Traditional network design models and methods are also inappropriate to modern
supply chain network design because they no longer deliver business value required to stay
competitive in the era of big data. Hence, the need for powerful supply chain network design
models is increasing. These models should be able to harness big data to evaluate more vari-
ables and scenarios than previous ones. This study aims to present such distribution network
design model for achieving a robust supply chain in the context of big data.

The application of big data in supply chain management has received increased atten-
tion in the literature. Most studies focus on the conceptual framework of applying big data
to supply chain management (Dubey et al. 2016; Rezaee et al. 2015; Wang et al. 2016).
Dubey et al. (2016) demonstrated the importance of big data analytics in supporting world-
class sustainable manufacturing. They also developed and empirically validated a conceptual
framework that incorporates the building block of sustainable manufacturing, which can be
extracted from big data. Therefore, the study has identified the important factors that practi-
tioners need to focus on when planning to use big data analytics to improve the economic,
social, and environmental performance of their companies. Oliveira et al. (2012) analyzed
the effect of the use of business analytics on supply chain performance and discussed the
changing information processing needs at different supply chain maturity levels. Through a
worldwide sample of 788 companies from different industries, Oliveira et al. (2012) found
that the changing effect of business analytics use on performance implied that companies
at different maturity levels should focus on different areas. Chae and Olson (2013) pro-
posed a framework of business analytics for supply chain analytics that is [T-enabled and
feature analytical dynamic capabilities, namely, data management, analytical supply chain
process, and supply chain performance management. Chae and Olson (2013) also presented
a dynamic-capability view of SCA and extensively described its three capabilities (i.e., data
management, analytical supply chain process, and supply chain performance management)
in an integrated manner. Sanders (2014) presented a systematic framework regarding the use
of big data analytics in supply chain management and the means to determine business value
from big data. Hazen et al. (2014) reviewed research on data quality in the supply chain,
defined measures of data quality, introduced a means to control data quality, and suggested
theory-based topics for future research. Tan et al. (2015) studied the application of big data in
strengthening supply chains and business management in specific areas, such as procurement,
supply chains collaboration, end-to-end supply chains execution, and inventory control. Tan
etal. (2015) suggested that big data enable companies to gain new product development ideas
and understand how different sub-firms or departments could work together for optimizing
the manufacturing processes and producing new products in the most cost-effective means.
Chae et al. (2014) studied the effect of business analytics resources including accurate man-
ufacturing data and advanced analytics on the operational performance of a firm. Chae et al.
(2014) suggested the moderating and mediating role of fact-based SCM initiatives as comple-
mentary resources, tested propositions using Global Manufacturing Research Group survey
data, and analyzed them using partial least squares/structured equation modeling. Wang and
Alexander (2015) introduced the big data concept, its characteristics, and major issues in
supply chain management. They then concluded that big data can improve effectiveness and
efficiency, produce high-quality outputs, and increase the value-added content of products
and services. Chae (2015) proposed a novel, analytical framework (Twitter analytics) for ana-
lyzing supply chain tweets, highlighting the current use of Twitter in supply chain contexts,
and further developing insights into the potential role of Twitter for supply chain practice
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and research. The proposed framework combines three methodologies, descriptive analyt-
ics, content analytics integrating text mining and sentiment analysis, and network analytics
relying on network visualization and metrics (Chae 2015). Rezaee et al. (2015) proposed an
analytical framework for determining the optimal carbon trading credits or allowances under
different conditions. The analytical framework could help companies determine the optional
material flows and the quantities of carbon credits traded under an environment with high
uncertainty (e.g., uncertain carbon price and product demand).

By contrast, supply chain analytics has been applied extensively in supply chain manage-
ment (Sangwan and Mittal 2015; Souza 2014), especially on supply chain network design
(Kilig and Tuzkaya 2016; Liao et al. 2011; Omar 2013; Shu et al. 2010; Song et al. 2016; Tsao
et al. 2016; Wang and Lei 2012, 2015; Wang et al. 2014; Zhang et al. 2013). For example,
Sangwan and Mittal (2015) found that supply chain analytics plays an important role in green
manufacturing. However, a limited number of studies have focused on the real application of
big data to supply chain planning and the development of specific models and/or algorithms
in the context of big data, particularly for supply chain network design.

De Matta (2016) proposed an analytic model, that is, a network design optimization model
for handling supply disruptions. The analytic model focused on the use of reserve capacity
to migrate the production disruptions without affecting the stability in both the prices of
products and the profits of the focal business. However, although the models and algorithms
were presented, the model was not tested in real-life context but only verified using the
achieved data of a company. Golzera et al. (2015) extended existing methods for decision-
making implementation in the design and operation of global manufacturing network. They
described big data techniques, highlighted the aspects of decisions tasks, data access patterns,
necessary data structures, and handling design scenarios. Finally, they concluded that big data
systems can be applied on tactical design decisions in manufacturing networks on the basis
of the production master data. Unfortunately, they did not present models, algorithms, and
case studies to explore the operational value of big data in designing global manufacturing
network.

Given the existing literature, this study attempts to explore the application of big data to
solve real supply chain problems by developing powerful models and discussing cases. We
consider the location problem of DCs in a single-echelon, capacitated logistics network. The
supply chain is composed of DCs to open and geographically dispersed regional markets. DCs
with limited capacity have variable and fixed costs for handling one unit of product, each with
adesired service level. If DCs cannot achieve desired service levels, penalty costs proportional
to unassigned customer quantities are imposed. Furthermore, each customer is assigned to
exactly one DC. The problem is how to determine the right number of DCs to open and the
optimal assignment of regional markets to DCs, such that the total shipping, handling, and
operating costs of DCs and the penalty for unassigned customers are minimized. This study
formulates the location problem as a mixed-integer nonlinear program and analyzes different
scenarios to verify the proposed location model. Specifically, simulation is performed on
randomly generated big datasets in terms of the change in demand, outbound transportation
costs, DCs’ operations costs, and the number of customers. The results show that the presented
model is appropriate and robust. Then, a case study involving big data is provided, where
the proposed model evaluates different design alternatives and attempts to determine the best
design option. The empirical results reveal the operational value of big data when making
location decisions on distribution network design.

The remaining parts of the study are organized as follows. Section 2 presents a big data-
driven distribution network design model. Section 3 deals with model validation and analysis
of randomly generated test instances in terms of the change in demand patterns, transportation
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costs, DCs’ operations costs, and the number of customers. Section 4 provides a case study
where the proposed model is used to design the distribution network by examining different
design options. Finally, Sect. 5 concludes the study and discusses its future extensions.

2 Network design model with big data

The emergence of big data allows us to consider complex factors while designing a supply
chain, thereby making the development of a robust supply chain network possible. When faced
with huge amounts of data, existing network design models may be intractable. Therefore,
the need for powerful network design models based on big data is growing. This section
presents an inclusive distribution network design model using big data while considering
nonlinear penalty imposed to DCs because of unassigned customers.

We consider a retailer’s logistics network with a group of geographically dispersed DCs
and many demand points (e.g., over 2,000 stores). Each DC has limited capacity to serve
demand points and a set desired service level. Failure to achieve the desired service level
results in penalty costs that are proportional to unassigned customer quantities. Any shipment
from DCs to demand points incurs variable and fixed costs. Customers adopt single sourcing
strategies to take advantage of low costs and guarantee product availability. Given the big
data with regard to customer demand, warehouse operations, and transportation, the problem
is how to determine the right number of DCs to open and the optimal assignment of regional
markets to DCs, such that the total shipping, handling, and operating costs of DCs and penalty
for unassigned customers are minimized.

2.1 Data collection

In the big data era, decision makers acquire huge amounts of data from many heterogeneous
sources and input the most up-to-date parameters from operational databases directly to
those models. Big data involved in a typical network design problem include historical data
recorded in databases and updated behavioral data collected from social media (e.g., LinkedIn,
Facebook, Twitter, and Google+), web clicks, comments or reviews, or complaints. Our model
assumes that behavioral data have been analyzed using marketing intelligence tools, thereby
obtaining accurate demand information and identifying a set of candidate DCs. Table 1 lists
the type of data used in designing distribution network (i.e., historical and behavioral data;
Waller and Fawcett 2013).

Table 1 Historical and behavioral data used in supply chain network design models

Type of data Considerations

Historical data The number of DCs and customers
Transportation costs, including fixed and variable costs
Labor, handling, fixed operating, and order processing costs of DCs
The capacity of DCs
The forecasted demand by customer location

Behavioral data data on decision and purchasing behavior, including items browsed and
purchased, frequency, dollar value, and timing

Profiling data on buyer identification and emotion detection; eye-tracking
data; customer sentiment data on purchased products or locations
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2.2 Mathematical model

For convenience of further analysis, the notations used later are summarized as follows:

Sets and indices

J = setof customers, i.e., j€ J=1{1,2,---,J};
M = set of processing centers, i.e., m e M ={1,2,---, M}.

Parameters:

Cy = capacty of PCp;

dj = order quantity of customer j,

bnj = shipping rate ($) from PCy, tocustomer j;

mj = fixed shipping cost ($) from PCy, to customer j,

hy, = unit handling cost at PCy,;

fm = fixed operating cost at PC,;

oy, = servicelevel that the PCy, desires;

pm = unit penalty cost ($) imposedto PCy, for unassigned customers.

Decision variables:

| L, if customer jisassigned;
Ymj 0, otherwise. )

_ | L, if PCyistobeopened,
Km 0, otherwise.

Letay; = (bm j+h m) dj + 1y, and distribution network design problem can be formulated
as a mixed integer nonlinear program as follows:

Minimize > fmxm ot 2 2 AmjYm
meM meM jeJ
+ > Pm (max[O,am >di— X djymj’)
memM jeg jeg
Subject to

(1) PCs’ capacity constraints:
Z djymj < xmCpm, m e M,
jeg
(2) Single sourcing constraints:
> wmi<lLjed,
meM
(3) Integrality and non-negativity:

Xm,ymj €10, 1} ,me M, jeJ.

The first term in the objective function represents the total fixed operations costs of DCs,
whereas the second term represents the total outbound transportation and handling costs of
DCs. The third term refers to the total penalty costs imposed on DCs because of unfulfilled
customer orders. Constraint (1) ensures that if DC,, is chosen to open, the total order quan-
tities that DC,, satisfy cannot exceed the processing capacity of DC,,. Constraint (2) states
that customer j is assigned to only one DC (i.e., single sourcing). Constraint (3) enforces
integrality and non-negativity of relevant decision variables.
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Table 2 Values of the parameters used in test problems

Parameters Cj, hm Sm m dj pj by TTmj

Range U [50,100] U[0.2,0.5] U[1,5] U[0.5,1] UI[5,10] U[10,15] U[0.5,0.8] UI[l,4]

3 Model analysis: simulation

This section carries out sensitivity analysis of the number of DCs to open and the over-
all service level on parameters by producing randomly generated big datasets. The primary
factors considered in sensitivity analysis include variations on demand, outbound transporta-
tion costs, DCs’ operations costs, and the number of customers. The computational results
validate our model in accordance with supply chain practices.

This study considers not only the location of DCs but also the overall service level, which is
anonlinear function. We are interested in big data because they facilitate the what-if analysis
with different, complex scenarios. Table 2 provides all parameters used in test problems,
which are generated randomly using uniform distributions. We solve all problems associated
with our model by CPLEX 12.6 on a Lenovo X1 Carbon dual-core 2.7 GHz laptop with
1 GB RAM. The following figures report the results of sensitivity analysis on the proposed
model in terms of the aforementioned factors. Orange lines represent the effect of parameter
variations on the overall service level that all processing centers achieve, whereas blue lines
represent the effect of parameter variations on the number of DCs to be opened.

3.1 Effect of demand variability

Demand variability has been identified as the largest challenge for supply chain management
(How to Meet the Challenge of Demand Variability in Your Supply Chain, by Narayan
Laksham accessed from http://info.ultriva.com/ultriva-blog/how-to- meet-the-challenge- of-
demand-variability-in-your-supply-chain on 3/16/16 1:19 PM) because it has a significant
effect on firm profitability. Hence, demand variability must be considered when designing
distribution networks. Demand variability also determines the type of distribution network,
either centralized or decentralized system. Figure 1 illustrates the trends of the number of
DCs and the overall service level as demand variation increases from 0 to 0.8. The number of
opened DCs decreases from 8 to 6 as demand variations rise up to 0.8. When the variation on
demand is large, a small number of opened DCs indicate a centralized supply chain system,
which can achieve risk pooling, thereby reducing the demand variability and bullwhip effect.
Conversely, the overall service level increases as demand variations grow, which also results
from risk pooling. Forecasting accuracy on demand is enhanced significantly because a
centralized distribution system reduces demand variations. The trends on both the number
of DCs and the overall service level verify the validity of the proposed model because it can
capture demand variability by achieving a centralized distribution system.

3.2 Effect of outbound transportation costs

Outbound transportation costs play a vital role in distribution network design because they
directly affect the location and number of DCs. Figure 2 depicts how variations of outbound
transportation costs affect the number of DCs to be opened and the overall service level.
When the variations of outbound transportation costs increase from 0 to 0.83, the number of
opened DCs increases and the overall service level rises accordingly, which is consistent with
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Fig. 1 Effect of demand variability on the number of opened DCs and overall service level

a decentralized distribution system. High variability in outbound transportation costs lead
to increased overall transportation costs. By establishing a decentralized distribution system
with the increased number of opened DCs, the overall transportation costs can decrease
significantly because of the short distance for deliveries. Furthermore, delivery frequency
grows because DCs are close to markets; the reduced overall transportation costs enable the
transfer of added value to customers. Both scenarios lead to improved service level.

3.3 Effect of DCs’ operations costs

Given the high throughput at DCs on daily basis, the effect of operations costs on the number
of DCs to be opened and overall service level should be considered. In our model, operations
costs include fixed and handling costs. Potential DCs will be eliminated from consideration
if their total operation cost is extremely high, which can lead to the highest total distribution
costs. Figure 3 demonstrates the trends in the change in the number of opened DCs and
overall service level as the variation of DCs’ operations costs increases from 0 to 0.83. Both
the number of opened DCs and overall service level decrease. Highly variable operations
costs result in the inflation of average total operations costs, thereby increasing the total
distribution costs. Hence, as variability on DCs’ operations costs increases, the number of
potential DCs and the overall service level declines accordingly.
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Fig. 2 Effect of transportation-cost variability on the number of opened DCs and overall service level
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Fig. 3 Effect of operations costs on the number of DCs and overall service level

3.4 Effect of the number of customers

The ultimate goal of distribution network design is to satisfy customer demand responsively
with the lowest distribution costs. The number of customers that need to be satisfied signif-
icantly affects the distribution network design. Figure 4 depicts the effect of the number of
customers on the number of DCs to be opened and overall service level. Before the number
of customers increases to 1,200, the number of opened DCs increases quickly, but the overall
service level decreases gradually. The increase in the number of customers dominates the
growth of the number of opened DCs. Although the number of opened DCs increases, the
fast increasing number of customers creates high variability in demand, and the opened DCs
cannot satisfy the increasing customer demand and compensate for high variations that a
larger number of customers may bring. Hence, the overall service level decreases over time.
However, when the number of customers is greater than 1,200, the number of opened DCs
is nearly constant around seven, which signifies that satisfying many customers is beyond
the overall capacity of current potential DCs. The overall service level continues to decrease
given the large number of unassigned customers.
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Fig. 4 Effect of customer size on the number of DCs and overall service level

4 Case study: location problem in retail distribution network design

This section provides a case study on the distribution center location problem over a retailer’s
distribution network. Huge amounts of data collected from its current network configuration
are employed to evaluate many scenarios to reconstruct the extant network configuration.

We consider the distribution network of a retailer who sells sports products and leases
a small DC in St. Louis to manage a large amount of products being sold. A third-party
logistics company packs and ships customer orders to over 20,000 stores located all over the
United States. The retailer’s management team anticipates a demand growth of approximately
70 % in the next 5years. The team is concerned that operations costs will grow faster than
revenues if the supply chain network is not redesigned because demand continues to increase.
They analyzed the current network’s performance and decided to redesign current network to
best cope with the rapid anticipated growth over the next five years. The management team
decided to lease more DCs to expand the capacity of the current logistics network because
the expansion at the current small DC in St. Louis could not satisfy the demand growth. The
realistic alternative that the management team proposes is to add DCs all over the country to
complement the existing distribution system. Leasing a DC involved fixed and variable costs,
depending on the size of the DC and the quantity shipped through the DC, respectively. Four
potential locations are identified in Denver, Seattle, Atlanta, and Philadelphia. The retailer
charged a flat fee of $3 per shipment sent to a customer. The retailer also contracted UPS to
handle all its outbound shipments. UPS charges were based on both the origin and destination
of the shipment. The fixed and variable costs ($/unit), capacity (units/year), service level, and
penalty costs ($/unit) of small and large DCs in different locations are provided in Table 3.

Location decisions in distribution network have a significant effect on the competitive
advantage of organizations. Locations near suppliers can result in low supply costs, whereas
locations close to markets can provide convenience, leading to low transportation costs and
quick delivery times. Therefore, a tradeoff has to be made in distribution center locations
in terms of operations costs and convenience. To identify the best network configuration,
three scenarios are investigated in terms of the aforementioned report from the management
team. The first scenario is that only small DCs are considered. The second is to consider only
large DCs. The last involves the combination of small and large DCs. The optimal solutions,
minimum total costs, and overall service levels for three different scenarios are summarized
in Table 4.
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Table 4 Opti mal solutions and costs as well as overall service levels for three scenarios

Location/ Seattle  Denver  St.Louis  Atlanta PA  Total cost Overall service
scenarios level (%)
Small DCs 1 1 1 0 1 $2,045,752,274 31
Large DCs 1 1 1 1 1 $3,317,782,974 100
Combination

Small DCs 1 0 0 0 0 $5,444,216,137 100

Large DCs 1 1 1

If only small DCs all over the county are considered, the retailer keeps the small DC in
St. Louis open and needs to lease three other small DCs in Seattle, Denver, and Pennsylva-
nia. In this case, although the retailer can significantly reduce the total operations costs to
$2,045,752,274, which is relatively low, the overall service level it can achieve is only 31 %.
When retailers prefer to improve operations efficiency rather than customer satisfaction, leas-
ing only small DCs is a good choice. However, in supply chain practices, organizations always
seek the best tradeoff between cost reduction and customer service. A plausible alternative
is to lease a combination of small and large DCs. Surprisingly, we obtain a counter-intuition
result, which prioritizes leasing large DCs rather than the combination of small and large
DCs (see Table 4). The low utilization of five large DCs in addition to one small DC to
satisfy the remaining demand of unassigned customers creates a decentralized distribution
system and increases total operations costs. Hence, leasing five large DCs in five potential
locations is the best alternative because it incurs the least operations costs of $3,317,782,974
and achieves 100 % overall service level.

Additionally, to see operational value of Big Data, we apply the same datasets in this case
to solve the well-known facility location problem as shown below:

min Z SmXm + Z Zamjymj

meM meM jeJ
S.t.
Zdj)’mj < xnCp, meM,
jeg
> owmi=1 jed.
meM

Xm» Ymj €{0,1}, meM, jeJ.

In addition, to determine the operational value of big data, we apply the same datasets in
this case to solve the well-known facility location problem. Unfortunately, we do not obtain
an integer solution because the large number of stores involved exceeds the total capacity
of all DCs. The aforementioned facility location problem considers a single objective, that
of operations efficiency under the unrealistic assumption that customer satisfaction is fully
achieved.

In comparing the optimal solutions between our model and the traditional location prob-
lem, additional information on service levels and penalty costs allows us to determine
the tradeoff between operations efficiency and customer satisfaction, thereby leading to an
enhanced solution to distribution network design problem. We can conclude that big data
challenge the existing distribution network design models, but they create opportunities for
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designing complex distribution network by providing huge amounts of various data for real-
istic scenarios (e.g., data for service levels and penalty costs).

5 Conclusions and future extensions

In the context of big data, our research explored the location problem of DCs in the distribution
network design and examined the effects of parameter variations on network configuration
and operations performance. Our model differs from existing models related to distribution
network design because a nonlinear penalty function associated with service levels is intro-
duced. Furthermore, simulation was performed to validate the proposed model and assess
its sensitivity in terms of the variations on demand, outbound transportation costs, DCs’
operations costs, and the number of customers. Our simulated results contributed to the
understanding of the implications of parameter variability on distribution network design.
From our analyses, variability on demand, outbound transportation costs, and the number
of customers strongly affect the distribution network design and service level requirements.
However, DCs’ operations costs have a slight effect on the number of DCs and service levels.
Hence, variability on demand, outbound transportation costs, and the number of customers
are highly relevant in designing an efficient and effective distribution network.

Nevertheless, our research has certain limitations. We only focused on the analysis of
what-if scenarios, although we presented a novel distribution network design model in the
paper. Hence, we suggest a few extensions for further research. The first is to introduce a case
with big data to test our model and then use it as a benchmark. The second is to investigate
different design options by using of our validated model as benchmark, thereby identifying
the best design alternative. Because big data exist and CPLEX is slow in determining an
optimal solution when the size of distribution network is large, the third extension should be
to develop efficient algorithms to solve our model when big data are involved.
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