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Abstract We consider the problem of calculating tail loss probability and conditional excess
for the Bernoulli mixture model of credit risk. This is an important problem as all credit risk
models proposed in literature can be represented as Bernoulli mixture models. Thus, we
deviate from the efficient simulation of credit risk literature in that we propose an efficient
simulation algorithm for this general Bernoulli mixture model in contrast to previous works
that focus on specific credit risk models like CreditRisk+ or Credit Metrics. The algorithm
we propose is a combination of stratification, importance sampling based on cross-entropy,
and inner replications using the geometric shortcut method. We evaluate the efficiency of
our general method considering three different examples: CreditRisk+ and two of the latent
variable models, the Gaussian and the t-copula model. Numerical results suggest that the
proposed general algorithm is more efficient than the benchmark methods for these specific
models.
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1 Introduction

The essence of control in the financial world relies on howwell the usedmodels mimic reality
and on the precision of the computational methods used. Monte Carlo simulation is often one
of the best alternatives as it leads to confidence intervals on the pin-point values. The subject
of this paper is to develop a simulation methodology to quantify credit risk, risks related
with the obligors’ default. For quantification of credit risk, two of the credit risk models that
are used intensively in the industry are Credit Risk Metrics of JP Morgan and Credit Risk+
of Credit Suisse Financial Products (1997).

Although credit risk simulations seem to be quite easy, as in each repetition we sum the
exposures of the defaulted obligors, rare-event settings are problematic as the number of
repetitions should increase enormously to get meaningful estimates of the risk. This is not
desired as it degrades the efficiency of the simulation. Efficient Monte Carlo methods for
the Gaussian copula model of Gupton et al. (1997) (see, e.g., Glasserman and Li 2005; Sak
and Hörmann 2012), for the t-copula model (see Bassamboo et al. 2008; Chan and Kroese
2010; Sak 2010) and for the mixed Poisson model (see Glasserman and Li 2003) of credit
risk were proposed in the literature. In this paper, we propose a new method to estimate tail
loss probability and conditional excess for the Bernoulli mixture model of credit risk.

Ourmain contribution is to present a newalgorithm tomeasure credit risk under the general
Bernoulli mixture models. These models are credited as more convenient for statistical fitting
purposes in McNeil et al. (2005) and all credit risk models proposed in literature can be
represented as Bernoulli mixture models. We could not find any simulation method for the
general Bernoulli mixture models in the literature, and it is not obvious how to find an
equivalent latent variable model for a given Bernoulli mixture model.

In our general algorithm, we implement a combination of stratification and importance
sampling for the simulation of the random variables that introduce the dependence across
obligors. We use an importance sampling strategy based on the cross-entropy method and
increase the probability of rare defaults. The subsequent stratification enhances the variance
reduction by optimal sample allocation throughout strata. The remaining source of the vari-
ance is the simulation of obligors’ defaults, for which we employ inner replications using
the geometric shortcut method (see Sak and Hörmann 2012). The new algorithm yields
reasonable variance reduction over the existing methods designed for specific risk models.

Another important contribution of this paper is the efficient estimation of conditional
excess for the total loss of a credit portfolio. Conditional excess has a ratio estimator, i.e.,
the ratio of two different estimators. Therefore, when the stratification is implemented, the
optimal sample allocation sizes that minimize the variance of the conditional excess must
be derived differently than the ones which minimize the variance of a regular estimator (see
Başoğlu and Hörmann 2014). To our knowledge, we are the first to use a stratification algo-
rithm for the estimation of conditional excess for credit portfolios. Most papers in literature
just consider implementing importance sampling for this problem and the proposed impor-
tance sampling density is usually the same as the one used for tail loss probability estimation
(see, e.g., Glasserman 2005). In our algorithm, stratification allows us to derive formulas
for sample allocations that minimize the variance of the conditional excess estimate. These
formulas are useful for any simulation applying stratified ratio estimators.

The paper is organized as follows: Sect. 2 gives an overview of the Bernoulli mixture
models. In Sect. 3, we explain the implementation details of inner replications of geomet-
ric shortcut, importance sampling based on cross-entropy, and stratification, and how these
methods can be combined in simulating tail loss probabilities. Section 4 extends the use of
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the same methodology to conditional excess simulation and explains the stratification of the
ratio estimator. Finally, in Sect. 5, we present our numerical results for some credit portfolio
examples whereas Sect. 6 provides final comments.

Note that, in this paper, vectors and matrices are set in bold to enhance readability.

2 Bernoulli mixture model

Before discussing the model, we give the notation used throughout the paper. There are J
obligors in the portfolio and Y j denotes the Bernoulli random variable for the j th obligor (1
if j th obligor defaults, 0 otherwise). The marginal probability that the j th obligor defaults
is p j and c j denotes the loss resulting from the default of the j th obligor. The total loss of
the portfolio is calculated as L =∑J

j=1 c j Y j . We only consider a fixed horizon, over which

we are interested in the values of tail loss probability y = P (L > τ) = E
[
1{L>τ }

]
and

conditional excess r = E[L|L > τ ] for a fixed threshold value τ .
Following McNeil et al. (2005); given the D-dimensional (D < J ) random vector � =

(Ψ1, . . . , ΨD)′, the random vector Y = (Y1, . . . , YJ )′ follows a Bernoulli mixture model
if there are functions p j : RD → [0, 1], j = 1, . . . , J , such that, conditional on �, the
components of Y = (Y1, . . . , YJ )′ are independent Bernoulli random variables. We define
p j (�) as conditional default probabilities for a given � vector: p j (�) = P

(
Y j = 1|�).

For (ε1, . . . , εJ )′ in {0, 1}J ,

P (Y1 = ε1, . . . , YJ = εJ |�) =
∏J

j=1
p j (�)ε j

(
1 − p j (�)

)(1−ε j ) . (1)

The unconditional distribution of Y is found by integrating (1) over the distribution of �.
We consider three specific examples of this general model to test our method in Sect. 5.

The first one is CreditRisk+ model which is represented as a Bernoulli mixture model (see,
Frey andMcNeil 2002).� = (Ψ1, . . . , ΨD)′ are independent Gamma random variables with
shape parameters αd = σ−2

d and scale parameters βd = σ 2
d for d = 1, . . . , D.

Furthermore, the conditional default probabilities for a given � vector are

p j (�) = 1 − exp
(−a j0 − a j1Ψ1 − . . . − a j DΨD

)
, j = 1, . . . , J, (2)

where a j0, . . . , a j D are positive coefficients.
The second example is the Gaussian copula model which is a multi-dimensional probit-

normal mixing distribution (see McNeil et al. 2005, p. 354). The Gaussian copula model
introduces a multivariate normal vector Z = (Z1, . . . , Z J )′ of latent variables to obtain
dependence across obligors. The relationship between the default indicators and the latent
variables is described by Y j = 1{Z j >z j }, j = 1, . . . , J, where Z j follows standard normal

distribution, z j = Φ−1
(
1 − p j

)
and Φ−1 denotes the inverse of the cumulative distribution

function (CDF) of the standard normal distribution. Obviously, the choice of the threshold
value, z j , implies that P

(
Y j = 1

) = p j .
The correlations among the Z j values are modeled by defining

Z j = b jε j + a j1Ψ1 + . . . + a j DΨD, j = 1, . . . , J, (3)

where ε j and Ψ1, . . . , ΨD are independent standard normal random variables with b2j +
a2

j1 + . . . + a2
j D = 1. While, Ψ1, . . . , ΨD are systematic risk factors affecting all obligors,

ε j is the idiosyncratic risk factor affecting only obligor j . Furthermore, a j1, . . . , a j D are
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constant and non-negative factor loadings, assumed to be known. Thus, given the vector
� = (Ψ1, . . . , ΨD)′, we have the conditional default probabilities

p j (�) = P
(
Y j = 1|�) = Φ

((
a j� + Φ−1(p j )

)
b−1

j

)
, j = 1, . . . , J, (4)

where a j = (a j1, . . . , a j D
)
.

The last example is the t-copula model in which latent variables follow multivariate t-
distribution instead of multivariate normal distribution. The model that has been widely used
(see, e.g., Bassamboo et al. 2008; Kang and Shahabuddin 2005) is

Tj =
(

b jε j +
∑D−1

d=1
a jdΨd

)
(
ΨD
/
η
)−1/2

, j = 1, . . . , J,

where the definitions ofΨ1, . . . , ΨD−1, ε j , a j1, . . . , a j (D−1) and b j are the same as in (3), and
ΨD denotes a chi-square random variable with η degrees of freedom that is independent of
Ψ1, . . . , ΨD−1 and ε j . The relationship between the default indicators and the latent variables
is described by Y j = 1{Tj >t j }. Since Tj is a t-distributed random variable, to preserve the
marginal default probabilities, we select t j = F−1

η (1 − p j ) where Fη denotes the CDF of
the t-distribution with η degrees of freedom. Finally, given the vector � = (Ψ1, . . . , ΨD)′,
we have the conditional default probabilities

p j (�) = P (Yi = 1|�) = Φ

⎛

⎝
ã j �̃ −

√
ΨD
/
ηF−1

η

(
1 − p j

)

b j

⎞

⎠ , j = 1, . . . , J, (5)

where ã j = (a j1, . . . , a j (D−1)) and �̃ = (Ψ1, . . . , ΨD−1)
′.

3 Efficient simulation of tail loss probabilities

In order to simulate tail loss probabilities under the Bernoulli mixture model, in each repli-
cation of the simulation algorithm, we need to generate the input vector � with density
f (�;u) where u denotes the set of parameters of the specific model. Then, we calculate the
conditional default probabilities p j (�), j = 1, . . . , J again for the specific model. Once,
p j (�) is calculated, it can be used to generate the default indicator Y j of the j th obligor.
Finally, we compute the total loss L of the portfolio and the response function 1{L>τ } as an
estimator of the tail loss probability. Before giving details on the variance reduction methods,
we describe the naive simulation (NV) method in Algorithm 1 as it is a simpler guide on how
Monte Carlo can be applied for quantifying credit risk measures. Note that, this algorithm
and all other algorithms given in this paper are designed to estimate both tail loss probability
and conditional excess.

Algorithm 1 Naive (NV) simulation of the tail loss probability and the conditional excess
1: for replications k = 1, . . . , N do
2: generate Ψd from f (.;u), d = 1, . . . , D independently
3: compute p j (�), j = 1, . . . , J
4: generate Y j ∼ Bernoulli(p j (�)), j = 1, . . . , J

5: compute L(k) =∑J
j=1 c j Y j

6: end for
7: return ŷN V = N−1∑N

k=1 1{L(k)>τ } for P(L > τ) and r̂ N V using (16) for E[L|L > τ ]
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The random variables � and Y j , j = 1, . . . , J are the only sources of randomness of the
tail loss probability estimates. We call the generation of Y j , j = 1, . . . , J values for a given
� “inner simulation” and the generation of the input vector � “outer simulation”. In order
to increase the efficiency of the tail loss probability estimates, we need to focus on these two
parts separately.

To reduce the variance coming from the inner simulation, one can use exponential twisting
(see, e.g., Glasserman and Li 2005). However, in a recent paper, Sak and Hörmann (2012)
propose a more efficient (see Sect. 5 for the definition of the efficiency measure) method
called geometric shortcut (GS) algorithm, which we also use in this paper to reduce the
inner variance. Implementing GS alone is not sufficient to decrease the variance for highly
dependent obligors. Therefore, we employ importance sampling based on the cross-entropy
(CE) (see chapter 8 of Rubinstein and Kroese 2008) for decreasing the variance coming from
the outer simulation. To enhance the efficiency of CE, we combine it with stratification. In
the following subsections, we explain the implementation details of these methods under the
general Bernoulli mixture models.

3.1 Inner replications using the geometric shortcut

The geometric shortcut idea was introduced in Sect. 3 of Sak andHörmann (2012) to simulate
tail loss probability P(L > τ) and conditional excess E[L|L > τ ] for independent obligors.
The idea is simply to generate instead of many Bernoulli random variables, a geometric
random variate that is used as index of the next default in the Gaussian copula framework.
To be able to use this idea, the number of repetitions of the simulation of the defaults is
increased from 1 to Nin > 1 (Nin denotes the number of inner replications), thus, the gen-
erated � vector is not used once but Nin times by replacing the generation of Bernoulli
random variables by geometric random variables. They argue that the optimum number
of Nin depends on the contribution of the inner and the outer repetitions on the variance.
Although, they give approximate analytical results on Nin, their final suggestion is to use
Nin = min(�1/ p̄(�)�, J ) where p̄(�) denotes the average value of the default probabili-
ties, p j (�), j = 1, . . . , J for the current � vector. Figure1 provides a visualization of the
geometric shortcut method in the flowchart of the full algorithm in Sect. 3.3. For the details
of the GS methodology, we refer to Sak and Hörmann (2012). The same idea was applied
successfully to the t-copula model in Sak (2010).

3.2 Importance sampling based on cross-entropy method

We consider changing one of the parameters of Ψd , d = 1, . . . , D to increase p j (�) values
for the importance sampling (IS). This increases the observed frequency of defaults in the
simulation. Most of the papers in quantitative risk management literature consider changing
the scale parameter (such as the scale parameter of the gamma distribution) and/or the shift
parameter (mean of normal distribution) of the distributions at hand (see, e.g., Glasserman
and Li 2005; Sak et al. 2010). It is our numerical experience that this is a sensible approach
as changing the parameters other than these in importance sampling increases the variance
of the likelihood ratios in higher dimensions. For a more theoretical approach to choose IS
density, we refer the reader to Geweke (1989).

Suppose that f (�;u) is the density of the original vector �. Here, u ∈ RD denotes the
vector of original parameters which are subject to change in IS. Let v ∈ RD be the vector of
new parameters for the IS distribution. The CEmethod aims to find the optimal IS parameter,
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v∗, by solving the maximization problem (for details see Rubinstein and Kroese 2008, pp.
136–141):

max
v

∫

1{L(�)>τ } log( f (�; v)) f (�;u)d�. (6)

The problem in (6) is a stochastic optimization problem as the indicator function is uncertain
for a given �, i.e. it depends also on the Bernoulli random variables Y1, . . . , YJ . Therefore,
we replace 1{L(�)>τ } with E

[
1{L(�)>τ }|�

] = P (L (�) > τ |�).
The solution of the problem in (6) can be estimated by using Monte-Carlo simulation:

max
v

∑M

k=1
P(L(�(k)) > τ |�(k)) log( f (�(k); v)), (7)

where M is the number of replications in the CE method and �(1), . . . ,�(M) are generated
from f (.;u), independently.

If the distribution of � is of exponential family, then a closed-form solution for (7) is
possible (see Appendix A.3 of Rubinstein and Kroese 2008). Not to lose the generality of
the method, we do not assume any distribution for � here.

Finding the exact value of P(L(�(k)) > τ |�(k)) is possible but generally difficult, since
the number of obligors in the portfolio can be large. However we can use one of the approxi-
mations listed in Glasserman and Li (2005). Here we use the simplest approach based on the
normal approximation. Since,

E[L|�] =
∑J

j=1
c j p j (�)

and

V ar [L|�] =
∑J

j=1
c2j
[

p j (�) − p j (�)2
]
,

we obtain the approximation:

P(L(�(k)) > τ |�(k)) ≈ 1 − Φ

⎛

⎜
⎜
⎝

τ −∑J
j=1 c j p j

(
Ψ (k)

)

√
∑J

j=1 c2j

[
p j
(
�(k)

)− p j
(
Ψ (k)

)2
]

⎞

⎟
⎟
⎠ . (8)

Instead of searching for the optimal IS parameters v = (v1, . . . , vD)′ independently, we
combine identical elements of �, say (Ψ1, . . . , ΨD′)′, in a group such that

vd =
∑J

j=1
a jdc jθ, d = 1, . . . , D′, (9)

and optimize for θ given that we know vD′+1, . . . , vD . This is simply related with finding
the direction of loss function in Ψd , d = 1, . . . , D′, which is:

(∑J

j=1
a j1c j , . . . ,

∑J

j=1
a j D′c j

)′/∥∥
∥
∥

(∑J

j=1
a j1c j , . . . ,

∑J

j=1
a j D′c j

)′∥∥
∥
∥.

The optimal value for θ determines the IS parameters for (Ψ1, . . . , ΨD′)′ along this direc-
tion. This reflects the importance of � on the final probabilities p j (�), j = 1, . . . , J and
decreases the dimension of the optimization problem in (7) to D − D′ + 1. We can easily
decide on how to construct the group by looking at the conditionally independent default
probability formula for the model at hand. For example, for the Credit Risk+ and Gaussian
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copula models, the structure of (2) and (4) suggests that we can combine all of the elements
of � and thus choose D′ = D (dimension of the problem is one in (7)). However, for (5) it is
appropriate to combine Ψ1, . . . , ΨD−1 thus D′ = D − 1 (dimension of the problem is two in
(7)). Note that, ΨD , a chi-squared random variable with η degrees of freedom, is a Gamma
random variable with shape and scale parameters equal to η

/
2 and 2 respectively.

Using the information that Ψd , d = 1, . . . , D are independent in our models, (7) can be
written as

max
θ,vD′+1,...,vD

∑M
k=1 P(L(�(k)) > τ |�(k))

[∑D′
d=1 log

(
f
(
Ψ

(k)
d ;∑J

j=1 a jdc jθ
))

+∑D
d=D′+1 log

(
f
(
Ψ

(k)
d ; vd

))]
,

(10)

where P(L(�(k)) > τ |�(k)) is given in (8). The full algorithm to compute v is given in
Algorithm 2.

Algorithm 2 Computation of v using CE for a grouping of first D′ elements of �

1: generate Ψ
(k)
d , d = 1, . . . , D independently, k = 1, . . . , M (We use M = 10,000)

2: solve for θ, vD′+1, . . . , vD using (10)
3: compute vd , d = 1, . . . , D′ using (9)
4: return v1, . . . , vD

The likelihood ratio under the computed IS parameter v is calculated using

ρ(�(k);u, v) =
∏D

d=1
f (Ψ

(k)
d ; ud)

(
f (Ψ

(k)
d ; vd)

)−1
. (11)

The combination of IS based on cross-entropy and the inner replications using the geometric
shortcut (CEGS) is presented as Algorithm 3.

Algorithm 3 Tail loss probability and conditional excess estimation using CEGS
1: determine D′, then solve for v using Algorithm 2
2: for replications k = 1, . . . , N do
3: generate Ψd from f (.; v), d = 1, . . . , D independently
4: calculate ρ(k) as in (11)
5: compute p j (�), j = 1, . . . , J
6: construct a loss vector L(in) of size Nin = min(�1/ p̄ j (�)�, J )

7: for obligors j = 1, . . . , J do
8: initialize λ to zero and cont to false
9: repeat
10: generate the U (0, 1) random variate U
11: set λ = λ + ceiling(log(1 − U )/ log(1 − p j ()))
12: if (λ > Nin) then set cont to true

13: else set L(λ)
(in) = L(λ)

(in) + c j
14: until cont = true
15: end for
16: compute p̄(k)

in = N−1
in
∑Nin

l=1 1{L(l)
(in)>τ }

17: compute L̄(k)
in = N−1

in
∑Nin

l=1 L(l)
(in)1{L(l)

(in)>τ }
18: end for
19: return ŷC EGS = N−1∑N

k=1 ρ(k) p̄(k)
in for P(L > τ) and r̂C EGS using (17) for E[L|L > τ ]
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3.3 Stratifying the random input

Stratified sampling aims to find the Monte Carlo estimate by conditioning on disjoint and
covering subsets (or strata) of the random input domain. Suppose we intend to estimate
E[q(�)] with the property that � ∈ RD , q : RD → R, and E

[
q (�)2

]
< ∞. We define

the random vector S (�), as a surjective mapping from RD onto Rδ where δ ≤ D. Let
ξ1, . . . , ξI denote equiprobable strata of Rδ . Then, the expectation can be calculated using
conditional expectations,

E [q (�)] = I −1
∑I

i=1
E [q (Ψ ) |S (�) ∈ ξi ] = I −1

∑I

i=1
E [q (� i )],

where I −1 is the probability of each equiprobable strata and � i follows the distribution of
� conditional on S (�) ∈ ξi . For E [q (�)],

ŷ = I −1
∑I

i=1
ŷi = I −1

∑I

i=1
N−1

i

∑Ni

k=1
q
(
�

(k)
i

)

is the stratified estimator, where Ni is the size of the sample drawn from stratum i , �(k)
i is

the kth drawing of the random input � conditional on S (�) ∈ ξi , and ŷi is the sample mean
in stratum i . The variance of the stratified estimator is:

V ar
[
ŷ
] = I −2

∑I

i=1
N−1

i

(
sy

i

)2
, (12)

where sy
i is the sample standard deviation of the responses q

(
�

(k)
i

)
, k = 1, . . . , Ni .

The variance given in (12) can be minimized by allocating the sample sizes, Ni , propor-
tional to conditional standard deviations sy

i (see, e.g., Glasserman 2004). As Ni values must
be integers, we simply use the formula:

Ni =
⌈

sy
i N

/∑I

l=1
sy
l

⌉

, i = 1, . . . , I. (13)

Unfortunately, we have no prior information on sy
i , i = 1, . . . , I . A practical solution is

to use the estimates of conditional standard deviations obtained through a pilot study with
Np replications. We suggest selecting a sufficiently large Np to assure the normality of the
conditional estimates, ŷi , and to obtain accurate estimates for the optimal allocation sizes.
The remaining N − Np replications, then, can be used in the main run according to the
allocation rule in (13). In the end of the simulation, the sample generated in the pilot study
is combined with the sample generated in the main run. By this approach, no drawings are
wasted.

The variance of the stratified estimator also depends on the random vector S(�). By using
the conditional variance formula, the total variance of q(�) can be decomposed into two
parts:

V ar [q (�)] = V ar [E [q (�) |S (�)]] + E [V ar [q (�) |S (�)]] . (14)

The variance of the stratified estimator in (12) is only depending on the conditional vari-
ances. Thus, it is only influenced by the second component of (14). Therefore, we try to
choose S(�) such that it maximizes, as far as possible, the first component of (14). In other
words, we should choose S(�) such that the variance between the conditional estimates of
each stratum is large. On the other hand, S(�) should be computationally tractable, so that
we can generate the conditional vector � i easily.
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The general idea is to stratify normally distributed elements of � along the IS shift
and we suggest stratifying the maximum of the remaining elements. For example, for the
CreditRisk+ model, we choose S (�) = max {Ψ1, . . . , ΨD}. For the Gaussian copula model,
we stratify the� vector along the direction of the IS parameters, v. So, S (�) = v′�. Finally,
for the t-copula model, we stratify the �̃ vector along the direction of the IS parameters,

ṽ = (v1, . . . , vD−1)
′, and we also stratify ΨD . So, we choose S (�) =

(
ṽ′�̃, ΨD

)′
.

The stratified version of the CEGS method (called STCEGS) is presented as Algorithm 4.
We also provide a flowchart diagram to illustrate the steps of the STCEGS method in Fig. 1.

Algorithm 4 Tail loss probability and conditional excess estimation using STCEGS
1: determine D′, then solve for v using Algorithm 2
2: choose an appropriate random valued function S : Rd → Rδ and set strata size vector (I1, . . . , Iδ)

′ and
total strata size I =∏δ

l=1 Il
3: define equiprobable strata ξ1, . . . , ξI onRδ

4: define empty lists �x
i and �

y
i for i = 1, . . . , I

5: set pilot = true

6: if (pilot = true) then set Ni =
⌈

I−1Np

⌉
for i = 1, . . . , I

7: else set N = N − Np and set Ni , i = 1, . . . , I using (13) for P(L > τ) or using (21) for E[L|L > τ ]
8: for stratum i = 1, .., I do
9: for replications k = 1, .., Ni do
10: generate � from f (.; v) such that S(�) ∈ ξi
11: calculate ρ(k) using (11)
12: compute p j (�), j = 1, . . . , J
13: construct a loss vector L(in) of size Nin = min(�1/ p̄ j (�)�, J )

14: for obligors j = 1, . . . , J do
15: initialize λ to zero and cont to false
16: repeat
17: generate the U (0, 1) random variate U
18: set λ = λ + ceiling(log(1 − U )/ log(1 − p j (�)))

19: if (λ > Nin) then set cont to true

20: else set L(λ)
(in) = L(λ)

(in) + c j
21: until cont = true
22: end for
23: compute p̄(k)

in = N−1
in
∑Nin

l=1 1{L(l)
(in)>τ } and add ρ(k) p̄(k)

in in list �y
i

24: compute L̄(k)
in = N−1

in
∑Nin

l=1 L(l)
(in)1{L(l)

(in)>τ } and add ρ(k) L̄(k)
in in list �x

i

25: end for
26: compute x̂i and sx

i for the list �x
i , and ŷi , and sy

i for the list �y
i , and sxy

i between �x
i and �

y
i

27: compute sr
i using (20) for E[L|L > τ ]

28: end for
29: if (pilot = true) then set pilot = f alse and go to line 6

30: return ŷ∗ = I−1∑I
i=1 ŷi for P(L > τ) and r̂∗ =∑I

i=1 x̂i

/∑I
i=1 ŷi for E[L|L > τ ]

4 Conditional excess simulation

We described our new algorithm for tail loss probability computation in Sect. 3. This section
explains how a similar methodology can be used for the computation of conditional excess
simulation.

123



122 Ann Oper Res (2018) 260:113–128

Fig. 1 The flowchart of STCEGS method provided in Algorithm 4

If we assume that P(L > τ) > 0, the conditional excess r = E[L|L > τ ] can be written
as r = x

/
y where x = E

[
L 1{L>τ }

]
and y = P(L > τ). This ratio can be estimated as

r̂ = x̂/ŷ with the approximate variance:

V ar
[
r̂
] ≈ x2y−4V ar

[
ŷ
]− 2x y−3Cov

[
x̂, ŷ
]+ y−2V ar

[
x̂
]
, (15)

which is found by using multivariate Taylor series expansion of the variance of the ratio (see,
e.g., Glasserman 2004).

The ratio estimator r̂ is biased and the bias has the form

Bias
[
r̂
] = x y−3V ar

[
ŷ
]+ y−2Cov

[
x̂, ŷ
]+ O

(
N−2) ,
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see, e.g., Fishman (1996, p. 109). Here, the leading term is of order O(N−1). It is possible to
reduce the bias by subtracting the estimate of the leading term from the ratio estimate. How-
ever, the squared bias is of order O(N−2), thus small compared to the variance. Therefore,
it is enough to use the simple ratio estimate without the bias correction.

Let x̂ N V and ŷN V denote the naive estimators for x and y. The naive estimator for r is:

r̂ N V = x̂ N V
/

ŷN V =
(∑N

k=1
L(k)1{L(k)>τ}

)/(∑N

k=1
1{L(k)>τ}

)

, (16)

and its variance can be estimated using (15). Algorithm 1 gives all the details of how to use
this estimate.

Following Glasserman (2005) and Sak and Hörmann (2012), for the simulation of
E[L|L > τ ], we use the IS distribution computed for the simulation of P(L > τ). If
we use CEGS, our new estimate of conditional excess is

r̂C EGS = x̂C EGS
/

ŷC EGS =
(∑N

k=1
ρ(k) L̄(k)

in

)/(∑N

k=1
ρ(k) p̄(k)

in

)

, (17)

where

L̄(k)
in =

(
N (k)
in

)−1∑N (k)
in

l=1
L(k,l)1{L(k,l)>τ }

denotes the average of the inner replications L(k,l)1{L(k,l)>τ }, l = 1, . . . , N (k)
in ,

p̄(k)
in =

(
N (k)
in

)−1∑N (k)
in

l=1
1{L(k,l)>τ }

denotes the average loss probability, and N (k)
in is the number of inner repetitions for the kth

outer replication.
To estimate the accuracy of (17), we use a general result for ratio estimators given on p.

234 of Glasserman (2004). Since the values (L̄(k)
in , p̄(k)

in ) for k = 1, . . . , N are independent
and identically distributed, the variance of the ratio estimator under the CEGS method is
calculated as:

V ar [r̂C EGS] ≈
(∑N

k=1
ρ(k) p̄(k)

in

)−2∑N

k=1

(
ρ(k) L̄(k)

in − r̂C EGSρ(k) p̄(k)
in

)2
. (18)

Equations (17) and (18) can also be found in Sak and Hörmann (2012) and Sak (2010).
The full algorithm of simulating tail loss probability and conditional excess using CEGS
method is given in Algorithm 3.

When we add stratification to CEGS, the ratio estimate can be calculated as

r̂∗ = x̂∗/ŷ∗ =
∑I

i=1
x̂i

/∑I

i=1
ŷi .

Here, x̂i = N−1
i

∑Ni
k=1 ρ(i,k) L̄(i,k)

in and ŷi = N−1
i

∑Ni
k=1 ρ(i,k) p̄(i,k)

in are estimators conditional

to the i th stratum, and L̄(i,k)
in , p̄(i,k)

in are the same as in (17) but computed conditional to the
i th stratum.

The variance of the stratified ratio estimator can be estimated again using (15). However,
the variances and the covariance of the estimators must be replaced by

V ar
[
x̂∗] = I −2

∑I

i=1
N−1

i

(
sx

i

)2
,

V ar
[
ŷ∗] = I −2

∑I

i=1
N−1

i

(
sy

i

)2
,
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and

Cov
[
x̂∗, ŷ∗] = I −2

∑I

i=1
N−1

i sxy
i .

Here, sx
i denotes the sample standard deviation of ρ(i,k) L̄(i,k)

in , k = 1, . . . , Ni , sy
i denotes

the sample standard deviation of ρ(i,k) p̄(i,k)
in , k = 1, . . . , Ni , and sxy

i denotes the covariance
between these two samples. We plug these formulas into (15) and get:

V ar
[
r̂∗] = I −2

∑I

i=1
N−1

i

(
sr

i

)2
, (19)

where

sr
i =

(
y−4x2

(
sy

i

)2 − y−32xsxy
i + y−2(sx

i

)2
)1/2

, i = 1, . . . , I, (20)

is the conditional standard deviation of the ratio estimator corresponding to the i th stratum.
Similar to what we describe in Sect. 3.3, the variance given in (19) can be minimized by

allocating the sample sizes Ni proportional to conditional standard deviations sr
i (see Başoğlu

and Hörmann 2014):

Ni =
⌈

sr
i N

/∑I

l=1
sr
l

⌉

, i = 1, . . . , I. (21)

We again use a pilot study to estimate sr
i , i = 1, . . . , I and determine the allocation sizes

for the main run. The final estimate is calculated by combining the samples generated during
both the pilot study and the main run. The full algorithm of simulating tail loss probability
and conditional excess using STCEGS method is given in Algorithm 4. As stated earlier, we
use the same IS strategy to estimate tail loss probability and conditional excess. However, in
stratification, the optimal sample allocations are found with different formulas for these two
estimates.

5 Numerical results

In this section, we compare the efficiency of the new methods CEGS and STCEGS with
other available algorithms in literature. The efficiency of a simulation method is inversely
proportional to the product of the variance of its estimator and the execution time (T M) of
the simulation. We, therefore, report as a main result of our comparison, the efficiency ratio
of the STCEGS estimator

E R
(
ŷ∗) = V ar

[
ŷ B M

]
T M

(
ŷ B M

) (
V ar

[
ŷ∗] T M

(
ŷ∗))−1

,

where ŷ B M is the benchmark estimator that corresponds to the best method existing in
literature.

For the first model, we use the numerical example given in Glasserman and Li (2003). It
is a portfolio with J = 1000 obligors and an exposure level of c j = 0.04 + 0.00196 j for
j = 1, . . . , J . Furthermore, a j0 = 0.002 and a jd = 0.0002 for d = 1, . . . , D = 10. We
assume σd = 9 for d = 1, . . . , D.

For the Gaussian copula model, we use the first numerical example given in Glasserman
and Li (2005). It is a portfolio of J = 1000 obligors in a 10-factor model. The marginal
default probabilities p j = 0.01(1 + sin(16π j/J )) for j = 1, . . . , J , thus, vary between 0
and 2%; the exposures c j = (�5 j/J)2 for j = 1, . . . , J , take the values 1, 4, 9, 16, and
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25, with 200 obligors at each level. These parameters represent a significant departure from
a homogeneous model. The factor loadings a j are generated independently and uniformly
from the interval (0, 1/

√
10); the upper limit of this interval ensures that the sum of squared

entries for each obligor does not exceed 1. Note that this upper limit also implies that, for
some of the obligors, the sum of the squares of the elements of a j are close to 1 indicating
that this credit portfolio contains strongly correlated obligors.

For the t-copula model, we use the third numerical example of Sak and Hörmann (2012)
and Sak (2010). It is a 5-factor model with 1200 obligors. Default probabilities, p j , are
generated independently and uniformly from the interval [0, 0.02] and exposure levels are
defined by c j = (�20 j/J)2 for j = 1, . . . , J . To define the factor loadings, the obligors are
separated into six segments of size 200. For each segment, the factors are generated uniformly
from the interval (0,max). For the structure of the matrix and the max values, we refer the
reader to Sak and Hörmann (2012) (Table 3, p. 1566).

For each specific model, we tabulate the half length of the 95% confidence intervals as
a percentage of the tail loss probability and conditional excess estimators for the available
methods in literature (see Table 1). These methods are naive simulation (NV), two-step
IS of Glasserman and Li (2003) (TS-IS), the geometric shortcut (GS), the combination
of IS and GS given in Sak and Hörmann (2012) (ISGS), and finally, the new methods
CEGS and STCEGS introduced in this paper. We indicate the benchmark method for each
specific model and give the efficiency ratio of STCEGS method in the last column of
Table 1.

The number of equiprobable strata is I = I1 = 50 for CreditRisk+ and the Gaussian
copula model, and I = 240 (I1 = 30, I2 = 8) for the t-copula model. The sample
size that we use for the pilot study in STCEGS is Np = 30, 000. This leaves approxi-
mately 70,000 drawings (N in (13) and (21)) to be allocated optimally in the main run.
For CEGS and STCEGS, the number of replications used for determining IS parameters is
M = 10, 000.

Summarizing the numerical results given in Table 1, the efficiency of STCEGS is higher
than the efficiency of the methods proposed on those specific credit risk models. The main
source of this efficiency improvement comes from the stratificationwhich allows us to allocate
more replications to regions with high variances. This aspect of stratification contributes to
the objective of the IS method which is to move the sampling process to important regions.
Moreover, our experiments showed that stratification yields better results when it is combined
with IS.

We report the results of two different ISmethods, ISGS andCEGS. The difference between
ISGS (Sak and Hörmann 2012; Sak 2010) and CEGS is the set-up that selects the IS parame-
ters.While ISGS uses themode of the zero-variance IS function, this paper uses cross-entropy
method with a dimension reduction for finding the IS parameters. For both methods, the geo-
metric shortcut is common. Although, the half lengths produced by CEGS are no better than
the ones produced by ISGS, CEGS has the advantage of being more general as it can be used
for all three specific models. This is the main reason why we combine stratification with
CEGS in the STCEGS algorithm.

Throughout the paper, we give algorithms to compute tail loss probabilities. For practical
purposes, we may need to calculate risk measures like Value-at-Risk (VaR), which is simply
the quantile of the loss distribution. Computing VaR requires simulating tail loss probabilities
for a series of threshold values. An efficient algorithm for the estimation of multiple tail loss
probabilities in a single stratified simulation is given in Başoğlu et al. (2013).
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6 Conclusion

In this paper, we considered the problem of efficient estimation of tail loss probability and
conditional excess for the Bernoulli mixture model of credit risk. We presented a new effi-
cient simulation method which is a combination of stratification, importance sampling based
on cross-entropy, and inner replications using the geometric shortcut method. It is an impor-
tant contribution as all the credit risk models proposed in literature can be represented as a
Bernoulli mixture model and it is more convenient for statistical fitting purposes compared
to threshold models. We also formulated the optimal sample allocation for stratification
of ratio estimators. Thus, we obtain further variance reduction for conditional excess esti-
mators. We evaluated the efficiency of our method on three different credit risk models:
CreditRisk+, the Gaussian, and the t-copula model. Numerical results suggest that the pro-
posed general algorithm is more efficient than the benchmark methods for these specific
models.
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Turkey (TÜBİTAK) Research Fund Project 111M108 and Xi’an Jiaotong- Liverpool University Research
Fund Project RDF-14-01-33, and partially supported by Boğaziçi Scientific Research Fund Project 6923.
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