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Abstract The max-k-cut problem is to partition the vertices of an edge-weighted graph
G = (V, E) into k ≥ 2 disjoint subsets such that the weight sum of the edges crossing the
different subsets is maximized. The problem is referred as the max-cut problem when k = 2.
In this work, we present a multiple operator heuristic (MOH) for the general max-k-cut
problem. MOH employs five distinct search operators organized into three search phases to
effectively explore the search space. Experiments on two sets of 91 well-known benchmark
instances show that the proposed algorithm is highly effective on the max-k-cut problem and
improves the current best known results (lower bounds) of most of the tested instances for
k ∈ [3, 5]. For the popular special case k = 2 (i.e., themax-cut problem),MOHalso performs
remarkablywell by discovering 4 improved best known results.We provide additional studies
to shed light on the key ingredients of the algorithm.

Keywords Max-k-cut and max-cut · Graph partition · Multiple search strategies ·
Tabu list · Heuristics

1 Introduction

Let G = (V, E) be an undirected graph with vertex set V = {1, . . . , n} and edge set
E ⊂ V × V , each edge (i, j) ∈ E being associated a weight wi j ∈ Z . Given k ∈ [2, n],
the max-k-cut problem is to partition the vertex set V into k (k is given) disjoint subsets

{S1, S2, . . . , Sk}, (i.e.,
k∪

i=1
Si = V, Si �= ∅, Si ∩ S j = ∅,∀i �= j), such that the sum of
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weights of the edges from E whose endpoints belong to different subsets is maximized, i.e.,

max
∑

1≤p<q≤k

∑

i∈Sp, j∈Sq

wi j . (1)

Particularly, when the number of partitions equals 2 (i.e., k = 2), the problem is referred as
the max-cut problem. Max-k-cut is equivalent to the minimum k-partition (MkP) problem
which aims to partition the vertex set of a graph into k disjoint subsets so as to minimize the
total weight of the edges joining vertices in the same partition (Ghaddar et al. 2011).

The max-k-cut problem is a classical NP-hard problem in combinatorial optimization and
can not be solved exactly in polynomial time (Boros and Hammer 1991; Kann et al. 1997).
Moreover, when k = 2, the max-cut problem is one of the Karp’s 21 NP-complete problems
(Karp 1972) which has been subject of many studies in the literature.

In recent decades, the max-k-cut problem has attracted increasing attention for its applica-
bility to numerous important applications in the area of data mining (Ding et al. 2001), VLSI
layout design (Barahona et al. 1988; Chang and Du 1987; Chen et al. 1983; Pinter 1984;
Cho et al. 1998), frequency planning (Eisenblätter 2002), sports team scheduling (Mitchell
2003), and statistical physics (Liers et al. 2004) among others.

Given its theoretical significance and large application potential, a number of solution
procedures for solving the max-k-cut problem (or its equivalent MkP) have been reported
in the literature. In Ghaddar et al. (2011), the authors provide a review of several exact
algorithms which are based on branch-and-cut and semidefinite programming approaches.
But due to the high computational complexity of the problem, only instances of reduced size
(i.e., |V | < 100) can be solved by these exact methods in a reasonable computing time.

For large instances, heuristic andmetaheuristicmethods are commonly used to find “good-
enough” sub-optimal solutions. In particular, for the very popular max-cut problem, many
heuristic algorithms have been proposed, including simulated annealing and tabu search
(Arráiz and Olivo 2009), breakout local search (Benlic and Hao 2013), projected gradient
approach (Burer and Monteiro 2001), discrete dynamic convexized method (Lin and Zhu
2012), rank-2 relaxation heuristic (Burer et al. 2002), variable neighborhood search (Festa
et al. 2002), greedy heuristics (Kahruman et al. 2007), scatter search (Martí et al. 2009),
global equilibrium search (Shylo et al. 2012) and its parallel version (Shylo et al. 2015),
memetic search (Lin and Zhu 2014; Wu and Hao 2012; Wu et al. 2015), and unconstrained
binary quadratic optimization (Wang et al. 2013). Compared with max-cut, there are much
fewer heuristics for the general max-k-cut problem or its equivalent MkP. Among the rare
existing studies, we mention the very recent discrete dynamic convexized (DC) method of
Zhu et al. (2013), which formulates themax-k-cut problem as an explicit mathematical model
and uses an auxiliary function based local search to find satisfactory results.

In this paper, we partially fill the gap by presenting a new and effective heuristic algorithm
for the general max-k-cut problem. We identify the contributions of the work as follows.

– In terms of algorithmic design, the main originality of the proposed algorithm is its
multi-phased multi-strategy approach which relies on five distinct local search operators
for solution transformations. The five employed search operators (O1−O5) are orga-
nized into three different search phases to ensure an effective examination of the search
space. The descent-based improvement phase uses the intensification operators O1–O2

to find a (good) local optimum from a starting solution. Then by applying two additional
operators (O3–O4), the diversified improvement phase aims to discover promising areas
around the obtained local optimum which are then further explored by the descent-based
improvement phase. Finally, since the search can get trapped in local optima, the per-
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turbation phase applies a random search operator (O5) to definitively lead the search to
a distant region from which a new round of the search procedure starts. This process is
repeated until a stopping condition is met. To ensure a high computational efficiency of
the algorithm, we employ bucket-sorting based techniques to streamline the calculations
of the different search operators.

– In terms of computational results, we assess the performance of the proposed algorithm
on two sets of well-known benchmarks with a total of 91 instances which are commonly
used to test max-k-cut and max-cut algorithms in the literature. Computational results
show that the proposed algorithm competes very favorably with respect to the existing
max-k-cut heuristics, by improving the current best known results on most instances
for k ∈ [3, 5]. Moreover, for the very popular max-cut problem (k = 2), the results
yielded by our algorithm remain highly competitive compared with the most effective
and dedicated max-cut algorithms. In particular, our algorithm manages to improve the
current best known solutions for 4 (large) instances, which were previously reported by
specific max-cut algorithms of the literature.

The rest of the paper is organized as follows. InSect. 2, the proposed algorithm is presented.
Section 3 provides computational results and comparisons with state-of-the-art algorithms in
the literature. Section 4 is dedicated to an analysis of several essential parts of the proposed
algorithm. Concluding remarks are given in Sect. 5.

2 Multiple search operator heuristic for max-k-cut

2.1 General working scheme

Theproposedmultiple operator heuristic algorithm (MOH) for the generalmax-k-cut problem
is described in Algorithm 1 whose components are explained in the following subsections.
The algorithm explores the search space (Sect. 2.2) by alternately applying five distinct search
operators (O1 to O5) tomake transitions from the current solution to a neighbor solution (Sect.
2.4). Basically, from an initial solution, the descent-based improvement phase aims, with two
operators (O1 and O2), to reach a local optimum I (Algorithm 1, lines 10–19, descent-based
improvement phase, Sect. 2.6). Then the algorithm continues to the diversified improvement
phase (Algorithm 1, lines 28–38, Sect. 2.7) which applies two other operators (O3 and O4)
to locate new promising regions around the local optimum I . This second phase ends once a
better solution than the current local optimum I is discovered or when a maximum number
of diversified moves ω is reached. In both cases, the search returns to the descent-based
improvement phase with the best solution found as its new starting point. If no improvement
can be obtained after ξ descent-based improvement and diversified improvement phases, the
search is judged to be trapped in a deep local optimum. To escape the trap and jump to an
unexplored region, the search turns into a perturbation-based diversification phase (Algorithm
1, lines 40–43), which uses a random operator (O5) to strongly transform the current solution
(Sect. 2.8). The perturbed solution serves then as the new starting solution of the next round
of the descent-based improvement phase. This process is iterated until the stopping criterion
(typically a cutoff time limit) is met.

2.2 Search space and evaluation solution

Recall that the goal of max-k-cut is to partition the vertex set V into k subsets such that the
sum of weights of the edges between the different subsets is maximized. As such, we define
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Algorithm 1 General procedure for the max-k-cut problem
1: Input: Graph G = (V, E), number of partitions k, max number ω of diversified moves, max number ξ of con-

secutive non-improvement rounds of the descent improvement and diversified improvement phases before
the perturbation phase, probability ρ for applying operator O3, γ the perturbation strength.

2: Output: the best solution Ibest found so far
3: I ← Generate_initial_solution(V, k) � I is a partition of V into k subsets
4: Ibest ← I � Ibest Records the best solution found so far
5: flo ← f (I ) � flo Records the objective value of the latest local optimum reached by O1 ∪ O2
6: fbest ← f (I ) � fbest Records the best objective value found so far
7: cnon_impv ← 0 � Counter of consecutive non-improvement rounds of descent and diversified search
8: while stopping condition not satisfied do
9: /* lines 10 to 19: Descent-based improvement phase by applying O1 and O2, see Sect. 2.4*/
10: repeat
11: while f (I ⊕ O1) > f (I ) do � Descent Phase by applying operator O1
12: I ← I ⊕ O1 � Perform the move defined by O1
13: Update Δ � Δ is the bucket structure recording move gains for vertices, see Sect. 2.5
14: end while
15: if f (I ⊕ O2) > f (I ) then � Descent Phase by applying operator O2
16: I ← I ⊕ O2
17: Update Δ

18: end if
19: until I can not be improved by operator O1 and O2
20: flo ← f (I )
21: if f (I ) > fbest then
22: fbest ← f (I ); Ibest ← I � Update the best solution found so far
23: cnon_impv ← 0 � Reset counter cnon_impv

24: else
25: cnon_impv ← cnon_impv + 1
26: end if
27: /* lines 28 to 38: Diversified improv. phase by applying O3 and O4 at most ω times, see Sect. 2.4 */
28: cdiv ← 0 � Counter cdiv records number of diversified moves
29: repeat
30: if Random(0, 1) < ρ then � Random(0,1) returns a random real number between 0 to 1
31: I ← I ⊕ O3
32: else
33: I ← I ⊕ O4
34: end if
35: Update H (H, λ) � Update tabu list H where λ is the tabu tenure, see Sect. 2.4
36: Update Δ � Update the move gains impacted by the move, see Sect. 2.5
37: cdiv ← cdiv + 1
38: until cdiv > ω or f (I ) > flo
39: /* Perturbation phase by applying O5 if fbest not improved for ξ rounds of phases 1-2, see Sect. 2.8 */
40: if cnon_impv > ξ then
41: I ← I ⊕ O5 � Apply random perturbation γ times, see Sect. 2.8
42: cnon_impv ← 0
43: end if
44: end while

the search space � explored by our algorithm as the set of all possible partitions of V into k

disjoint subsets, � = {{S1, S2, . . . , Sk} : k∪
i=1

Si = V, Si ∩ S j = ∅, Si ⊂ V,∀i �= j}, where

each candidate solution is called a k-cut.
For a given partition or k-cut I = {S1, S2, . . . , Sk} ∈ �, its objective value f (I ) is the

sum of weights of the edges connecting two different subsets:

f (I ) =
∑

1≤p<q≤k

∑

i∈Sp, j∈Sq

wi j . (2)

Then, for two candidate solutions I ′ ∈ � and I ′′ ∈ �, I ′ is better than I ′′ if and only if
f (I ′) > f (I ′′). The goal of our algorithm is to find a solution Ibest ∈ � with f (Ibest ) as
large as possible.
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2.3 Initial solution

TheMOH algorithm needs an initial solution to start its search. Generally, the initial solution
can be provided by any eligiblemeans. In our case,we adopt a randomized two step procedure.
First, from k empty subsets Si = ∅,∀i ∈ {1, . . . , k}, we assign each vertex v ∈ V to a random
subset Si ∈ {S1, S2, . . . , Sk}. Then if some subsets are still empty, we repetitively move a
vertex from its current subset to an empty subset until no empty subset exists.

2.4 Move operations and search operators

Our MOH algorithm iteratively transforms the incumbent solution to a neighbor solution by
applying some move operations. Typically, a move operation (or simply a move) changes
slightly the solution, e.g., by transferring a vertex to a new subset. Formally, let I be the
incumbent solution and let mv be a move, we use I ′ ← I ⊕ mv to denote the neighbor
solution I ′ obtained by applying mv to I .

Associated to a move operation mv, we define the notion of move gain Δmv , which
indicates the objective change between the incumbent solution I and the neighbor solution
I ′ obtained after applying the move, i.e.,

Δmv = f (I ′) − f (I ) (3)

where f is the optimization objective [see Formula (2)].
In order to efficiently evaluate the move gain of a move, we develop dedicated techniques

which are described in Sect. 2.5. In this work, we employ two basic move operations: the
‘single-transfer move’ and the ‘double-transfer move’. These two move operations form the
basis of our five search operators.

– Single-transfer move (st): Given a k-cut I = {S1, S2, . . . , Sk}, a vertex v ∈ Sp and a
target subset Sq with p, q ∈ {1, . . . , k}, p �= q , the ‘single-transfer move’ displaces
vertex v ∈ Sp from its current subset Sp to the target subset Sq �= Sp . We denote this
move by st (v, Sp, Sq) or v → Sq .

– Double-transfer move (dt): Given a k-cut I = {S1, S2, . . . , Sk}, the ‘double-transfer
move’ displaces vertex u from its subset Scu to a target subset Stu �= Scu , and displaces
vertex v from its current subset Scv to a target subset Stv �= Scv . We denote this move by
dt (u, Scu, Stu; v, Scv, Stv) or dt (u, v), or still dt .

From these two basic move operations, we define five distinct search operators O1 − O5
which indicate precisely how these two basic move operations are applied to transform an
incumbent solution to a new solution. After an application of any of these search operators,
the move gains of the impacted moves are updated according to the dedicated techniques
explained in Sect. 2.5.

– TheO1 search operator applies the single-transfermove operation. Precisely, O1 selects
among the (k − 1)n single-transfer moves a best move v → Sq such that the induced
move gain Δ(v→Sq ) is maximum. If there are more than one such moves, one of them is
selected at random. Since there are (k −1)n candidate single-transfer moves from a given
solution, the time complexity of O1 is bounded by O(kn). The proposedMOH algorithm
employs this search operator as its main intensification operator which is complemented
by the O2 search operator to locate good local optima (see Algorithm 1, lines 10–19 and
Sect. 2.6).
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– The O2 search operator is based on the double-transfer move operation and selects a
best dt move with the largest move gain Δdt . If there are more than one such moves, one
of them is selected at random.

Let dt (u, Scu, Stu; v, Scv, Stv) (Scu �= Stu , Scv �= Stv) be a double-transfer move, then the
move gain Δdt of this double transfer move can be calculated by a combination of the move
gains of its two underlying single-transfer moves (Δu→Stu and Δv→Stv ) as follows:

Δdt (u,v) = Δu→Stu + Δv→Stv + ψωuv (4)

where ωuv is the weight of edge e(u, v) ∈ E and ψ is a coefficient which is determined as
follows:

ψ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2, if Scu = Scv, Stu = Stv

2, if Stu = Scv, Scu = Stv

−1, if Scu = Scv, Stu �= Stv

1, if Scu = Stv, Stu �= Scv

−1, if Scu �= Scv, Stu = Stv

1, if Scu �= Stv, Stu = Scv

0, if Scu �= Scv, Stu �= Scv, Scu �= Stv, Stu �= Stv

(5)

The operator O2 is used when O1 exhausts its improving moves and provides a first means
to help the descent-based improvement phase to escape the current local optimum and dis-
cover solutions of increasing quality. Given an incumbent solution, there are a total number
of (k − 1)2n2 candidate double-transfer moves denoted as set DT . Seeking directly the best
move with the maximum Δdt among all these possible moves would just be too computa-
tionally expensive. In order to mitigate this problem, we devise a strategy to accelerate the
move evaluation process.

FromFormula (4), one observes that among all the vertices in V , only the vertices verifying
the condition ωuv �= 0 and Δdt (u,v) > 0 are of interest for the double-transfer moves. Note
that without the condition ωuv �= 0, performing a double-transfer move would actually
equal to two consecutive single-transfer moves, which on the one hand makes the operator
O2 meaningless and on the other hand fails to get an increased objective gain. Thus, by
examining only the endpoint vertices of edges in E , we shrink the move combinations by
building a reduced subset: DT R = {dt (u, v) : dt (u, v) ∈ DT, ωuv �= 0,Δdt (u,v) > 0}.
Based on DT R , the complexity of examining all possible double-transfer moves drops to
O(|E |), which is not related to k. In practice, one can examine φ|E | endpoint vertices in case
|E | is too large. We empirically set φ = 0.1/d , where d is the highest degree of the graph.

To summarize, the O2 search operator selects two st moves u → Stu and v → Stv from
the reduced set DT R , such that the combined move gain Δdt (u,v) according to Formula (4)
is maximum.

– The O3 search operator, like O1, selects a best single-transfer move (i.e., with the
largest move gain) while considering a tabu list H (Glover and Laguna 1999). The tabu
list is a memory which is used to keep track of the performed st moves to avoid revisiting
previously encountered solutions. As such, each time a best st move is performed to
displace a vertex v from its original subset to a target subset, v becomes tabu and is
forbidden to move back to its original subset for the next λ iterations (called tabu tenure).
In our case, the tabu tenure is dynamically determined as follows.

λ = rand(3, n/10) (6)
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where rand(3, n/10) denotes a random integer between 3 and n/10.
Based on the tabu list, O3 considers all possible single-transfer moves except those
forbidden by the tabu list H and selects the best st move with the largest move gain Δst .
Note that a forbidden move is always selected if the move leads to a solution better than
the best solution found so far. This is called aspiration in tabu search terminology (Glover
and Laguna 1999).
Although both O3 and O1 use the single-transfer move, they are two different search
operators and play different roles within the MOH algorithm. On the one hand, as a
pure descent operator, O1 is a faster operator compared to O3 and is designed to be an
intensification operator. Since O1 alone has no any diversification capacity and always
ends with the local optimum encountered, it is jointly used with O2 to visit different
local optima. On the other hand, due to the use of the tabu list, O3 can accept moves
with a negative move gain (leading to a worsening solution). As such, unlike O1, O3 has
some diversification capacity, andwhen jointly usedwith O4, helps the search to examine
nearby regions around the input local optimum to find better solutions (see Algorithm 1,
lines 28–38 and Sect. 2.7).

– The O4 search operator, like O2, is based on the double-transfer operation. However,
O4 strongly constraints the considered candidate dt moves with respect to two target
subsets which are randomly selected. Specifically, O4 operates as follows. Select two
target subsets Sp and Sq at random, and then select two single-transfer moves u → Sp

and v → Sq such that the combined move gain Δdt (u,v) according to Formula (4) is
maximum.
Operator O4 is jointly usedwith operator O3 to ensure the diversified improvement search
phase.

– The O5 search operator is based on a randomized single-transfer move operation. O5
first selects a random vertex v ∈ V and a random target subset Sp , where v /∈ Sp and
then moves v from its current subset to Sp . This operator is used to change randomly
the incumbent solution for the purpose of (strong) diversification when the search is
considered to be trapped in a deep local optimum (see Sect. 2.8).

Among the five search operators, four of them (O1–O4) need to find a single-transfermove
with the maximum move gain. To ensure a high computational efficiency of these operators,
we develop below a streamlining technique for fast move gain evaluation and move gain
updates.

2.5 Bucket sorting for fast move gain evaluation and updating

The algorithm needs to rapidly evaluate a number of candidate moves at each iteration. Since
all the search operators basically rely on the single-transfer move operation, we developed a
fast incremental evaluation technique based on a bucket data structure to keep and update the
move gains after each move application (Cormen et al. 2001). Our streamlining technique
can be described as follows: let v → Sx be the move of transferring vertex v from its current
subset Scv to any other subset Sx , x ∈ {1, . . . , k}, x �= cv. Then initially, each move gain is
determined as follows:

Δv→Sx =
∑

i∈Scv,i �=v

ωvi −
∑

j∈Sx

ωv j , x ∈ {1, . . . , k}, x �= cv (7)

where ωvi and ωv j are respectively the weights of edges e(v, i) and e(v, j).
Suppose the move v → Stv , i.e., displacing v from Scv to Stv , is performed, the move

gains can be updated by performing the following calculations:
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1. for each Sx �= Scv , Sx �= Stv , Δv→Sx = Δv→Sx − Δv→Stv

2. Δv→Scv = −Δv→Stv

3. Δv→Stv = 0
4. for each u ∈ V − {v}, moving u ∈ Scu to each other subset Sy ∈ S − {Scu},

Δu→Sy =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δu→Sy − 2ωuv, if Scu = Scv, Sy = Stv

Δu→Sy + 2ωuv, if Scu = Stv, Sy = Scv

Δu→Sy − ωuv, if Scu = Scv, Sy �= Stv

Δu→Sy + ωuv, if Scu = Stv, Sy �= Scv

Δu→Sy − ωuv, if Scu �= Scv, Sy = Stv

Δu→Sy + ωuv, if Scu �= Stv, Sy = Scv

Δu→Sy , if Scu �= Scv, Scu �= Stv, Sy �= Scv, Sy �= Stv

(8)

For low-density graphs, ωuv = 0 stands for most cases. Hence, we only update the move
gains of vertices affected by this move (i.e., the displaced vertex and its adjacent vertices),
which reduces the computation time significantly.

The move gains can be stored in an vector, with which the time for finding the best
move grows linearly with the number of vertices and partitions (O(kn)). For large problem
instances, the required time to search the best move can still be quite high, which is particular
true when k is large. To further reduce the computing time, we adapted the bucket sorting
technique of Fiduccia and Mattheyses (1982) initially proposed for the two-way network
partitioning problem to the max-k-cut problem. The idea is to keep the vertices ordered
by the move gains in decreasing order in k arrays of buckets, one for each subset Si ∈
{S1, S2, . . . , Sk}. In each bucket array i , the jth entry stores in a doubly linked list the vertices
with the move gain Δv→Si currently equaling j . To ensure a direct access to each vertex in
the doubly linked lists, as suggested in Fiduccia andMattheyses (1982), we maintain another
array for all vertices, where each element points to its corresponding vertex in the doubly
linked lists.

Figure 1 shows an example of the bucket structure for k = 3 and n = 8. The 8 vertices of
the graph (Fig. 1, left) are divided to 3 subsets S1, S2 and S3. The associated bucket structure
(Fig. 1, right) shows that the move gains of moving vertices e, g, h to subset S1 equal −1,
then they are stored in the entry of B1 with index of −1 and are managed as a doubly linked
list. The array AI shown at the bottom of Fig. 1 manages position indexes of all vertices.

For each array of buckets, finding the best vertex with maximum move gain is equivalent
to finding the first non-empty bucket from top of the array and then selecting a vertex in its
doubly linked list. If there are more than one vertices in the doubly linked list, a random
vertex in this list is selected. To further reduce the searching time, the algorithm memorizes
the position of the first non-empty bucket (e.g., gmax1, gmax2, gmax3 in Fig. 1). After each
move, the bucket structure is updated by recomputing the move gains (see Formula (8)) of the
affected vertices which include the moved vertex and its adjacent vertices, and shifting them
to appropriate buckets. For instance, the steps of performing an O1 move based on Fig. 1
are shown as follows: First, obtain the index of maximum move gain in the bucket arrays by
calculating max(gmax1, gmax2, gmax3), which equals gmax3 in this case. Second, select
randomly a vertex indexed by gmax3, vertex b in this case. At last, update the positions of
the affected vertices a, b, d .

The complexity of each move consists in (1) searching for the vertex with maximum
move gain in O(l) (l being the current length of the doubly link list with the maximum gain,
typically much smaller than n), (2) recomputing the move gains for the affected vertices
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Fig. 1 An example of bucket structure for max-3-cut

in O(kdmax ) (dmax being the maximum degree of the graph), and (3) updating the bucket
structure in O(kdmax ).

Bucket data structures have been previously applied to the specific max-cut and max-
bisection problems (Benlic and Hao 2013; Lin and Zhu 2014; Zhu et al. 2015). This work
presents the first adaptation of the bucket sorting technique to the general max-k-cut problem.

2.6 Descent-based improvement phase for intensified search

The descent-based local search is used to obtain a local optimum from a given starting solu-
tion. As described in Algorithm 1 (lines 10–19), we alternatively uses two search operators
O1 and O2 defined in Sect. 2.4 to improve a solution until reaching a local optimum. Start-
ing from the given initial solution, the procedure first applies O1 to improve the incumbent
solution. According to the definition of O1 in Sect. 2.4, at each step, the procedure examines
all possible single-transfer moves and selects a move v → Sq with the largest move gain
Δv→Sq subject to Δv→Sq > 0, and then performs that move. After the move, the algorithm
updates the bucket structure of move gains according to the technique described in Sect. 2.5.

When the incumbent solution can not be improved by O1 (i.e., ∀v ∈ V,∀Sq ,Δv→Sq ≤ 0),
the procedure turns to O2 whichmakes onebest double-transfermove. If an improved solution
is discovered with respect to the local optimum reached by O1, we are in a new promising
area. We switch back to operator O1 to resume an intensified search to attain a new local
optimum. The descent-based improvement phase stops when no better solution can be found
with O1 and O2. The last solution is a local optimum Ilo with respect to the single-transfer
and double-transfer moves and serves as the input solution of the second search phase which
is explained in the next section.

2.7 Diversified improvement phase for discovering promising region

The descent-based local phase described in Sect. 2.6 alone can not go beyond the best local
optimum Ilo it encounters. The diversified improvement search phase is used 1) to jump out of
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this local optimum and 2) to intensify the search around this local optimum with the hope of
discovering other improved solutions better than the input local optimum Ilo. The diversified
improvement search procedure alternatively uses two search operators O3 and O4 defined in
Sect. 2.4 to perform moves until a prescribed condition is met (see below and Algorithm 1,
line 38). The application of O3 or O4 is determined probabilistically: with probability ρ, O3

is applied; with 1 − ρ, O4 is applied.
When O3 is selected, the algorithm searches for a best single transfer move v → Sq with

maximum move gain Δv→Sq which is not forbidden by the tabu list or verifies the aspiration
criterion. Each performed move is then recorded in the tabu list H and is classified tabu for
the next λ (calculated by Formula (6)) iterations. The bucket structure is updated to actualize
the impacted move gains accordingly. Note that the algorithm only keeps and updates the
tabu list during the diversified improvement search phase. Once this second search phase
terminates, the tabu list is cleared up.

Similarly, when O4 is selected, two subsets are selected at random and a best double-
transfer dt move with maximum move gain Δdt is determined from the bucket structure
(break ties at random). After the move, the bucket structure is updated to actualize the
impacted move gains.

The diversified improvement search procedure terminates once a solution better than the
input local optimum Ilo is found, or a maximum numberω of diversified moves (O3 or O4) is
reached. Then the algorithm returns to the descent-based search procedure and use the current
solution I as a new starting point for the descent-based search. If the best solution founded so
far ( fbest ) can not be improved over a maximum allowed number ξ of consecutive rounds of
the descent-based improvement and diversified improvement phases, the search is probably
trapped in a deep local optima. Consequently, the algorithm switches to the perturbation
phase (Sect. 2.8) to displace the search to a distant region.

2.8 Perturbation phase for strong diversification

The diversified improvement phase makes it possible for the search to escape some local
optima. However, the algorithmmay still get deeply stuck in a non-promising regional search
area. This is the case when the best-found solution fbest can not be improved after ξ consec-
utive rounds of descent and diversified improvement phases. Thus the random perturbation
is applied to strongly change the incumbent solution.

The basic idea of the perturbation consists in applying the O5 operator γ times. In other
words, this perturbation phase moves γ randomly selected vertices from their original subset
to a new and randomly selected subset. Here, γ is used to control the perturbation strength;
a large (resp. small) γ value changes strongly (resp. weakly) the incumbent solution. In our
case, we adopt γ = 0.1|V |, i.e., as a percent of the number of vertices. After the perturbation
phase, the search returns to the descent-based improvement phase with the perturbed solution
as its new starting solution.

3 Experimental results and comparisons

3.1 Benchmark instances

To evaluate the performance of the proposed MOH approach, we carried out computational
experiments on two sets of well-known benchmarks with a total of 91 large instances of the
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literature.1 The first set (G-set) is composed of 71 graphs with 800–20,000 vertices and an
edge density from 0.02 to 6%. These instances were previously generated by a machine-
independent graph generator including toroidal, planar and random weighted graphs. These
instances are available from: http://www.stanford.edu/yyye/yyye/Gset. The second set comes
form (Burer et al. 2002), arising from 30 cubic lattices with randomly generated interaction
magnitudes. Since the 10 small instances (with less than 1000 vertices) of the second set are
very easy for our algorithm, only the results of the 20 larger instances with 1000 to 2744
vertices are reported. These well-known benchmarks were frequently used to evaluate the
performance of max-bisection, max-cut and max-k-cut algorithms (Benlic and Hao 2013;
Festa et al. 2002; Shylo et al. 2012, 2015; Wang et al. 2013; Wu and Hao 2012, 2013; Wu
et al. 2015; Zhu et al. 2013).

3.2 Experimental protocol

The proposed MOH algorithm was programmed in C++ and compiled with GNU g++ (opti-
mization flag “−O2”). Our computer is equipped with a Xeon E5440/2.83GHz CPU with
2GBRAM.When testing theDIMACSmachine benchmark2, ourmachine requires 0.43, 2.62
and 9.85 CPU time in seconds respectively for graphs r300.5, r400.5, and r500.5 compiled
with g++ −O2.

3.3 Parameters

The MOH algorithm requires five parameters: tabu tenure λ, maximum number ω of diver-
sified moves, maximum number ξ of consecutive non-improving rounds of the descent and
diversified improvement phases before the perturbation phase, probability ρ for applying the
operator O3, and perturbation strength γ . For the tabu tenure λ, we adopted the recommended
setting of theBreakout Local Search (Benlic andHao 2013),which performs quitewell for the
benchmark graphs. For each of the other parameters, we first identified a collection of varying
values and then determined the best setting by testing the candidate values of the parameter
while fixing the other parameters to their default values. This parameter study was based on
a selection of 10 representative and challenging G-set instances (G22, G23, G25, G29, G33,
G35, G36, G37, G38 and G40). For each parameter setting, 10 independent runs of the algo-
rithmwere conducted for each instance and the average objective values over the 10 runswere
recorded. If a large parameter value presents a better result, we gradually increase its value;
otherwise, we gradually decrease its value. By repeating the above procedure, we determined
the following parameter settings: λ = rand(3, |V |/10), ω = 500, ξ = 1000, ρ = 0.5, and
γ = 0.1|V |, which were used in our experiments to report computational results.

Considering the stochastic nature of ourMOHalgorithm, each instancewas independently
solved 20 times. For the purpose of fair comparisons reported in Sects. 3.4 and 3.5, we
followed most reference algorithms and used a timeout limit as the stopping criterion of the
MOH algorithm. The timeout limit was set to be 30 minutes for graphs with |V | < 5000, 120
minutes for graphs with 10,000 ≥ |V | ≥ 5000, 240 minutes for graphs with |V | ≥ 10,000.

To fully assess the performance of the MOH algorithm, we performed two compar-
isons with the state-of-the-art algorithms. First, we focused on the max-k-cut problem
(k = 2, 3, 4, 5), where we thoroughly compared our algorithm with the recent discrete
dynamic convexized algorithm (Zhu et al. 2013) which provides the most competitive results

1 Our best results are available at: http://www.info.univ-angers.fr/pub/hao/maxkcut/MOHResults.zip.
2 dfmax:ftp://dimacs.rutgers.edu/pub/dsj/clique/.
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for the general max-k-cut problem in the literature. Secondly, for the special max-cut case
(k = 2), we compared our algorithm with seven most recent max-cut algorithms (Benlic
and Hao 2013; Kochenberger et al. 2013; Shylo et al. 2012; Wang et al. 2013; Wu and Hao
2012, 2013). It should be noted that those state-of-the-art max-cut algorithms were specifi-
cally designed for the particular max-cut problem while our algorithm was developed for the
general max-k-cut problem. Naturally, the dedicated algorithms are advantaged since they
can better explore the particular features of the max-cut problem.

3.4 Comparison with state-of-the-art max-k-cut algorithms

In this section, we present the results attained by the MOH algorithm for the max-k-cut
problem. Asmentioned above, we compare the proposed algorithmwith the discrete dynamic
convexized algorithm (DC) (Zhu et al. 2013), which was published very recently. DC was
tested on a computer with a 2.11 GHz AMD processor and 1 GB of RAM. According to
the Standard Performance Evaluation Cooperation (SPEC) (www.spec.org), this computer
is 1.4 times slower than the computer we used for our experiments. Note that DC is the only
heuristic algorithm available in the literature, which published computational results for the
general max-k-cut problem.

Tables 1, 2, 3, and 4, respectively show the computational results of the MOH algorithm
(k = 2, 3, 4, 5) on the 2 sets of benchmarks in comparison with those of the DC algorithm.
The first two columns of the tables indicate the name and the number of vertices of the
graphs. Columns 3 to 6 present the results attained by our algorithm, where fbest and favg

show the best objective value and the average objective value over 20 runs, std gives the
standard deviation and time(s) indicates the average CPU time in seconds required by our
algorithm to reach the best objective value fbest . Columns 7 to 10 present the statistics of the
DC algorithm, including the best objective value fbest , average objective value favg , the time
required to terminate the run t t (s) and the time bt (s) to reach the fbest value. Considering
the difference between our computer and the computer used by DC, we normalize the time of
DC by dividing them by 1.4 according to the SPEC mentioned above. The entries marked as
“-” in the tables indicate that the corresponding results are not available. The entries in bold
indicate that those results are better than the results provided by the reference DC algorithm.
The last column (gap) indicates the gap of the best objective value for each instance between
our algorithm and DC. A positive gap implies an improved result.

From Table 1 on max-2-cut, one observes that our algorithm achieves a better fbest (best
objective value) for 50 out of 74 instances reported by DC, while a better favg (average
objective value) for 71 out of 74 instances. Our algorithm matches the results on other
instances and there is no resultworse than that obtainedbyDC.The average standard deviation
for all 91 instances is only 2.82, which shows our algorithm is stable and robust.

From Tables 2, 3, and 4, which respectively show the comparative results on max-3-cut,
max-4-cut and max-5-cut. One observes that our algorithm achieves much higher solution
quality on more than 90% of 44 instances reported by DC while getting 0 worse result.
Moreover, even our average results ( favg) are better than the best results reported by DC.

Note that the DC algorithm used a stopping condition of 500 generations (instead of a
cutoff time limit) to report its computational results. Among the two timing statistics (t t (s)
and bt (s)), bt (s) roughly corresponds to column time of the MOH algorithm. Still given
that the two algorithms attain solutions of quite different quality, it is meaningless to directly
compare the corresponding time values listed in Tables 1, 2, 3, and 4. To fairly compare
the computational efficiency of MOH and DC, we reran the MOH algorithm with the best
objective value of the DC algorithm as our stopping condition and reported our timing
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Table 2 Comparative results for max-3-cut between the proposed MOH algorithm and DC Zhu et al. (2013)

Instance |V | MOH DC gap

fbest favg std time(s) fbest t t (s) bt(s)

G1 800 15,165 15,164.90 0.36 557.25 15,127 508.34 339.41 38

G2 800 15,172 15,171.20 0.99 333.25 15,159 497.49 228.37 13

G3 800 15,173 15,173.00 0.00 269.60 15,149 506.45 205.06 24

G4 800 15,184 15,181.40 2.46 300.55 – – – –

G5 800 15,193 15,193.00 0.00 98.15 – – – –

G6 800 2632 2631.95 0.22 307.30 – – – –

G7 800 2409 2408.40 1.07 381.00 – – – –

G8 800 2428 2427.55 0.67 456.50 – – – –

G9 800 2478 2475.85 2.52 282.00 – – – –

G10 800 2407 2406.40 0.86 569.30 – – – –

G11 800 669 667.80 0.75 143.80 660 240.99 132.51 9

G12 800 660 658.95 0.50 100.70 655 212.56 59.09 5

G13 800 686 685.40 0.58 459.35 679 230.20 111.53 7

G14 800 4012 4009.45 1.88 88.20 3984 271.47 190.40 28

G15 800 3984 3982.40 0.58 80.30 3960 271.88 183.92 24

G16 800 3991 3986.30 1.87 1.30 3958 272.44 75.02 33

G17 800 3983 3981.00 1.05 7.80 – – – –

G18 800 1207 1205.60 1.56 0.30 – – – –

G19 800 1081 1078.05 2.38 0.20 – – – –

G20 800 1122 1115.00 4.05 13.25 – – – –

G21 800 1109 1106.75 2.30 55.75 – – – –

G22 2000 17,167 17,157.80 7.62 28.45 17008 2121.42 986.19 159

G23 2000 17,168 17,156.70 6.40 45.05 17021 2190.36 1208.18 147

G24 2000 17,162 17,152.10 4.98 16.30 17037 2230.09 1385.32 125

G25 2000 17,163 17,155.20 3.44 64.75 – – – –

G26 2000 17,154 17,146.30 4.61 44.80 – – – –

G27 2000 4020 4013.80 3.33 53.15 – – – –

G28 2000 3973 3966.45 5.10 38.85 – – – –

G29 2000 4106 4097.30 5.40 68.15 – – – –

G30 2000 4119 4109.90 5.34 150.40 – – – –

G31 2000 4003 3999.20 6.69 124.70 – – – –

G32 2000 1653 1651.85 0.73 160.05 1635 1274.91 905.73 18

G33 2000 1625 1622.30 0.95 62.55 1603 1215.13 664.57 22

G34 2000 1607 1604.00 1.00 88.85 1589 1303.88 827.79 18

G35 2000 10,046 10,039.90 2.59 66.15 9965 1793.30 1048.97 81

G36 2000 10,039 10,034.40 3.81 74.25 9945 1822.04 1196.02 94

G37 2000 10,052 10,047.80 1.96 3.35 9952 1845.20 1288.13 100

G38 2000 10,040 10,035.50 3.26 116.60 – – – –

G39 2000 2903 2890.05 6.75 8.95 – – – –

G40 2000 2870 2850.65 8.08 82.80 – – – –

G41 2000 2887 2862.90 9.77 87.70 – – – –
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Table 2 continued

Instance |V | MOH DC gap

fbest favg std time(s) fbest t t (s) bt(s)

G42 2000 2980 2964.30 5.99 2.45 – – – –

G43 1000 8573 8573.00 0.00 380.30 8510 512.48 112.20 63

G44 1000 8571 8569.60 2.35 616.80 8526 491.34 47.87 45

G45 1000 8566 8564.85 1.11 186.20 8515 504.19 44.00 51

G46 1000 8568 8564.60 2.01 215.30 – – – –

G47 1000 8572 8568.70 2.72 239.35 – – – –

G48 3000 6000 6000.00 0.00 0.40 5998 2591.27 293.30 2

G49 3000 6000 6000.00 0.00 0.90 6000 2653.42 1587.05 0

G50 3000 6000 6000.00 0.00 119.15 5998 2547.78 279.78 2

G51 1000 5037 5031.35 1.90 47.90 – – – –

G52 1000 5040 5037.50 0.81 0.65 – – – –

G53 1000 5039 5038.00 1.05 223.85 – – – –

G54 1000 5036 5033.55 2.29 133.95 – – – –

G55 5000 12,429 12,423.70 2.61 383.10 – – – –

G56 5000 4752 4741.90 7.84 569.20 – – – –

G57 5000 4083 4079.00 1.55 535.60 – – – –

G58 5000 25,195 25,182.10 8.89 576.00 – – – –

G59 5000 7262 7246.70 9.20 27.50 – – – –

G60 7000 17,076 17,067.00 4.40 683.00 – – – –

G61 7000 6853 6842.10 5.26 503.10 – – – –

G62 7000 5685 5681.50 1.43 242.40 – – – –

G63 7000 35,322 35,301.60 10.35 658.50 – – – –

G64 7000 10,443 10,408.80 25.23 186.90 – – – –

G65 8000 6490 6485.80 2.04 324.70 – – – –

G66 9000 7416 7411.50 2.42 542.50 – – – –

G67 10,000 8086 8083.50 2.29 756.70 – – – –

G70 10,000 9999 9999.00 0.00 7.80 – – – –

G72 10,000 8192 8186.70 3.35 271.20 – – – –

G77 14,000 11,578 11,568.90 4.01 154.90 – – – –

G81 20,000 16,321 16,313.00 4.05 331.20 – – – –

3dl101000 1000 1067 1066.10 0.54 150.40 1043 333.45 179.20 24

3dl102000 1000 1072 1071.95 0.22 669.50 1044 339.38 188.68 28

3dl103000 1000 1065 1063.60 0.66 142.85 1042 326.69 114.20 23

3dl104000 1000 1071 1070.30 0.46 160.20 1045 341.58 109.75 26

3dl105000 1000 1064 1061.90 0.77 4.40 1039 320.88 178.88 25

3dl106000 1000 1063 1061.80 0.60 120.00 1032 353.75 23.96 31

3dl107000 1000 1075 1074.40 0.58 414.05 1053 335.95 157.18 22

3dl108000 1000 1071 1069.95 0.38 78.55 1049 325.50 209.77 22

3dl109000 1000 1079 1078.20 0.81 208.85 1052 328.38 232.87 27

3dl1010000 1000 1070 1069.50 0.50 478.65 1044 346.13 184.91 26

3dl141000 2744 2924 2919.75 2.45 25.00 2845 2527.70 1496.07 79
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Table 2 continued

Instance |V | MOH DC gap

fbest favg std time(s) fbest t t (s) bt(s)

3dl142000 2744 2935 2929.25 2.53 55.95 2856 2556.83 1408.24 79

3dl143000 2744 2912 2909.50 1.40 110.25 2829 2658.27 1659.44 83

3dl144000 2744 2924 2919.90 2.41 81.15 2861 2490.92 1759.67 63

3dl145000 2744 2914 2911.25 1.92 67.50 2839 2515.36 1764.88 75

3dl146000 2744 2913 2909.00 2.00 22.05 2834 2541.43 1529.38 79

3dl147000 2744 2913 2909.30 1.73 70.05 2834 2554.19 1748.39 79

3dl148000 2744 2925 2919.40 4.05 73.95 2845 2495.00 1440.25 80

3dl149000 2744 2906 2901.50 2.62 6.35 2823 2476.52 1699.97 83

3dl1410000 2744 2933 2927.65 2.22 29.90 2851 2519.16 1476.52 82

Better 43/44/91

Equal 1/44/91

Worse 0/44/91

Table 3 Comparative results for max-4-cut between the proposed MOH algorithm and DC Zhu et al. (2013)

Instance |V | MOH DC gap

fbest favg std time(s) fbest t t (s) bt(s)

G1 800 16,803 16,801 0.86 26.45 16,740 450.16 290.51 63

G2 800 16,809 16,808 1.12 268.55 16,735 455.81 388.76 74

G3 800 16,806 16,804.7 0.78 138.25 16,752 431.86 245.50 54

G4 800 16,814 16,811.2 1.49 146.65 – – – –

G5 800 16,816 16,815.8 0.36 577.45 – – – –

G6 800 2751 2748.45 1.07 89.95 – – – –

G7 800 2515 2513.75 0.54 57.15 – – – –

G8 800 2525 2523.35 0.65 78.6 – – – –

G9 800 2585 2583.35 0.96 16.45 – – – –

G10 800 2510 2507.6 1.24 79.85 – – – –

G11 800 677 676 0.32 20.3 675 171.27 152.04 2

G12 800 664 662.25 0.54 41.25 660 179.99 117.52 4

G13 800 690 689.1 0.44 198.7 685 187.54 127.56 5

G14 800 4440 4435.35 1.93 55.95 4402 243.08 159.14 38

G15 800 4406 4403.4 0.8 89.55 4373 249.66 129.21 33

G16 800 4415 4414.05 1.02 392.45 4378 246.11 75.89 37

G17 800 4411 4406.45 2.27 0.2 – – – –

G18 800 1261 1253.9 3.06 0.3 – – – –

G19 800 1121 1115.35 3.69 1.2 – – – –

G20 800 1168 1160.95 3.12 0.4 – – – –

G21 800 1155 1148.25 3.74 54.7 – – – –

G22 2000 18,776 18,765.7 5.67 107.25 18,615 1988.31 1314.45 161

G23 2000 18,777 18,765.8 5.71 73.7 18,612 1941.85 1775.80 165
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Table 3 continued

Instance |V | MOH DC gap

fbest favg std time(s) fbest t t (s) bt(s)

G24 2000 18,769 18,763.6 3.75 26.4 18,620 1822.82 407.66 149

G25 2000 18,775 18,767.6 4.36 75.65 – – – –

G26 2000 18,767 18,761.2 4.49 96.55 – – – –

G27 2000 4201 4188.5 4.6 45.35 – – – –

G28 2000 4150 4138.85 5.91 24.95 – – – –

G29 2000 4293 4281.65 5.68 87.4 – – – –

G30 2000 4305 4296.4 4.12 33.5 – – – –

G31 2000 4171 4164.4 6.46 107.8 – – – –

G32 2000 1669 1667.85 1.01 120.9 1659 1140.66 736.15 10

G33 2000 1638 1634.65 1.15 0 1629 1052.38 870.96 9

G34 2000 1616 1611.7 1.65 0.05 1604 1105.02 1016.31 12

G35 2000 11,111 11,106.2 2.14 17.2 11,007 1890.32 1764.52 104

G36 2000 11,108 11,101.4 2.9 17.25 10,993 1738.64 1634.13 115

G37 2000 11,117 11,112.5 2.33 36.05 11023 1754.17 115.08 94

G38 2000 11,108 11,101.1 3.16 48.4 – – – –

G39 2000 3006 2998.7 3.91 1.15 – – – –

G40 2000 2976 2955.65 8.99 48.7 – – – –

G41 2000 2983 2970.3 6.91 1.8 – – – –

G42 2000 3092 3084.05 4.8 16.9 – – – –

G43 1000 9376 9373.95 1.2 84.15 9306 422.97 62.38 70

G44 1000 9379 9373.55 2.52 67.9 9315 430.52 43.88 64

G45 1000 9376 9375.1 0.94 249.5 9312 463.45 319.58 64

G46 1000 9378 9375.35 1.96 139.75 – – – –

G47 1000 9381 9377.05 2.04 60.5 – – – –

G48 3000 6000 6000 0 0 6000 1673.79 0.48 0

G49 3000 6000 6000 0 0 6000 1675.56 0.49 0

G50 3000 6000 6000 0 0 6000 1678.91 0.50 0

G51 1000 5571 5567.65 1.93 14.6 – – – –

G52 1000 5584 5581.15 1.74 20.9 – – – –

G53 1000 5574 5571.85 1.19 6.85 – – – –

G54 1000 5579 5576.25 1.58 0.7 – – – –

G55 5000 12,498 12,498 0 0.9 – – – –

G56 5000 4931 4917.1 6.49 424.6 – – – –

G57 5000 4112 4110.5 1.12 298.1 – – – –

G58 5000 27,885 27,870.9 8.68 435.4 – – – –

G59 5000 7539 7515.1 15.09 969.3 – – – –

G60 7000 17,148 17,148 0 2.3 – – – –

G61 7000 7110 7104.6 5.08 1305.2 – – – –

G62 7000 5743 5738.7 2.69 385.5 – – – –

G63 7000 39,083 39,063.5 9.18 660.2 – – – –

G64 7000 10,814 10,797.4 13.28 910.5 – – – –
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Table 3 continued

Instance |V | MOH DC gap

fbest favg std time(s) fbest t t (s) bt(s)

G65 8000 6534 6525.4 4.48 1.5 – – – –

G66 9000 7474 7467.8 4.24 2.2 – – – –

G67 10,000 8155 8142.5 5.57 3 – – – –

G70 10,000 9999 9999 0 0.5 – – – –

G72 10,000 8264 8254.6 7.36 3.1 – – – –

G77 14,000 11,674 11,658.9 10.08 6.4 – – – –

G81 20,000 16,470 16,454.3 8.5 27.9 – – – –

3dl101000 1000 1103 1100.6 0.86 64.5 1073 304.44 187.92 30

3dl102000 1000 1102 1100 0.95 1.5 1070 351.27 301.64 32

3dl103000 1000 1108 1106.4 0.86 22.8 1072 340.99 249.06 36

3dl104000 1000 1103 1101.65 0.65 87.7 1076 323.51 276.29 27

3dl105000 1000 1098 1096.3 0.78 58.6 1074 334.38 294.70 24

3dl106000 1000 1097 1095.15 0.91 94.05 1063 358.27 307.91 34

3dl107000 1000 1114 1112.2 1.08 108.3 1093 308.31 101.66 21

3dl108000 1000 1105 1103 0.77 28.9 1079 276.09 260.12 26

3dl109000 1000 1115 1113.45 0.8 108.35 1086 271.29 60.70 29

3dl1010000 1000 1109 1106.1 0.89 54.9 1088 277.18 257.21 21

3dl141000 2744 3016 3012.05 1.91 57.05 2893 1990.54 1511.84 123

3dl142000 2744 3026 3019.8 2.04 18.45 2893 2007.26 464.84 133

3dl143000 2744 3006 3001.7 2.88 37.2 2892 1956.09 1339.53 114

3dl144000 2744 3012 3007.85 1.85 47.8 2897 1980.32 1923.14 115

3dl145000 2744 3006 3001.2 2.16 58.1 2882 1972.18 1866.67 124

3dl146000 2744 3005 3001.35 1.46 14 2888 1948.91 1892.88 117

3dl147000 2744 3007 3001.95 2.31 30.5 2879 1995.73 1983.25 128

3dl148000 2744 3018 3014.5 1.96 165.45 2883 1982.66 1914.45 135

3dl149000 2744 2999 2993.95 2.62 20 2877 2024.45 1769.77 122

3dl1410000 2744 3023 3021.15 1.68 389.4 2904 2007.36 2003.40 119

Better 41/44/91

Equal 3/44/91

Worse 0/44/91

statistics in Table 5. One observes that our algorithm needs at most 16 seconds (less than 1
second for most cases) to attain the best objective value reported by the DC algorithm, while
the DC algorithm requires at least 44 seconds and up to more than 2000 seconds for several
instances. More generally, as shown in Tables 1, 2, 3, and 4, except the last 17 instances of
the very competitive max-2-cut problem for which the results of DC are not available, the
MOH algorithm requires rarely more than 1000 seconds to attain solutions of much better
quality.

We conclude that the proposed algorithm for the general max-k-cut problem dominates
the state-of-the-art reference DC algorithm both in terms of solution quality and computing
time.
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Table 4 Comparative results for max-5-cut between the proposed MOH algorithm and DC Zhu et al. (2013)

Instance |V | MOH DC gap

fbest favg std time(s) fbest t t (s) bt(s)

G1 800 17,703 17,700.80 1.18 76.40 17,627 532.14 376.14 76

G2 800 17,706 17,702.50 1.63 122.20 17,636 537.26 288.13 70

G3 800 17,701 17,699.20 1.47 210.20 17,623 525.92 357.24 78

G4 800 17,709 17,706.50 1.75 141.20 – – – –

G5 800 17,710 17,708.60 1.66 269.70 – – – –

G6 800 2781 2776.00 2.26 146.20 – – – –

G7 800 2533 2530.75 2.00 56.50 – – – –

G8 800 2535 2532.75 1.13 105.00 – – – –

G9 800 2601 2598.65 1.28 6.55 – – – –

G10 800 2526 2520.00 4.18 143.70 – – – –

G11 800 677 675.40 0.58 0.00 670 239.03 147.55 7

G12 800 662 661.40 0.49 153.10 660 240.87 191.89 2

G13 800 689 688.40 0.49 317.15 687 222.88 177.50 2

G14 800 4639 4634.60 1.83 37.65 4597 297.49 63.30 42

G15 800 4606 4599.90 1.79 80.05 4571 293.47 99.68 35

G16 800 4613 4610.30 1.31 94.60 4579 291.25 243.93 34

G17 800 4603 4600.85 1.01 96.50 – – – –

G18 800 1268 1261.85 3.48 0.05 – – – –

G19 800 1132 1122.45 7.08 0.10 – – – –

G20 800 1172 1163.90 4.73 0.35 – – – –

G21 800 1162 1153.50 5.34 0.05 – – – –

G22 2000 19,553 19547.00 3.64 42.40 19,413 2429.87 1685.57 140

G23 2000 19,558 19549.20 4.04 85.40 19,413 2422.00 2248.13 145

G24 2000 19,555 19547.20 2.93 88.55 19,423 2255.39 1668.64 132

G25 2000 19,554 19547.80 3.18 140.35 – – – –

G26 2000 19,552 19545.00 2.80 85.00 – – – –

G27 2000 4236 4224.30 6.23 143.10 – – – –

G28 2000 4182 4171.45 6.84 65.10 – – – –

G29 2000 4327 4317.50 4.25 72.85 – – – –

G30 2000 4340 4329.75 4.44 50.45 – – – –

G31 2000 4211 4196.40 7.89 37.40 – – – –

G32 2000 1670 1666.45 1.94 0.75 1647 1304.51 1272.00 23

G33 2000 1638 1635.05 1.20 0.20 1615 1194.92 678.48 23

G34 2000 1615 1610.20 2.84 0.40 1594 1232.62 629.56 21

G35 2000 11,605 11,595.20 4.15 68.80 11,521 2030.16 961.14 84

G36 2000 11,601 11,593.80 3.03 12.25 11,516 2074.70 510.45 85

G37 2000 11,603 11,599.40 2.46 70.15 11,532 2026.00 1661.50 71

G38 2000 11,601 11,596.20 3.19 163.65 – – – –

G39 2000 3022 3014.35 5.32 70.15 – – – –

G40 2000 2986 2967.20 9.45 0.50 – – – –

G41 2000 2986 2972.85 7.84 20.05 – – – –
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Table 4 continued

Instance |V | MOH DC gap

fbest favg std time(s) fbest t t (s) bt(s)

G42 2000 3109 3099.15 5.29 0.60 – – – –

G43 1000 9770 9767.30 1.38 56.50 9700 583.20 76.61 70

G44 1000 9772 9768.05 1.60 16.85 9702 518.05 482.50 70

G45 1000 9771 9768.10 1.30 25.60 9708 502.37 470.51 63

G46 1000 9774 9769.55 1.66 47.80 – – – –

G47 1000 9775 9770.05 1.86 60.70 – – – –

G48 3000 6000 6000.00 0.00 0.00 6000 1871.21 0.50 0

G49 3000 6000 6000.00 0.00 0.00 6000 1864.70 0.48 0

G50 3000 6000 6000.00 0.00 0.00 6000 1887.36 0.50 0

G51 1000 5826 5822.30 2.05 0.75 – – – –

G52 1000 5837 5832.35 1.68 4.90 – – – –

G53 1000 5829 5825.90 1.09 55.75 – – – –

G54 1000 5830 5826.70 1.42 28.40 – – – –

G55 5000 12,498 12,498.00 0.00 0.00 – – – –

G56 5000 4971 4957.90 8.75 243.70 – – – –

G57 5000 4111 4108.70 1.19 293.50 – – – –

G58 5000 29,105 29,090.70 9.28 272.10 – – – –

G59 5000 7566 7541.20 19.22 120.40 – – – –

G60 7000 17,148 17,148.00 0.00 0.00 – – – –

G61 7000 7188 7174.50 7.74 437.60 – – – –

G62 7000 5744 5736.90 2.88 4.20 – – – –

G63 7000 40,786 40,767.50 10.50 420.80 – – – –

G64 7000 10,896 10,851.50 23.04 48.60 – – – –

G65 8000 6540 6528.90 4.93 8.50 – – – –

G66 9000 7476 7470.60 4.74 10.90 – – – –

G67 10,000 8165 8151.60 7.32 8.20 – – – –

G70 10,000 9999 9999.00 0.00 0.10 – – – –

G72 10,000 8266 8256.00 6.74 8.60 – – – –

G77 14,000 11,687 11,672.10 11.41 21.10 – – – –

G81 20,000 16,501 16,480.20 10.06 271.50 – – – –

3dl101000 1000 1106 1102.95 1.50 38.00 1073 321.44 79.97 33

3dl102000 1000 1106 1103.50 1.12 51.95 1067 358.55 78.05 39

3dl103000 1000 1111 1106.95 1.86 74.10 1072 343.13 106.00 39

3dl104000 1000 1108 1105.65 0.91 44.00 1076 330.08 223.84 32

3dl105000 1000 1098 1096.15 1.01 76.90 1074 327.13 197.17 24

3dl106000 1000 1099 1097.55 0.92 48.25 1071 329.38 304.61 28

3dl107000 1000 1119 1115.85 1.62 48.80 1084 321.82 230.50 35

3dl108000 1000 1113 1110.70 1.27 126.30 1077 333.74 147.03 36

3dl109000 1000 1119 1117.30 0.84 17.85 1089 327.09 186.92 30

3dl1010000 1000 1115 1114.10 0.83 336.95 1081 330.26 301.70 34

3dl141000 2744 3029 3022.00 3.51 4.15 2912 2416.83 1114.20 117
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Table 4 continued

Instance |V | MOH DC gap

fbest favg std time(s) fbest t t (s) bt(s)

3dl142000 2744 3033 3025.75 3.73 58.40 2916 2665.55 1512.49 117

3dl143000 2744 3015 3007.75 5.23 100.10 2891 2568.33 706.35 124

3dl144000 2744 3021 3015.95 2.65 30.85 2914 2658.98 2066.46 107

3dl145000 2744 3014 3005.25 2.90 7.45 2897 2405.89 2252.09 117

3dl146000 2744 3013 3010.05 2.22 102.50 2906 2363.11 2227.79 107

3dl147000 2744 3016 3009.55 4.17 85.60 2900 2536.90 257.75 116

3dl148000 2744 3027 3022.70 2.12 12.85 2920 2376.40 2127.40 107

3dl149000 2744 3005 2994.15 4.15 0.25 2901 2711.61 2687.12 104

3dl1410000 2744 3033 3023.25 3.78 17.75 2917 2432.17 1767.87 116

Better 41/44/91

Equal 3/44/91

Worse 0/44/91

3.5 Comparison with state-of-the-art max-cut algorithms

Our algorithm was designed for the general max-k-cut problem for k ≥ 2. The assessment
of the last section focused on the general case. In this section, we further evaluate the perfor-
mance of the proposed algorithm for the special max-cut problem (k = 2).

Recall that max-cut has been largely studied in the literature for a long time and there are
many powerful heuristics which are specifically designed for the problem. These state-of-
the-art max-cut algorithms constitute thus relevant references for our comparative study. In
particular, we adopt the following 7 best performing sequential algorithms published since
2012.

1. Global equilibrium search (GES) (2012) (Shylo et al. 2012)—an algorithm sharing ideas
similar to simulated annealing and utilizing accumulated information of search space
to generate new solutions for the subsequent stages. The reported results of GES were
obtained on a PC with a 2.83GHz Intel Core QUAD Q9550 CPU and 8.0GB RAM.

2. Breakout local search (BLS) (2013) (Benlic and Hao 2013)—a heuristic algorithm inte-
grating a local search and adaptive perturbation strategies. The reported results of BLS
were obtained on a PC with 2.83GHz Intel Xeon E5440 CPU and 2GB RAM.

3. Two memetic algorithms respective for the max-cut problem (MACUT) (2012) (Wu and
Hao 2012) and the max-bisection problem (MAMBP) (2013) (Wu and Hao 2013)—
integrating a grouping crossover operator and a tabu search procedure. The results
reported in the two papers were obtained on a PC with a 2.83GHz Intel Xeon E5440
CPU and 2GB RAM.

4. GRASP-Tabu search algorithm (2013) (Wang et al. 2013)—a method converting the
max-cut problem to the UBQP problem and solving it by integrating GRASP and tabu
search. The reported results were obtained on a PC with a 2.83GHz Intel Xeon E5440
CPU and 2GB RAM.

5. Tabu search (TS-UBQP) (2013) (Kochenberger et al. 2013)—a tabu search algorithm
designed forUBQP.The evaluation ofTS-UBQPwere performed on aPCwith a 2.83GHz
Intel Xeon E5440 CPU and 2GB RAM.
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Table 5 Average computing time needed by the MOH algorithm (MOH(tavg)) to attain the best objective
value of the DC algorithm (Zhu et al. 2013). The time required by DC (DC(t)) to reach the same objective
value is also included

Instance max-3-cut max-4-cut max-5-cut

DC(t) MOH(tavg) DC(t) MOH(tavg) DC(t) MOH(tavg)

G1 339.41 0.16 290.51 0.18 376.14 0.01

G2 228.37 2.05 388.76 0.12 288.13 0.01

G3 205.06 0.35 245.50 0.24 357.24 0.01

G11 132.51 0.11 152.04 6.67 147.55 8.39

G12 59.09 2.11 117.52 6.65 191.89 16.02

G13 111.53 0.29 127.56 0.68 177.50 0.29

G14 190.40 0.09 159.14 0.13 63.30 0.01

G15 183.92 0.12 129.21 0.16 99.68 0.00

G16 75.02 0.08 75.89 0.09 243.93 0.01

G22 986.19 0.06 1314.45 0.09 1685.57 0.01

G23 1208.18 0.05 1775.80 0.08 2248.13 0.01

G24 1385.32 0.10 407.66 0.10 1668.64 0.01

G32 905.73 0.37 736.15 0.36 1272.00 2.00

G33 664.57 0.27 870.96 1.50 678.48 5.16

G34 827.79 0.31 1016.31 1.64 629.56 1.58

G35 1048.97 0.24 1764.52 0.10 961.14 0.00

G36 1196.02 0.13 1634.13 0.09 510.45 0.00

G37 1288.13 0.09 115.08 0.13 1661.50 0.00

G43 112.20 0.06 62.38 0.05 76.61 0.01

G44 47.87 0.09 43.88 0.08 482.50 0.01

G45 44.00 0.07 319.58 0.07 470.51 0.01

G48 293.30 0.52 0.48 0.01 0.50 0.00

G49 1587.05 0.53 0.49 0.01 0.48 0.00

G50 279.78 4.36 0.50 0.01 0.50 0.00

sg3dl101000 179.20 0.06 187.92 0.06 79.97 0.05

sg3dl102000 188.68 0.05 301.64 0.05 78.05 0.03

sg3dl103000 114.20 0.09 249.06 0.05 106.00 0.03

sg3dl104000 109.75 0.07 276.29 0.05 223.84 0.05

sg3dl105000 178.88 0.07 294.70 0.10 197.17 0.06

sg3dl106000 23.96 0.03 307.91 0.04 304.61 0.05

sg3dl107000 157.18 0.08 101.66 0.17 230.50 0.05

sg3dl108000 209.77 0.06 260.12 0.10 147.03 0.05

sg3dl109000 232.87 0.07 60.70 0.07 186.92 0.06

sg3dl1010000 184.91 0.05 257.21 0.14 301.70 0.04

sg3dl141000 1496.07 0.14 1511.84 0.05 1114.20 0.07

sg3dl142000 1408.24 0.14 464.84 0.04 1512.49 0.07

sg3dl143000 1659.44 0.11 1339.53 0.07 706.35 0.06

sg3dl144000 1759.67 0.25 1923.14 0.05 2066.46 0.09

sg3dl145000 1764.88 0.15 1866.67 0.05 2252.09 0.08

sg3dl146000 1529.38 0.12 1892.88 0.05 2227.79 0.07
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Table 5 continued

Instance max-3-cut max-4-cut max-5-cut

DC(t) MOH(tavg) DC(t) MOH(tavg) DC(t) MOH(tavg)

sg3dl147000 1748.39 0.12 1983.25 0.05 257.75 0.07

sg3dl148000 1440.25 0.13 1914.45 0.05 2127.40 0.10

sg3dl149000 1699.97 0.14 1769.77 0.06 2687.12 0.11

sg3dl1410000 1476.52 0.11 2003.40 0.06 1767.87 0.07

6. Tabu search based hybrid evolutionary algorithm (TSHEA) (2016) (Wu et al. 2015)—a
very recent hybrid algorithm integrating a distance-and-quality guided solution combina-
tion operator and a tabu search procedure based on neighborhood combination of one-flip
and constrained exchange moves. The results were obtained on a PC with 2.83GHz Intel
Xeon E5440 CPU and 8GB RAM.

One notices that except GES, the other five reference algorithms were run on the same
computing platform. Nevertheless, it is still difficult to make a fully fair comparison of the
computing time, due to the differences on programming language, compiling options, and
termination conditions, etc. Our comparison thus focuses on the best solution achieved by
each algorithm. Recall that for our algorithm, the timeout limit was set to be 30 minutes for
graphs with |V | < 5000, 120 minutes for graphs with 1000 ≥ |V | ≥ 5000, 240 minutes for
graphs with |V | ≥ 10,000. Our algorithm employed thus the same timeout limits as (Wu
and Hao 2012) on the graphs |V | < 10,000, but for the graphs |V | ≥ 10,000, we used 240
minutes to compare with BLS Benlic and Hao (2013).

Table 6 gives the comparative results on the 91 instances of the two benchmarks. Columns
1 and 2 respectively indicate the instance name and the number of vertices of the graphs.
Columns 3 shows the current best known objective value f pre reported by any existing max-
cut algorithm in the literature including the latest parallel GES algorithm (Shylo et al. 2015).
Columns 4 to 10 give the best objective value obtained by the reference algorithms: GES
(Shylo et al. 2012), BLS (Benlic and Hao 2013), MACUT (Wu and Hao 2012), TS-UBQP
(Kochenberger et al. 2013), GRASP-TS/PM (Wang et al. 2013), MAMBP (Wu and Hao
2013) and TSHEA (Wu et al. 2015). Note that MAMBP is designed for the max-bisection
problem (i.e., balanced max-cut), however it achieves some previous best known max-cut
results. The last column ‘MOH’ recalls the best results of our algorithm from Table 1. The
rows denoted by ‘Better’, ‘Equal’ and ‘Worse’ respectively indicate the number of instances
for which our algorithm obtains a result of better, equal and worse quality relative to each
reference algorithm. The entries are reported in the form of x/y/z, where z denotes the total
number of the instances tested by our algorithm, y is the number of the instances tested by a
reference algorithm and x indicates the number of instances where our algorithm achieved
‘Better’, ‘Equal’ or ‘Worse’ results. The results in boldmean that our algorithm has improved
the best known results. The entries marked as “–” in the table indicate that the results are not
available.

From Table 6, one observes that the MOH algorithm is able to improve the current best
known results in the literature for 4 instances, and match the best known results for 74
instances. For 13 cases (in italic), even if our results are worse than the current best known
results achieved by the latest parallel GES algorithm (Shylo et al. 2015), they are still better
than the results of other existing algorithms, except for 4 instances ifwe refer to themost recent
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TSHEA algorithm (Wu et al. 2015). Note that the results of the parallel GES algorithm were
achieved on a more powerful computing platform (Intel CoreTM i7-3770 CPU @3.40GHz
and 8GB RAM) and with longer time limits (4 parallel processes at the same time and 1 hour
for each process).

Such a performance is remarkable given that we are comparing our more general algo-
rithm designed for max-k-cut with the best performing specific max-cut algorithms. The
experimental evaluations presented in this section and last section demonstrate that our algo-
rithm not only performs well on the general max-k-cut problem, but also remains highly
competitive for the special case of the popular max-cut problem.

4 Discussion

In this section, we investigate the role of several important ingredients of the proposed algo-
rithm, including the bucket sorting data structure, the descent improvement search operators
O1 and O2 and the diversified improvement search operators O3 and O4.

4.1 Impact of the bucket sorting technique

As described in Sect. 2.5, the bucket sorting technique is utilized in the MOH algorithm for
the purpose of quickly identifying a suitable move with the best objective gain. To verify its
effectiveness, we implemented another MOH version where we replaced the bucket sorting
data structure with a simple vector and conducted an experimental comparison on the max-3-
cut problem. For this experiment, we used 20 representative Gxx instances and ran 20 times
both MOH versions to solve each chosen instance with a time limit of 300 seconds.

Table 7 reports the average of the best objective values and the total number of iterations
of each MOH version for each instance. From Table 7, we observe that the MOH algorithm
using the bucket sorting structure conducted 3.3 times more iterations on average than using
the vector structure within the given time span. Moreover, the former is able to find better
results for 16 instances and only oneworse result. In conclusion, this experiment confirms that
using the devised bucket sorting technique is able to considerably improve the computational
efficiency and search capacity of the MOH algorithm.

4.2 Impact of the descent improvement search operators

As described in Sect. 2.6, the proposed algorithm employs operators O1 and O2 for its descent
improvement phase to obtain local optima. To analyze the impact of these two operators, we
implement three variants of our algorithm, the first one using the operator O1 alone, the
second one using the union O1 ∪ O2 such that the descent search procedure always chooses
the best move among the O1 and O2 moves (Lü et al. 2011), the third one using operator
rand(O1, O2) where the descent procedure applies randomly and with equal probability O1

or O2, while keeping all the other ingredients and parameters fixed as described in Sect. 3.3.
The strategy used by our original algorithm, detailed in Sect. 2.6, is denoted as O1 + O2.

This study was based on the max-cut problem and the same 10 challenging instances used
for parameter tuning of Sect. 3.3. Each selected instance was solved 10 times by each of these
variants and our original algorithm. The stopping criterion was a timeout limit of 30 minutes.
The obtained results are presented in Table 8, including the best objective value fbest , the
average objective value favg over the 10 independent runs, aswell as theCPU times in seconds
to reach fbest . To evaluate the performance, we display in Fig. 2a the gaps between the best
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Table 8 Comparative results for max-cut with varying combination strategies of O1 and O2

Instance O1 O1 ∪ O2

fbest favg time (s) fbest favg time (s)

G22 13,359 13,357.6 381.6 13,359 13,355.8 357.3

G23 13,344 13,343.6 473.4 13,344 13,344 550.9

G25 13,338 13,334 442.8 13,339 13,335.8 690.4

G29 3405 3398.22 211.1 3405 3396.4 254.2

G33 1382 1381.4 553.5 1382 1382 716.5

G35 7686 7681.3 755.4 7684 7679.1 449.6

G36 7680 7672 1367.1 7677 7672.5 408.1

G37 7690 7685.5 1039.2 7689 7683.4 1099.0

G38 7688 7684 135.2 7688 7681.2 177.8

G40 2400 2384.7 453.5 2396 2381.6 427.2

Instance rand(O1, O2) O1 + O2

fbest favg time (s) fbest favg time (s)

G22 13,359 13,356 365.3 13,359 13,357 438.2

G23 13,344 13,343.9 584.9 13,344 13,344 302.1

G25 13,340 13,336.4 408.8 13,340 13,335.5 451.5

G29 3405 3398.4 403.9 3405 3398.1 569.9

G33 1382 1381.8 585.2 1382 1381.4 667.4

G35 7686 7683.1 628.0 7687 7684.3 968.3

G36 7680 7672 944.8 7680 7675.3 1075.6

G37 7688 7681.7 1078.3 7691 7687.5 1133.2

G38 7688 7680.8 153.6 7688 7685.7 333.0

G40 2395 2388.8 412.4 2400 2385.2 467.1

objective values obtained by different strategies and the best objective values by our original
algorithm.We also show in Fig. 2b the box and whisker plots which indicate, for different O1

and O2 combination strategies, the distribution and the ranges of the obtained results for the
10 tested instances. The results are expressed as the additive inverse of percent deviation of
the averages results from the best known objective values obtained by our original algorithm.

From Fig. 2a, one observes that for the tested instances, other combination strategies
obtain fewer best known results compared to the strategy O1 + O2, and produce large gaps
to the best known results on some instances. From Fig. 2b, we observe a clear difference in
the distribution of the results with different strategies. For the results with the strategies of
O1+O2, the plot indicates a smaller mean value and significantly smaller variation compared
to the results obtained by other strategies. We thus conclude that the strategy used by our
algorithm (O1 + O2) performs better than other strategies.

4.3 Impact of the diversified improvement search operators

As described in Sect. 2.7, the proposed algorithm employs two diversified operator O3 and
O4 to enhance the search power of the algorithm and make it possible for the search to visit
new promising regions. The diversified improvement procedure uses probability ρ to select
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(a)

(b)

Fig. 2 Analysis of the move operators O1 and O2. a fbest−strategy − fbestknown , gaps to best known
objective values. b ( fbestknown − favg−strategy)/ fbestknown × 100%, gaps to best known objective values

O3 or O4. To analyze the impact of operators O3 and O4, we tested our algorithm with ρ = 1
(using the operator O3 alone), ρ = 0.5 (equal application of O3 and O4 used in our original
MOHalgorithm), ρ = 0 (using the operator O4 alone), while keeping all the other ingredients
and parameters fixed as described before. The stopping criterion was a timeout limit of 30
minutes. We then independently solved each selected instance 10 times with those different
values of ρ. The obtained results on the max-cut problem for the 10 challenging instances
used for parameter tuning of Sect. 3.3 are presented in Table 9, including the best objective
value fbest , the average objective value favg over the 10 independent runs, as well as the
CPU times in seconds to reach fbest . To evaluate the performance, we again calculate the
gaps between different best objective values shown in Fig. 3a and average objective values
shown in Fig. 3b, where the set of values fbest , favg , when ρ = 0.5, are set as the reference
values.
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Fig. 3 Analysis of the move
operators O3 and O4. a
fbest − ρ − fbestknown , gaps
between fbest obtained with
different ρ values to best known
objective values. b
( fbestknown − favg −
ρ)/ fbestknown × 100%, gaps to
best known objective values

(b)

(a)

As in Sect. 4.2, to evaluate the performance, we show in Fig. 3a the gaps between the
best objective values obtained with different values of ρ and the best objective values by
our original MOH algorithm (ρ = 0.5). We also show in Fig. 3b the box and whisker plots
which indicates, for different values of ρ, the distribution and the ranges of the obtained
results for the 10 tested instances. The results are expressed as the additive inverse of percent
deviation of the averages results from the best knownobjective values obtained by our original
algorithm.

Figure 3a discloses that using O3 or O4 alone obtains fewer best known results than using
them jointly and achieves significantly worse results on some particular instances. From Fig.
3b, we observe a visible difference in the distribution of the results with different strategies.
For the results with the parameter ρ = 0.5, the plot indicates a smaller mean value and
significantly smaller variation compared to the results obtained by other strategies. We thus
conclude that jointly using O3 and O4 with ρ = 0.5 is the best choice since it produces better
results in terms of both best and average results.

123



Ann Oper Res (2017) 248:365–403 401

Ta
bl
e
9

C
om

pa
ra
tiv

e
re
su
lts

fo
r
m
ax
-c
ut

w
ith

va
ry
in
g
pa
ra
m
et
er

ρ

In
st
an
ce

ρ
=

1
ρ

=
0

ρ
=

0.
5

f b
es

t
f a

v
g

ti
m

e
(s
)

f b
es

t
f a

v
g

ti
m

e
(s
)

f b
es

t
f a

v
g

ti
m

e
(s
)

G
22

13
,3
59

13
,3
50

.1
35

2.
7

13
,3
56

13
,3
55

.2
44

0.
6

13
,3
59

13
,3
57

43
8.
2

G
23

13
,3
44

13
,3
44

44
1.
4

13
,3
38

13
,3
35

.6
34

0.
1

13
,3
44

13
,3
44

30
2.
1

G
25

13
,3
39

13
,3
35

.1
42

6.
1

13
,3
37

13
,3
33

.5
41

2.
9

13
,3
40

13
,3
35

.5
45

1.
5

G
29

34
05

33
95

.2
61

4.
5

34
02

33
99

.8
59

3.
5

34
05

33
98

.1
56

9.
9

G
33

13
76

13
73

.6
51

9.
9

13
82

13
82

60
9.
2

13
82

13
81

.4
66

7.
7

G
35

76
86

76
80

.7
83

2.
1

76
80

76
78

.2
85

0.
8

76
87

76
84

.3
96

8.
3

G
36

76
76

76
69

.2
15

40
.8

76
71

76
67

.6
13

04
.8

76
80

76
75

.3
10

75
.6

G
37

76
90

76
81

.2
11

67
.8

76
85

76
79

.6
10

53
.8

76
91

76
87

.5
11

33
.2

G
38

76
88

76
81

.4
27

5.
1

76
85

76
79

25
7.
3

76
88

76
85

.7
33

3.
0

G
40

23
94

23
75

.3
45

3.
0

23
99

23
90

.5
52

9.
8

24
00

23
85

.2
46

7.
1

123



402 Ann Oper Res (2017) 248:365–403

5 Conclusion

Our multiple search operator algorithm (MOH) for the general max-k-cut problem achieves
a high level performance by including five distinct search operators which are applied in
three search phases. The descent-based improvement phase aims to discover local optima of
increasing quality with two intensification-oriented operators. The diversified improvement
phase combines two other operators to escape local optima and discover promising new
search regions. The perturbation phase is applied as a means of strong diversification to
get out of deep local optimum traps. To obtain an efficient implementation of the proposed
algorithm, we developed streamlining techniques based on bucket sorting.

We demonstrated the effectiveness of theMOH algorithm both in terms of solution quality
and computation efficiency by a computational study on the two sets of well-known bench-
marks composed of 91 instances. For the general max-k-cut problem, the proposed algorithm
is able to improve 90 percent of the current best known results available in the literature.
Moreover, for the very popular special case with k = 2, i.e., the max-cut problem, MOH also
performs extremely well by discovering 4 improved best results which were never reported
by any max-cut algorithm of the literature. We also investigated the importance of the bucket
sorting technique as well as alternative strategies for combing search operators and justified
the combinations adopted in the proposed MOH algorithm.

Given that most ideas of the proposed algorithm are general enough, it is expected that
they can be useful to design effective heuristics for other graph partitioning problems.
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