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Abstract In this article we study interval games in oligopolies following the γ -approach.
First, we analyze their non-cooperative foundation and show that each coalition is associated
with an endogenous real interval. Second, the Hurwicz criterion turns out to be a key concept
to provide a necessary and sufficient condition for the non-emptiness of each of the induced
core solution concepts: the interval and the standard γ -cores. The first condition permits to
ascertain that even for linear and symmetric industries the interval γ -core is empty.Moreover,
bymeans of the approximation technique of quadratic Bézier curves we prove that the second
condition always holds, hence the standard γ -core is non-empty, under natural properties of
profit and cost functions.

Keywords Interval game · Oligopoly · γ -Cores · Hurwicz criterion ·
Quadratic Bézier curve
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1 Introduction

Oligopolistic collusion has first been modeled by means of repeated games. On the basis
of the paradigm called the “Folk theorem”, these models try to explain how a cooperative
agreement is implemented as aNash equilibrium. Themain idea is that if firms do not discount
the future too much, none will have any interest in defecting from the collusive agreement
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because they rationally anticipate future punishments in the periods following their defection
(Friedman 1971; Abreu 1988).

More recently, the complementary issue on the coalitional rationality of cooperative
agreements in industries has been investigated by means of oligopoly TU (Transferable
Utility)-games and the study of the core solution concept (Zhao 1999; Norde et al. 2002;
Driessen andMeinhardt 2005; Lardon 2012; Lekeas andStamatopoulos 2014). In oligopolies,
any core solution is viewed as a joint profit distribution amongfirms obtained from an industry
production plan (a joint strategy between all the firms) such that no coalition can guarantee
higher payoffs for all its members by breaking off from the cooperative agreement within
the grand coalition.

In general, oligopoly TU-games are founded on non-cooperative approaches in which
firms form cartels (acting as a single player) and obtain a unique joint profit, i.e., a coalitional
worth. We can cite three main approaches to convert a strategic oligopoly game into a coop-
erative one. The first two are called the α and β-approaches and are suggested by Aumann
(1959). According to the first, each cartel computes its max–min profit, i.e., the profit it can
guarantee regardless of what outsiders do. The second approach consists in computing the
min–max cartel profit, i.e., the minimal profit for which external firms can prevent the cartel
from getting more. The continuity of profit functions and the compacity of strategy sets are
sufficient to ensure the uniqueness of any cartel profit. The third approach is called the γ -
approach, and proposed by Chander and Tulkens (1997). It is more plausible in the context
of oligopoly industries. It considers a competition setting in which the cartel faces external
firms acting individually. The cartel profit is then enforced by partial agreement equilibrium,
a generalization of Nash equilibrium allowing cooperation. In addition to previous assump-
tions, the differentiability of the inverse demand function is essential in order to ensure that
each cartel obtains a unique joint profit.1

However, in many oligopolies the inverse demand function may be continuous but not
differentiable. Katzner (1968) shows that demand functions derived from quite nice utility
functions, even of classC2, may not be differentiable everywhere.2 The purpose of this article
is to take this issue into consideration in cooperative oligopoly games. With the weaker
assumption of continuity, we show that it is not possible to consider the set of oligopoly
TU-games insofar as the worth of a coalition may be not unique. As a consequence, we must
investigate the more general class of oligopoly interval games. An interval game assigns
to each coalition a closed and bounded real interval that represents all its potential worths.
Interval games have been studied by Alparslan-Gök et al. (2009, 2011) and Han et al. (2012),
and successfully applied to mountain, airport and bankruptcy situations in which worth
intervals are given exogenously. Unlike these works, the worth interval of a coalition is
endogenized in oligopoly situations by a competition settingwhichmakes our analysis richer.
To the best of our knowledge, this is the first economic application dealingwith the developing
theory of interval games.

Regarding core solution concepts, we consider two extensions, the interval core and the
standard core.3 The interval core is specified in a similar way as the core for TU-games by
using the methods of interval arithmetic Moore (1979). The standard core is defined as the
union of the cores of all TU-games for which the worth of each coalition belongs to its worth

1 The complementary issue on the threats expressed by players (firms) within coalition (cartel) has been
investigated by Myerson (1978).
2 In order to guarantee that demand functions are at least of classC1, many necessary and sufficient conditions
are provided by Katzner (1968), Debreu (1972, 1976), Rader (1973, 1979) and Monteiro et al. (1996).
3 We use the term “standard core” instead of the term “core” in order to distinguish the core solution concepts
for interval games and TU-games.
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interval. We deal with the problem of the non-emptiness of the interval and the standard
γ -cores, i.e., the cores under the γ -approach. To this end, we use a decision theory criterion,
the Hurwicz criterion Hurwicz (1951), that consists in combining, for any coalition, the worst
and the best worths that it can obtain in its worth interval. The first (second) result states that
the interval (standard) γ -core is non-empty if and only if the oligopoly TU-game associated
with the best (worst) worth of each coalition in its worth interval admits a non-empty γ -core.
We show that even for linear and symmetric industries, the first condition fails to be satisfied,
hence the interval γ -core is empty. By means of the approximation technique of quadratic
Bézier curves, we specify natural properties of profit and cost functions under which the
second condition always holds, hence the standard γ -core is non-empty.

The remainder of the article is structured as follows. In Sect. 2we study the endogenization
of coalitional worth intervals in oligopolies following the γ -approach and present prelimi-
nary results on the set of equilibrium outputs. In Sect. 3 we first give the setup of interval
games. Then, after introducing the Hurwicz criterion, we provide two necessary and suffi-
cient conditions for the non-emptiness of the interval and the standard γ -cores. Furthermore,
we identify industry types in which these cores are empty or not. Finally, Sect. 4 presents
some concluding remarks.

2 Endogenization of coalitional worth intervals

An oligopoly situation is a quadruplet (N , (qi ,Ci )i∈N , p) where N = {1, 2, . . . , n} is the
set of firms, qi ≥ 0 denotes firm i’s production capacity constraint, Ci : R+ −→ R+,
i ∈ N , is firm i’s cost function and p : R+ −→ R+ represents the inverse demand function
of real variable X for which there exists ξ > 0 such that p(X) = 0 for all X ≥ ξ . Throughout
this article, we assume that:

(a) the inverse demand function p is continuous, strictly decreasing and concave on [0, ξ ];
(b) each cost function Ci is continuous, strictly increasing and convex.

The strategic oligopoly game (N , (Xi , πi )i∈N ) associated with the oligopoly situation
(N , (qi ,Ci )i∈N , p) is defined as follows:

1. the set of firms is N = {1, 2, . . . , n};
2. for each i ∈ N , the individual strategy set is Xi = [0, qi ] ⊆ R+ where xi ∈ Xi

represents the quantity produced by firm i ;
3. the set of strategy profiles is XN = ∏

i∈N Xi where x = (xi )i∈N is a representative
element of XN ; for each i ∈ N , the individual profit function πi : XN −→ R is defined
as:

πi (x) = p(X)xi − Ci (xi ),

where X = ∑
i∈N xi is the joint production.

Note that firm i’s profit depends on its individual output xi and on the total output of its
opponents

∑
j∈N\{i} x j .

2.1 Equilibrium concepts with cooperation

Partial agreement equilibrium is a solution concept which generalizes Nash equilibrium and
permits to formalize the possibility for some firms to cooperate facing other firms acting
individually. Let P(N ) be the power set of N and call a subset S ∈ P(N ), a coalition. We
denote by XS = ∏

i∈S Xi the strategy set of coalition S ∈ P(N ) and X−S = ∏
i /∈S Xi the set
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of outsiders’ strategy profileswhere xS = (xi )i∈S and x−S = (xi )i /∈S are the representative
elements of XS and X−S respectively. Furthermore, for any coalition S ∈ P(N ), define
BS : X−S � XS the best reply correspondence of coalition S as:

BS(x−S) = arg max
xS∈XS

∑

i∈S
πi (xS, x−S).

We denote by x∗
S ∈ BS(x−S) a best reply strategy of coalition S and by x̃−S = (x̃i )i /∈S ∈∏

i /∈S B{i}(xS, x̃−S∪i ) an outsiders’ individual best reply strategy profilewhere S∪i stands
for S ∪ {i}. The strategy profile (x∗

S, x̃−S) ∈ XN is called a partial agreement equilibrium
under S. We denote by XS ⊆ XN the set of partial agreement equilibria under S.

In order to be complete, we adopt amore general approach in which any coalition structure
can occur in the industry. A coalition structure P is a partition of the set of firms N , i.e.,
P = {S1, . . . , Sk}, k ∈ {1, . . . , n}. An element of a coalition structure, S ∈ P , is called an
admissible coalition in P . We denote by �(N ) the set of coalition structures.

Given a strategic oligopoly game (N , (Xi , πi )i∈N ) and a coalition structure P ∈ �(N ),
we say that a strategy profile x̂ ∈ XN is an equilibrium under P if:

∀S ∈ P, x̂S ∈ BS(x̂−S).

Note that a partial agreement equilibrium under S corresponds to an equilibrium under
coalition structure P S = {S} ∪ {{i} : i /∈ S}.
2.2 Aggregate strategic oligopoly games

In order to study the equilibrium concepts defined above, we construct an aggregate strategic
oligopoly game for which a Nash equilibrium represents the aggregate equilibrium outputs of
the admissible coalitions. Given a strategic oligopoly game (N , (Xi , πi )i∈N ) and a coalition
structure P ∈ �(N ), the aggregate strategic oligopoly game (P, (XS, πS)S∈P ) is defined as
follows:

1. the set of players (or admissible coalitions) is P;
2. for each S ∈ P , the coalition strategy set is XS = [0, qS] ⊆ R+, qS = ∑

i∈S qi , where
x S = ∑

i∈S xi ∈ XS represents the quantity produced by coalition S;
3. the set of strategy profiles is XP = ∏

S∈P XS where xP = (x S)S∈P is a representative
element of XP ; for each S ∈ P , the coalition cost function CS : XS −→ R+ is defined
as:

CS(x
S) = min

xS∈A(x S)

∑

i∈S
Ci (xi ) (1)

where A(x S) = {xS ∈ XS : ∑
i∈S xi = x S} is the set of strategies of coalition S that

permit it to produce the quantity x S ; for each S ∈ P , the coalition profit function
πS : XP −→ R is defined as:

πS(x
P ) = p(X)x S − CS(x

S) (2)

In order to define the best reply correspondence of the admissible coalitions, for each S ∈ P ,
we denote by X−S = XP\{S} the set of outsiders’ strategy profiles where x−S = xP\{S} is
a representative element of XP\{S}. For each S ∈ P , define BS : X−S � XS the best reply
correspondence* of coalition S as:

BS
(
x−S

)
= arg max

x S∈XS
πS

(
x S, x−S

)
.
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Given an aggregate strategic oligopoly game (P, (XS, πS)S∈P ), we say that a strategy profile
x̂P ∈ XP is a Nash equilibrium if:

∀S ∈ P, x̂ S ∈ BS(x̂−S) (3)

We denote by XP ⊆ XP the set of Nash equilibria of (P, (XS, πS)S∈P ).
The constructionof (P, (XS, πS)S∈P )permits to establish that there exists aNash equilibrium
x̂P ∈ XP if and only if there exists an equilibrium under P , x̂ ∈ XN , such that x̂S ∈ A(x̂ S)
for any S ∈ P . Hence, the set of incomes of S enforced by XS and the set of incomes of S
enforced by XP S

are equal,4
∑

i∈S
πi (XS) = πS(XP S

) (4)

This equality will be useful for the study of equilibrium outputs.

2.3 Characterization of aggregate equilibrium outputs

Before studying properties of the set of equilibrium outputs, we express anyNash equilibrium
of an aggregate strategic oligopoly game (P, (XS, πS)S∈P ) as the fixed point of a one-
dimensional correspondence. Given a coalition structure P ∈ �(N ) and an admissible
coalition S ∈ P the coalition profit function* ψS : XS × XS × XN −→ R is defined as:

∀x S ≤ X, ψS(y
S, x S, X) = p(X − x S + yS)yS − CS(y

S),

and represents the income of S after changing its strategy from x S to yS when the joint
production was X . For each S ∈ P , define RS : XN � XS the best reply correspondence**
of coalition S as:

RS(X) =
{

x S ∈ XS : x S ∈ arg max
yS∈XS

ψS(y
S, x S, X)

}

(5)

For any x S ∈ RS(X), coalition S does not have any interest to change its strategy from x S

to another strategy yS 
= x S . For each P ∈ �(N ), the one-dimensional correspondence
RP : XN � XN is defined as:

RP (X) =
{

Y ∈ XN : Y =
∑

S∈P
x S and ∀S ∈ P, x S ∈ RS(X)

}

(6)

Proposition 2.1 Let (P, (XS, πS)S∈P ) be an aggregate strategic oligopoly game. Then, it
holds that x̂P ∈ XP if and only if X̂ ∈ RP (X̂) where X̂ = ∑

S∈P x̂ S .

The proof is given in the “Appendix”. The properties of the set of Nash equilibria XP are
now established.

Proposition 2.2 Let (P, (XS, πS)S∈P ) be an aggregate strategic oligopoly game. Then

(i) the set of Nash equilibria XP is a polyhedron;
(ii) the equilibrium total output is the same for any Nash equilibrium, i.e.:

∃X̄ ∈ XN s.t. ∀x̂P ∈ XP ,
∑

S∈P
x̂ S = X̄ ;

4 The proof can be found in Lardon (2012). The “if” part of the result implies that
∑

i∈S πi (XS) ⊆ πS

(
XPS

)

while the “only if” part implies that
∑

i∈S πi (XS) ⊇ πS

(
XPS

)
.
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(iii) for each S ∈ P , the set of incomes of S enforced by XP , πS(XP ), is a compact real
interval.

The proof can be found in the “Appendix”. Proposition 2.2 calls for two comments. First,
point (ii) implies that X̄ is the unique fixed point of the one-dimensional correspondence RP .
Hence the set of incomes of N enforced byX{N } is a singleton (a degenerate interval). Second,
the set of Nash equilibria XP may be empty without the continuity and the concavity of p.
So, both properties turn out to be minimal assumptions required in our analysis of oligopoly
interval games.

2.4 Towards oligopoly interval games

In order to complete the endogenization of coalitional worth intervals, it remains to show that
any coalition can be endowed with a compact real interval. Recall that a partial agreement
equilibrium under S corresponds to an equilibrium under coalition structure P S = {S} ∪
{{i} : i /∈ S}. For any coalition S ∈ P(N ) it follows directly from (4) and (iii) of Proposition
2.2 that the set of incomes of S enforced by the set of partial agreement equilibria under S
has an interval structure.

Corollary 2.3 Let (N , (Xi , πi )i∈N ) be a strategic oligopoly game. Then for any S ∈ P(N ),
the set of incomes of S enforced by the set of partial agreement equilibria XS,

∑
i∈S πi (XS),

is a compact real interval.

The γ -approach used to define endogenous interval games in oligopolies is illustrated in the
following example.

Example 2.4 Consider the oligopoly situation (N , (qi ,Ci )i∈N , p) where N = {1, 2, 3}, for
each i ∈ N , qi = 5/3 and Ci (xi ) = 97xi , and the inverse demand function is defined as:

p(X) =
⎧
⎨

⎩

103 − X if 0 ≤ X ≤ 3
50(5 − X) if 3 < X < 5
0 if X ≥ 5

Clearly, the inverse demand function p is continuous, piecewise linear and concave on [0, 5]
but it is not differentiable on ]0, 5[ at point X̄ = 3. Assume that coalition {2, 3} forms. We
show that a strategy profile x ∈ XN is a partial agreement equilibrium under {2, 3}, i.e.,
x ∈ X{2,3}, if and only if it satisfies (i) X = X̄ and (ii) x2 + x3 ∈ [4/3, 147/50].

[⇐�] Take x ∈ XN satisfying (i) and (ii). By (i) we have:

π1(x) = 3x1,

and
π2(x) + π3(x) = 3(x2 + x3).

If firm 1 increases his output by ε ∈ ]0, 5/3 − x1], its new payoff will be:

π1(x1 + ε, x2, x3) = (3 − 50ε)(x1 + ε) (7)

Conversely, if it decides to decrease its output by δ ∈ ]0, x1], it will obtain:
π1(x1 − δ, x2, x3) = (3 + δ)(x1 − δ) (8)
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Similarly, if coalition {2, 3} increases its output by ε + ε′ ∈ ]0, 10/3 − x2 − x3] where
ε ∈ [0, 5/3 − x2] and ε′ ∈ [0, 5/3 − x3], its new payoff will be:

3∑

i=2

πi (x1, x2 + ε, x3 + ε′) = (
3 − 50(ε + ε′)

)
(x2 + x3 + ε + ε′) (9)

On the contrary, if it decreases its output by δ + δ′ ∈ ]0, x2 + x3] where δ ∈ [0, x2] and
δ′ ∈ [0, x3], it will obtain:

3∑

i=2

πi (x1, x2 − δ, x3 − δ′) = (3 + δ + δ′)(x2 + x3 − δ − δ′) (10)

In all cases (7), (8), (9) and (10), given (ii), neither firm 1 nor coalition {2, 3} can improve
their incomes. We conclude that any strategy profile x ∈ XN satisfying (i) and (ii) is a partial
agreement equilibrium under {2, 3}.

[�⇒] Take any x ∈ X{2,3}. By point (ii) of Proposition 2.2 we know that X̄ = 3 is the
unique equilibrium total output. It follows that x ∈ X{2,3} is such that X = X̄ .Moreover, given
(i) and by (7), (8), (9) and (10) we deduce that x ∈ X{2,3} satisfies x2 + x3 ∈ [4/3, 147/50].

Hence, by (i) and (ii) we conclude that the set of incomes of coalition {2, 3} enforced by
X{2,3} is [4, 8.82].

In a similar way, we can compute the set of incomes of other coalitions S ∈ P(N ) enforced
by XS :

S {i} {i, j} {1, 2, 3}
∑

i∈S πi (XS) [0.18, 5] [4, 8.82] [9, 9]

Observe that the set of incomes of the grand coalition is a degenerate interval as discussed
earlier.

3 Oligopoly interval games and the cores

Before introducing the framework of interval games, we briefly recall the setup of classical
TU-games. The set of players is given by N = {1, . . . , n}where i is a representative element.
A TU-game is a pair (N , v) where v : P(N ) −→ R is a characteristic function with the
convention v(∅) = 0, which assigns a number v(S) ∈ R to each coalition S ∈ P(N ). This
number v(S) is the worth of coalition S. For any fixed set of players N , we denote by GN

the set of TU-games where v is a representative element of GN .
In a TU-game v ∈ GN , each player i ∈ N may receive a payoff σi ∈ R. A vector

σ = (σ1, . . . , σn) is a payoff vector. We say that a payoff vector σ ∈ R
n is acceptable if∑

i∈S σi ≥ v(S) for any coalition S ∈ P(N ), i.e., the payoff vector provides a total payoff
to members of coalition S that is at least as great as its worth. We say that a payoff vector
σ ∈ R

n is efficient if
∑

i∈N σi = v(N ), i.e., the payoff vector provides a total payoff to all
players that is equal to the worth of the grand coalition N . The core C(v) of a TU-game
v ∈ GN is the set of all payoff vectors that are both acceptable and efficient:

C(v) =
{

σ ∈ R
n : ∀S ∈ P(N ),

∑

i∈S
σi ≥ v(S) and

∑

i∈N
σi = v(N )

}

.
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Given a payoff vector in the core, the grand coalition could form and distribute its worth to
its members in such a way that no coalition can contest this sharing by breaking off from the
grand coalition.

In order to define oligopoly TU-games under the γ -approachChander and Tulkens (1997),
we consider the γ -characteristic function based on partial agreement equilibrium. Given a
strategic oligopoly game (N , (Xi , πi )i∈N ), the γ -characteristic function vγ : P(N ) −→ R

is defined as:
vγ (S) =

∑

i∈S
πi (x

∗
S, x̃−S),

where (x∗
S, x̃−S) ∈ XN is a partial agreement equilibrium under S. For any fixed set of players

N , we denote by GN
o ⊆ GN the set of oligopoly TU-games.

As established in the previous section, the set of TU-games is not suitable insofar as
the worth of a coalition may be not unique. As a consequence, we need the more general
approach of interval games. Let I (R) be the set of all closed and bounded real intervals.
Take J, K ∈ I (R) where J = [J , J ] and K = [K , K ], and k ∈ R+. Then:
• J + K = [J + K , J + K ];
• k J = [k J , k J ].

We see that I (R) has a cone structure.
An interval game (N , w) is a set function w : P(N ) −→ I (R) with the convention

w(∅) = [0, 0], which assigns a closed and bounded real interval w(S) ∈ I (R) to each
coalition S ∈ P(N ). The interval w(S) is the worth interval of coalition S denoted by
[w(S), w(S)]wherew(S) andw(S) are the lower and the upper bounds ofw(S) respectively.
Thus, an interval game fits all the situations where any coalition knows with certainty only
the lower and upper bounds of its worth interval. For any fixed set of players N , we denote
by IGN the set of interval games where w is a representative element of IGN .5

There are two main ways of generalizing the definition of the core for interval games. The
first core solution concept is the interval core. For each J = [J , J ] and K = [K , K ] ∈ I (R),
we say that J is weakly better than K , which we denote J � K , if J ≥ K and J ≥ K .
We denote by I (R)n the set of n-dimensional interval vectors where I is a representative
element of I (R)n . In an interval game w ∈ IGN , each player i ∈ N may receive a payoff
interval Ii ∈ I (R). An interval vector I = (I1, . . . , In) is a payoff interval vector. We say
that a payoff interval vector I ∈ I (R)n is acceptable if

∑
i∈S Ii � w(S) for any coalition

S ∈ P(N ), i.e., the payoff interval vector provides a total payoff interval to members of
coalition S that is weakly better than its worth interval. We say that a payoff interval vector
I ∈ I (R)n is efficient if

∑
i∈N Ii = w(N ), i.e., the payoff interval vector provides a total

payoff interval to all players that is equal to the worth interval of the grand coalition N . The
interval core C(w) of an interval game w ∈ IGN is the set of all payoff interval vectors that
are both acceptable and efficient:

C(w) =
{

I ∈ I (R)n : ∀S ∈ P(N ),
∑

i∈S
Ii � w(S) and

∑

i∈N
Ii = w(N )

}

.

Given a payoff interval vector in the interval core, the grand coalition could formanddistribute
its worth interval to its members in such a way that no coalition can contest this sharing by
breaking off from the grand coalition.

5 Note that if each worth interval of an interval gamew ∈ IGN is degenerate, i.e.,w = w, thenw corresponds
to the TU-game v ∈ GN where v = w = w. In this sense, the set of TU-games GN is included in the set of
interval games IGN .
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The second core solution concept is the standard core. Given an interval game w ∈ IGN ,
a TU-game v ∈ GN is called a selection of w if for any S ∈ P(N ) we have v(S) ∈ w(S).
We denote by Sel(w) the set of all selections of w ∈ IGN . The standard core C(w) of an
interval game w ∈ IGN is defined as the union of the cores of all its selections v ∈ GN :

C(w) =
⋃

v∈Sel(w)

C(v).

A payoff vector σ ∈ R
n is in the standard core C(w) if and only if there exists a TU-game

v ∈ Sel(w) such that σ belongs to the core C(v).
As demonstrated in the previous section, it is always possible to define anoligopoly interval

game under the γ -approach. It follows from Corollary 2.3 that we can convert a strategic
oligopoly game (N , (Xi , πi )i∈N ) into an oligopoly interval game under the γ -approach
denoted by (N , wγ ) where wγ : P(N ) −→ I (R) is a set function defined as:

wγ (S) =
∑

i∈S
πi (XS) (11)

The worth interval wγ (S) of each coalition S ∈ P(N ) is denoted by [wγ (S), wγ (S)] where
wγ (S) and wγ (S) are the minimal and the maximal incomes of S enforced by XS respec-

tively.6 For any fixed set of firms N , we denote by IGN
o ⊆ IGN the set of oligopoly interval

games.

3.1 The Hurwicz criterion

An oligopoly interval game wγ ∈ IGN
o fits all the situations where each coalition S ∈ P(N )

knows with certainty only the lower and upper bounds wγ (S) and wγ (S) of all its potential
worths. Consequently, the expectations of each coalition S ∈ P(N ) on its potential worths
are necessarily focused on its worth interval wγ (S). In order to define the expectations of
each coalition S ∈ P(N ), we use a decision theory criterion, the Hurwicz criterion Hurwicz
(1951), that consists in doing a convex combination of the lower and upper bounds of all its
potential worths, i.e.,μSwγ (S)+(1−μS)wγ (S)whereμS ∈ [0, 1]. The numberμS ∈ [0, 1]
can be regarded as the degree of pessimism of coalition S. A vector μ = (μS)S∈P(N ) is
an expectation vector. To any expectation vector μ ∈ ∏

S∈P(N )[0, 1], we associate the
oligopoly TU-game v

μ
γ : P(N ) −→ R defined as:

vμ
γ (S) = μSwγ (S) + (1 − μS)wγ (S) (12)

where v
μ
γ ∈ Sel(wγ ). The two necessary and sufficient conditions for the non-emptiness

of the interval and the standard γ -cores are derived from particular selections of wγ , i.e.,
v0γ = wγ and v1γ = wγ respectively.

3.2 The non-emptiness of the interval γ -core

The generalization of the balancedness property from TU-games (Bondareva 1963; Shapley
1967) to interval games is the I-balancedness property (Alparslan-Gök et al. 2011). It is a
necessary and sufficient condition to guarantee the non-emptiness of the interval core. For
each S ∈ P(N ), eS ∈ R

n is the vector with coordinates equal to 1 in S and equal to 0 outside
S. A map λ : P(N )\{∅} −→ R+ is balanced if

∑
S∈P(N )\{∅} λ(S)eS = eN . An interval

game w ∈ IGN is strongly balanced if for any balanced map λ it holds that:

6 As the worth interval wγ (N ) is degenerate, we have wγ (N ) = wγ (N ).
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∑

S∈P(N )\{∅}
λ(S)w(S) ≤ w(N ).

An interval game w ∈ IGN is I-balanced if for any balanced map λ it holds that:7
∑

S∈P(N )\{∅}
λ(S)w(S) � w(N ).

Theorem 3.1 (Alparslan-Gök et al. 2011) Let w ∈ IGN be an interval game. Then, it holds
that:

(i) if the interval game w ∈ IGN is strongly balanced, then it is I-balanced;
(ii) the interval gamew ∈ IGN has a non-empty interval core if and only if it is I-balanced.

In the set of oligopoly interval games, we success in establishing an alternative necessary
and sufficient condition based on the minimum degree of pessimism of any coalition, i.e.,
μS = 0 for each S ∈ P(N ).

Theorem 3.2 The oligopoly interval game wγ ∈ IGN
o has a non-empty interval γ -core if

and only if the oligopoly TU-game v0γ ∈ Sel(wγ ) as defined in (12) has a non-empty γ -core.

Proof [�⇒] Assume that C(wγ ) 
= ∅ and take any payoff interval vector I ∈ C(wγ ). Then,
it holds that

∑
i∈N Ii = wγ (N ) implying that

∑
i∈N I i = wγ (N ), and for any S ∈ P(N )

it holds that
∑

i∈S Ii � wγ (S) implying that
∑

i∈S I i ≥ wγ (S). Let σ ∈ R
n be a payoff

vector such that σi = I i for each i ∈ N . It follows from wγ = v0γ that
∑

i∈N σi = v0γ (N )

and
∑

i∈S σi ≥ v0γ (S) for any S ∈ P(N ). Hence, we conclude that σ ∈ C(v0γ ).

[⇐�] Assume that C(v0γ ) 
= ∅. By the balancedness property, it holds for any balanced
map λ that: ∑

S∈P(N )\{∅}
λ(S)v0γ (S) ≤ v0γ (N ) (13)

Since the worth interval of the grand coalition is degenerate, we have v0γ (N ) = wγ (N ) =
wγ (N ). Hence, from v0γ = wγ and by (13) we deduce that the oligopoly interval game

wγ ∈ IGN
o is strongly balanced, i.e., for any balanced map λ it holds that:

∑

S∈P(N )\{∅}
λ(S)wγ (S) ≤ wγ (N ).

By (i) and (ii) of Theorem 3.1, we conclude that wγ ∈ IGN
o is I-balanced, and therefore has

a non-empty interval γ -core. ��
One can ask in which industry types the non-emptiness of C(v0γ ) is satisfied. Example 2.4

shows that even for a very simple oligopoly situation, this condition fails to be satisfied since∑
i∈N v0γ ({i}) = 15 > 9 = v0γ (N ), hence the core of v0γ ∈ Sel(wγ ) and the interval γ -core

are empty. This is a consequence of the non-differentiability of the inverse demand function
p at point X̄ = 3. Indeed, at this point it is possible for a deviating coalition to obtain a large
income on a partial agreement equilibrium since it is no incentive for other firms to change
their outputs on any neighborhood of X̄ = 3.

7 A TU-game v ∈ GN is balanced if for every balanced map λ it holds that:
∑

S∈P(N )\{∅}
λ(S)v(S) ≤ v(N ).

Thus, when all worth intervals are degenerate strong balancedness and I-balancedness properties coincide
with balancedness property.
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3.3 The non-emptiness of the standard γ -core

Once again, in the set of oligopoly interval games we establish an alternative necessary and
sufficient condition for the non-emptiness of the standard γ -core based on the maximum
degree of pessimism of any coalition, i.e., μS = 1 for each S ∈ P(N ).

Theorem 3.3 Let wγ ∈ IGN
o be an oligopoly interval game and v1γ ∈ Sel(wγ ) be the

oligopoly TU-game as defined in (12). Then C(wγ ) = C(v1γ ).8

Proof First, it follows from v1γ ∈ Sel(wγ ) that C(v1γ ) ⊆ ⋃
v

μ
γ ∈Sel(wγ ) C(v

μ
γ ) = C(wγ ).

It remains to show that C(wγ ) ⊆ C(v1γ ). If C(wγ ) = ∅ we have obviously C(wγ ) ⊆
C(v1γ ). So, assume that C(wγ ) 
= ∅ and take any payoff vector σ ∈ C(wγ ). Thus, there

exists an expectation vector μ̄ such that σ ∈ C(v
μ̄
γ ):

∀S ∈ P(N ),
∑

i∈S
σi ≥ vμ̄

γ (S) and
∑

i∈N
σi = vμ̄

γ (N ) (14)

Since the worth interval of the grand coalition N is degenerate we have v
μ̄
γ (N ) = v1γ (N ),

and therefore by (14),
∑

i∈N σi = v1γ (N ). Moreover, by (12) it holds that vμ̄
γ ≥ v1γ implying

by (14) that
∑

i∈S σi ≥ v1γ (S) for any S ∈ P(N ). Hence, we conclude that σ ∈ C(v1γ )which

proves that C(wγ ) ⊆ C(v1γ ). ��

It follows directly from Theorem 3.3 that the oligopoly interval game wγ ∈ IGN
o has a non-

empty standard γ -core if and only if the oligopoly TU-game v1γ ∈ Sel(wγ ) has a non-empty

γ -core. In Example 2.4, both the γ -core of v1γ ∈ Sel(wγ ) and the standard γ -core are equal
and are non-empty.

In the following, the purpose is to identify in which industry types the core of v1γ
is non-empty by approximating the inverse demand function p. First, we denote by X
the denumerable set of points in ]0, ξ [ where the inverse demand function p is non-
differentiable.9 The Weierstrass approximation theorem states that any continuous function
defined on a compact interval can be uniformly approximated as closely as desired by a
sequence of polynomial functions. In particular, we denote by (pε)ε>0 a sequence of inverse
demand functions satisfying assumption (a) and, in addition, differentiable on ]0, ξ [ that
uniformly converges to the inverse demand function p0 = p,10 i.e., for each ζ > 0, there
exists ε′ > 0 such that for all ε < ε′, it holds that:

∀X ∈ XN , |pε(X) − p(X)| < ζ .

Second, we generalize some definitions in Sect. 2. Given a sequence (pε)ε>0, a coalition
structure P ∈ �(N ) and an admissible coalition S ∈ P , for each ε > 0 we define:

8 By defining the standard core* of an interval game w ∈ IGN as the intersection of the cores of all its
selections v ∈ GN :

C∗(w) =
⋂

v∈Sel(w)

C(v),

we obtain the opposite result to Theorem 3.3, i.e., C∗(wγ ) = C(v0γ ).
9 The concavity of the inverse demand function p on [0, ξ ] ensures that X is at most denumerable.
10 Proposition 5.1 in the “Appendix” states that the sequence (pε)ε>0 always exists.
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– the individual profit function πε
i : XN −→ R as:

πε
i (x) = pε(X)xi − Ci (xi );

– the coalition profit function πε
S : XP −→ R as:

πε
S(x

P ) = pε(X)x S − CS(x
S);

– the coalition profit function* ψε
S : XS × XS × XN −→ R as:

∀x S ≤ X, ψε
S(y

S, x S, X) = pε(X − x S + yS)yS − CS(y
S);

– the best reply correspondence** Rε
S : XN � XS as:

Rε
S(X) =

{

x S ∈ XS : x S ∈ arg max
yS∈XS

ψε
S(y

S, x S, X)

}

;

– the one-dimensional correspondence Rε
P : XN � XN as:

Rε
P (X) =

{

Y ∈ XN : Y =
∑

S∈P
x S and ∀S ∈ P, x S ∈ Rε

S(X)

}

;

– the γ -characteristic function vε
γ : P(N ) −→ R as:

vε
γ (S) =

∑

i∈S
πε
i (x∗

S, x̃−S),

where (x∗
S, x̃−S) ∈ XN is a partial agreement equilibrium under S of the strategic oligopoly

game (N , (Xi , π
ε
i )i∈N ). For each ε > 0, as the inverse demand function pε is differentiable

on ]0, ξ [, it follows that the worth of any coalition S ∈ P(N ), vε
γ (S), is unique (Lardon

2012). We denote by XS
ε ⊆ XN the set of partial agreement equilibria under S of the

strategic oligopoly game (N , (Xi , π
ε
i )i∈N ) and by XP

ε ⊆ XP the set of Nash equilibria of
the aggregate strategic oligopoly game (P, (XS, πε

S)S∈P ).
For each ε > 0, we denote by x̂Pε ∈ XP

ε the unique Nash equilibrium of the aggregate
strategic oligopoly game (P, (XS, πε

S)S∈P ).11 Moreover, from (ii) of Proposition 2.2 we
denote by X̄ the unique equilibrium total output of the aggregate strategic oligopoly game
(P, (XS, πS)S∈P ).

Lemma 3.4 Let P ∈ �(N ) be a coalition structure, (pε)ε>0 a sequence that uniformly
converges to p and (x̂Pε )ε>0 the associated sequence of Nash equilibria. If the sequence
(x̂Pε )ε>0 converges12 to a strategy profile x̂P0 ∈ XP then it holds that:

(i)
∑

S∈P x̂ S0 = X̄ ;
(ii) ∀S ∈ P , x̂ S0 ∈ RS(X̄);
(iii) x̂P0 ∈ XP .

Proof From Proposition 2.1, for each ε > 0 we have
∑

S∈P x̂ Sε = X̂ε ∈ Rε
P (X̂ε). By the

definitions of Rε
S and Rε

P it holds that:

∀ε > 0, ∀S ∈ P, ψε
S(x̂

S
ε , x̂ Sε , X̂ε) = max

yS∈XS
ψε
S(y

S, x̂ Sε , X̂ε) (15)

11 This uniqueness result is established in Lardon (2012).
12 For any S ∈ P every coalition strategy set XS is compact. Hence it follows from the Bolzano–Weierstrass
theorem that limε−→0(x̂

P
ε )ε>0 ∈ XP .
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For each S ∈ P , the uniform convergence of the sequence (pε)ε>0 to p implies that the
sequence (ψε

S)ε>0 uniformly converges to ψS . This result, the continuity of any coalition
profit function* ψε

S , ε > 0, and (15) imply for each S ∈ P that:

lim
ε−→0

ψε
S(x̂

S
ε , x̂ Sε , X̂ε) = lim

ε−→0
max
yS∈XS

ψε
S(y

S, x̂ Sε , X̂ε)

⇐⇒ lim
ε−→0

ψε
S

(

x̂ Sε , x̂ Sε ,
∑

T∈P
x̂ Tε

)

= max
yS∈XS

lim
ε−→0

ψε
S

(

yS, x̂ Sε ,
∑

T∈P
x̂ Tε

)

⇐⇒ ψS

(

x̂ S0 , x̂ S0 ,
∑

T∈P
x̂ T0

)

= max
yS∈XS

ψS

(

yS, x̂ S0 ,
∑

T∈P
x̂ T0

)

⇐⇒ x̂ S0 ∈ RS

( ∑

T∈P
x̂ T0

)

(16)

It follows from (16) that
∑

S∈P x̂ S0 ∈ RP (
∑

S∈P x̂ S0 ). From (ii) of Proposition 2.2, X̄ is
the unique fixed point of RP . Hence, we deduce that

∑
S∈P x̂ S0 = X̄ , and therefore by (16)

x̂ S0 ∈ RS(X̄) for any S ∈ P which proves points (i) and (ii).
Finally, point (iii) is a consequence of points (i) and (ii) by Proposition 2.1. ��

Lemma 3.5 Let S ∈ P(N ) be a coalition, (pε)ε>0 a sequence that uniformly converges
to p and (x̂P

S

ε )ε>0 the associated sequence of Nash equilibria. If the sequence (x̂P
S

ε )ε>0

converges13 to a strategy profile x̂P
S

0 ∈ XP S
then it holds that limε−→0 vε

γ (S) ∈ wγ (S).

Proof Take any ε > 0. By (4) we know that the set of incomes of S enforced by XS
ε and the

set of incomes of S enforced by XP S

ε are equal, i.e.,
∑

i∈S πi (XS
ε ) = πS(XP S

ε ). Hence, for
each ε > 0 it holds that:

vε
γ (S) =

∑

i∈S
πε
i (x∗

S, x̃−S)

= πε
S(x̂

P S

ε ),

where x̂P
S

ε ∈ XP S

ε is the unique Nash equilibrium of the aggregate strategic oligopoly game
(P S, (XT , πε

T )T∈P S ). The uniform convergence of the sequence (pε)ε>0 to p implies that the
sequence (πε

S)ε>0 uniformly converges to πS . It follows from this result and the continuity
of πS that:

lim
ε−→0

vε
γ (S) = lim

ε−→0
πε
S(x̂

P S

ε )

= πS(x̂
P S

0 ) (17)

From (iii) of Lemma 3.4 we know that x̂P
S

0 ∈ XP S

ε . Hence, by (17) we have limε−→0 vε
γ (S) ∈

πS(XP S
). By (4), we know that the set of incomes of S enforced byXS and the set of incomes

of S enforced by XP S
are equal. Thus, by (11) it holds that:

πS(XP S
) =

∑

i∈S
πi (XS)

= wγ (S).

Hence, we conclude that limε−→0 vε
γ (S) ∈ wγ (S). ��

13 See footnote 12.
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Theorem 3.6 Let wγ ∈ IGN
o be an oligopoly interval game and (pε)ε>0 a sequence that

uniformly converges to p. If for each ε > 0, the oligopoly TU-game vε
γ ∈ GN

o admits a
non-empty γ -core then it holds that C(wγ ) 
= ∅.
Proof By the definition of the core, for each ε > 0 there exists a payoff vector σ ε ∈ R

n such
that:

∀S ∈ P(N ),
∑

i∈S
σ ε
i ≥ vε

γ (S) and
∑

i∈N
σ ε
i = vε

γ (N ) (18)

By (18), the sequence (σ ε)ε>0 is bounded inRn . Thus, there exists a subsequence of (σ ε)ε>0

that converges to a point σ 0 ∈ R
n . Without loss of generality we denote by (σ ε)ε>0 such a

subsequence.
First, take any coalition S ∈ P(N ) and consider the coalition structure P S = {S} ∪

{{i} : i /∈ S}. By the compacity of each coalition strategy set XT , T ∈ P S , there exists a
subsequence of (x̂P

S

ε )ε>0 denoted by (x̂P
S

εk
)εk>0, k ∈ N, that converges to a strategy profile

x̂P
S

0 ∈ XP S
by point (iii) of Lemma 3.4. Thus, by (18) it holds that:

lim
εk−→0

∑

i∈S
σ

εk
i ≥ lim

εk−→0
vεk
γ (S) ⇐⇒

∑

i∈S
σ 0
i ≥ lim

εk−→0
vεk
γ (S).

It follows from Lemma 3.5 that limεk−→0 v
εk
γ (S) ∈ wγ (S) for any S ∈ P(N ). From this

result, we deduce that there exists an expectation vector μ̄ such that:

∀S ∈ P(N ),
∑

i∈S
σ 0
i ≥ vμ̄

γ (S) (19)

Second, consider the grand coalition N ∈ P(N ). By a similar argument to the one in the first
part of the proof and (18) it holds that:

lim
εk−→0

∑

i∈N
σ

εk
i = lim

εk−→0
vεk
γ (N ) ⇐⇒

∑

i∈N
σ 0
i = lim

εk−→0
vεk
γ (N ).

It follows from Lemma 3.5 that limεk−→0 v
εk
γ (N ) ∈ wγ (N ). As the worth interval of the

grand coalition is degenerate, it holds that:
∑

i∈N
σ 0
i = vμ̄

γ (N ) (20)

By (19) and (20) we conclude that σ 0 ∈ C(v
μ̄
γ ) ⊆ C(wγ ) since v

μ̄
γ ∈ Sel(wγ ). ��

One can ask which properties on profit and cost functions ensure that for any ε > 0, the
oligopoly TU-game vε

γ admits a non-empty γ -core. When the inverse demand function p is
differentiable Lardon (2012) shows that if:

(c) either any individual profit function πi is concave on the set of strategy profiles XN ;
(d) or any cost function Ci is linear and each firm has the same marginal cost:

∃c ∈ R+ s.t. ∀i ∈ N , Ci (xi ) = cxi ,

then the associated oligopoly TU-game vγ ∈ GN
o has a non-empty γ -core. Hence, we deduce

from Theorem 3.6 the following result.

Corollary 3.7 Let wγ ∈ IGN
o be an oligopoly interval game and (pε)ε>0 a sequence that

uniformly converges to p such that for each ε > 0 assumption (c) or (d) is satisfied. Then, it
holds that C(wγ ) 
= ∅.
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Note that if the inverse demand function p is differentiable, all worth intervals ofwγ ∈ IGN
o

are degenerate, i.e., wγ = {vγ } where vγ ∈ GN
o . Thus, the standard core of wγ is equal to

the core of vγ .
The above results on the non-emptiness of the standard γ -core which use approximation

techniques are illustrated in the following example.

Example 3.8 On the basis of Example 2.4 we construct a sequence (pε)ε>0 that uniformly
converges to the inverse demand function p which is not differentiable at point X̄ = 3. For
each 0 < ε < 2, define the quadratic function function f ε

X̄
: [3 − ε, 3 + ε] −→ R+ as:14

f ε

X̄
(Y ) = −49εX2 − 2εX + 100 + ε,

where X = (Y −3+ ε)/2ε. The inverse demand function pε : R+ −→ R+ is then given by:

pε(Y ) =
{
f ε

X̄
(Y ) if Y ∈ [3 − ε, 3 + ε],

p(Y ) otherwise.

Note that f ε

X̄
(3−ε) = p(3−ε) = 100+ε and f ε

X̄
(3+ε) = p(3+ε) = 100−50ε. Moreover,

it holds that f ′ε
X̄

(3− ε) = p′(3− ε) = −1 and f ′ε
X̄

(3+ ε) = p′(3+ ε) = −50. Hence pε is
continuous on [0, 5] and differentiable on ]0, 5[. It follows from limε−→0 f ε

X̄
(3) = p(3) =

100 that the sequence (pε)ε>0 uniformly converges to p.
For any coalition S ∈ P(N ), the differentiability of pε permits to use the first order con-

ditions in order to compute the unique Nash equilibrium of the aggregate strategic oligopoly
game (P S, (XT , πε

T )T∈P S ). The results are summarized in the following table:

S {i} {i, j} {1, 2, 3}

limε−→0 x̂
PS
ε (1, 1, 1) (1.5, 1.5) (3)

limε−→0 vε
γ (S) 3 4.5 9

For any S ∈ P(N ), it holds that
∑

T∈P S x̂ T0 = X̄ = 3 and limε−→0 vε
γ (S) ∈ wγ (S) as

enunciated by point (i) of Lemma 3.4 and Lemma 3.5 respectively. Moreover, note that for
each ε > 0, assumption (d) is satisfied which implies that C(vε

γ ) 
= ∅. By Theorem 3.6
and/or Corollary 3.7, we conclude that C(wγ ) 
= ∅.

4 Concluding remarks

In this article, we have focused on interval games in oligopolies. We have showed that the
γ -approach suggested by Chander and Tulkens (1997) permits to endogenize the coalitional
worth intervals. A particularity to the set of oligopoly interval games is that the worth interval
of the grand coalition is degenerate which may be not the case in the set of interval games.
We have exploited this property in order to characterize the non-emptiness of the interval and
the standard γ -cores. Furthermore, we have identified industry types in which both cores are
empty or not.

The expectations of any coalition (its degree of pessimism) have been formalized by
the Hurwicz criterion which turns out to be a key concept in our analysis. An alternative
way to extend the analysis of expectations would be to consider a continuous probability

14 This function is derived from the approximation technique of quadratic Bézier curves detailed in the
“Appendix”.
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distribution f defined on worth intervals and construct the associated expected oligopoly
TU-game v

f
γ = ∫

wγ
v f (v)dv. This is left for future work.

5 Appendix

5.1 Proofs of propositions in Sect. 2

Proof of Proposition 2.1 [�⇒] Take x̂P ∈ XP and let X̂ = ∑
S∈P x̂ S . By (3), for each

S ∈ P it holds that:

x̂ S ∈ BS(x̂−S) ⇐⇒ πS(x̂
S, x̂−S) = max

yS∈XS
πS(y

S, x̂−S)

⇐⇒ p(X̂ − x̂ S + x̂ S)x̂ S − CS(x̂
S) = max

yS∈XS
p(X̂ − x̂ S + yS)yS − CS(y

S)

⇐⇒ ψS(x̂
S, x̂ S, X̂) = max

yS∈XS
ψS(y

S, x̂ S, X̂)

⇐⇒ x̂ S ∈ RS(X̂).

Hence, we conclude that X̂ ∈ RP (X̂).
[⇐�] Take X̂ ∈ RP (X̂). By (6), it holds that X̂ = ∑

S∈P x̂ S and for each S ∈ P ,
x̂ S ∈ RS(X̂). By the same argument to the one in the first part of the proof it follows that for
each S ∈ P we have x̂ S ∈ BS(x̂−S), and therefore x̂P ∈ XP . ��

Proof of Proposition 2.2 First,we showpoints (i) and (ii). For each S ∈ P , XS is compact and
convex. It follows from the continuity, the strict monotonicity and the convexity of any cost
function Ci , that coalition cost functionCS as defined in (1) is continuous, strictly increasing
and convex. Moreover, the inverse demand function p is continuous, strictly decreasing and
concave on [0, ξ ]. It follows from Theorem 3.3.3 (page 30) in Okuguchi and Szidarovszky
(1990) that XP is a polyhedron and that the equilibrium total output X̄ is the same for any
Nash equilibrium which proves points (i) and (ii).

Then, we prove point (iii). From Lemma 3.3.1 (page 27) in Okuguchi and Szidarovszky
(1990) we deduce for any S ∈ P and all X ∈ XN that RS(X) as defined in (5) is a (pos-
sibly degenerate) closed and bounded interval which we denote by [αS(X), βS(X)]. By
point (ii), we know that there exists a unique equilibrium total output X̄ . It follows that
the polyhedron XP can be represented as the intersection of the orthotope

∏
S∈P RS(X̄) =∏

S∈P [αS(X̄), βS(X̄)] and the hyperplane {
xP ∈ XP : ∑

S∈P x S = X̄
}
, i.e.,

XP =
{

xP ∈ XP : ∀S ∈ P, x S ∈ [
αS(X̄), βS(X̄)

]
and

∑

S∈P
x S = X̄

}

.

The polyhedron XP is compact and convex as the intersection of two compact and convex
sets. Since a convex set is always connected, we deduce that the polyhedron XP is compact
and connected.Moreover, the continuity of the inverse demand function p and of any coalition
cost functionCS implies that the coalition profit function πS as in (2) is continuous. It follows
that the set πS(XP ) is compact and connected as the image of a compact and connected set
by a continuous function. Since a subset of R is connected if and only if it is an interval, we
conclude that πS(XP ) is a compact real interval, which proves point (iii). ��
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5.2 Approximation of the inverse demand function

Given an inverse demand function p satisfying assumption (a), we construct a sequence of
inverse demand functions which, in addition, are differentiable on ]0, ξ [, denoted by (pε)ε>0

that uniformly converges to p by means of the approximation technique of Bézier curves
Bézier (1976).
A Bézier curve is a parametric curve defined through specific points called control points.
A particular class of Bézier curves are quadratic Bézier curves defined with three control
points X0, X1 and X2:

X0

X1

X2

Formally, this quadratic Bézier curve is the path traced by the function B : [0, 1] −→ R
2

defined as:
B(t) = (1 − t)2X0 + 2(1 − t)t X1 + t2X2 (21)

Proposition 5.1 Let p be an inverse demand function satisfying assumption (a). Then, there
exists a sequence of inverse demand functions (pε)ε>0 which, in addition, are differentiable
on ]0, ξ [ that uniformly converges to p.

Proof First, for any X ∈ X and each ε > 0, we define a quadratic Bézier curve. The steps
of this construction are illustrated below:

X0

X2

X1

GX

Y

p(Y )

X − X X +

p(X)
fX(X)

N (X)

For any X ∈ X , define Nε(X) the neighborhood of X with radius ε as:

Nε(X) = {Y ∈ R+ : |Y − X | < ε}.
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For any X ∈ X , there exists ε̄ > 0 such that for all ε < ε̄, it holds that Nε(X) ⊂]0, ξ [.
Moreover, since X is at most denumerable, there exists ¯̄ε > 0 such that for all ε < ¯̄ε it holds
that:

∀(X, X ′) ∈ X × X , Nε(X) ∩ Nε(X
′) = ∅.

In the remainder of the proof, we assume everywhere that ε < min{ε̄, ¯̄ε}. Take any X ∈ X .
For each ε > 0, in order to construct the quadratic Bézier curve, we consider three control
points given by X0 = (inf Nε(X), p(inf Nε(X))), X2 = (sup Nε(X), p(sup Nε(X))) and
X1 defined as the intersection point between the tangent lines to the curve of p at points
X0 and X2 respectively. Given these three control points, the quadratic Bézier curve is the
path traced by the function Bε

X : [0, 1] −→ R
2 defined as in (21). It is well-known that

the quadratic Bézier curve Bε
X can be parametrized by a polynomial function denoted by

f ε
X : Nε(X) −→ R+ where Nε(X) is the closure of Nε(X).
Then, for each ε > 0 we define the inverse demand function pε : R+ −→ R+ as:

pε(Y ) =
{
f ε
X (Y ) if for some X ∈ X , Y ∈ Nε(X),
p(Y ) otherwise.

(22)

By the construction of control points X0, X1 and X2, it follows from the properties of the
inverse demand function p and of the quadratic Bézier curves defined above that pε as defined
in (22) is strictly decreasing, concave on [0, ξ ] and differentiable on ]0, ξ [.

It remains to show that the sequence (pε)ε>0 uniformly converges to p. Take ζ > 0 and
assume that Y /∈ X . It follows that there exists ε1 > 0 such that for each ε < ε1 and for any
X ∈ X we have Y /∈ Nε(X). Hence, by (22) for each ε < ε1 we have pε(Y ) = p(Y ), and so
|pε(Y ) − p(Y )| = 0 < ζ . Then, assume that Y ∈ X . For each ε > 0 we denote by Gε

Y the
convex hull of the set of control points {X0, X1, X2}:

Gε
Y = co{X0, X1, X2}.

By the construction of control points X0, X1 and X2 it holds that:

lim
ε−→0

Gε
Y = {(Y, p(Y ))} (23)

Moreover, recall that Bε
Y is defined as a convex combination of control points X0, X1 and

X2. Hence, for each ε > 0 we have Bε
Y ⊆ Gε

Y , and therefore (Y, f ε
Y (Y )) ∈ Gε

Y . By (23) we
deduce that there exists ε2 > 0 such that for each ε < ε2, we have:

|pε(Y ) − p(Y )| = | f ε
Y (Y ) − p(Y )| < ζ .

Finally, take ε3 = min{ε1, ε2}. It follows for each ε < ε3 that:

∀Y ∈ R+, |pε(Y ) − p(Y )| < ζ ,

which proves that the sequence (pε)ε>0 uniformly converges to p. ��
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