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Abstract Usually, the profit of companies will increase if they employ trade credit financing
policy to encourage customer to purchase more. This paper develops a model for pricing and
inventory control of non-instantaneous deteriorating items under two-echelon trade credit in
which the vendor provides a credit period to the retailer and the retailer in turn offers a delay in
payment to his/her customer. The price-dependent probabilistic demand function andpartially
backlogged shortages are adopted. Also, deterioration is shown by three different probability
distribution function including (1) uniform distribution, (2) triangular distribution, and (3)
beta distribution. The theoretical results are designed to determine the optimal selling price
and the optimal inventory control variables so that the retailer’s total profit is maximized.
Also, the necessary and sufficient conditions to prove the existence and uniqueness of the
optimal solution are provided. Moreover, an algorithm is extended to describe the solution
procedure. Numerical example, sensitivity analysis, and a simulation approach are presented
to illustrate the performance of the algorithm and the theoretical results. Several managerial
insights are also driven from computational results. The results indicate that the retailer’s
total profit increases by considering the non-instantaneous deteriorating phenomenon and
the trade credit policy.

Keywords Pricing · Inventory control · Non-instantaneous deteriorating items ·
Price-dependent probabilistic demand · Two-echelon trade credit

1 Introduction

Deterioration of items is the process of decay, spoilage, damage, obsolescence, and loss of
utility in such a way that the items are not in a condition of being used for its original purpose
like as: medicine, fruits, vegetables, blood banks, volatile liquids (Wee 1993). For example,
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in the retail industry, shrinkage consisting of employee theft, executive mistakes, supplier
deception, and shoplifting, leads to loss in inventory amounts to 1.7 % of annual sales, which
equals to 31.3 billion dollars (Chen and Chen 2007). The deterioration affects the inventory
system of retailers. I.e. the retailer has to order more items than the market demand because
some of the items will be deteriorated. Moreover, some works have combined the inventory
control problem of deteriorating items with pricing. The pricing policy is one of the most
important factors to improve the net income and profit of companies (Fattahi et al. 2015a, b).
For example, the net income of Philips would be improved by 28.7 %, if 1 % price realization
improvement happened (Dolan and Simon 1996). In this paper, we present a pricing and
inventory control problem for non-instantaneous deteriorating items which means items that
maintain their original condition for a particular period. Therefore, deterioration does not
occur for certain period of time, such as: Medicines, first hand vegetables, and fruits. Wu et
al. (2006) defined this concept as “non-instantaneous deteriorating”. For these products, if
the retailer assumes that the deterioration starts to occur as soon as the items are received, the
retailer may adopt inappropriate inventory policy because of overvaluing the total relevant
inventory cost. Therefore, the non-instantaneous deteriorating attribute plays an important
role in the inventory control problem.

Moreover, we consider three following subjects in our study:

1. The probabilistic demand function ξ1R(p) + ξ2 is considered in which the distribution
function of random variables ξ1 and ξ2 are deterministic and independent of time.

2. Three different probabilistic deterioration functions including uniform, beta, and trian-
gular distribution have been considered to show the deterioration of the products.

3. In the traditional inventory control models, it is presumed that the retailer must pay to the
vendor for the purchased goods as soon as the goods are received.Nowadays, promotional
operations such as advertising and trade credit financing help the firms to increase sales
and profits. To encourage the retailer to buy more, in practice, vendors allow a fixed
period to settle the payment without interest for their customers which increases sales
and decreases on-hand inventory of vendors. In fact, permissible delay in payment reduces
the holding inventory cost because the amount of capital invested in inventory for the
credit period is decreased. Moreover, before the end of the credit period, the retailer can
sell the goods and accumulate revenue and earn interest. Thus, the permissible delay in
payment policy has a significant role in business environment. Recently, some business
use “two-echelon trade credit period” means the retailer that enjoy a delay period in
payment by vendor, offers a fixed credit period to his/her customer. In this paper, we
consider two-echelon trade credit period.

This paper develops a model for pricing and inventory control of non-instantaneous
deteriorating item considering the probabilistic demand and deterioration function, and
two-echelon trade credit. Shortages are accepted and partially backlogged in which the back-
logging rate is variable and dependent on the waiting time for the next replenishment. We
adopt the price-dependent probabilistic demand function. The major objective is to jointly
determine selling price and variables of inventory control to maximize the retailer’s total
profit. This paper contributes to the literature in the following aspects. First, we consider
probabilistic demand function as ξ1R(p) + ξ2 in the problem of pricing and inventory con-
trol of non-instantaneous deteriorating items. Second, we formulate the problem based on
the two- echelon trade credit period policy. Third, we apply three different probabilistic
deterioration rates which illustrate the real condition better than the other works in this area.

The rest of the paper is structured as follows. Section 2 presents literature review. Section 3
defines assumptions and notations employed throughout the paper. Section 4 formulates the
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mathematical model. In this section, the required conditions to obtain an optimal solution
are presented. Section 5 introduces a solution algorithm to solve the proposed model and
to extract the optimal value of model’s variables. Section 6 solves a numerical example.
Section 7 runs sensitivity analysis for model’s parameters and discusses some managerial
insights. Also, some simulation results have been shown in this section. Finally, finding
results and future research are provided in Sect. 8.

2 Literature review

Numerous researchers have studied the inventory control models of deteriorating com-
modities. As a pioneer researchers, Ghare and Schrader (1963) studied an exponentially
deteriorating inventory model. Philip (1974) extended this model considering deterioration
rate as a three parameters Weibull distribution. After that, many studies have worked on the
deteriorating goods. Abad (1996,2001) studied pricing and inventory control policy for dete-
riorating products under variable rate of deterioration and partially backlogging shortages.
Chang et al. (2006) presented an economic order quantity (EOQ) model for deteriorating
items with partial backlogging and log-concave demand. Dye (2007) extended joint pricing
and replenishment policy for deteriorating goods with price-dependent demand. Jaber et al.
(2009) established a mathematical model for inventory policy of deteriorating items under
minimizing entropy. Goyal and Giri (2001), Bakker et al. (2012), and Pahl and Voß (2014)
have provided excellent review papers on deteriorating inventory problems.

Some papers consider the non-instantaneous deterioration products which starts with Wu
et al. (2006). Chang et al. (2010) generalized Wu et al. (2006) with maximizing objective
function, setting the maximum inventory level and establishing the theoretical results and
solution algorithm. Shah et al. (2013) developed an inventory model for non-instantaneous
deteriorating goods in which demand function depends on the advertising and the selling
price. Maihami and Nakhai Kamalabadi (2012) studied the pricing and replenishment policy
for non-instantaneous deteriorating items considering time and price dependent demand
function. Ghoreishi et al. (2014) consider the optimal pricing and ordering policy for non-
instantaneous deteriorating products with inflation and customer returns. Kapoor (2014)
developed a model for non-instantaneous deteriorating items with price and time dependent
demand. Valliathal and Uthayakumar (2011) considered the problem with shortages. Tat
et al. (2015) consider the inventory control of non-instantaneous deteriorating products with
vendor managed inventory (VMI) policy. Gupta et al. (2013) developed the problem by
considering the stock-dependent demand. Geetha and Udayakumar (2015) extended a model
for the problem of lot-sizing of the non-instantaneous deteriorating items with price and
advertisement dependent demand. Palanivel and Uthayakumar (2015) extended Geetha and
Udayakumar (2015) by assuming inflation. Tyagi et al. (2014) analyzed the replenishment
policy of non-instantaneous deteriorating items with stock dependent demand and variable
holding cost. Other works in this area are: Dye (2013), Valliathal and Uthayakumar (2013),
Udayakumar and Geetha (2014), Singh and Rathore (2015), and Tayal et al. (2015).

Recently, to better illustrate the real condition, some researchers consider the stochastic
subjects such as probabilistic demand and deterioration functions (Govindan and Fattahi
2015). Maihami and Karimi (2014) developed a model for pricing and inventory control of
non-instantaneous deteriorating items under stochastic demand and promotional effort. Shah
(1977) determined the inventory control policy of deteriorating goods with both exponential
and Weibull distribution function. Other works that consider stochastic functions are as
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follows: Datta and Pal (1988), Hariga (1996), Federgruen and Heching (1999), Petruzzi and
Dada (1999), Skouri and Papachristos (2003), Chen and Simchi-Levi (2004), Pang (2011),
Sarkar (2012), Zhu (2012), Wang et al. (2013), Abdelsalam and Elassal (2014), Fattahi et al.
(2015a, b), and Govindan (2015).

The delay in payment in the inventory model was first introduced by Haley and Higgins
(1973). Goyal (1985) embedded delay in payment in a traditional Economic Order Quan-
tity (EOQ) inventory model. Ouyang et al. (2006) considered delay in payments policy for
non-instantaneous deteriorating items. Tsao and Sheen (2008) analyzed the problem of pric-
ing and inventory control for deteriorating products with promotional effort and supplier’s
trade credit. Geetha and Uthayakumar (2010) considered an EOQ inventory model for non-
instantaneously deteriorating goods under partially backlogging shortages and credit period.
Other important works in this area are: Hwang and Shinn (1997), Liao et al. (2000), Sarker
et al. (2000), Chang et al. (2001), Chang (2004), Teng et al. (2005), and Maihami and Abadi
(2012).

All the aforementioned papers assumed that the vendor would offer the retailer a delay
period but the retailer would not offer the trade credit period to the customer. In some
business, this assumption is not real. The customer who purchases the items enjoys a fixed
credit period offered by his/her retailer. This policy called “two-echelons trade credit period”.
Huang (2003) was the first researcher who considered the retailer will adopt the trade credit
period to stimulate his/her customer demand. Chung and Huang (2007) modified Huang
(2003) considering a two-warehouse inventory system. Liao et al. (2013) extended Chung
and Huang (2007) analyzing situation that the rate of deteriorating in rented warehouse (RM)
exceeds that of owned warehouse (OW). Min et al. (2010) presented an inventory policy for
deteriorating goods under two-level trade credit period and stock-dependent demand. Urban
(2012) extended model ofMin et al. (2010) relaxing the boundary condition and constraining
themaximum inventory level. Thangam (2012) determined the optimal price discounting and
lot-sizing policy in a supply chain of perishable itemswith two-level trade credit and advanced
payment scheme. Shah et al. (2013) studied the replenishment policy for deteriorating goods
under stock sensitive demand, limited capacity and two-level trade credit. Chung et al. (2014)
explored anEPQ inventorymodel for deteriorating itemswith two-level credit period inwhich
the items are deteriorated over time and follow an exponential distribution. The comparative
Table 1 shows the important attribute of the main papers in the related research area.

Based on Table 1, the main contribution of this paper are revealed. This study considers
the optimal pricing and inventory control policy for non-instantaneous deteriorating prod-
ucts with two-echelon credit period and probabilistic demand and deterioration functions.
The most relevant papers to our work are Maihami and Karimi (2014), Ghoreishi et al.
(2014), Shah et al. (2013), and Sarkar (2012). Maihami and Karimi (2014) considered the
problem of pricing and inventory control of non-instantaneous deteriorating products with
probabilistic demand and promotional efforts. While, we consider two-echelon credit period
and probabilistic deterioration rates. Also, we consider different probabilistic demand func-
tion. Ghoreishi et al. (2014) considered the problem with inflation and customer returns.
They have not applied any stochastic subjects. Besides, the delay in payments policy has not
been considered in their work. Shah et al. (2013) presented a model for non-instantaneous
deteriorating items with generalized function for holding cost and deterioration without con-
sidering the probabilistic functions and delay in payments policy. Sarkar (2012) developed
a model for deteriorating goods with delay in payments and time dependent functions for
demand and deterioration. However, we consider non-instantaneous deteriorating products,
price dependent probabilistic function, probabilistic deteriorating function, and two-echelon
delay in payments policy which are different from Sarkar (2012).
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3 Notations and assumptions

Table 2 shows the notations are employed throughout the paper.
Also, we use the following assumptions to formulate the proposed model.

(1) The inventory system includes single non-instantaneous deteriorating item.
(2) Replenishment rate is infinite and lead time is zero.
(3) Shortages are allowed. We assume that only a fraction of demand is backlogged. Abad

(1996) denoted this fraction as β (t) = 1
1+δt , (δ > 0), where t is the waiting time up to

the next replenishment and backlogging parameter δ is a positive constant. It should be
noted that if β (t) = 1 (or 0) for all t , then the shortage is totally backlogged (or lost).

(4) The demand rate ξ1R(p) + ξ2 includes following parts:

• R(p): a decreasing and deterministic linear function of the selling price p.
• ξ1 and ξ2: non-negative and continuous random variables (E (ξ1) = μ1 and E (ξ2) =

μ2) which they have a determined and time-independent distribution function.

(5) Over the inventory cycle time, the parameters of demand rate are static.
(6) Three continuous probability distribution functions including (a) uniform distribution,

(b) triangular distribution, and (c) beta distribution has been considered.

Table 2 Mathematical notations

Parameters

c The retailer’s purchasing cost per unit h The retailer’s holding cost per unit
per unit time.

s The retailer’s backorder cost per unit
per unit time

o The retailer’s cost of lost sales per
unit

Y The retailer’s trade credit period
offered by supplier

θ The deterioration constant rate of the
in-hand inventory

Ie The interest earned per dollar Z The customer’s trade credit period
offered by retailer

ξ1R(p) + ξ2 The demand rate in which ξ1 and ξ2
are the random variables
(E (ξ1) = μ1 and E (ξ2) = μ2)

Ip The interest charged per dollar

I2(t) The inventory level at time
t ∈ [td , t1

] td The length of time in which the
product exhibits no deterioration.

I0 The maximum inventory level for
each cycle

I1(t) The inventory level at time t ∈ [0, td
]

S The maximum amount of backlogged
demand

I3(t) The inventory level at time
t ∈ [t1, T ]

Decision variables

p The retailer’s selling price per unit. p∗ The optimal selling price per unit

t1 The length of time in which no
inventory shortage occurs

t∗1 The optimal length of time in which
no inventory shortage occurs

T The length of order cycle. T ∗ The optimal length of order cycle

Q The order quantity per cycle Q∗ The optimal order quantity per cycle

TP(p, t1, T ) The total profit per unit time for the
inventory system

TP∗ The optimal total profit per unit time
for the inventory system, that is,
TP∗ = T P(p∗, t∗1 , T ∗)
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(7) The length of time in which there is no shortage is larger than or equal to the length of
time in which the product exhibits no deterioration, i.e. t1 > td .

(8) The fix credit period offered by the supplier to the retailer is equal or greater than that
allowed by the retailer to his/her customers, i.e. Y ≥ Z . If Y < Z , the retailer cannot
earn any interest.

(9) The length of credit period offered by the supplier to the retailer (Y ) and the length of
credit period offered by the retailer to the customer (Z) are greater than the length of
time which the product exhibits no deterioration (td), i.e. Y ≥ td and Z ≥ td .

(10) The length of credit period offered by the supplier to the retailer (Y ) and the length
of credit period offered by the retailer to the customer (Z) are less than the length of
period with positive inventory (t1), i.e. Y ≤ t1 and Z ≤ t1.

(11) When Y ≤ t1, the retailer pays for interest charges on goods in stock with rate Ip over
the interval [Y, t1].

(12) The retailer can earn interest from the time that his/her customer pays for the purchased
items until the end of the credit period offered by the supplier. This period is from t = Z
to t = Y with rate Ie under the condition of trade credit.

4 Development of mathematical model

To develop the mathematical model, the following inventory system has been applied. At
the beginning of each inventory cycle, Q units of products arrive at the system which are
depleted to zero due to combined effects of demand and deterioration. Then, shortage occurs
until the end of the order cycle. Thewhole process is repeated. Figure 1 depicts the considered
inventory system.

The inventory level is diminishing only due to demand during the time interval [0, td ].
Next, the inventory level is declining to zero owing to demand and deterioration over the

Z
t1 

Y

Inventory status

td

T 

Time

I0 

s 

Q

Fig. 1 Schematic illustration of the inventory system
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time interval [td , t1]. Finally, during the time interval [t1, T ] shortage happens due to demand
function and partial backlogging.

During the time interval [0, td ], the inventory status is governed by the following differ-
ential equation

d I1(t)

dt
= − (ξ1R(p) + ξ2) , 0 ≤ t ≤ td (1)

With the boundary condition I1 (0) = I0, the solution of Eq. (1) is

I1 (t) = − (ξ1R(p) + ξ2) + I0, 0 ≤ t ≤ td (2)

During the time interval [td , t1], the inventory level reduces owing to demand rate as well
as deterioration. Hence, the differential equation representing the inventory status is given
by

d I2(t)

dt
+ θ I2 (t) = − (ξ1R(p) + ξ2) , td ≤ t ≤ t1 (3)

With the boundary condition I2 (t1) = 0, the solution of Eq. (3) is

I2(t) = (ξ1R(p) + ξ2)

θ

[
eθ(t1−t) − 1

]
, td ≤ t ≤ t1 (4)

Continuity of I (t) at t = td implies that I1(td) = I2(td). Thus, the maximum inventory
level for each cycle I0 is

I0 = (ξ1R(p) + ξ2)

θ

[
eθ(t1−t) − 1

]
+ (ξ1R(p) + ξ2) td (5)

Substituting Eq. (5) in Eq. (2), yields

I1(t) = (ξ1R(p) + ξ2)

(
eθ(t1−td ) − 1

θ
+ td − t

)
, 0 ≤ t ≤ td (6)

During the shortage interval [t1, T ] , the demand is partially backlogged according to the
fraction β(T −t). Therefore, the inventory level at time t is given by the following differential
equation:

d I3(t)

dt
= − (ξ1R(p) + ξ2) β (T − t) = − (ξ1R(p) + ξ2)

1 + δ (T − t)
, t1 ≤ t ≤ T (7)

With the boundary condition I3 (t) = 0 , the solution for Eq. (7) is

I3 (t) = −
(

(ξ1R(p) + ξ2)

δ

)
{ln [1 + δ(T − t1)] − ln[1 + δ(T − t)]}, t1 ≤ t ≤ T (8)

By substituting t = T into Eq. (8), the maximum amount of demand backlogging will be
calculated as follows:

S = −I3 (t) =
(

(ξ1R(p) + ξ2)

δ

)
{ln [1 + δ(T − t1)] (9)

The summation of S and I0 forms the order quantity per cycle Q as follows:

Q = S + I0 = (ξ1R(p) + ξ2)

θ

[
eθ(t1−td) − 1

]

+ (ξ1R(p) + ξ2) td +
(

(ξ1R(p) + ξ2)

δ

)
ln [1 + δ(T − t1)] (10)
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Table 3 The inventory costs and the sales revenue per inventory cycle

The constant ordering cost= A

The expected holding cost = E
(
h
[∫ td

0 I1 (t) dt + ∫ t1td I2 (t) dt
])

(11)

=
htd(μ1R(p)+μ2)

(

−2+2e
(t1−td)

(
α1+α2

2

)

+td
(

α1+α2
2

)
)

2
(

α1+α2
2

)

+
(μ1R(p)+μ2)

(

−1+e
(t1−td)

(
α1+α2

2

)

−t1
(

α1+α2
2

)
+td

(
α1+α2

2

)
)

(
α1+α2

2

)2

The expected backorder cost = E
(
s
[∫ T

t1
−I3 (t) dt

])
(12)

= s(μ1R(p)+μ2)(T−t1− ln[1+T δ−t1δ]
δ

)

δ

The expected lost sale cost = E
(
p
[∫ T

t1
(ξ1R(p) + ξ2) (1 − β (T − t))dt

])
(13)

= o
(

(μ1R(p)+μ2)[δ(T−t1)−Ln(1+δ(T−t1))]
δ

)

The expected purchasing cost = E (cQ) (14)

= 1
δ (c(− (μ1R(p) + μ2) (Ln[1 − tδ + T δ] − Ln[1 + T δ − t1δ]) + δtd (μ1R(p) + μ2))

+ δ
(μ1R(p)+μ2)(

α1+α2
2

) [−1 + e

(
α1+α2

2

)
[t1−td ]])

)

The expected sales revenue = E
(
p
[∫ t1

0 (ξ1R(p) + ξ2) dt + S
])

(15)

= p(t1 (μ1R(p) + μ2))

− (μ1R(p)+μ2)(Ln[1+(−t+T )δ]−Ln[1+(T−t1)δ])
δ

)

In this study, we consider the deterioration function based on Sarkar (2013). It is assumed
that the deterioration function θ follows three different types of probability distribution func-
tion as θ = E [ f (x)], where f (x) follows (1) uniform distribution, (2) triangular distribution,
and (3) beta distribution. In the following, we compute the total profit for each deterioration
function.

4.1 Case 1: uniform distribution

θ is based on the uniform distribution as θ = E [ f (x)] = α1+α2
2 , α1>0, α2>0, and α1<α2.

Now, based on the obtained inventory levels, we can calculate the inventory costs and the
sales revenue per inventory cycle, which are shown in Table 3.

The expected interest payable the account is settled at t = Y and the retailer starts paying the
capital opportunity cost for the items in inventory with rate Ip . Thus, the expected interest
payable (opportunity cost per cycle) is as follows:

The expected interest payable = E

(
cIp

∫ t1

Y
I2(t)dt

)

= cIp (ξ1R(p) + ξ2)(
α1+α2

2

)

[

− 1
(

α1+α2
2

)
(
1 − e

(
α1+α2

2

)
(t1−Y)

)
− (t1 − Y )

]

(16)
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The expected interest earned during the time interval [Z , Y ], the retailer sells the goods and
earns the interest with rate Ie. Thus, the expected interest earned per cycle is as follows:

The expexted interest earned = E

(
pIe

∫ Y

Z
(ξ1R(p) + ξ2) tdt

)

= pIe (μ1R(p) + μ2)

(
Y 2 − Z2

2

)
(17)

Thus, the retailer’s total profit TP1 (p, t1, T ) is determined by the following equation:

TP1 (p, t1, T ) =
(
1

T

)
× (expected sales revenue − constant ordering cost

− expected holding cost − expected backorder cost

− expected lost sale cost − expected purchasing cost

+ expexted interest earned − expected interest payable)

= 1

T

[
(μ1R(p) + μ2)

{(
p − c + s + δo

δ

)[
t1 + ln [1 + δ (T − t1)]

δ

]

−
(

α1+α2
2

)
(c + htd) + h
(

α1+α2
2

)2

[
e

(
α1+α2

2

)
(t1−td ) −

(
α1 + α2

2

)
(t1 − td) − 1

]

− htd t1 + ht2d
2

− (s + δo)

δ
T − A

(μ1R(p) + μ2)

}

− cIp (μ1R(p) + μ2)(
α1+α2

2

)

[

− 1
(

α1+α2
2

)
(
1 − e

(
α1+α2

2

)
(t1−Y)

)
− (t1 − Y )

]

+ pIe (μ1R(p) + μ2)

(
Y 2 − Z2

2

)]
(18)

4.2 Case 2: triangular distribution

In this case, θ is based on the triangular distribution as θ = E [ f (x)] = α1+α2+α3
3 . Where

f (x) is a continuous probability distribution with lower limit α1, upper limit α2, and mode
α3, where α1<α2 and α1 ≤ α3 ≤ α2. By the same computations as Case 1, the total profit
for case 2 is

TP2 (p, t1, T ) = 1

T

[

(μ1R(p) + μ2)

{(
p − c + s + δo

δ

)[
t1 + ln [1 + δ (T − t1)]

δ

]

−
(

α1+α2+α3
2

)
(c + htd) + h

(
α1+α2+α3

2

)2

[
e

(
α1+α2+α3

2

)
(t1−td ) −

(
α1 + α2 + α3

2

)
(t1 − td) − 1

]

− htd t1 + ht2d
2

− (s + δo)

δ
T − A

(μ1R(p) + μ2)

}

− cIp (μ1R(p) + μ2)(
α1+α2+α3

2

)

[

− 1
(

α1+α2+α3
2

)
(
1 − e

(
α1+α2+α3

2

)
(t1−Y)

)
− (t1 − Y )

]

+ pIe (μ1R(p) + μ2)

(
Y 2 − Z2

2

)]
(19)
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4.3 Case 3: beta distribution

In the case 3, θ followsbeta distribution as θ = E [ f (x)] = α1
α1+α2

.Where f (x) is a continuous
probability distribution on the interval (0, 1) and α1>0, α2>0. By the same computations as
Case 1, the total profit for case 3 is

TP3 (p, t1, T ) = 1

T

[

(μ1R(p) + μ2)

{(
p − c + s + δo

δ

)[
t1 + ln [1 + δ (T − t1)]

δ

]

−
(

α1
α1+α2

)
(c + htd) + h

(
α1

α1+α2

)2

[
e

(
α1

α1+α2

)
(t1−td ) −

(
α1

α1 + α2

)
(t1 − td) − 1

]

− htd t1 + ht2d
2

− (s + δo)

δ
T − A

(μ1R(p) + μ2)

}

− cIp (μ1R(p) + μ2)(
α1

α1+α2

)

⎡

⎣− 1
(

α1
α1+α2

)
(
1 − e

(
α1

α1+α2

)
(t1−Y)

)
− (t1 − Y )

⎤

⎦

+ pIe (μ1R(p) + μ2)

(
Y 2 − Z2

2

)]

(20)

4.4 Theoretical analysis

In this section, our main objective is to compute optimal solution for (p, t1, T ) such that
the total profit for each case is maximized. In the following, we present some theoretical
results to obtain the optimal solutions. It should be noted that we obtain the results for case
1 (uniform distribution for deterioration). The procedure to obtain the optimal solution for
case 2 and 3 is similar to case 1.

For any given p, to maximize the TP1 (p, t1, T ), it is necessary to solve TP1(p,t1,T )
∂t1

= 0

and TP1(p,t1,T )
∂T = 0, simultaneously. That is,

∂TP1 (p, t1, T )

∂t1
= (μ1R(p) + μ2)

T

{(
p − c + (s + δ o)

δ

)[
δ (T − t1)

1 + δ (T − t1)

]

−
(

α1+α2
2

)
(c+htd) + h

(
α1+α2

2

)
[
e

(
α1+α2

2

)
(t1−td) − 1

]

− htd −
(

cIp(
α1+α2

2

)
(
e

(
α1+α2

2

)
(t1−Y) − 1

))}

= 0 (21)

∂TP1 (p, t1, T )

∂T
= 1

T2

⎡

⎢⎢⎢
⎣

{
(μ1R(p) + μ2)

(
p − c + s + δ o

δ

)

×
[

T

1 + δ (T − t1)
− t1 − ln [1 + δ (T − t1)

δ

]
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+
(

α1+α2
2

)
(c+htd) + h

(
α1+α2

2

)2 ×
[
e

(
α1+α2

2

)
(t1−td) −

(
α1 + α2

2

)
(t1 − td) − 1

]

+ htdt1− ht2d
2

+ A

(μ1R(p)+μ2)

}

− 1

2
Ie p (μ1R(p) + μ2) (Y 2 − Z2)

+
cIp (μ1R(p) + μ2) (−t1 + Y − 1−e

(t1−Y )
(

α1+α2
2

)

(
α1+α2

2

) )

(
α1+α2

2

)

⎤

⎥
⎥
⎥
⎦

= 0 (22)

For notational convenience, let

N ≡
(

α1+α2
2

)
(c + htd) + h
(

α1+α2
2

) > 0, M ≡ s + δo

δ
> 0

Then, Eqs. (21) and (22) become

T = t1 +
N

[
e

(
α1+α2

2

)
(t1−td ) − 1

]
+ htd + cIp(

α1+α2
2

)

(
e

(
α1+α2

2

)
(t1−Y) − 1

)

δ

{

p − c + M − N

[
e

(
α1+α2

2

)
(t1−td ) − 1

]
− htd+

cIp(
α1+α2

2

)

(
e

(
α1+α2

2

)
(t1−Y) − 1

)}

(23)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(p − c + M)

[
T

1 + δ (T − t1)
− t1 − ln[1 + δ(T − t1)

δ

]
+ N
(

α1+α2
2

)

×
[
e

(
α1+α2

2

)
(t1−td) −

(
α1 + α2

2

)
(t1 − td) − 1

]

+ htdt1 − ht2d
2

+ A

(μ1R(p) + μ2)
− 1

2
Ie p (μ1R(p) + μ2) (Y 2 − Z2)

+
cIp (μ1R(p) + μ2)

(

−t1 + Y − 1−e
(t1−Y )

(
α1+α2

2

)

(
α1+α2

2

)

)

(
α1+α2

2

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= 0 (24)

We have T > t1. Thus, from Eq. (23), it can be obtained

N

[
e

(
α1+α2

2

)
(t1−td ) − 1

]
+ htd + cIp

θ

(
e

(
α1+α2

2

)
(t1−Y) − 1

)

δ

{
p − c + M − N

[
e

(
α1+α2

2

)
(t1−td ) − 1

]
− htd

}
+ cIp(

α1+α2
2

)

(
e

(
α1+α2

2

)
(t1−Y) − 1

) > 0

Because N

[
e

(
α1+α2

2

)
(t1−td ) − 1

]
+ htd + cIp(

α1+α2
2

)

(
e

(
α1+α2

2

)
(t1−Y) − 1

)
> 0, we conclude

that
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δ

{
p − c + M − N

[
e

(
α1+α2

2

)
(t1−td ) − 1

]
− htd

}
+ cIp(

α1+α2
2

)
(
e

(
α1+α2

2

)
(t1−Y) − 1

)
> 0

which gives:

t1<

(
1
/
(

α1 + α2

2

))
ln

⎛

⎜
⎜
⎜
⎝

p − c + M + N − htd − cIp(
α1+α2

2

)
δ

N

e

(
α1+α2

2

)
td

− cIp
(

α1+α2
2

)
δe

(
α1+α2

2

)
Y

⎞

⎟
⎟
⎟
⎠

≡ tb1

Substituting Eq. (23) into Eq. (24), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p − c + M)

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

t1 +
N
[
e

(
α1+α2

2

)
(t1−td )−1

]
+htd+ cIp(

α1+α2
2

)

(
e

(
α1+α2

2

)
(t1−Y)−1

)

δ

{

p−c+M−N
[
e

(
α1+α2

2

)
(t1−td )−1

]
−htd+

cIp(
α1+α2

2

)

(
e

(
α1+α2

2

)
(t1−Y)−1

)}

1 + δ

⎛

⎜
⎜
⎝t1 +

N
[
e

(
α1+α2

2

)
(t1−td )−1

]
+htd+ cIp(

α1+α2
2

)

(
e

(
α1+α2

2

)
(t1−Y)−1

)

δ

{

p−c+M−N
[
e

(
α1+α2

2

)
(t1−td )−1

]
−htd+

cIp(
α1+α2

2

)

(
e

(
α1+α2

2

)
(t1−Y)−1

)} − t1

⎞

⎟
⎟
⎠

−t1 −

ln[1 + δ(t1 +
N
[
e

(
α1+α2

2

)
(t1−td )−1

]
+htd+ cIp(

α1+α2
2

)

(
e

(
α1+α2

2

)
(t1−Y)−1

)

δ

{

p−c+M−N
[
e

(
α1+α2

2

)
(t1−td )−1

]
−htd+

cIp(
α1+α2

2

)

(
e

(
α1+α2

2

)
(t1−Y)−1

)} − t1)

δ

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎦

+ N
(

α1+α2
2

) ×
[
e

(
α1+α2

2

)
(t1−td) −

(
α1 + α2

2

)
(t1 − td) − 1

]
+ htdt1

−ht2d
2

+ A

(μ1R(p) + μ2)
− 1

2
Ie p (μ1R(p) + μ2) (Y 2 − Z2)

+
cIp (μ1R(p) + μ2) (−t1 + Y − 1−e

(t1−Y )
(

α1+α2
2

)

(
α1+α2

2

) )

(
α1+α2

2

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 0 (25)

Next, to obtain t1 ∈ [td , tb1
)
, which satisfies (25), let

F (t1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p − c + M)

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢
⎣

t1 +
N
[
e

(
α1+α2

2

)
(t1−td )−1

]
+htd+ cIp(

α1+α2
2

)

(
e

(
α1+α2

2

)
(t1−Y)−1

)

δ

{

p−c+M−N
[
e

(
α1+α2

2

)
(t1−td )−1

]
−htd+

cIp(
α1+α2

2

)

(
e

(
α1+α2

2

)
(t1−Y)−1

)}

1 + δ

⎛

⎜⎜
⎝t1 +

N
[
e

(
α1+α2

2

)
(t1−td )−1

]
+htd+ cIp(

α1+α2
2

)

(
e

(
α1+α2

2

)
(t1−Y)−1

)

δ

{

p−c+M−N
[
e

(
α1+α2

2

)
(t1−td )−1

]
−htd+

cIp(
α1+α2

2

)

(
e

(
α1+α2

2

)
(t1−Y)−1

)} − t1

⎞

⎟⎟
⎠
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− t1 −

ln[1 + δ(t1 +
N
[
e

(
α1+α2

2

)
(t1−td )−1

]
+htd+ cIp(

α1+α2
2

)

(
e

(
α1+α2

2

)
(t1−Y)−1

)

δ

{

p−c+M−N
[
e

(
α1+α2

2

)
(t1−td )−1

]
−htd+

cIp(
α1+α2

2

)

(
e

(
α1+α2

2

)
(t1−Y)−1

)} − t1)

δ

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎦

+ N
(

α1+α2
2

)×
[
e

(
α1+α2

2

)
(t1−td) −

(
α1 + α2

2

)
(t1 − td) − 1

]
+ htdt1

− ht2d
2

+ A

(μ1R(p) + μ2)
− 1

2
Ie p (μ1R(p) + μ2) (Y 2 − Z2)

+
cIp (μ1R(p) + μ2) (−t1 + Y − 1−e

(t1−Y )
(

α1+α2
2

)

(
α1+α2

2

) )

(
α1+α2

2

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 0 (26)

We take the first-order derivative F (t1) with respect to t1, which gives

dF (t1)

dt1
=
(

−1 + e(
t1−td)

(
α1+α2

2

))
N + htd +

c

(
−1 + e(

t1−Y)
(

α1+α2
2

))
Ip (μ1R(p) + μ2)

(
α1+α2

2

)

+ (−c + M + p)

(

−1 −
(

e(
t1−td−Y)

(
α1+α2

2

) (
α1 + α2

2

)2

×
(

−
(

− (M + p) t1δ +
(

−1 + e(
t1−td)

(
α1+α2

2

))

× N (−1 + t1δ) + htd (−1 + t1δ))

(
α1 + α2

2

)
+ c

((
−1 + e(

t1−Y)
(

α1+α2
2

))
Ip (1 + t1δ)

− t1δ

(
α1 + α2

2

)))(
−c2e

td
(

α1+α2
2

)

Ip + e
Y
(

α1+α2
2

)

N (M + p)

(
α1 + α2

2

)

+ c

(
e
td
(

α1+α2
2

)

Ip (M + 2N + p − 2htd ) − e
Y
(

α1+α2
2

)

N

(
2Ip +

(
α1 + α2

2

)))))

/(
δ

((
M + N − e(

t1−td)
(

α1+α2
2

)

N + p − htd

)(
α1 + α2

2

)

− c

(
Ip − e(

t1−Y)
(

α1+α2
2

)

Ip +
(

α1 + α2

2

)))(
(M + p)

(
α1 + α2

2

)

− c

(
−2

(
−1 + e(

t1−Y)
(

α1+α2
2

))
Ip +

(
α1 + α2

2

)))2
)

+
(

e(
t1−td−Y)

(
α1+α2

2

) (
α1 + α2

2

)2 (
c2e

td
(

α1+α2
2

)

Ip−e
Y
(

α1+α2
2

)

N (M+ p)

(
α1+α2

2

)

+ c

(
−e

td
(

α1+α2
2

)

IP (M + 2N + p − 2htd) + e
Y
(

α1+α2
2

)

N

(
2Ip +

(
α1 + α2

2

)))))
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/
(

δ

((
M + N − e(

t1−td)
(

α1+α2
2

)

N + p − htd

)

×
(

α1 + α2

2

)
− c

(
Ip − e(

t1−Y)
(

α1+α2
2

)

Ip +
(

α1 + α2

2

)))

×
(

(M + p)

(
α1 + α2

2

)
− c

(
−2

(
−1 + e(

t1−Y)
(

α1+α2
2

))
Ip +

(
α1 + α2

2

))))

+
(((

M + N − e(
t1−td)

(
α1+α2

2

)

N + p − htd

)(
α1 + α2

2

)

− c

(
Ip − e(

t1−Y)
(

α1+α2
2

)

Ip +
(

α1 + α2

2

)))

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 + ce(
t1−Y)

(
α1+α2

2

)

Ip + e(
t1−td)

(
α1+α2

2

)

N
(

α1+α2
2

)

δ

⎛

⎝−c + M + N − e(
t1−td)

(
α1+α2

2

)

N + p − htd +
c

(
−1+e(

t1−Y)
(

α1+α2
2

))
Ip

(
α1+α2

2

)

⎞

⎠

+
((

α1 + α2

2

)(
−ce(

t1−Y)
(

α1+α2
2

)

Ip + e(
t1−td)

(
α1+α2

2

)

N

(
α1 + α2

2

))

×
(
c

(
−1 + e(

t1−Y)
(

α1+α2
2

))
Ip +

((
−1 + e(

t1−td)
(

α1+α2
2

))
+ htd

)(
α1 + α2

2

)))

/(
δ

((
M + N − e(

t1−td)
(

α1+α2
2

)

N + p − htd

)(
α1 + α2

2

)

−c

(
Ip − e(

t1−Y)
(

α1+α2
2

)

Ip +
(

α1 + α2

2

)))2
)))/(

(M + p)

(
α1 + α2

2

)

−c

(
−2

(
−1 + e(

t1−Y)
(

α1+α2
2

))
Ip +

(
α1 + α2

2

)))

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

(27)

Due to high complexity of dF(t1)
dt1

, it is unlikely to prove the negativity of dF(t1)
dt1

analytically.

However,wenumerically observe that dF(t1)
dt1

< 0.Thus, F (t1)is a strictly decreasing function

with respect to t1 in the interval
[
td , tb1

)
andlimt1→tb1

F (t1) = −∞. Let

�(p) ≡ F (td) = (p − c + M)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

td+
htd+ cIp(

α1+α2
2

)

(
e

(
α1+α2

2

)
(td−Y)−1

)

δ

{

p−c+M−htd+
cIp(

α1+α2
2

)

(
e

(
α1+α2

2

)
(td−Y)−1

)}

1 + δ

⎛

⎜⎜
⎝

+htd+ cIp(
α1+α2

2

)

(
e

(
α1+α2

2

)
(td−Y)−1

)

δ

{

p−c+M−htd+
cIp(

α1+α2
2

)

(
e

(
α1+α2

2

)
(td−Y)−1

)}

⎞

⎟⎟
⎠

−td
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−

ln[1 + δ

⎛

⎜
⎜
⎝

htd+ cIp(
α1+α2

2

)

(
e

(
α1+α2

2

)
(td−Y)−1

)

δ

{

p−c+M−htd+ cIp(
α1+α2

2

)

(
e

(
α1+α2

2

)
(td−Y)−1

)}

⎤

⎥
⎥
⎦

δ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ ht2d
2

+ A

(μ1R(p) + μ2)
− 1

2
Ie p (μ1R(p) + μ2)

(
Y 2 − Z2)

+
cIp (μ1R(p) + μ2)

(
−td + Y − 1−e(td−Y)(μ1R(p)+μ2)

(μ1R(p)+μ2)

)

(μ1R(p) + μ2)
(28)

which gives the following results:

Theorem 1 for any given p,

(a) If �(p) ≥ 0, then there is a unique solution of (t1,T) which satisfies Eqs. (21) and (22).
(b) If �(p) < 0, then there is not solution of (t1,T) which satisfies Eqs. (21) and (22).

Proof see Appendix 1 for details. 	


Theorem 2 for any given p,

(a) If �(p) ≥ 0, then T P(p, t1, T ) is concave and reaches its global maximum at the point
(t1, T ) = (t∗1 , T ∗), which (t∗1 , T ∗) is the optimal solution of Eqs. (21) and (22).

(b) If�(p) < 0, then TP1(p, t1, T ) has a maximum value at the point of (t1, T ) = (t∗1 , T ∗),
which

t∗1 = td and T ∗ = td +
htd + cIp(

α1+α2
2

)

(
e

(
α1+α2

2

)
(td−Y ) − 1

)

δ

{

p − c + M − htd+ cIp(
α1+α2

2

)

(
e

(
α1+α2

2

)
(td−Y ) − 1

)}

Proof see Appendix 2 for details. 	


Now, we should identify the conditions which for any t∗1 and T ∗, there would be a unique
optimal selling price. TP1(p, t∗1 , T ∗) is a function of p. Thus, the necessary condition to

maximize TP1(p, t∗1, T ∗) is ∂TP1(p,t∗1 ,T ∗)
∂p = 0, which gives

∂TP1(p, t∗1 , T ∗)
∂p

= μ1R
′
(p)

T ∗

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(p − c + M)

[

t∗1 + ln
[
1 + δ

(
T ∗ − t∗1

)]

δ

]

− N
(

α1+α2
2

)

×
[
e

(
α1+α2

2

)
(t∗1−td) −

(
α1 + α2

2

) (
t∗1 − td

)− 1

]
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− htd t
∗
1 + ht2d

2
− MT ∗ + 1

2
Ie p
(
Y 2 − Z2)+

cIp(−t∗1 + Y − 1−e
(t∗1−Y )

(
α1+α2

2

)

(
α1+α2

2

) )

(
α1+α2

2

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+
(
μ1R

′
(p) + μ2

)

T ∗

{

t∗1 + ln
[
1 + δ

(
T ∗ − t∗1

)]

δ

}

− 1

2
Ip (μ1R(p) + μ2) (Y 2 − Z2) = 0

(29)

Also, we take the second-order derivative of TP1(p, t∗1 , T ∗) with respect top as follows:

∂TP1(p, t∗1 , T ∗)
∂p2

= μ1R′′(p)
T ∗

{

(p − c + M)

[

t∗1 + ln
[
1 + δ

(
T ∗ − t∗1

)]

δ

]

− N
(

α1+α2
2

)
[
e

(
α1+α2

2

)
(t∗1−td) −

(
α1 + α2

2

)
(
t∗1 − td

)− 1

]

− htd t
∗
1 + ht2d

2
− MT ∗

}

+ 2μ1R
′
(p)

T ∗

{

t∗1 + ln
[
1 + δ

(
T ∗ − t∗1

)]

δ
+ Ie(Y 2 − Z2)

2

}

(30)

where R
′
(p) and R

′′
(p) are the first-order and the second-order derivative of R(p) with

respect to p, respectively.

From Eq. (30), it is clear that
∂TP1(p,t∗1 ,T ∗)

∂p2
< 0. Since, we assume that determinis-

tic part of demand function R(p) is a decreasing linear function of p. Thus, R
′′
(p) = 0

and R
′
(p) < 0 and Eq. (28) becomes 2μ1R

′
(p)

T ∗
{
t∗1 + ln[1+δ(T ∗−t∗1 )]

δ
+ Ie(Y 2−Z2)

2

}
. Due to

{
t∗1 + ln[1+δ(T ∗−t∗1 )]

δ
+ Ie(Y 2−Z2)

2

}
> 0, we conclude that 2μ1R

′
(p)

T ∗
{
t∗1 + ln[1+δ(T ∗−t∗1 )]

δ

+ Ie(Y 2−Z2)
2

}
< 0. Consequently, for a given (t∗1 , T ∗), TP1(p, t∗1 , T ∗) is a concave function

of p. Therefore, there exists a unique optimal selling price p∗ that satisfies Eq. (29).
Based on the aforementioned theoretical analysis, the following solution algorithm is

presented to solve the proposed model.

5 Solution algorithm

Step 1: set i = 0 and initialize the value of pi = p1.
Step 2: calculate

�(pi ) = (p − c + M)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

td +
htd+ cIp(

α1+α2
2

)

(
e

(
α1+α2

2

)
(td−Y)−1

)

δ

{

pi−c+M−htd+
cIp(

α1+α2
2

)

(
e

(
α1+α2

2

)
(td−Y)−1

)}

1 + δ

⎛

⎜⎜
⎝

+htd+ cIp(
α1+α2

2

)

(
e

(
α1+α2

2

)
(td−Y)−1

)

δ

{

pi−c+M−htd+
cIp(

α1+α2
2

)

(
e

(
α1+α2

2

)
(td−Y)−1

)}

⎞

⎟⎟
⎠
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− td −

ln

⎡

⎢
⎢
⎣1 + δ(

htd+ cIp(
α1+α2

2

)

(
e

(
α1+α2

2

)
(td−Y)−1

)

δ

{

pi−c+M−htd+ cIp(
α1+α2

2

)

(
e

(
α1+α2

2

)
(td−Y)−1

)}

⎤

⎥
⎥
⎦

δ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ ht2d
2

+ A

(μ1R(pi ) + μ2)
− 1

2
Ie pi (μ1R(pi ) + μ2) (Y 2 − Z2)

+ cIp (μ1R(pi ) + μ2) (−td + Y − 1−e(td−Y )(μ1R(pi )+μ2)

(μ1R(pi )+μ2)
)

(μ1R(pi ) + μ2)

(i) If�(pi ) ≥ 0, find the optimal value of (t∗1 , T ∗) by solving Eqs. (21) and (22). Substitute
the value of (t∗1 , T ∗) into Eq. (29) and solve it to obtain pi+1; go to step 3.

(ii) If�(pi ) < 0, t∗1 = td , T ∗ = td +
htd+ cIp(

α1+α2
2

)

(
e

(
α1+α2

2

)
(td−Y)−1

)

δ

{

p−c+M−htd+
cIp(

α1+α2
2

)

(
e

(
α1+α2

2

)
(td−Y)−1

)} . Substitute

(t∗1 , T ∗) into Eq. (29) and solve it to obtain pi+1; go to step 3.

Step 3: if the difference between pi and pi+1is small enough (i.e.,
∣∣pi − pi+1

∣∣ ≤ 10−4), set
p∗ = pi+1; p

∗, t∗1 , and T ∗ is the optimal solution and stop. Otherwise, put i = i + 1 and
go back to step 2.
Step 4: calculate Q∗ and TP∗

1 from Eqs. (10) and (18), respectively.

Theorem 3 the proposed algorithm is convergent.

Proof see Appendix 3 for details. 	


6 Numerical example

This section solves a numerical example to illustrate the solution procedure and the pro-
posed algorithm. We apply Mathematica version 9.0 to solve the example. Table 4 gives the
parameters and functions used in the example.

The solution algorithm starts with p1 = 600. Table 5 shows the numerical results. It is
clear that after six iterations the optimal value of model’s variables are: p∗ = 513.5443, t∗1 =
0.1816, T ∗ = 0.5607TP∗ = 237,192, and Q∗ = 23.8226.

The numerical example is solved for different starting values of p ∈ {460, 480, 500, 520,
560, 580, 699}. As shown in Fig. 2, the computational results indicate that retailer’s total
profit function TP∗ is strictly concave respect to selling price p. Therefore, we conclude that
the local maximum solution obtained from the algorithm is the global maximum solution.
Moreover, we plot the three-dimensional retailer’s total profit for p∗ = 513.5443. As shown
in Fig. 3, TP1 is clearly a concave function of T and t1. Hence, the obtained solution is a
global maximum solution.
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Table 4 Parameters and
functions used in the numerical
example

Parameter/
function

Value Parameter/
function

Value

A 250$ per order R(p) ξ1(500 − 0.5p) + ξ2

c 200$ per unit β(t) 1
1−0.1t

h 40$ per unit ξ1 N (2, 1)

α1 0.15 ξ2 N (2, 1)

α2 0.35 α3 0.25

s 80$ per unit Ip 0.1

o 120$ per unit Ie 0.15

td 0.04 Y 0.09

Z 0.07

Table 5 The solution of
numerical example

i pi t1 T Q TP

1 600 0.1934 0.5763 18.5654 227,654

2 512.4534 0.1802 0.5592 23.1234 236,987

3 513.5043 0.1816 0.5607 23.6987 237,190

4 514.11452 0.3153 0.4943 12.5426 117,213

5 513.5441 0.1816 0.5607 23.8225 237,192

6 513.5443 0.1816 0.5607 23.8226 237,192
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TP
(P
,T
1*
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*)

P

Fig. 2 Graphical illustration of TP1(p
∣
∣t∗1 , T ∗)

7 Sensitivity analysis and managerial recommendations

This section presents the effect of change in the model’s parameters on the variables of
problem.Moreover, somemanagerial recommendations are provided.The sensitivity analysis
is performed by changing each of the parameters, taking one parameter at a time and keeping
the other parameters unchanged.

We solve the numerical example for different value of td . Table 6 shows the numerical
results. If td = 0, the model converts to the instantaneous deterioration items case and the
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Fig. 3 Total profit function TP1 with respect to t1 and T

Table 6 The effect of
non-instantaneous deteriorating
phenomenon on the variables

td p∗ t∗1 T∗ Q∗ TP∗

0 516.5463 0.1565 0.4187 15.5643 220,998

0.01 515.5643 0.1678 0.4567 18.6754 227,656

0.02 514.8762 0.1786 0.4876 20.6754 230,987

0.03 513.7865 0.1801 0.5308 23.4568 236,789

0.04 513.5443 0.1816 0.5607 23.8226 237,192

0.05 513.8976 0.1898 0.5765 25.7659 237,897

0.06 513.4568 0.1987 0.6145 27.9870 238,567

optimal retailer’s total profit is 220,998. It means that the non-instantaneous deteriorating
items make an improvement in the optimal retailer’s total profit. Moreover, when the fresh
product time increases, the retailer’s optimal total profit increases. That is, the longer the fresh
product time is, the greater total profit would be. Thus, if the retailer can extend the length
of time the items has no deterioration (for example by improvement in the stock equipment),
the retailer’s total profit will increase apparently.

We perform sensitivity analysis for different values of trade credit periods. Table 7 shows
the numerical results.

When the value of supplier’s trade credit to the retailer Y increases, it is trivial, that the
retailer’s optimal total profit increases; since, the retailer has more time to accumulate the
sales revenue and earns interest. However, when the difference between Y and Z decreases,
the retailer’s total profit will decrease. If Z = Y = 0, the model becomes no-trade credit
policy system and the optimal total profit is 235,456. This means that the trade credit policy
has a significant effect on the retailer’s total profit. Moreover, when Z = Y = 0.04, the
retailer’s total profit is 237,654. This implies that even the retailer adopts the credit period
to his/her customer equal to supplier’s credit period to the retailer, the retailer’s total profit
is greater than the no-trade credit policy system. The retailer’s order quantity Q∗ increases
when Z increases. This means that the retailer could increase the sales quantity by adopting
policy of delay in payment for his/her customer. We explain this phenomenon that when Z
increases, the retailer will order more items to accumulate more interest to make restitution
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Table 7 The numerical results
for different values of the
customer’s trade credit period
offered by retailer Z and the
retailer’s trade credit period
offered by supplier Y

(Z , Y ) p∗ t∗1 T∗ Q∗ TP∗

(0.00, 0.00) 513.0875 0.1786 0.5641 22.8787 235,456

(0.00, 0.09) 512.5677 0.1865 0.5567 23.1132 245,679

(0.07, 0.00) 513.4453 0.1801 0.5762 22.8976 236,765

(0.04, 0.04) 513.1234 0.1811 0.5762 123.8251 237,654

(0.07, 0.12) 513.7856 0.1836 0.5537 23.8462 238,227

(0.07, 0.18) 513.8756 0.1858 0.5333 23.7840 238,908

(0.07, 0.24) 513.9865 0.1853 0.5036 23.5642 239,801

(0.07, 0.30) 514.1087 0.1816 0.4629 23.1708 240,016

(0.04, 0.24) 513.7546 0.1839 0.4985 23.4839 239,916

(0.10, 0.24) 513.4332 0.1874 0.5113 23.6883 238,785

(0.16, 0.24) 513.1123 0.1937 0.5342 24.0677 239,100

Table 8 The numerical results
for different values of Ip and Ie

(Ip, Ie) p∗ t∗1 T∗ Q∗ TP∗

(0.10, 0.10) 513.1134 0.1820 0.5622 23.8465 237,887

(0.10, 0.05) 513.0134 0.1824 0.5636 23.8705 237,954

(0.10, 0.20) 513.3125 0.1812 0.5592 23.7968 238,002

(0.10, 0.25) 513.3987 0.1808 0.5578 23.7747 238,027

(0.10, 0.30) 513.4154 0.1804 0.5563 23.7508 238,060

(0.05, 0.15) 513.4654 0.1891 0.5645 24.1175 238,047

(0.20, 0.15) 513.0876 0.1697 0.5546 23.3634 237,819

(0.25, 0.15) 513.5132 0.1648 0.5521 23.1814 237,764

(0.30, 0.15) 513.5875 0.1605 0.5499 23.0229 237,715

the loss of interest earned. However, when the optimal order quantity increases the total profit
decreases.

Table 8 shows the effect of change in the values of interest payable and the interest earned
on the variables.

The retailer’s total profit TP∗ decreases when the interest payable Ip is high. Also, increase
in Ip yields decrease in t∗1 , T ∗, and Q∗. From managerial viewpoint, it is concluded that the
retailer should order less amount of stock when the interest payable is high. When the value
of parameter Ie increases, p∗ and TP∗ increase while t∗1 , T ∗, and Q∗ decrease. This identifies
that when the interest earned is high, the retailer’s total profit is high.

We perform sensitivity analysis for parameters A, c, h, s, o, and θ by changing each value
of the parameters by +50,+25,−25, and −50%. Table 9 shows the numerical results.

On the basis of the results of this table, the following managerial insights can be achieved:

1. An increase in the value of the purchasing cost c results in an increase in the optimal
selling price p∗ and the optimal length of order cycle T ∗, but a decrease in the optimal
order quantity Q∗ and the optimal total profit TP∗. Moreover, the optimal selling price
p∗and the optimal total profit are more sensitive to the purchasing cost than the other
parameters. Thus, to decline the selling price and to obtain more total profit, the retailer
should try to take a discount from his/her supplier.
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Table 9 The numerical results
for different values of
A, c, h, s, o, and θ

Parameters % change % change of variables

p∗ t∗1 T∗ Q∗ TP∗

A −50 −0.6 −26 −39 −31 11

−25 −0.4 −12 −18 −11 7

25 0.3 14 11 11 −6

50 0.6 22 25 17 −8

c −50 −15 6 −3 29 76

−25 −6 2 −1 12 36

25 7 2 4 −13 −23

50 12 4 14 −24 −60

h −50 −0.2 13 8 12 4

−25 −0.1 7 2 5 2

25 0.1 −4 −3 −4 −2

50 0.2 −12 −6 −7 −4

s −50 −0.2 −6 6 3 2

−25 −0.1 −1 4 2 1

25 0.1 1 −3 −2 −1

50 0.2 3 −5 −2 −2

o −50 −0.1 −2 2 2 1

−25 −0.1 −1 1 1 2

25 0.1 1 −1 −1 −1

50 0.2 2 −1 −2 −1.5

θ −50 −0.4 24 18 18 6

−25 −0.2 11 7 7 2

25 0.2 −9 −5 −7 −2

50 0.3 −18 −11 −9 −4

2. The optimal order quantity Q∗ and the optimal total profit TP∗ decrease as the value of
θ increases. It means that to make more profit, the retailer should follow some actions to
reduce the deterioration rate.

3. A higher value of ordering cost value A results in a higher optimal selling price p∗, the
optimal length of order cycle T ∗, and the optimal order quantity Q∗, but lower value
for the optimal total profit per unit time TP∗. This identifies that to reduce the numbers
of orders, the retailer should increase the length of order cycle. Also, when the ordering
cost is high, the retailer should increase the order quantity.

4. When the value of holding cost h increases, the optimal selling price p∗ increases; but,
the optimal length of order cycle T ∗, the optimal order quantity Q∗, and the optimal total
profit TP∗decrease. This finding indicates that to avoid higher holding costs, the retailer
should diminishes the length of order cycle and the order quantity.

5. An increase in the value of the backorder costs and lost sale cost owill result in an
increase in the optimal length of time in which there is no inventory shortage t∗1 . From a
managerial interpretation, this result signifies that when the backorder and lost sale costs
are high, the retailer should avoid shortages.
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Table 10 Compare of simulation method and our model for different normal distribution of ξ1and ξ2 and
uniform distribution for deterioration rate

Deterioration
function

Distribution
functions of
ξ1

Distribution
functions of
ξ2

Total profit of
simulation
results TPs

Total profit of
Our model TP

Gap percentage(
T P−TPs

TP ×100
)

Uniform distribution
(0.15, 0.35)

N(2,1) N(2,1) 237,509 237,192 0.13

N(1,1) N(1,1) 118,777 118,402 0.32

N(3,1) N(3,1) 350,105 357,147 1.97

N(4,1) N(4,1) 465,994 476,347 2.17

N(5,1) N(5,1) 591,792 595,546 0.63

N(10,1) N(10,1) 1,179,470 1,191,484 1.01

N(15,1) N(15,1) 1,773,240 1,787,455 0.80

N(20,1) N(20,1) 2,364,959 2,383,397 0.77

N(30,1) N(30,1) 3,536,527 3,575,325 1.09

N(40,1) N(40,1) 4,712,048 4,767,253 1.16

N(50,1) N(50,1) 5,869,254 5,959,181 1.51

N(100,1) N(100,1) 11,785,284 11,918,706 1.12

N(200,1) N(200,1) 23,542,186 23,837,873 1.24

N(500,1) N(500,1) 58,892,914 59,595,374 1.18

N(1000,1) N(1000,1) 117,734,679 119,191,210 1.22

7.1 Sensitivity analysis of probabilistic functions

In this section, we use simulation approach to analyse the effect of the probabilistic demand
and deterioration rates. First we consider the uniform distribution for deterioration. The
numerical example has been solved for different distribution function of ξ1and ξ2 (Table 10).
For simulation, we generate 500 random numbers of probabilistic demand function of ξ1and
ξ2, then the total profit for each random number has been obtained. The average of 500
obtained total profit values has been considered as final solution of simulation method which
has been shown in column 5 of Table 10. Also, we calculate the difference between results
of our model and simulation method in column 6.

As an example, we plot the histogram chart of simulation results for distribution function
N (2, 1) as Fig. 4.

The same computations have been done to beta and triangular distribution of deterioration
rate which are shown in Tables 11 and 12 and Figs. 5 and 6.

The above analysis shows the following results:

1. We use the mean of distribution function of ξ1 and ξ2 to formulate model. The difference
between total profit of our model and the simulation results for three cases (percentage
gaps) are in the reasonable distance. Thus, using the mean of distribution function of ξ1
and ξ2 in the formulation does not change the results significantly. This finding approves
the validation of the proposed model and obtained solutions.

2. When the deterioration functions and parameters of normal distribution function of
demand changes, the total profit of our model and simulation method will change. Thus,
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Fig. 4 Histogram chart of total profit for 500 generated random number for N (2, 1) and uniform distribution
for deterioration rate

Table 11 Compare of simulation method and our model for different normal distribution of ξ1 and ξ2 and
beta distribution for deterioration rate

Deterioration
function

Distribution
functions of
ξ1

Distribution
functions of
ξ2

Total profit of
simulation
results T Ps

Total profit of
Our model TP

Gap percentage(
T P−T Ps

TP ×100
)

Beta distribution
(0.35, 0.15)

N(2,1) N(2,1) 241,383 235,684 2.42

N(1,1) N(1,1) 124,517 117,633 5.85

N(3,1) N(3,1) 347,054 353,735 1.89

N(4,1) N(4,1) 474,299 471,786 0.53

N(5,1) N(5,1) 574,443 589,837 2.61

N(10,1) N(10,1) 1,172,666 1,180,092 0.63

N(15,1) N(15,1) 1,744,425 1,770,347 1.46

N(20,1) N(20,1) 2,321,668 2,318,876 0.12

N(30,1) N(30,1) 3,490,704 3,552,083 1.73

N(40,1) N(40,1) 4,656,984 4,736,258 1.67

N(50,1) N(50,1) 5,815,005 5,920,433 1.78

N(100,1) N(100,1) 11,660,698 11,841,295 1.53

N(200,1) N(200,1) 23,295,530 23,683,033 1.64

N(500,1) N(500,1) 58,223,227 59,208,247 1.66

N(1000,1) N(1000,1) 116,431,358 118,416,935 1.68

accurate estimation of parameters of distribution function of demand and deterioration
functions needs to obtain the correct value of variables.

3. In three cases, for our model and simulation results, the total profit significantly depend
on the mean of normal distribution. When mean increases, the total profit will increase
drastically. Thus, to obtain the correct value of variables, determine the accurate value
of mean of distribution for ξ1and ξ2 is an important issue.
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Table 12 Compare of simulation method and our model for different normal distribution of ξ1and ξ2 and
triangular distribution for deterioration rate

Deterioration
function

Distribution
functions of
ξ1

Distribution
functions of
ξ2

Total profit of
simulation
results TPs

Total profit
of Our
model TP

Gap percentage(
T P−TPs

TP ×100
)

Triangular distribution
(0.15, 0.35, 0.25)

N(2,1) N(2,1) 230,821 238,419 3.19

N(1,1) N(1,1) 109,245 118,956 8.16

N(3,1) N(3,1) 351,461 357,881 1.79

N(4,1) N(4,1) 473,715 477,343 0.76

N(5,1) N(5,1) 575,288 596,805 3.61

N(10,1) N(10,1) 1,173,261 1,194,116 1.75

N(15,1) N(15,1) 1,773,439 1,791,427 1.00

N(20,1) N(20,1) 2,354,234 2,388,738 1.44

N(30,1) N(30,1) 3,530,291 3,583,361 1.48

N(40,1) N(40,1) 4,712,611 4,777,983 1.37

N(50,1) N(50,1) 5,896,245 5,972,606 1.28

N(100,1) N(100,1) 11,780,054 11,945,718 1.39

N(200,1) N(200,1) 23,544,446 23,891,942 1.45

N(500,1) N(500,1) 58,893,517 59,730,615 1.40

N(1000,1) N(1000,1) 117,735,281 119,461,737 1.45

Fig. 5 Histogram chart of total profit for 500 generated random number for N (2, 1) and beta distribution for
deterioration rate

Tables 13 and 14 show the results of our model and simulation method for exponential
and uniform distribution function of demand when the deterioration distribution function is
uniform.
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Fig. 6 Histogram chart of total profit for 500 generated randomnumber for N (2, 1) and triangular distribution
for deteriorating rate

It is clear that the results of our model and simulation results are change comparing to
normal distribution function for demand (Table 10). Thus, the kind of distribution function of
demand could change the results. Moreover, similar to normal distribution, the gap percent-
ages are reasonable and our model has enough validation to perform different distribution
functions for demand.

To analyse the effect of variance, we solve our model and simulation method for normal
distribution with different variance. Table 15 shows the results.

We used the mean of distribution function of ξ1 and ξ2 to formulate our model. Thus,
the change in the variance does not affect the optimal solution (Column 5 of Table 15).
While, if the variance changes, the solution of simulation method will change. However, gap
percentages between our model and simulation method are little and can be ignored. Thus,
we conclude that change in variance of distribution function of demand does not remarkably
effect on our solutions and the proposed model is valid.

8 Concluding remarks and future scope

This paper established a pricing and inventory controlmodel for non-instantaneous deteriorat-
ing products with partially backlogging shortage. We assumed price-dependent probabilistic
demand rate and probabilistic deterioration functions.Moreover, the two-echelon trade credit
policy was adopted which means the vendor offers the retailer a trade credit period and also
the customer receives a credit period offered by his/her retailer. In the proposed model, we
determined the necessary and sufficient conditions to solve the problem and have developed a
solution algorithm to obtain optimal selling price and optimal inventory control parameters.
Finally, we solved numerical example and performed sensitivity analysis to illustrate the
proposed model and the algorithm.

The results indicated that considering the non-instantaneous deteriorating concept
improves the retailer’s total profit. If the ordering cost is high, the retailer should increase
the order quantity. The two-echelon trade credit policy effectively increases the retailer’s
total profit. When the retailer’s trade credit period to his/her customer increases, the retailer’s
order quantity will increase. Also, if the interest payable is high, the retailer’s total profit
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Table 13 Compare of simulation method and our model for different exponential distribution of ξ1 and ξ2
and uniform distribution for deterioration rate

Deterioration
function

Distribution
functions of
ξ1

Distribution
functions of
ξ2

Total profit of
simulation
results TPs

Total profit of
Our model TP

Gap percentage(
T P−TPs

TP ×100
)

Uniform distribution
(0.15, 0.35)

N(2,1) Exp (2) 227,435 237,192 4.11

N(1,1) Exp (1) 116,073 118,402 1.97

N(3,1) Exp (3) 376,493 357,147 5.42

N(4,1) Exp (4) 466,657 476,347 2.03

N(5,1) Exp (5) 573,600 595,546 3.69

N(10,1) Exp (10) 1,133,651 1,191,484 4.85

N(15,1) Exp (15) 1,822,508 1,787,455 1.96

N(20,1) Exp (20) 2,356,467 2,383,397 1.13

N(30,1) Exp (30) 3,585,528 3,575,325 0.29

N(40,1) Exp (40) 4,733,008 4,767,253 0.72

N(50,1) Exp (50) 5,937,734 5,959,181 0.36

N(100,1) Exp (100) 11,660,633 11,918,706 2.17

N(200,1) Exp (200) 23,389,067 23,837,873 1.88

N(500,1) Exp (500) 59,181,875 59,595,374 0.69

N(1000,1) Exp (1000) 126,897,417 119,191,210 6.47

Uniform distribution
(0.15, 0.35)

Exp (2) Exp (2) 248,475 237,192 4.76

Exp (1) Exp (1) 117,208 118,402 1.01

Exp (3) Exp (3) 347,390 357,147 2.73

Exp (4) Exp (4) 470,312 476,347 1.27

Exp (5) Exp (5) 566,072 595,546 4.95

Exp (10) Exp (10) 1,219,536 1,191,484 2.35

Exp (15) Exp (15) 1,641,620 1,787,455 8.16

Exp (20) Exp (20) 2,346,183 2,383,397 1.56

Exp (30) Exp (30) 3,723,499 3,575,325 4.14

Exp (40) Exp (40) 4,599,309 4,767,253 3.52

Exp (50) Exp (50) 6,017,039 5,959,181 0.97

Exp (100) Exp (100) 12,011,054 11,918,706 0.77

Exp (200) Exp (200) 21,672,514 23,837,873 9.08

Exp (500) Exp (500) 57,170,773 59,595,374 4.07

Exp (1000) Exp (1000) 109,891,634 119,191,210 7.80

will decrease. Increase in the value of interest earned increases the optimal selling price and
the optimal total profit. In addition, the simulation results validated the proposed model and
obtained solution.

Our novelty of our model is in the modelling a problem that investigates pricing and
inventory control for non-instantaneous deteriorating items with price-dependent proba-
bilistic demand function, two-echelon trade credit policy, probabilistic deterioration rates,
and partially backlogged shortage. In this regard, several breakthrough with broader mag-
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Table 14 Compare of simulation method and our model for different uniform distribution of ξ1 and ξ2 and
uniform distribution for deterioration rate

Deterioration
function

Distribution
functions of
ξ1

Distribution
functions of
ξ2

Total profit of
simulation
results TPs

Total profit of
Our model TP

Gap percentage(
T P−TPs

TP ×100
)

Uniform distribution
(0.15, 0.35)

N(2,1) U(1,3) 230,955 237,192 2.63

N(1,1) U(1,1) 116,989 118,402 1.19

N(3,1) U(1,5) 342,678 357,147 4.05

N(4,1) U(1,7) 474,310 476,347 0.43

N(5,1) U(1,9) 571,441 595,546 4.05

N(10,1) U(1,19) 1,137,456 1,191,484 4.53

N(15,1) U(1,29) 1,759,510 1,787,455 1.56

N(20,1) U(1,39) 2,409,100 2,383,397 1.08

N(30,1) U(1,59) 3,433,111 3,575,325 3.98

N(40,1) U(1,79) 4,624,261 4,767,253 3.00

N(50,1) U(1,99) 5,884,079 5,959,181 1.26

N(100,1) U(1,199) 11,600,051 11,918,706 2.67

N(200,1) U(1,399) 23,440,648 23,837,873 1.67

N(500,1) U(1,999) 60,084,022 59,595,374 0.82

N(1000,1) U(1,1999) 123,335,243 119,191,210 3.48

Uniform distribution
(0.15, 0.35)

U(1,3) U(1,3) 239,703 237,192 1.06

U(1,1) U(1,1) 117,186 118,402 1.03

U(1,5) U(1,5) 363,208 357,147 1.70

U(1,7) U(1,7) 471,811 476,347 0.95

U(1,9) U(1,9) 596,302 595,546 0.13

U(1,19) U(1,19) 1,200,086 1,191,484 0.72

U(1,29) U(1,29) 1,753,752 1,787,455 1.89

U(1,39) U(1,39) 2,397,036 2,383,397 0.57

U(1,59) U(1,59) 3,547,473 3,575,325 0.78

U(1,79) U(1,79) 4,804,195 4,767,253 0.77

U(1,99) U(1,99) 5,762,756 5,959,181 3.30

U(1,199) U(1,199) 11,552,939 11,918,706 3.07

U(1,399) U(1,399) 24,106,234 23,837,873 1.13

U(1,999) U(1,999) 58,923,961 59,595,374 1.13

U(1,1999) U(1,1999) 113,409,265 119,191,210 4.85

nitude can be proposed. For example, we can extend the model for non-zero lead time.
Also, a problem of pricing and inventory control of non-instantaneous deteriorating can
be studied in two or more echelons supply chain. Moreover, the supply chain of non-
instantaneous deteriorating products with multiple-vendor and multiple-retailer can be
considered.
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Table 15 The effect of variance on the solution of our model and simulation method

Deterioration
function

Distribution
functions of
ξ1

Distribution
functions of
ξ2

Total profit of
simulation
results TPs

Total profit of
our model TP

Gap percentage(
T P−TPs

TP ×100
)

Uniform distribution
(0.15, 0.35)

N(10,1) N(10,1) 1,184,228 1,191,484 0.608988

N(10,2) N(10,2) 1,159,227 1,191,484 2.707296

N(10,3) N(10,3) 1,179,869 1,191,484 0.974835

N(10,4) N(10,4) 1,149,675 1,191,484 3.508985

N(10,5) N(10,5) 1,130,832 1,191,484 5.090459

N(10,6) N(10,6) 1,151,123 1,191,484 3.387456

N(10,7) N(10,7) 1,238,516 1,191,484 3.947346

N(10,8) N(10,8) 1,164,581 1,191,484 2.257941

N(10,9) N(10,9) 1,096,308 1,191,484 7.988022

N(10,10) N(10,10) 1,254,303 1,191,484 5.272333

N(10,15) N(10,15) 1,127,970 1,191,484 5.330663

N(10,20) N(10,20) 1,284,683 1,191,484 7.822094

N(10,30) N(10,30) 1,255,030 1,191,484 5.333349

N(10,40) N(10,40) 1,341,997 1,191,484 12.6324

N(10,50) N(10,50) 1,127,247 1,191,484 5.391344

N(10,100) N(10,100) 1,469,292 1,191,484 23.31613
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Appendix 1: Proof of Theorem 1

Proof of part (a): We show that F(t1) is a strictly decreasing function in t1∈
[
td , tb1

)
and

limt1→tb1
F (t1)= −∞. Thus, if � (p) ≡F (td)≥ 0, the intermediate value theorem implies

that there exists a unique value of t1 (t∗1) such that F
(
t∗1
) = 0. Solving Eq. (24), the unique

value t∗1 is calculated. When the value of t∗1 is identified, solving Eq. (23), the value of T (T ∗)
is computed.

Proof of part (b): If � (p) ≡ F (td) < 0, then F (t1) is a strictly decreasing function of
t1 ∈ [

td , tb1
)
. So, for all t1 ∈ [

td , tb1
)
, F (t1) < 0. Therefore, we cannot find a value of

t1 ∈ [td , tb1
)
such that F (t1) = 0.
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Appendix 2: Proof of Theorem 2

Proof of part (a): Let (t1, T ) = (t∗1 , T ∗) be the solution of Eqs. (21) and (22). We have

∂2TP1 (p, t1, T )

∂t21
|
(t∗1 ,T ∗)

= (μ1R(p) + μ2)

T ∗

{
− δ (p − c + M)
[
1 + δ

(
T ∗ − t∗1

)]2 − Ne

(
α1+α2

2

)
(t∗1−td) − ce(

t∗1−Y)
(

α1+α2
2

)

Ip

}

< O

∂2TP1 (p, t1, T )

∂T 2 |
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= (μ1R(p) + μ2)

T ∗

×
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⎜
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− 1
2 Ie p

(
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)+
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⎛
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(
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2

)

(
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2

)

⎞
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(
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2
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Therefore, the determinant of the Hessian matrix is

∂2T P (p, t1, T )
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It means that the Hessian matrix H at point
(
t∗1 , T ∗) is negative definite. As a result, we

find that the point
(
t∗1 , T ∗) is a global maximum.

Proof of part (b): For any given p, if � (p) < 0, then F (t1) < 0 for all t1 ∈ [
td , tb1

)
.

Therefore,
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T 2 >0 and we showed that F (t1)<0. Therefore, (μ1R(p)+μ2)F(t1)
T 2

<0, which means that TP1(p, t1, T ) is a strictly decreasing function of T . Thus, when T is
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)

δ

{

p − c + M − htd+ cIp(
α1+α2

2

)

(
e

(
α1+α2

2

)
(td−Y ) − 1

)}

As t1 = td , TP1(p, t1, T ) has a maximum value at point (t∗1 , T ∗), where t∗1 = td and

T ∗ = td +
htd + cIp(

α1+α2
2

)

(
e

(
α1+α2

2

)
(td−Y ) − 1

)

δ

{

p − c + M − htd+
cIp(

α1+α2
2

)

(
e

(
α1+α2

2

)
(td−Y ) − 1

)}
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Appendix 3: Proof of Theorem 3

Using step 1, the initial total profit function with staring value of t01,T
0, and p0 is computed.

For notational convenience, let

TP1
(
t01, T

0, p0
) = 	(o)

Using step 2, p0 is fixed and the value of t
1
1 and T

1 is obtained. Therefore, the new total profit
function is resulted.

TP1
(
t11,T

1, p0
) = 	(1)

Applying Theorem 1, we determined that TP1
(
t11,T

1, p0
)
is concave and takes its global

solution at (t11,T
1). So, TP1

(
t11,T

1, p0
) ≥ TP1

(
t01,T

0, p0
)
.

If TP1
(
t11,T

1, p0
) = TP1

(
t01,T

0, p0
)
, then the algorithm is convergent. Else,

TP1
(
t11,T

1, p0
)
>TP1

(
t01,T

0, p0
) �⇒ 	(1)>	(o)

Now, by fixing t11 and T1, we solve Eq. (27) and the new selling price p1 is obtained. Thus,
the new total profit function is found.

TP1
(
t11,T

1, p1
) = 	(2)

Using Theorem 2, we proved that TP1
(
t11,T

1, p1
)
is concave and obtained its global solution

at p1. Therefore,

TP1
(
t11,T

1, p1
) ≥ TP1

(
t11,T

1, p0
)

If TP1
(
t11,T

1, p1
) = TP1

(
t11,T

1, p0
)
, then the algorithm is convergent. Else,

TP1
(
t11,T

1, p1
)
>TP1

(
t11,T

1, p0
) �⇒ 	(2)>	(1)

Using the above approach, we obtain the strictly increasing sequence of TP1 (t1,T,p)as fol-
lows:

	(n)>	(n−1)> · · · > 	(1)>	(o)

We assume that the retailer’s total profit is finite; i.e. the retailer’s total profit has an upper
bound. It implies that the obtained strictly increasing sequence of TP1 (t1,T,p) has an upper
bound. On the other hand, a strictly increasing sequence with an upper bound is convergent.
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