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Abstract The scheduling of surgical interventions directly impacts the number of patients
that can be treated with given operating room resources.Medical centres often do not respond
satisfactorily to the demand for interventions, and the shortcomings of traditional manual
scheduling approaches contribute to the growth of waiting lists. In addition to the timetabling
aspect, operating room schedulingmethodsmust determine the order inwhich patients should
be treated as a function of their relative priorities. This paper develops and compares two
optimization models and two algorithms for scheduling interventions over a defined period
that satisfy patient priority criteria. The four mathematical methods were studied under a
range of different scenarios using real data from a public hospital in Chile. Improvements
in operating room utilization rates using the proposed formulations ranged from 10 to 15%
over the current manual techniques, but the choice of method in any given real application
will depend on the scenarios likely to be encountered.
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1 Introduction

A surgery operating room (OR) is a space designed and equipped specially for carrying out
anaesthetic procedures and surgical interventions. Scheduling operations at a medical centre
is a highly complex process (Santibáñez et al. 2007). The availability of operating room
resources and how they are scheduled has a direct impact on the number of patients that can
be treated as well as patient waiting times (Reveco and Weber 2011). Public health systems
are frequently unable to immediately satisfy total demand for elective (non-urgent) surgery,
with the result that waiting lists are often lengthy. Decisions as to which set of patients should
be operated on andwhen depend on available resources, waiting times and various biomedical
criteria [disease progression, pain or dysfunction and disability (Testi et al. 2006)].

Themain objective of the present article is to develop and proposemethods for determining
operating room schedules at a public children’s hospital in Chile.

The scheduling process must take into account a series of considerations relating to the
characteristics of both the patients waiting for surgery and the hospital. The solutions gener-
ated provide the basis of an operating room resource use plan for a given period that includes
the specification of the order of patient interventions to be performed.

The purpose of the proposedmethods is to optimize the use of the operating room resource
while complying with the relative priority ordering of the patients to be operated on. The
systematization of intervention scheduling and patient prioritization by these models and
algorithms also affords an opportunity to improve transparency and achieve greater equity
in the assignment of surgery resources (Santibáñez et al. 2007).

2 Literature review

The operating room scheduling process involves a number of complications arising from the
large number of factors that must be taken into account (Cardoen et al. 2009; Jebali et al.
2006). Among these factors are themany types of surgical interventions performed, operation
duration times, relative patient priority, hospital capacity, length of hospital stay, operating
room hours and patient ages (Dexter and Macario 2002).

The operating room planning problem, and more generally, operating theatre planning
(which includes recovery rooms as well as operating rooms), has been the subject of many
studies. Two thorough surveys of this literature have been recently published (Cardoen et al.
2010; Guerriero and Guido 2011).

These planning processes are often divided into three stages. Gupta et al. (2007), for
example, in a general context, separates the planning decisions into capacity allocation,
booking control and surgery sequencing levels, and proposes dynamic programming models
for each one.

A similar threefold division more closely approximating the process in the present case
study is the one discussed in Guerriero and Guido (2011), Marques et al. (2011) and
Santibáñez et al. (2007). At the first or strategic level, known as case mix planning, the
available time is distributed in aggregate terms among the various surgical specialties. At the
second or tactical level, known as the block scheduling problem, a master surgery schedule
(MSS) is constructed to assign specific time slots and operating rooms for a given period to
each specialty based on the resources defined at the first level.

Finally, at the third or operating level (the level at which the problem in this paper arises),
the sessions and times for the interventions, surgical specialists involved and other operating
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decisions relating to a short time horizon are defined in accordancewith theMSS just defined.
Some authors further divide this level into two problems. The first one (advanced scheduling)
assigns patients to sessions and operating rooms, followed by the second one (allocation
scheduling) in which patients are sequenced within the sessions. These problems have been
studied in the literature both separately and integratedly (Cardoen et al. 2010).

In the present article the problem addressed occurs at the advanced scheduling stage. The
allocation scheduling problem is solved directly by the application of rules for sequencing
the patients assigned to a given session. These rules are set out in Sect. 4.

A number of studies propose integer programming approaches to tackle variations on the
advanced scheduling problem. The first model developed here below (Sect. 4.1) is similar
in terms of the type of variables and constraints to those presented in Guinet and Chaabane
(2003) and Marques et al. (2011), although the specific conditions in the latter two cases
differ slightly. One such difference is in their objective functions, for whereas Guinet and
Chaabane (2003) minimizes the assignment costs, which include waiting costs (estimated
as the hospitalization cost for the waiting time) plus possible overtime costs, Marques et al.
(2011) maximizes the operating room time use. Unlike either of these works, however, in the
first model and the algorithms of the present study (Sects. 4.3, 4.4) the objective is to satisfy
the patient priorities “strictly”, as is explained in what follows.

2.1 Prioritization of patients

Prioritizing patients on a waiting list for elective surgery has been extensively studied
(Hilkhuysen et al. 2005;MacCormick et al. 2003;Min andYih 2010;Mullen et al. 2003;Oud-
hoff et al. 2007; Testi et al. 2006; Valente et al. 2009). The importance of this task is stressed
in Oudhoff et al. (2007) due to its effectiveness in reducing the negative consequences of long
waits for certain operations. Although there is little evidence on what is the most appropriate
ethical basis for patient prioritization, there is a general consensus on the central importance
of including clinical criteria (Siciliani and Hurst 2005). In recent decades, countries such as
Australia, Canada, Wales, Italy and New Zealand have implemented different prioritization
systems for surgery patients (Hadorn and Holmes 1997; Testi et al. 2006; Noseworthy et al.
2003; Russell et al. 2003). A critical analysis of various systems currently used in practice is
found in Mullen et al. (2003).

In Min and Yih (2010), the authors consider patient priority in an assignment based on
the trade-off between the costs of performing an operation and the costs of postponing it. A
prioritization method based on the available patient information is essential to the operating
room scheduling process for determining the relative positions of patients on the waiting
list. In the present study we use the approach presented in Testi et al. (2006), where the
authors demonstrate the advantages of using a measure known as need-adjusted-waiting-
day (NAWD). To implement this method, two factors must first be established: the patients’
biomedical category, which is based on maximumwaiting time for the required intervention,
and the number of waiting days between the day the patient was diagnosed and the scheduled
day of the intervention. The NAWD for each patient is then calculated according to the
following formula:

NAWDi = Pondi · tei , Pondi ∈ {1, 2, 4, 12, 48} (1)

where tei is the number of waiting days of patient i and Pondi is a factor related to the
patient’s biomedical category. The more urgent is the diagnosis, the greater should be the
value of Pondi . Once the NAWD values have been calculated for each patient they are sorted
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in decreasing order, the resulting patient ordering then constituting the prioritized waiting
list.

The patient order on a prioritized waiting list can be used to define the weights or coeffi-
cients of a weighted sum representing the “cost” or “benefit” of a given priority plan. This is
done inMin andYih (2010) for defining penalties per time unit of postponement of a patient’s
operation. The penalties decline as patients move up on the prioritized waiting list. In the
case that inspired the present study, the prioritized waiting list is satisfied in “strict” order,
meaning that preference is given to operating on the first patient on the list before any of the
others. In this case, the weighted sum used as the objective is not a “cost” but rather serves
as a mechanism for obtaining the appropriate selection by strictly satisfying the waiting list
priorities.

3 The surgery scheduling problem in public hospitals in Chile

Chile’s hospitals constitute part of a number of different entities making up the country’s
network of public health facilities. They are classified by the complexity of the services
they offer. High and medium complexity hospitals have operating rooms where both urgent
and elective surgeries are performed. Each facility is generally devoted to certain medical
specialties and carries out elective surgery interventions in operating rooms at scheduled
hours. The assignment of operations is based on historical factors and the availability of
medical personnel. At the hospitals investigated for this study, an available operating room
for a surgical specialty is considered to include the physical space itself, medical supplies,
anaesthetists, medical equipment and a medical team. Scheduling of the operating rooms
must specify the patients to be operated on during the assigned time blocks, the order in
which interventions are to be performed, the doctors performing the operations and, where
there are multiple operating rooms, the one in which each operation is to be performed.

The planning process generally used in Chile is similar to the three-stage “Surgical Plan-
ning Process” described in Santibáñez et al. (2007). The first stage, denoted surgical mix,
defines the share of OR time assigned to each specialty. The second stage, called block
scheduling, assigns time blocks or morning and afternoon sessions for each specialized OR.
Finally, the third stage—and the one we will focus on here—consists in assigning patients
and scheduling the corresponding interventions and necessary resources.

The design considerations for the proposed scheduling methods are presented below.

1. The scheduling period is a work week (five working days).
2. Operations are performed Monday to Friday, with each day divided into a morning

session of 8am to 1pm and an afternoon session of 2pm to 5pm.
3. The hospital contains a specific set of operating rooms. Each operating room is unique

and specially adapted for certain types of interventions.
4. Each specialty is assigned one, more than one or no operating room per session for the

scheduling of its interventions. In the hospitals studied, no specialty was assigned more
than two operating rooms simultaneously. These assignments are decided in the stage
previous to the block scheduling.

5. There is a prioritized patient list for operations by specialty. Patient priority is defined
as described in Sect. 2.1.
The relative priorities of the patients are determined on the basis of medical and waiting-
time factors. Patients whose characteristics are such that they cannot be assigned within
the scheduling period must be excluded from the set of scheduled patients.
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6. Each surgical specialty manages its patients independently, implying the number of
waiting lists is equal to the number of specialties. The hospital has a given group of
doctors to perform the scheduled operations. Each doctor is a specialist in at least one
of the specialties performed at the hospital. The hospital has detailed information on the
hours of availability of its personnel.

7. A patient cannot be operated on more than once in the same scheduling period. This is
a limitation of the model but is consistent with the practices followed at the hospitals
studied. For each patient the days and sessions he or she is available for his or her
operation are known.

8. Each procedure requires two doctors. If a patient specifies a particular doctor, shifts
must be sought in which that doctor is accompanied by a secondary doctor.

9. High priority patients are assigned preferably to the early part of the scheduling period
(i.e., early in the week).

10. Provision is made for “special” patients, who may be given such status if a complicating
factor (e.g., latex allergy, under 1year of age) requires their operation to be scheduled
in the morning session.

11. Time extensions to the regular session hours are allowed for scheduling operating rooms.
This improves efficiency but implies a commitment by the hospital to cover the extra
costs involved. These scheduled extensions have a maximum duration of 10min.

4 Proposed scheduling methods

In this section we develop four methods for solving the problem of determining which
patients will be operated on and when their operations will be performed. The indicator to
be optimized is the capacity utilization of the operating room, defined as the percentage of
available operating room time that is effectively scheduled (the exact formula is given in
Sect. 5 below).

In more precise terms, the problem is to determine which patients will be operated on and
in which session. Once this is decided by either of the methods, the order of these operations
within each session is specified by the following two conditions:

– If in a given morning session a special patient is assigned, that patient is scheduled to be
operated on first. As noted above in the design considerations, special patients can only
be assigned to a morning session.

– All of the other patients are then ordered by age (youngest first).

The four proposed methods consist of an integer linear programming model, a variant on
that model, an algorithm based on a feasibility model and a constructive algorithm. They are
described individually in the following subsections.

4.1 Integer linear programming model (ILP1)

The first of the two integer linear programming models, designated ILP1, assigns operations
to patients. The variables expressing this principal assignment are binary, and for each patient
indicate a specificOR in an appropriate time block and the doctors whowill perform the oper-
ation. Another set of variables penalizes operation duration time extensions, thus modelling
the sessions as soft restrictions. The objective is to obtain an assignment that maximizes
compliance with patient priority in the strict sense.
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The various indexes, parameters, variables and constraints of the integer linear program-
ming model and its objective function are presented below.

4.1.1 Indexes and parameters

The indexes of the ILP model are:

– doc1: principal doctors
– doc2: secondary doctors
– i : session
– p: patient
– pab: operating rooms

The parameters of the ILP model are:

– Duri: length of session in minutes
– STi: maximum operation duration time extension in minutes
– Durap: duration of operation to be performed on patient p in minutes. Includes prepara-

tion and cleanup as well as actual surgery time.
– Prip: patient priority

The values of Prip are determined by the lexicographic rule that “operating on a given
patient is preferred to operating on all other lower-priority patients combined”. If integers
are used for the Prip term, it will grow exponentially as priority increases. Thus, if N is
the number of patients, the value of the term for patient p on the priority list will be

Prip = 2N−p (2)

Recall that the list is sorted in decreasing order of the patients’ individual NAWD values
as defined in Sect. 2.1).

– MNi =
{
1, if session i is a morning session
0, otherwise

– ESPp =
{
1, if patient p is a special patient
0, otherwise

– Coindoc1,doc2 =
{
1, if doctor doc1 = doc2
0, otherwise

– f 1doc1p =
⎧⎨
⎩
1, if doctor doc1 can perform the intervention

on patient p
0, otherwise

– In the hospitals studied therewere differences between the various operating rooms, some
of which had special characteristics for particular types of interventions.

f pabp =
{
1, if operation on patient p can be carried out in operating roompab
0, otherwise

– Asigdoc1p =
{
1, if patient p is assigned to doc1
0, otherwise

– d1doc1i =
{
1, if doctor doc1 works on sessioni
0, otherwise

– d2doc2i =
{
1, if doctor doc2 works on sessioni
0, otherwise

– corpabi =
{
1, if operating room pab is available on sessioni
0, otherwise
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– dispp
i =

{
1, if patient p is available for an operation on sessioni
0, otherwise

4.1.2 Variables

The decision variable of the ILP model is

t p,doc1,doc2,pabi =
⎧⎨
⎩
1, if patient p is operated on by doctors doc1 and doc2

in operating room pab on sessioni
0, otherwise

The variable indicating whether a time extension has been used is

xi =
{
1, if a time extension has been used on sessioni
0, otherwise

Recall that according to design consideration no. 11 (p. 5), the duration of a scheduled
extension may not exceed 10min. The purpose of this variable is to indicate whether or not
the scheduling stays within the regular session hours.

4.1.3 Constraints

The constraints on the ILP model are the following:

1. Interventions cannot be scheduled for operating rooms or on sessions for which they are
not feasible. The number M1 must be equal to or greater than the maximum number of
operations that are feasible on a working day.∑

p,doc1,doc2

t p,doc1,doc2,pabi ≤ M1 · cor pabi , ∀pab, i (3)

In this inequality the coefficient M1 is equal to the ratio of the duration of the longest
session and the duration of the shortest intervention. In the cases dealt with for this study,
M1 = 20 given that the sessions were 5h long and the shortest operation was estimated
at 15min.

2. Interventions cannot be scheduled for timeswhen there are nodoctors available to perform
them. The number M2 must be greater than the maximum number of operations a doctor
can carry out on a working day.∑

p,doc2,pab

t p,doc1,doc2,pabi ≤ M2 · d1doc1i , ∀doc1, i (4)

∑
p,doc1,pab

t p,doc1,doc2,pabi ≤ M2 · d2doc2i , ∀doc2, i (5)

In this inequality the coefficient M2 takes the same value as coefficient M1 = 20 in
constraint set (3) above.

3. The assignment of the same doctor as principal and secondary doctor for a given inter-
vention should be avoided.∑

pab,i

Coindoc1,doc2 · t p,doc1,doc2,pabi ≤ 0, ∀p, doc1, doc2 (6)
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4. The scheduling of interventions at times when patients are not available should be
avoided. ∑

doc1,doc2,pab

t p,doc1,doc2,pabi ≤ dispp
i , ∀i, p (7)

5. No patient can be operated on more than once over the defined time horizon.
∑

i,doc1,doc2,pab

t p,doc1,doc2,pabi ≤ 1, ∀p (8)

6. If a doctor has been preassigned as principal doctor to an intervention, he or she and
no one else must perform it. The parameter Asigdoc1p indicates whether a preassignment
exists for a given patient, and if so, identifies the preassigned doctor.

∑
i,doc2,pab

t p,doc1,doc2,pabi ≥ Asigdoc1p , ∀p, doc1 (9)

7. Interventions must not be scheduled for operating rooms that do not have the required
characteristics. ∑

i,doc1,doc2

t p,doc1,doc2,pabi ≤ f pabp , ∀p, pab (10)

8. The schedules for each day must not exceed the maximum time plus the permitted time
extension STi . If they nevertheless do, the variable xi is 1.∑

p,doc1,doc2,pab

Durap · t p,doc1,doc2,pabi ≤ Duri + STi · xi , ∀i (11)

∑
p,doc1,doc2,pab

Durap · t p,doc1,doc2,pabi ≥ Duri · xi , ∀i (12)

9. Special patients must be scheduled as the first patient in the morning, implying that on
any given morning no more than one such patient may be assigned. The parameter MNi

indicates the session (morning or afternoon), and since its value is either 1 or 0, no more
than one special patient can be scheduled.

∑
p,doc1,doc2,pab

ESPp · t p,doc1,doc2,pabi ≤ MNi , ∀i (13)

10. Nature of the variables.

xi ∈ {0, 1} ∀i
t p,doc1,doc2,pabi ∈ {0, 1} ∀p, doc1, doc2, pab, i

4.1.4 Objective function

The objective function of the ILP model incorporates 3 criteria that are set out below.

1. Compliance with patient priority During preliminary investigations before the models
were developed, discussions were held with doctors at the hospital regarding operating
room assignment criteria. The lexicographic rule that best approximates their wishes,
already cited here above, is that “operating on a given patient is preferred to operating on
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all other lower-priority patients combined”. This concept is incorporated into the decision
process in the following form:

λF ·
∑

i,p,doc1,doc2,pab

Prip · tp,doc1,doc2,pabi (14)

where the value of Prip is greater for higher-priority patients. As was also noted earlier,
if the rule is strictly observed this value will grow exponentially with the number of
patients. λF is a weighting factor that sets the importance to be attached to this criterion
in the objective function.

2. Penalty for time extensions The term xi is equal to 1 if a time extension is used in session
i . It is included in the objective function to impose a penalty for the use of extensions. Its
relative weight can be modelled via a parameter λH that remains constant for the entire
scheduling period as follows:

λH ·
∑
i

xi (15)

3. Reward for scheduling urgent patients early in the week The idea behind this term is to
reward operating on higher-priority patients early in the scheduling period. It appears in
the objective function in the following form:

λS ·
∑

i,p,doc1,doc2,pab

δ
p
i · t p,doc1,doc2,pabi (16)

where parameter λS models the relative weight to be given to this criterion. The value of
δ
p
i is determined as

δ
p
i = M − (p − 1) − (i − 1) (17)

where M must be greater than the maximum number of patients plus the number of
sessions (recall that patients are ordered by decreasing priority).

Thus, the complete objective function of the ILP model is written as follows:

max λF ·
∑

i,p,doc1,doc2,pab

Prip · tp,doc1,doc2,pabi − λH ·
∑
i

xi

+ λS ·
∑

i,p,doc1,doc2,pab

δ
p
i · t p,doc1,doc2,pabi (18)

The patient priority weighting factor λF is set to 1 in all cases for simplicity. The values
for λH and λS were chosen solely as a function of the priority value Prip of the highest
priority patient, without regard for patient numbers.

To determine appropriate values for these parameters, we performed a sensitivity analysis
on various different possibilities. As an example, consider an instance similar to our real case
but with a reduced waiting list of 50 patients. The solution generated by the model always
assigns the first 20 patients but never the 21st, the next assignment varying with the particular
combination of λH and λS values as shown in Table 1. To satisfy the compliance with patient
priority criterion stated above, the appropriate parameter combinations are those for which
the next assignment is the closest one beyond the 21st patient. As can be seen, combinations
in the upper right-hand entries of the table all result in the assignment of the 22nd patient,
the closest one possible, and are therefore the preferred parameter values.

Recall that according to the definition of the problem, the following are preferred: (1)
high values for λH , to avoid as much as possible the use of scheduled extensions; (2) low
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Table 1 First patient assigned after 20th patient according to priorities in ILP1 solution for different values
of λH and λS (instance with 50 patients)

λS λH

Pri1 Pri5 Pri10 Pri20 Pri24 Pri25 Pri30 Pri40 Pri50 Pri75

Pri50 31 31 31 31 31 22 22 22 22 22

Pri45 31 31 31 31 31 22 22 22 22 22

Pri40 31 31 31 31 31 22 22 22 22 22

Pri37 34 34 34 34 34 22 22 22 22 22

Pri35 34 34 34 34 34 22 22 22 22 22

Pri25 34 34 34 34 34 37 37 37 37 37

penalties, in order to schedule higher priority patients earlier given that the urgency for a
patient is already incorporated in Prip . This last objective is included only to obtain a better
schedule given the patient assignment.

The results obtained with other instances were similar. The general rule decided upon for
the parameters is the following:

λH = Pri�N/2� and λS = Pri�3N/4� (19)

where N is the number of patients on the waiting list. For the example just considered above,
the rule generates λH = Pri25 and λS = Pri37.

The magnitudes of some of the terms in the objective function seem at first glance not to
be comparable.When tests were run leaving only the patient priority criterion in the objective
function and incorporating the other two criteria as constraints with an adjustable parameter,
the results turned out to be very similar to those obtained with the version presented above.
Due to the construction of λH and λS , it was possible to make the objective function terms
more comparable.

4.2 Variant of the integer linear programming model (ILP2)

We now present integer linear programming model ILP2, a variant of ILP1 in which the
treatment of patient priority is modified. In this version, Prip is replaced by new weights
calculated for patient assignment that retain the property of being greater for higher-priority
patients. The motive is to avoid the problem noted above of the exponential growth of Prip
values as patient priority increases. The weight function is written as follows:

wp = αCATp · (1/Qp) (20)

where CATp ∈ {1, 2, 3, 4, 5} and depends on both the patient’s waiting time and his or her
assigned category, the latter determined by the diagnosis and the seriousness of the medical
condition on a scale of decreasing importance from A to E. The actual values of CATp for
each waiting time and category are decided by the doctors and set out here in Table 2.

As for α, it is the scale factor ofCATp . After various tests were carried out, it was decided
to use the values α = 2 and α = 5.

Finally, Qp ∈ {1, 2, . . . , 10} is a proportion of the duration of the operation to be per-
formed on patient p. This time period is discretized in integers of 1–10, where 1 is assigned
to the longest procedure and 10 to the shortest. The idea behind this coefficient, based on
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Table 2 Variant ILP model categories by patient waiting time

<1week <1month <3months <6months ≥6months

A 3 4 5 5 5

B 2 3 4 5 5

C 1 2 3 4 5

D 1 1 2 3 4

E 1 1 1 2 3

suggestions by the doctors, is that if the value of αCATp turns out to be the same for more
than one intervention, greater priority is assigned to the longer ones.

With this alternative version of patient priority, the objective function of the variant ILP
model is

max λF ·
∑

i,p,doc1,doc2,pab

wp · t p,doc1,doc2,pabi − λH ·
∑
i

xi

+ λS ·
∑

i,p,doc1,doc2,pab

δ
p
i · t p,doc1,doc2,pabi (21)

In this implementation it was decided for simplicity to set λF = 1. After a number of
tests, the values chosen for the other parameters were

λH = max(wp)

2
and λS = 1

λH
(22)

4.3 IP feasibility model algorithm

The underlying approach of the algorithm based on a feasibility model, hereafter simply
“feasibility model algorithm” (IPFA), is to divide the problem into two parts. The first part
solves the assignment problem of deciding which patients should be operated on over the
1-week scheduling period while the second part solves the timetable problem of determining
when (that is, on what day) their operations should be carried out. The two parts are described
below.

1. Assignment problemThe “who to operate on” problem is solved by a binary tree algorithm
that runs a feasibility IPmodel for eachpatient in the order of priority to determinewhether
he or she can be assigned or not. This implies that the model is executed n times. A flow
diagram of the algorithm is shown in Fig. 1.
The IP model itself is just an adaptation of the ILP1 model discussed above. For each
patient p, the patients not chosen in the previous steps are eliminated and constraint 8 is
modified to become ∑

i,doc1,doc2,pab

t p
′,doc1,doc2,pab

i = 1, (8′)

for each patient p′ < pwho has been previously chosen. This forces the procedure to add
feasible patients as it progresses while maintaining the assignment of those with greater
priority who have already been chosen.
Theobjective function consists simply inmaximizing the sumof the variables correspond-
ing to the current patient. If this maximum value is 1, the current patient is included.
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Fig. 1 Search tree for the assignment problem

When the algorithm terminates, the complete list of patients that can be feasibly assigned
while satisfying the priority criterion will have been determined. Since the feasibility
search proceeds in the same order as the priority criterion results, the patient assignment
strictly satisfies that criterion. In other words, an assigned patient will not conflict with
one having higher priority because the fact that the latter was not assigned previously
means it was not feasible to do so and not that the method simply chose a patient having
lower priority.

2. Timetable problem Once the patient assignment problem has been solved, the problem
of when to operate can be dealt with by an ILP model adapted from ILP1, the first of our
four methods. Since the list of patients to be operated on has already been decided, this
model will include no terms for patient priority. The objective function will then take the
following form:

max −λH ·
∑
i

xi + λS ·
∑

i,doc1,doc2,pab,p∈A

δ
p
i · t p,doc1,doc2,pabi (23)

where A is the set of patients assigned by the binary tree algorithm in the assignment
problem. For simplicity, the value of λS was set to 1. The value of λH was chosen so as to
be equal to the largest value that can be taken by the other term in the objective function.
The formula for the term is

λH =
∑
i,p∈A

δ
p
i (24)

This value depends on |A|, the number of patients assigned in the “Assignment problem”,
and the number of sessions. Note that since the assignment problem has already been
solved, the t p,doc1,doc2,pabi variables have only to be considered for patients p ∈ A.
The constraints for this model are the same as the ones in ILP1 except for (8), which is
simply changed an equality so that the scheduling of the patients chosen in theAssignment
problem stage is ensured. Thus,

∑
i,doc1,doc2,pab

t p,doc1,doc2,pabi = 1, ∀p ∈ A.
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Finally, the assignment obtained upon including the last patient in the “Assignment
problem” can be used as an initial solution to accelerate the solution of the “Timetable
problem”.

4.4 Constructive algorithm (CA)

Another approach is to develop a constructive algorithm that finds feasible solutions based
on assignment rules defined by the hospital. The solutions can then be evaluated to determine
which is the most suitable. This idea is captured by the algorithm set out below, which gen-
erates partial patient assignments constituting feasible schedules but which could potentially
include more patients. Thus, the patients are visited by the CA in order of priority and at each
iteration, all non-dominated partial feasible schedules generated up to that point considering
the current patient plus all those with greater priority are stored in the stack. The algorithm’s
steps are as follows:

1. Preprocess This step generates lists of sessions in which a patient can be operated on.
Taken into consideration are the operation duration time (which must not extend beyond
the length of the session), the availability of a doctor who can perform the operation, and
whether the operation is “special” (in which case, as noted earlier, it cannot be performed
in the afternoon).

2. Construction of feasible subassignments In this step amethod is used to construct feasible
combinations of the assignments determined in the previous step. The criteria for these
combinations are the feasibility of each added patient, that no more than two special
operations can be performed in a single morning session and that the corresponding
operation times cannot add up to more than the accumulated times of the corresponding
sessions.
The technique consists in generating arrays using a two-input stack to test all possible
combinations of feasible patient assignments for satisfaction of the above criteria. Thus,
an array is removed from the stack and the feasibility of adding a feasible assignment
from the next patient to it is tested. If a feasible combination results, that assignment is
added to the array which is then returned to the stack. If, however, the combination is not
feasible, another assignment from the next patient is tested. By construction, each of the
arrays in the stack is a feasible operation schedule. When this procedure terminates, the
stack will have combinations of patients assigned to sessions with the maximum number
of feasible patients while also complying with their priority levels.

3. Dominance The results of the previous step may provide more than one feasible solution.
In this step, the solutions are evaluated on the twin criteria that the younger is the patient,
the greater is the priority for operating in the morning, and more urgent operations are
scheduled where possible early in the week. The result of this step is a single feasible
solution that is better than the other combinations. Thus, we say that the worst solution is
dominated and is eliminated from the stack, leaving only the dominant partial solution.

4. Choosing the solution Finally, the best solution in the stack is chosen by comparing the
solutions’ individual objective function values for the ILP1 model (18).

5 Results

In this section we compare the results of the various methods presented above and contrast
them with a real-world situation. Each method’s performance can be evaluated in different
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Fig. 2 Example of patients selected by the different methods

scenarios according to the quality of the solution delivered. The quality indicators defined
for this purpose are:

1. Execution timeA routine implementation of a system with an operating room scheduling
method such as those developed here must be able to solve the scheduling problem
within a time limit ensuring it would be of practical use in the context of the intended
application. Since in the present case it would be used at meetings of doctors to define
operating schedules, the time limit would have to be no longer than 10 or 15min.

2. Patient priority compliance The specific priority levels established for each patient on
the waiting list previous to the running of the model or algorithm must be complied with
in the assignments. To compare priority compliance we graph them in Fig. 2 and contrast
the sequences of assigned and non-assigned patients.

3. Operating room capacity utilization According to the Chilean Ministry of Health, the
percentage capacity utilization of an operating room is defined by the following formula:

Percentage utilization = hO + hP

hD
(25)

where hO is the total monthly hours of utilization, hP the monthly preparatory hours and
hD the total available monthly hours.

For each test scenario the different indicator values for the four methods are calculated
and then compared, thus determining the relative quality of each solution. The test scenarios
are described below.

5.1 Test scenarios and comparisons

Since the particular characteristics of the different surgical specialties and their corresponding
waiting lists will vary from hospital to hospital, the proposed methods were developed to
handle a range of scenarios based on actual data supplied by a specific institution. To test and
compare the results of the methods we therefore defined a set of such scenarios incorporating
variations in three different key characteristics.

1. Number of patients This characteristic refers to the number of patients on the waiting list
for a given specialty to be scheduled. In a 1-week period, a specialty with 10 available
sessions can operate on approximately 25 patients. For testing purposes the patients must
be at least double this number so that different assignment alternatives can be considered.
The numbers of patients used in the test scenarios were 50, 100 and 200.

2. Operation duration as a function of session durationOperation duration times vary from
specialty to specialty. Information on operation times were obtained from historical data
provided by the hospital. Four different values of operation duration as a percentage of
session duration were tested: 12.5, 25, 37.5 and 50%.
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Table 3 Average execution times in minutes by number of patients and model or algorithm

No. of patients ILP1 ILP2 IPFA CA

50 0:07 0:08 6:01 0:04

100 0:15 0:15 23:31 0:04

200 0:28 0:29 97:18 0:07

ILP1 refers to the integer linear programming model, ILP2 to the ILP variant model, IPFA to the algorithm
using an IP model for feasibility checking and CA to the constructive algorithm

3. Number of available sessions and/or operating rooms per patient To ensure the problem
is both non-trivial and realistic, a patient must be schedulable for more than one session
and/or operating room. The estimates of the number of a priori feasible sessions per
patient per week were made using three different values for this characteristic: 2.5, 3.5
and 4.5.

As regards the third characteristic, for all instances the conditions at the hospital in our
case study were maintained. Thus, the specialties had 2 available operating rooms for 10
sessions distributed in 2 sessions per day across the 5-day week.

All in all, the variations described above define 36 test scenarios, one of them real and
the others derived from it, with 3 different numbers of patients, 4 operation duration times,
1 option for the number of available sessions and 3 different numbers of available sessions
per patient.

5.2 Results obtained

For all comparison purposes themodels and algorithms were run on the same computer, pow-
ered by an AMD Phenom II X4 965 3.4GHz processor with 8 GB of RAM. The constructive
algorithm was written in Java using NetBeans 6.9.1. The maximum available memory for
running the algorithm was set at 6.5 GB. The other 3 methods were modelled in GAMS 23.5
and solved using CPLEX 12.2.

5.2.1 Execution times

The average execution times for the 3 different numbers of patients in the test scenarios are
summarized in Table 3 by method.

Note first of all that the average execution times in the table relate to solved scenarios,
whichwere 100%of all caseswith the exception of the constructive algorithm,where the pro-
portionwas 60% (for the remaining 40% Java stopped the algorithm due to RAMassignment
problems).

As regards the actual results, the execution times for ILP1 and ILP2 were quite similar,
in both cases depending on the number of patients. The constructive algorithm generally
delivered very good run times regardless of the number of patients in every case where it
could find a solution.

The feasibility model algorithm, on the hand, took significantly longer than the others
to reach a solution, but by construction its solution was the best one from the standpoint of
compliance with the priority order of the assigned patients. It delivered the same solution as
the constructive algorithm, but as already explained the latter did not execute to completion
in every scenario, failing to do so in particular for interventions with operation duration
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times much shorter than session durations and cases where the number of available sessions
per patient was close to the number of sessions per week. For the instance sizes tested, the
feasibility model algorithm did not create any memory problems.

5.2.2 Patient priority compliance

There is no simple way of representing patient priority compliance, but one alternative is
to indicate which patients were assigned under each model or algorithm. This is done in
Fig. 2, which depicts the scenario with 50 patients, average operation times 37.5% of session
durations and an a priori average of 3.5 available sessions per patient. The patients are ordered
in the figure by priority, starting with patient 1, the highest priority, at the far left.

For ILP2, different values of α were studied, two of which (α = 2 and α = 5) are shown
in Fig. 2. As can also be seen, the constructive and feasibility model algorithms and ILP1
model all generated the same results as regards priority compliance. The results for the three
methods were better in all scenarios than those delivered by ILP2.

5.2.3 Operating room capacity utilization

OR use in percentage terms for the solutions obtained with the different methods in all
evaluated instances is shown in Table 4.

The test scenarios demonstrated that when operation duration times are very short relative
to session durations (12.5%) and the number of patients to be scheduled is low, the maximum
patient assignment does not cover a large proportion of the available days. As a result,
in such cases the operating room capacity utilization rate is low. If the operation times
are close to one-half of the session times, the number of combinations that produce good
capacity utilization rates declines. For scenarios approximating real ones, all of the models
and algorithms achieved capacity utilization rates of 95%.

5.3 Results obtained in real-world cases

Real data generated by manual methods were studied for general surgery operating rooms
nos. 3 and 4 at Luis Calvo Mackenna Hospital in the Chilean capital of Santiago during the
second week of August 2009. For reasons of confidentiality the patients are identified only by
number. The total operating times in minutes shown in Fig. 3 refer to minutes per indicated
session.

The real case schedules generated by the constructive algorithm, ILP1 model and ILP2
for the same week are shown in Fig. 4. All three formulations delivered the same solution.

The real case corresponds to the scenario with 100 patients, 10 available sessions, average
operation times 37.5% of session durations and an a priori average of 2.5 available sessions
per patient. The same case was also evaluated assuming 3.5 available sessions per patient.
This can be done by relaxing some of the rules on assigning doctors to patients. The results
obtained are set out in Table 5, which compares the manual method assignment with those
generated by the IP1 model (or the CA and IPFA algorithms) for the real case and the relaxed
rule case.

They demonstrate that the use of less restrictive policies has a positive impact on oper-
ating room capacity utilization and that the proposed mathematical scheduling methods can
improve capacity utilization in real-world situations, the increases in the case studied ranging
from 10 to 15% over the existing rate using manual methods.
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Table 4 Operating room utilization by instance and method

Number of patients Duration Sessions available ILP1 ILP2 α = 2 ILP2 α = 5 IPFA CA

50 12.5 2.5 43 43 43 43

100 12.5 2.5 77 78 78 77

200 12.5 2.5 98 100 100 100

50 25 2.5 86 88 85 86

100 25 2.5 95 96 96 95

200 25 2.5 62 96 96 62

50 37.5 2.5 96 99 99 96 96

100 37.5 2.5 95 99 98 95 95

200 37.5 2.5 95 99 99 98 98

50 50 2.5 50 51 51 50 50

100 50 2.5 61 57 57 61 61

200 50 2.5 71 72 74 72 72

50 12.5 3.5 49 50 49 49

100 12.5 3.5 84 85 84 84

200 12.5 3.5 99 100 100 100

50 25 3.5 96 94 94 96

100 25 3.5 93 96 96 93

200 25 3.5 94 96 96 95

50 37.5 3.5 97 97 97 97

100 37.5 3.5 95 99 98 95 95

200 37.5 3.5 96 99 98 96 96

50 50 3.5 49 52 52 49 49

100 50 3.5 63 57 57 63 63

200 50 3.5 71 74 74 72 72

50 12.5 4.5 51 51 51 51

100 12.5 4.5 47 48 48 47

200 12.5 4.5 99 100 100 100

50 25 4.5 96 96 96 96

100 25 4.5 74 96 96 74

200 25 4.5 97 98 98 97

50 37.5 4.5 99 98 98 99

100 37.5 4.5 98 99 99 98

200 37.5 4.5 98 99 99 98

50 50 4.5 53 53 53 53

100 50 4.5 66 59 57 66

200 50 4.5 76 72 71 76

Note that in some instances ILP2 delivers better utilization levels than the other methods, but in those cases
its compliance with patient priority is lower than the others

6 Conclusions

Four alternative mathematical methods were developed for the operating room scheduling
problem at public hospitals, all of which delivered good solutions according to criteria set by
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Fig. 3 Real case operating room schedule: manual method

Fig. 4 Real case operating room schedule: CA, IP1, IPFA

Table 5 Real case models results

Minutes used Minutes available Percent utilization (%) Improvement (%)

Manual method 2185 2820 77.50 –

Model 2455 2820 87.10 9.60

Model (3.5 sessions) 2624 2820 93.00 15.60

medical personnel. The first method was an integer linear programming model (ILP1), the
second a variant on that model (ILP2), the third a constructive algorithm and the fourth an
algorithm based on a feasibility model.

The four models and algorithms were tested on 36 scenarios for a public hospital in
Chile, one of them real and the others derived from it. The test results were compared for
three criteria: execution time, compliance with patient priority levels and operating room
capacity utilization. In general terms, the results in the real scenario showed that the methods
were able to increase the capacity utilization rates of operating rooms by 10–15% over the
existing rates achieved by manual methods. This points to a significant opportunity for other
public hospitals seeking to improve on the schedules obtained using manual approaches. The
outcome in any given case will of course depend on the constraints imposed, but the fewer
are these restrictions, the greater, obviously, will be the utilization rate.
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The execution time results for the four proposed methods’ revealed that the constructive
and the two ILP models solved the scheduling problem in a matter of seconds whereas the
feasibility model algorithm, which must be executed as many times are there are patients,
required significantly more time. It is also true, however, that run times for the constructive
algorithm might extend beyond what is reasonable in real-world applications if there are
many feasible solutions.

As for patient priority compliance, the constructive algorithm delivered the same results
as the feasibility model algorithm, which by construction performed best on this criterion.
In the case of ILP1, priority compliance was the main problem because the lexicographic
rule for modelling it led to exponential growth of the values that define the priority of each
patient. This complicated the feasibility of solving the scheduling problem when there were
many patients. ILP2, by contrast, attempted to get around this weakness bymodelling priority
differently, but the result was weaker compliance with the priority levels. Although this could
be countered by adjusting certain parameters for each scenario, such a solution would impair
the model’s responsiveness in day-to-day applications.

In regard to operating room capacity utilization rates, the third test criterion, the best
results were generated by ILP2 while those of the other formulations depended strictly on
the durations of the assigned patients’ operations.

It should be evident from the foregoing that choosing the method which will give the
best results is not a one-dimensional decision. Much will depend on establishing a clear idea
of the considerations involved in the functioning of the hospital and its surgical specialties
as well as the characteristics of the patients and the particular interventions they require.
The real scenarios tested in this study demonstrated that a constructive algorithm could be
successfully applied, or alternatively an ILP model. Yet both may experience difficulties in
certain scenarios, reducing somewhat the robustness of their solutions. If the execution time
requirements of the method’s intended application permit the use of the feasibility model
algorithm, this approach will provide optimal solutions in terms of patient priority under any
scenario. The variant ILP model offers reasonable execution times and better operating room
utilization rates but since its solutions do not strictly complywith patient priority assignments,
its choice would require the approval of hospital personnel.

A key contribution of the present studywas the incorporation of the relative patient priority
concept into the scheduling methods, as they proved to be fundamental in the modelling of
the entire scheduling problem. A survey of the literature revealed that many studies centre
the patient assignment decision on the minimization of operation costs without including
criteria such as the patient’s biomedical condition or waiting list time.

To determine relative patient priority in the real scenarios studied, information from a
previous study was used to prioritize patients on the basis of waiting time and biomedical
complexity criteria (Barros and Julio 2011). The four methods proposed in this paper are
currently being trialled at a children’s hospital in Santiago, Chile. The authors have developed
and implemented a computer application based on these methods that generates weekly
operating room schedules, and tests have so far delivered satisfactory results from both
clinical and hospital resource use points of view.
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