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Abstract In curriculum-based course timetabling, lectures have to be assigned to periods
and rooms, while avoiding overlaps between courses of the same curriculum. Taking into
account the inherent complexity of the problem, a metaheuristic solution approach is pro-
posed, more precisely an adaptive large neighborhood search, which is based on repetitively
destroying and subsequently repairing relatively large parts of the solution. Several problem-
specific operators are introduced. The proposed algorithm proves to be very effective for
the curriculum-based course timetabling problem. In particular, it outperforms the best algo-
rithms of the international timetabling competition in 2007 and finds five new best known
solutions for benchmark instances of the competition.

Keywords University courses · Timetabling ·Metaheuristics ·Adaptive large neighborhood
search

1 Introduction

Timetabling problems are eminently relevant in practice. Petrovic and Burke (2004) state
that these problems can be found in various fields, including nurse rostering, timetabling of
public transport systems, timetabling of sport events and educational timetabling. Schaerf
(1999) subdivides educational timetabling into school timetabling, examination timetabling
and course timetabling and generally defines the problem as scheduling lectures that involve
teachers and students in a prefixed period of time, while taking different constraints into
account. Twovariants of course timetabling have been formulated for the second international
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timetabling competition (ITC-2007), including Post Enrollment Course Timetabling (PE-
CTT) and Curriculum-based Course Timetabling (CB-CTT). The focus of this study is on
the latter one. In PE-CTT, conflicts between courses are specified by the enrollment data,
while in the case of CB-CTT courses of the same curriculum must not be scheduled at the
same time.

Typically, educational timetabling problems are NP-complete, as demonstrated by Cooper
and Kingston (1996) in five different ways. Finding feasible course and exam timetables is
NP-complete due to a reduction of graph coloring, as described by several authors, e.g.,Werra
(1985). In this context, lectures are represented by nodes, edges between nodes are introduced
if the corresponding lectures belong to the same curriculum and the colors represent different
periods in the timetable.

Educational timetabling has been intensively studied. For an overview of solution tech-
niques applied in this field we refer to the surveys by Schaerf (1999) and Qu et al. (2009).
Recent developments in educational timetabling are analyzed by Kristiansen and Stidsen
(2013). A survey dealing solely with CB-CTT has recently been conducted by Bettinelli
et al. (2015).

With regard to metaheuristcs, Lewis (2008) classifies approaches into one-stage optimiza-
tion algorithms, two-stage optimization algorithms and algorithms that allow relaxations and
explains their strengths and weaknesses. According to the author, neither principle is gen-
erally superior. One-stage algorithms tackle hard and soft constraints at once, typically by
making use of a weighted sum objective function with sufficiently high penalties for hard
constraint violations. Two-stage techniques decompose the problem in a way that a feasible
solution satisfying all hard constraints is found first while the solution quality with respect
to the soft constraints is improved in the second stage. Algorithms that allow relaxations
refer to approaches where some features of the problem are relaxed. Violations of the hard
constraints are however prohibited. These algorithms are thereby able to improve the solution
with regard to the soft constraints. Additionally, the relaxations need to be removed during
the search. This class of algorithms generally refers to two types of relaxations: Events that
cannot be scheduled in a feasible way are either left temporarily unscheduled or scheduled
at artificial extra slots.

Bellio et al. (2012, 2016) proposed one-stage simulated annealing approaches. Müller
(2009) used a two-stage hybrid approach. His algorithm is the winner of the ITC-2007 tracks
about CB-CTT and exam timetabling and rank fifth on the PE-CTT track, as stated on the
website of the competition.1 In its improvement phase ahill climbing algorithm, agreat deluge
algorithm and a simulated annealing approach alternate. The second-ranking algorithm of
the CB-CTT track proposed by Lü and Hao (2010) is a two-stage algorithm that combines an
intensification phase and a diversification phase based on iterated local search in the second
stage. The two-stage approach by Abdullah et al. (2012) employs a multi-start great deluge
algorithm with an electromagnetic-like mechanism. Abdullah and Turabieh (2012) applied
a tabu-based memetic approach.

A metaheuristic based on adaptive large neighborhood search (ALNS) is presented in
this paper. ALNS, originally proposed by Ropke and Pisinger (2006) for tackling vehicle
routing problems, is based on iteratively destroying and subsequently repairing relatively
large fractions of an incumbent solution. It is an extension of large neighborhood search
(LNS) proposed by Shaw (1998) and closely related to the ruin and recreate method by
Schrimpf et al. (2000). In the survey by Ahuja and Orlin (2002) techniques are discussed that
make use of neighborhoods that grow exponentially in problem size or are too large to be

1 http://www.cs.qub.ac.uk/itc2007/.
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searched explicitly in reasonable time, whereas the latter characteristic also holds for LNS.
Other authors have also employed large neighborhood structures for university timetabling
problems, e.g., Abdullah et al. (2007). In the field of high school timetabling, approaches
based on ALNS have been proposed by Sørensen et al. (2012), Sørensen and Stidsen (2012)
and Kristiansen et al. (2013).

The contributions of this paper are the following: a state-of-the-art metaheuristic based
on ALNS is developed for the ITC-2007 formulation of CB-CTT. The proposed variant of
ALNS has the distinctive feature of decreasing the upper bound of destruction gradually
over time. It is documented that this feature is favorable in ALNS. The algorithm is able
to generate competitive results for the ITC-2007 CB-CTT benchmark instances. Moreover,
new best known solutions have been found for five instances. The outline is as follows.
Section 2 provides a brief description of the ITC-2007 formulation of CB-CTT, a mixed
integer programming model, and results for the ITC-2007 benchmark instances generated
by CPLEX. The proposed solution approach is presented in Sect. 3. Computational results
for the ITC-2007 benchmark instances are shown in Sect. 4. In Sect. 5 the contribution of
the different operators and the effects of the features of the algorithm are discussed, while
Sect. 6 concludes.

2 Problem description

2.1 Timetabling competitions

The first international timetabling competition (ITC-2002) had its emphasis on course
timetabling. Within the competition, a problem formulation was stated and benchmark
instances were released. Since then, the formulation has been used by several other
researchers, as noted by McCollum et al. (2010). One of the objectives of the second com-
petition was to reduce the gap between theory and practice by providing more realistic
formulations and benchmark instances that were derived from real world problems. Each of
the three tracks of the competition focused on different problems of university timetabling,
including exam timetabling, PE-CTT and CB-CTT. The third international timetabling com-
petition (ITC-2011)was about high school timetabling. The focus of this study is onCB-CTT.
In particular, the formulation of the ITC-2007 is used and the proposed algorithm is tested
on the ITC-2007 benchmark instances.

The CB-CTT problem consists of scheduling lectures of courses to periods and rooms, as
described by Di Gaspero et al. (2007). The working days of a week are split into periods for
which a timetable has to be found. For each course the number of lectures and the number of
attending students are known, as well as the teacher holding the course. Furthermore, each
course might be part of several curricula. Timetables that satisfy a set of hard constraints
are called feasible. In the following, the constraints of the problem are briefly described and
the respective abbreviation is given in brackets. The hard constraints include that all lectures
have to be scheduled (Lectures), at most one lecture can take place in a room at a time
(RoomOccupancy), at most one course of the same curriculum or taught by the same teacher
can be held at the same time (Conflicts) and availabilities of teachers have to be respected
(Availability). Any unscheduled lecture counts as one violation, as well as each excessive
lecture per room and period. Each pair of conflicting lectures counts as one violation too.
Finally, whenever a lecture is scheduled at an unavailable period, i.e., when its teacher is not
available, one violation is counted.
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The quality of a timetable is measured in terms of soft constraint violations. Whenever a
lecture takes place in a room with a capacity less than the number of students of the course,
each student exceeding the capacity limit counts as one violation (RoomCapacity).Moreover,
lectures of the same course should preferably take place in the same room (RoomStability).
Each additional room corresponds to one violation. Another soft constraint aims at spreading
the lectures of each course over a predefined number of working days (MinWorkingDays).
Each day less than the required spread is counted as one violation. Finally, curricula should be
as compact as possible (IsolatedLectures). For each curriculum a lecture that is not adjacent
to any other lecture of the same curriculum is counted as one violation.

2.2 Mathematical model

The presented model for the CB-CTT problem is based on the integer programming formu-
lation proposed by Lach and Lübbecke (2012). Since they use a model for a decomposition
approach, slight adaptations are made for a formulation of the whole problem. A similar
model is stated by Burke et al. (2010). The notation used in the model is summarized in
Table 1.

D denotes the set of days for the timetable. Each day is divided into periods, where the
set of periods is denoted by P . In each period the same set of rooms R is available. The set
of courses is denoted by C . Each course c has lc lectures that need to be scheduled. These
lectures should be spread over a minimum number of days specified by mc. Each course
belongs to one or multiple curricula and is taught by one teacher. The set of curricula is
denoted by CU and the set of courses belonging to a curriculum cu is denoted by Kcu . T
denotes the set of teachers and Lt the set of courses taught by teacher t . For each course c
the set of the day-period pairs the course must not be assigned to is denoted by Uc. On the

Table 1 Notation of the mathematical model

Symbol Description

P Set of periods

D Set of days

R Set of rooms

C Set of courses

CU Set of curricula

Kcu Set of courses of curriculum cu

T Set of teachers

Lt Set of courses taught by teacher t

Uc Unavailabilities: Uc = {(p, d) : p ∈ P, d ∈ D, c unavailable in (p, d)}
A(p,d) Set of available courses at (p, d), i.e., A(p,d) = {c ∈ C : (p, d) /∈ Uc}
sc,r Capacity shortage if course c takes place at room r

lc Number of lectures of course c

mc Minimum spread over working days of course c

pCAP Penalty for violating the room capacity

pSTAB Penalty for violating the room stability

pDAYS Penalty for violating the minimum spread over working days

pCOMP Penalty for violating the curriculum compactness

123



Ann Oper Res (2017) 252:255–282 259

other hand, A(p,d) denotes the set of courses that can be scheduled at period p on day d . The
capacity of the rooms and the number of students of the courses are known. Consequently
one can compute the capacity shortage sc,r for assigning course c to room r . The penalties
are denoted by pTYPE with the respective superscript.

The timetable is represented by the binary variable xc,d,p,r , which takes the value 1 if a
lecture of course c is scheduled at period p on day d in room r . It is defined only for day-
period pairs for which course c is available. Therefore, the formulation takes the availability
constraint implicitly into account. Additional binary and integer decision variables are needed
in order to formulate the soft constraints. The decision variables are defined as follows.

xc,d,p,r =
{
1 if course c is scheduled at period p on day d in room r

0 otherwise

∀ d ∈ D, p ∈ P, c ∈ A(p,d), r ∈ R

vcu,p,d =
{
1 if curriculum cu has an isolated lecture at time (p, d)

0 otherwise

∀ cu ∈ CU, p ∈ P, d ∈ D

yc,r =
{
1 if course c has at least one lecture in room r

0 otherwise
∀ c ∈ C, r ∈ R

zc,d =
{
1 if course c has at least one lecture on day d

0 otherwise
∀ c ∈ C, d ∈ D

wc number of days less than mc, integer, ≥ 0 ∀ c ∈ C

The weighted sum of the soft constraint penalties is minimized by the objective func-
tion (1). The sum of the variables xc,d,p,r weighted by the penalty pCAP times the respective
capacity shortage sc,r for assigning course c to room r yields the capacity penalty term. By
employing the decision variable yc,r , indicating whether a lecture of course c is held in room
r , one can easily compute the number of rooms used by the course. The deviation of this
number from 1 times the penalty coefficient pSTAB yields the penalty for violations of the
constraint RoomStability. The penalty term for an insufficient spread over working days is
computed as the number of days less than the requirement times the respective weight. Sim-
ilarly, for determining the penalty term for the curriculum compactness, one has to compute
the number of isolated lectures weighted by pCOMP.

min
∑

d∈D,p∈P,c∈A(p,d),r∈R

xc,d,p,r · sc,r · pCAP +
∑
c∈C

(∑
r∈R

yc,r − 1

)
· pSTAB

+
∑
c∈C

wc · pDAYS +
∑

cu∈CU,p∈P,d∈D
vcu,p,d · pCOMP (1)

The availability constraint is implicitly taken into account. The other hard constraints are
formulated as follows. ∑

p∈P,d∈D,(p,d)/∈Uc,r∈R

xc,d,p,r = lc ∀ c ∈ C (2)

∑
r∈R,c∈Lt∩A(p,d)

xc,d,p,r ≤ 1 ∀ p ∈ P, d ∈ D, t ∈ T (3)
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∑
r∈R,c∈Kcu∩A(p,d)

xc,d,p,r ≤ 1 ∀ p ∈ P, d ∈ D, cu ∈ CU (4)

∑
c∈A(p,d)

xc,d,p,r ≤ 1 ∀ r ∈ R, p ∈ P, d ∈ D (5)

Constraints (2) make sure that all lectures of the courses are scheduled. Due to Con-
straints (3) each teacher holds at most one lecture at a time. Constraints (4) guarantee that
two lectures of the same curriculum are not held in parallel. Finally, Constraints (5) respect
that a room can accommodate at most one lecture at a time. The soft constraints are modeled
in the following way. ∑

r∈R,p∈P,(p,d)/∈Uc

xc,d,p,r − zc,d ≥ 0 ∀ c ∈ C, d ∈ D (6)

∑
d∈D

zc,d + wc ≥ mc ∀ c ∈ C (7)

∑
c∈Kcu∩A(p,d)

r∈R

xc,d,p,r −
∑
q∈{p−1,p+1},r∈R
c∈Kcu∩A(q,d)

xc,d,q,r − vcu,p,d ≤ 0 ∀ cu ∈ CU, p ∈ P, d ∈ D (8)

∑
d∈D,p∈P,(p,d)/∈Uc

xc,d,p,r − M · yc,r ≤ 0 ∀ c ∈ C, r ∈ R (9)

Constraints (6) link zc,d with xc,d,p,r in a way that zc,d can only be set to 1 if there is
at least one lecture of course c held on day d . For each course, zc,d and wc are connected
by Constraints (7), such that wc counts the number of days less than the required spread.
Constraints (8) are used to identify isolated lectures, represented by the variable vcu,p,d .
The first term of the inequality constraint takes the value 1 if a lecture of the corresponding
curriculum is held at the particular time and 0 otherwise. The second term represents the
schedule of the previous and the subsequent periods. If at least one lecture of the same
curriculum takes place in an adjacent period, either 1 or 2 is subtracted and vcu,p,d can
take the value 0. Otherwise an isolated lecture with respect to curriculum cu is identified
and vcu,p,d is set to 1. For the first and the last period of each day the second term has to
be adapted in a way that the previous and the last period have to be omitted, respectively.
Finally, Constraints (9) link xc,d,p,r with yc,r , where M denotes a large number. Variable yc,r
is set to 1 if at least one lecture of course c is held in room r .

2.3 Results

We applied CPLEX 12.5 to themixed integer programs of the ITC-2007 CB-CTT benchmark
instances on a Linux PC with an Intel Core i7-4770 CPU running at 3.4 GHz and 16 GB
memory. The results are shown in Table 2. Either the optimal solution or the best solution
found after 24 hours is reported in column IP. Note, that this time limit clearly exceeds the one
of the ITC-2007. The column Best refers to the best known solutions, available on the CB-
CTT website.2 Bold numbers indicate optimal solutions. Besides the best known solutions,
also the solution techniques used for generating them as well as the best known lower bounds
for the instances are stated on the website. Hence, the optimality of the bold values is either

2 http://satt.diegm.uniud.it/ctt/ (accessed: 2015-07-01).

123

http://satt.diegm.uniud.it/ctt/


Ann Oper Res (2017) 252:255–282 261

Table 2 Results of the integer
programs of the ITC-2007
instances

Instance IP Best

comp01 5 5

comp02 94 24

comp03 103 64

comp04 35 35

comp05 355 284

comp06 89 27

comp07 64 6

comp08 37 37

comp09 147 96

comp10 26 4

comp11 0 0

comp12 426 294

comp13 78 59

comp14 64 51

comp15 97 62

comp16 44 18

comp17 103 56

comp18 85 61

comp19 70 57

comp20 54 4

comp21 144 74

proven by the (exact) solution technique itself, or by the match of the lower and the upper
bound. CPLEX found optimal solutions for 4 out of 21 instances. In particular, the optimal
solutions for the instances comp01, comp04, comp08 and comp11were found within 35,
2077, 6742 and 8s, respectively. For some instances the solution found deviates significantly
from the best known solution, though.

3 Solution approach

In case ofNP-hard problems, where timetabling problems typically belong to, one usually has
to resort to (meta-)heuristic methods, particularly when good solutions have to be found in
reasonable time. The previously shown results of the exact method underline this statement
for the considered problem class. Therefore, an metaheuristic approach for the CB-CTT
problem is presented in this section. More precisely, an ALSN approach based on the papers
by Ropke and Pisinger (2006) and Pisinger and Ropke (2007) is developed.

3.1 Adaptive large neighborhood search

3.1.1 General description

In LNS an initial solution has to be created first. At each iteration, parts of the incumbent
solution are destroyed and subsequently repaired. New solutions are accepted according to a
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certain criterion to become the new incumbent solution. The algorithm keeps track of the best
solution, i.e., the solution with the least soft penalties among the solutions with the smallest
number of unscheduled lectures. In the end the best solution found is returned. ALNS extends
LNS in a way that several destroy and repair operators are used and their selection probability
is biased towards the best-performing ones. The approach is sketched in Algorithm 1, while
essential steps are described in detail in the following paragraphs.

Algorithm 1 Adaptive large neighborhood search

1: input: solution x ,
evaluation function f , segment size s,
maximum number of removals nmax

2: operators: weights w = 1,
computation times t , scores π = 0,
computation times in last segment τ = 0

3: best solution xb = x , iteration i = 0
4: while time limit not reached do
5: roulette wheel selection of destroy and repair

operators d and r employing w

6: draw # lectures to remove n ∈ [1, nmax ]
7: x ′ = r(d(x, n))

8: if x ′ accepted then
9: x = x ′
10: end if
11: if f (x ′) < f (xb) then

12: xb = x ′
13: end if
14: update πd , πr , τd , τr
15: i = i + 1
16: if i mod s = 0 then
17: update t w.r.t. τ
18: update w w.r.t. π and t
19: π = 0, τ = 0
20: end if
21: decrease nmax

22: if no new xb for h iterations then
23: increase probability of accepting

worsening solutions, increase nmax

24: end if
25: end while
26: return xb

The adaptive element of ALNS refers to the dynamic weight adjustment mechanism.
Initially, each operator has the same selection probability until weights are recomputed. At
each iteration, a destroy operator and a repair operator are selected separately by a roulette
wheel mechanism. Given that there are k operators with weights wi , i ∈ {1, . . . , k}, operator
j is selected with the probabilityw j/

∑k
i=1 wi . After applying the operators to the incumbent

solution the corresponding scores are updated by adding a value σ depending on the solution
quality.

σ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ1 if the solution is a new global best

σ2 if the solution is better than the incumbent and not accepted before

σ3 if the solution is worse than the incumbent, accepted and has not been

accepted before

This scheme encourages operators that find solutions having not been accepted before, in
order to direct the algorithm towards unvisited regions of the search space.

The search process of the algorithm is divided into segments of s = 100 iterations. Each
time the algorithm has performed s iterations, the end of the segment is reached and the
weights are recomputed based on the scores achieved in the last segment. In general, the
weights of the heuristics are recomputed as a convex combination of the old weight and the
average score achieved in the last segment.

It turns out that the reparation phase is the most time-consuming part of the algorithm.
Moreover, the computation times vary significantly between heuristics. Consequently, it
appears to be particularly important to normalize the scores of the repair operators by their
computational effort in order to achieve a good trade-off between quality and time, as sug-
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gested by Pisinger and Ropke (2007). Therefore, whenever the weight of repair heuristic j
is computed, its average computation time t j and the average computation time t2stagebest of
the reference repair operator 2-stage best are taken into account. Given the old weight wold

j
of repair operator j , the formula to compute its new weight wnew

j is given by

wnew
j = wold

j · (1 − r) + r · π j

φ j
· t2stagebest

t j

where r ∈ [0, 1] denotes the reaction factor, π j denotes the the score achieved during the last
segment and φ j denotes the number of times operator j has been called in the last segment.
The last fraction is omitted for non-repair operators.

Incorporating the average computation time of a reference operator is motivated by the
fact, that the average computation time of an operatormay change during the search. Omitting
the reference computation time in the formula would consequently result in an imbalanced
acquisition of scores over the different stages of the search. The selection of the reference
operator itself is generally arbitrary, as this choice barely affects the final operator selection
probabilities. We decided to pick the 2-stage best operator, as this operator is regularly called
in any stage of the search and proves to be essential for the performance of the algorithm, as
it will be shown in Sect. 5. The operator 2-stage best itself will be described in Sect. 3.3.1.

At the end of each segment, the average computation times of the repair operators, includ-
ing 2-stage best, are updated by computing

tnewj = toldj · (1 − r) + r · τ j

φ j

where τ j denotes the sum of the computation times of operator j in the last segment, φ j

denotes the number of calls of operator j in the last segment and r ∈ [0, 1] denotes the
reaction factor.

3.1.2 Acceptance scheme

Ropke and Pisinger (2006) suggest to embed this algorithm in a simulated annealing (SA)
framework, developed by Kirkpatrick et al. (1983). A new solution x ′ is accepted with

the probability min
{
1, e−( f (x ′)− f (x))/Ti

}
, where f denotes an evaluation function, x the

incumbent solution and Ti the temperature in iteration i . Consequently, all solutions with
an objective value less than the one of the incumbent solution are accepted, and partly also
solutions with a greater objective value. The starting temperature is defined implicitly, such
that in the beginning a solution being ψ-percent worse than the initial solution is accepted
with a probability of 50%. At the end of each iteration the temperature is decreased by a
cooling rate, in a way that the temperature reaches a target Tend in the last iteration, where
Tend is passed as a parameter. Similarly to Lewis and Thompson (2015), the cooling rate is
calculated for each iteration individually, since a time limit is used as termination criterion.
More precisely, the cooling rate ρi of iteration i is computed as ρi = (Tend/Ti )1/μi , whereμi

denotes the expected number of iterations before the search terminates. Ti+1 is then computed
as Ti+1 = Ti · ρi .

In order to predict the expected number of remaining iterations, the average total number
of iterations ν for a given time limit tend is pre-computed as an average over five runs. The

expected number of remaining iterationsμi is then computed asμi = ν ·
(
1 − ti

tend

)
, where ti

denotes the time consumed until iteration i . The pre-computed average iteration limit is used,
since for the proposed algorithm one can hardly make reliable predictions about the number
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of remaining iterations solely on the basis of already performed iterations. One has to note,
that in contrast to our approach, Lewis and Thompson (2015) do not rely on a pre-computed
average iteration limit when deciding upon the expected number of remaining iterations.

3.1.3 Destroy limit

At each iteration, n lectures are removed from the current schedule to become reinserted,
whereas the remaining lectures are fixed. The integer n is randomly drawn from the interval
[1, nmax ], where nmax denotes the destroy limit, i.e., the maximum number of lectures that
can be removed. The reference destroy limit nmax

0 is set to d percent of the total number of
lectures. It turns out that the usage of different percentages depending on the instance size
is beneficial, i.e., ds is used for small instances with less than 280 lectures and dl for larger
instances.

The destroy limit is then gradually decreased, in a way that in the last iteration m at
most 1

δ
of the reference destroy limit nmax

0 can be destroyed. The function nmax (i) that
gives the destroy limit for any iteration i has the form nmax (i) = ⌊

nmax
0 − i y

⌋
, resulting

in a steep decrease of the destroy limit in the beginning and a flatter decrease in the end
of the search. Since nmax (m) = ⌊ 1

δ
· nmax

0

⌋
, the value of y can be computed by setting

nmax
0 − my = 1

δ
· nmax

0 . This leads to the formula

nmax (i) =
⌊
nmax
0 − i

logm
(

δ−1
δ

·nmax
0

)⌋
where m = μi + i denotes the (expected) iteration limit. The expected number of remaining
iterations μi is computed as in the previous subsection.

Decreasing the destroy limit considerably increases the number of iterationswithin a given
time limit, since repairing smaller parts of a solution typically requires less computation time.
On the other hand, by destroying less lectures one could potentially lose diversification which
in turn could outweigh the gain in performance resulting from the larger number of iterations.
Consequently, when setting the decreasing parameter δ, this trade-off has to be taken into
account. A motivation for decreasing the destroy limit based on computational tests is given
in Sect. 5.2.

In the fields of resource-constrained project scheduling and lot-sizing with setup times,
respectively, Muller (2009) and Muller et al. (2012) suggested to gradually reduce the para-
meter that controls the degree of destruction. However, in the terminology of this paper, their
respective parameters correspond to the actual number of requested removals rather than the
destroy limit.

3.1.4 Temperature reheats

The temperature is reheated, whenever h consecutive iterations have not found a new best
solution. For that purpose, the temperature is set in the same way as described in Sect. 3.1.2,
but with respect to the solution quality of the incumbent solution. More precisely, the new
temperature is again defined implicitly, such that a solution that is ψ-percent worse than
the incumbent solution is accepted with 50% probability. Temperature reheats have been
employed by several authors, e.g., Connolly (1992). In addition to temperature reheats the
destroy limit is set to its initial level. The combination of the larger destroy limit and the
higher acceptance probability of worse solutions helps to escape from local optima. The
decreasing speed of the destroy limit and the cooling rate are adjusted to the expected number
of remaining iterations.
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3.1.5 Infeasible solutions

The algorithm generally allows infeasible solutions and thereby being able to take shortcuts
by traversing infeasible regions of the search space. Benefits and drawbacks of permitting
infeasible solutions are discussed by Lewis (2008). The repair heuristics try to schedule
lectures even if their insertion costs are high. However, when the algorithm has to decide
whether an infeasible solution is accepted, the penalty p is added to the objective value for
each unassigned lecture. Initially, p is set to max(1, pavg), where pavg denotes the average
penalty per lecture of the initial solution. The penalty p is then dynamically adjusted during
the search. Whenever a feasible solution is accepted, the penalty p is set to max(1, pold/α),
where α denotes a parameter and pold the previous value of p. Conversely, whenever a
solution with unassigned lectures is accepted, p is set to min(pold · α, pmax ), where pmax

denotes the worst case penalty for scheduling a lecture. pmax is computed as

pmax = pSTAB + max
c∈C

(
max
r∈R

(
pCAP · scr

) + pCOMPACT · |{cu ∈ CU : c ∈ Kcu}|
)

where the same notation is used as described in Table 1. The penalty that corresponds to
MinWorkingDays is omitted, since scheduling a lecture cannot worsen the objective value
with respect to this constraint.

Bellio et al. (2012) use the same adjustment scheme for the penalty that corresponds
to violations of the Conflicts constraint with different bounds, though. This method has
been proposed by Gendreau et al. (1994). In general, the penalty is updated if a number of
consecutive solutions is feasible or infeasible, respectively.

3.2 Destroy operators

3.2.1 Related removal

The related operator is inspired by Shaw (1998) and aims to remove similar lectures. The
relatedness measure between lectures of two courses i and j is defined as

R(i, j) := β · min(oi , o j )

max(oi , o j )
+ ki j

gi + 1

where oi denotes the number of students taking course i , ki j the number of curriculum
and teacher conflicts between the courses i and j , gi the number of curricula of course
i , and β denotes a weight. Consequently, the first term shows the relatedness with respect
to the number of students. The rationale behind this is that courses with similar capacity
requirements might be easily swapped without causing capacity violations. The second term
describes a conflict ratio between the two courses. The reason for adding this term is that
moving a course to another period requires the removal of conflicting ones.

The operator is described in Algorithm 2, where the function c(b) in line 8 maps a lecture
b to its course c(b). The set of lectures that are going to be removed B is initialized with
a random scheduled lecture. As long as the cardinality of this set is less than the requested
number of removals, a lecture b is randomly drawn from B. The list of all scheduled lectures
that are not in B and do not belong to the same course of b is denoted by A and is sorted in
descending order with respect to the relatedness to b. A lecture is drawn from A by computing
its index as �|A|·υκ	, whereυ denotes a randomnumber in [0, 1). The probability of selecting
very related lectures is controlled by the parameter κ . If κ is large it is likely to select the most
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related lecture. On the other hand, if κ = 1 each lecture has the same selection probability.
The drawn lecture is then added to B and the process is repeated.

Algorithm 2 Related removal

1: input: requested number of removals n,
schedule S, parameter κ

2: set F containing all lectures in S
3: select random lecture f ∈ F
4: set of lectures to remove B = { f }
5: F = F \ { f }
6: while |B| < n do
7: select random lecture b ∈ B

8: list A = F \ { f ∈ F |c( f ) = c(b)}
9: sort A in descending order w.r.t. relatedness to

b
10: draw random number υ ∈ [0, 1)
11: a = A[�|A| · υκ	]
12: B = B ∪ {a}, F = F \ {a}
13: end while
14: remove all lectures in B from S

3.2.2 Random removal

The random destroy operator removes lectures from the schedule at random. Ropke and
Pisinger (2006) employ a random removal heuristic as well.

3.2.3 Worst removal

As suggested byRopke and Pisinger (2006) theworst destroy operator, shown inAlgorithm3,
aims at removing highly penalized assignments, since reinserting these events may be bene-
ficial. Due to interdependencies between lectures, it might be hard to associate penalties with
single lectures. Consequently, the heuristic operates at the level of courses. The association
of penalties with courses can be done straightforward for violations of RoomCapacity,Min-
WorkingDays and RoomStability. The penalty for IsolatedLectures is assigned to the lecture
that is isolated.

Algorithm 3Worst removal

1: input: requested number of removals n,
schedule S, parameter κ

2: list of all courses A
3: sort A by descending penalty
4: while n > 0 do
5: draw random number υ ∈ [0, 1)

6: a = A[�|A| · υκ	]
7: A = A \ {a}
8: remove all lectures of a from S,

la : number of removed lectures
9: n = n − la
10: end while

The probability of selecting the most penalty-causing course for removal is again con-
trolled by parameter κ . The same parameter will also be used for similar destroy operators
described in the following subsections. In terms of removals each destroyed course counts
as much as its number of scheduled lectures. Since whole courses are destroyed, it is likely
that the requested number of removals is occasionally exceeded. In general, the limit might
be exceeded whenever destroy operators are applied that remove multiple lectures at once.

3.2.4 Random penalty removal

The randompenalty destroy operator randomly selects lectures of courses that cause penalties
and removes them from the schedule. In case all of these lectures are removed and the
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requested number of removals is not reached, other lectures are removed up to the limit at
random.

3.2.5 Random period removal

The random period destroy operator repetitively selects a day-period pair at random and
removes all its scheduled lectures. Rescheduling the lectures within a particular period allows
changing their room assignments without affecting the curriculum compactness and the
spread over days. Therefore, the operator might be particularly useful to improve the solution
with respect to room-related constraints.

3.2.6 Room day removal

The roomday destroyoperator repetitively removes all lectures that are assigned to a randomly
selected room on a randomly selected day. Removing all lectures from a particular room-day
allows them to get reassigned to different periods on that day while preserving the penalty
level of the room-related constraints and the spread over days. Thereby the operator focuses
on improving the curriculum compactness.

3.2.7 Isolation and capacity removal

The isolation and capacity destroy heuristic is very similar to the worst removal operator.
Instead of removing whole courses, individual lectures are selected for being removed, where
only their capacity and compactness penalties are considered.

3.2.8 Spread and stability removal

The spread and stability operator is essentially the same as the worst removal operator. The
ordering of the removable courses is based only on the penalties for violating the spread over
days and the room stability, though.

3.2.9 Curriculum removal

The curriculum operator is similar to the worst removal operator, however curricula are
selected instead of courses. The removable curricula are sorted in descending order with
respect to their curriculum compactness penalties. This operator aims at reducing the com-
pactness penalties. Furthermore, the operator might help to move lectures to periods that
have been previously forbidden due to curriculum conflicts.

3.2.10 Teacher removal

The teacher operator is used to ease restrictions regarding teacher conflicts. Teachers are
randomly selected and all of their lectures are removed from the schedule.

3.3 Repair operators

The algorithm makes use of several repair operators. They can be categorized into 2-stage
and 1-stage heuristics. The 2-stage heuristics assign lectures to periods first and find a room
schedule in the second stage, while the 1-stage heuristics perform period and room assign-
ments at once. In this subsection and the subsequent one, the term period is used instead of
day-period pair to facilitate readability.
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3.3.1 2-Stage repair operators

The procedure that assigns lectures to periods is summarized in Algorithm 4. The algorithm
receives a vector as input,where each element corresponds to a course indicating its number of
lectures that have to be scheduled. Apart from the initial state where all lectures are unsched-
uled, these unscheduled lectures have either been removed by the priorly called destroy
operator or remained unscheduled in the previous repair phase. Courses with unscheduled
lectures are put in a list which is ordered according to a priority rule. Iteratively, the lectures
of the course with the highest priority are scheduled at their best position with respect to an
evaluation criterion. In case no feasible insertion position is left, conflicting lectures can be
removed from the schedule that is under construction. Consequently, the courses where these
lectures belong to have unscheduled lectures again and are therefore reinserted into the list of
courses with unscheduled lectures. In order to prohibit cycles, lectures causing the removal
of other lectures from a particular day-period pair once, must not remove lectures from the
same pair at a later point. The algorithm generally continues as long as there are unscheduled
lectures, but terminates in case the remaining lectures cannot be feasibly scheduled and can-
not remove lectures from the schedule any more. In the end, the algorithm returns a schedule,
i.e., an assignment of lectures to day-period pairs. In case there are still unscheduled lectures,
a list of these lectures is also returned. The schedule is then passed to the room assignment
operator of the second stage. Details are described in the following paragraphs.

Algorithm 4 2-Stage repair operators

1: input: vector v of lectures to assign
2: vector of unscheduled lectures u = 0
3: list of courses C = {c : vc > 0}
4: schedule S,

entries Sp = ∅ ∀ periods p ∈ P
5: sort C according to priority rule
6: ∀c ∈ C : compute potential insertion positions

(periods) Pc
7: initialize list of periods from which course c can

remove lectures Rc = Pc
8: while C �= ∅ do
9: select first course c1 = C[1]
10: while vc1 > 0 do
11: if Pc1 �= ∅ then
12: evaluate all p ∈ Pc1
13: determine best period pbest
14: Spbest = Spbest ∪ {lecture(c1)}
15: Rc1 = Rc1 \ {pbest }
16: update Pc ∀c ∈ C
17: else if Rc1 �= ∅ then
18: evaluate all p ∈ Rc1

19: determine best period pbest
20: conflicting courses K in pbest
21: Spbest = (Spbest \ lectures(K )) ∪

{lecture(c1)}
22: vk = vk + 1 ∀ k ∈ K
23: append K at beginning of C
24: Rc1 = Rc1 \ {pbest }
25: update Pc ∀c ∈ C
26: else
27: uc1 = uc1 + 1
28: end if
29: vc1 = vc1 − 1
30: end while
31: C = C \ {c1}
32: if saturation degree rule then
33: reorder C according to rule
34: end if
35: end while
36: check if any unscheduled lecture can be scheduled

due to removed lectures
37: return u, S

Priority Rules The priority rules employed in Algorithm 4 are either saturation degree (SD),
largest degree (LD) or random. The rule selection is based on a roulette wheel principle by
using adaptively adjusted weights, as previously described. The LD rule employed by Broder
(1964) prioritizes courses with the largest number of conflicts with other courses. The SD rule
proposed by Brélaz (1979) arranges courses in ascending order with respect to their number
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of available periods for scheduling. The random rule mentioned by Carter et al. (1996) orders
courses randomly. In order to diversify the outcome, a random number drawn from [−ν, ν],
where ν denotes a parameter, is added to the priority value whenever SD or LD are used.

Lecture-period assignment Two mechanisms for evaluating insertion positions are imple-
mented. The 2-stage best heuristic evaluates all conflict-free insertion periods for a lecture
of the course that is next in line for being scheduled in the following way. If assigning the
lecture to the considered period will add or remove isolations with respect to curricula, the
curriculum compactness penalty is added or subtracted accordingly. Whenever the required
spread over days of the course is not reached and no other lecture of the same course has
been scheduled on the considered day, the respective penalty is subtracted, since the solution
will be improved. If some lectures of the course have already been scheduled and none of the
rooms where these lectures take place are available in the considered period, the penalty for
violating the room stability is added. Finally, the capacity penalty is roughly estimated by
assuming that if the lecture has the xth most students of all courses that are assigned to the
period in the part of the schedule that is under construction, it will get the x th largest available
room in the second stage. The capacity penalty then corresponds to the excess number of
students. Ties between the lowest cost insertion positions are broken randomly, as it is done
for the other repair operators.

The 2-stagemean heuristic differs only in the treatment of the capacity penalty.A reference
utilization of the room capacities u is computed by dividing the sum of the number of students
of all lectures that have to be scheduledΣl by the sum of the capacities of all available rooms
Σr , i.e., u = Σl

Σr
. Then a capacity limit is computed for each period individually as η ·u ·Σp ,

where Σp denotes the sum of the capacities of the available rooms in period p and η denotes
a parameter that controls the penalty-free number of students. The capacity penalty added to
the insertion cost corresponds to the number of students of the assigned lectures exceeding
the capacity limit of the considered period.

For diversification purposes, Ropke and Pisinger (2006) suggest to perturb the insertion
cost by adding a random number. Therefore, two additional operators are implemented,
2-stage best noise and 2-stage mean noise, that are based on the previously described heuris-
tics. Each time a period is evaluated a noise value is added to the insertion cost that is drawn
randomly from [−μ · pmax , μ · pmax ], where μ denotes a parameter and pmax denotes the
worst case insertion cost of one lecture.

Backtracking procedure In case a course is next in line that cannot be scheduled in a conflict-
free way, a backtracking mechanism is applied. The implemented backtracking mechanism
is similar to the one described by Carter et al. (1996). The aim is to induce the least distortions
to the current schedule when removing conflicting lectures. Only lectures that do not belong
to the fixed part of the current schedule can be removed. Each insertion position where the
considered course is allowed to remove lectures from is evaluated. Positions with the smallest
number of conflicting lectures that do not have any alternative conflict-free position left are
prioritized. Ties are broken by selecting positions with the smallest number of conflicting
lectures in total. In case the procedure is still indifferent, the period with the lowest insertion
cost for the considered course is chosen.

The courses of the removed lectures are reinserted in the queue in a way that they are
next in line for being scheduled, where courses without any potential conflict-free position
are prioritized. However, in case of the SD rule the order is dynamically adjusted. To avoid
cycles, a course that has a lecture assigned to a period must not remove events from the
same period at a later time. In general, this mechanism does not guarantee finding a feasible
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solution, though. Hence, there might be unscheduled lectures that have to be passed to the
repair operator called next.

Lecture-room assignment In the second stage lectures are assigned to rooms either by the
greatest or the match heuristic. The operator selection is based on the previously described
adaptive mechanism. The greatest heuristic selects a period randomly. Its lectures are sorted
in descending order with respect to their number of students and are scheduled one after
another. Each available room in the period is evaluated with respect to the room-related
penalties. The lecture is then assigned to the room with the lowest insertion cost. Ties are
broken by preferring rooms with the larger capacity. The rationale behind this is to keep the
smaller rooms for courses with less students, which might be beneficial with regard to the
room stability.

The match heuristic processes one period after another in a random order and for each
period also the lectures are processed randomly. The evaluation of the available rooms is
performed in the sameway as for the greatest heuristic. However, ties are broken by selecting
the room with the smallest capacity. The reason is that since lectures are scheduled in a
random order, there might be lectures that are processed later and require large rooms. The
second-stage heuristics stop when all lectures scheduled by the first-stage operator have been
assigned to rooms.

3.3.2 1-Stage repair operators

A greedy and a regret heuristic are employed as 1-stage operators, as done by Ropke and
Pisinger (2006). For each course, the greedy heuristic evaluates all its potential insertion
positions. A lecture of the course with the lowest insertion cost, is then scheduled at its best
position. On the contrary, the regret heuristic decides on the basis of regret values, which
lecture is scheduled next. The regret value indicates the opportunity cost for not assigning
a lecture to its currently best position. The regret value of a k-regret heuristic is computed
as the sum of the differences between the best insertion position and the i th best insertion
position, i = 2, . . . , k. A lecture of the course with the largest regret value is then scheduled
at its best position.

Algorithm 5 1-Stage repair operators

1: input: vector v of lectures to assign
2: vector of unscheduled lectures u = 0
3: list of courses C = {c : vc > 0}
4: schedule S,

entries Sq for period-room-pairs q
5: ∀c ∈ C : compute potential insertion positions

(period-room-pairs) Qc
6: while C �= ∅ do
7: for all c ∈ C do
8: if Qc = ∅ then
9: uc = vc
10: C = C \ {c}
11: else

12: evaluate all q ∈ Qc
13: end if
14: end for
15: determine best course cbest
16: determine best position qbest
17: Sqbest = Sqbest ∪ {lecture(cbest )}
18: vcbest = vcbest − 1
19: if vcbest = 0 then
20: C = C \ {cbest}
21: end if
22: update Qc ∀c ∈ C
23: end while
24: return u, S

Each room-period pair is evaluated in the followingway. The capacity penalty corresponds
to the number of students exceeding the capacity of the room. If inserting a lecture of the con-
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sidered course would cause or remove compactness violations, the curriculum compactness
penalty is added or subtracted accordingly. The room stability penalty is added if lectures of
the same course have already been scheduled and none of them takes place in the considered
room. Finally, if the required spread over days has not been reached yet and no lecture of
the same course has been scheduled on the considered day, the penalty for violating the
minimum spread is subtracted. The performance of the heuristics can be slightly improved
by further encouraging the spread over days. The penalty for violating MinWorkingDays is
added, if another lecture of the same course takes place on the considered day, regardless of
the satisfaction of the required spread.

In thegreedy heuristic the penalty for unassigned lectures of the current iteration, computed
as in Sect. 3.1.5, is added to the insertion cost of the considered position if the number of
available periods is greater than the number of lectures to assign of the course. Thereby,
courses with less or equal potential insertion periods than lectures to schedule are prioritized.
In case of the regret heuristic, the insertion costs ofmissing alternatives is set to the unassigned
penalty of the current iteration, if less than k positions are available. Consequently, setting k
sufficiently large takes the lack of alternatives into account. A 5-regret heuristic is used for
this study.

As suggested by Ropke and Pisinger (2006) two additional noise operators are imple-
mented, i.e., greedy noise and regret noise. Each time an alternative is evaluated a random
number drawn from [−μ · pmax , μ · pmax ] is added to the insertion cost.

3.4 Initial solution

The initial solution is generated by applying the 2-stage best heuristic in combination with
the SD rule and the greatest heuristic. The initial solution is not necessarily feasible, however
for the ITC-2007 instances a feasible one is typically found.

4 Computational experiments

4.1 Instances

Within the ITC-2007, 21 instances have been proposed for the CB-CTT track, classified
into early, late, and hidden ones. The late instance set was released two weeks before the
deadline of the competition, while the hidden instances were released after the closure and
were used to rank the best participants. The benchmark instances are available on the website
of the competition and are called comp01,…,comp21. Their characteristics are described
by Bonutti et al. (2012) in detail. Best known solutions can be found on the website of
the Timetabling Research Group at the University of Udine,3 where researchers can upload
their solutions and lower bounds. Additionally, we apply our algorithm to recently proposed
instances being available on the samewebsite, i.e., the setsDDS,EasyAcademy andUdine.
Bellio et al. (2016) consider them as candidate benchmark sets for future comparisons.

4.2 Parameter tuning

The algorithm incorporates several parameters, whose setting is given in Table 3. Some of
the initial parameter values are taken from Ropke and Pisinger (2006), including the control

3 http://satt.diegm.uniud.it/.
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Table 3 Parameter setting

Parameter Value Description

ψ 4% SA: initially accept ψ-percent worse solution with 50%

Tend 0.02 SA: target temperature

h 60,000 SA: reheat after h iterations

σ1 30 ALNS: score for new global best

σ2 15 ALNS: score for new, accepted, better than current solution

σ3 18 ALNS: score for new, accepted, worse than current solution

r 0.16 ALNS: reaction factor for weight/time adjustment

α 1.001 Infeasibility penalty: penalty adjustment

ds 30% Destroy limit: small instances

dl 25% Destroy limit: large instances

δ 3 Destroy limit: decrease parameter

β 1 Relatedness measure: number-of-students weight

κ 5 Destroy operators: control selection probability

η 1.3 2-stage mean: control penalty-free excess number of students

ν 6 Noise: priority rule, noise ∈ [−ν, ν]
μ 0.04 Noise: insertion cost, noise ∈ [−μ · pmax , μ · pmax ]

parameters for the weight adjustment mechanism, i.e., σ1, σ2, σ3, r , and the parameter ψ

controlling the start temperature. The remaining initial parameter values have been found
during the experiments in the implementation phase. Similarly to Ropke and Pisinger (2006),
for setting the parameters appropriately, the change in performance is evaluatedwhen altering
one value at a time and keeping the others fixed. This is done for all parameters in parallel,
though. Typically, a slightly larger and a slightly smaller value are checked for each parameter.
The average penalty over five runs on the instances comp01,…,comp21 is computed. After
each parameter value has been evaluated, the parameters are set to the best-performing values.
This new setting is the basis for the next round. The procedure is repeated until no significant
differences are observable. This basic tuning method has been chosen, as many parameters
have to be tuned. In addition, the algorithm does not react very sensitive on changes of the
parameter values. One has to note, that the participants of the ITC-2007 were not able to
tune their algorithms on the instances comp15,…,comp21. Moreover, Bellio et al. (2016)
do not use any of the comp instances for tuning, but rather a large set of artificial instances.

4.3 Results

The final results presented in this section are generated on a computer with a hardware that
has been actual at the time of the competition, i.e., an AMD Turion X2 Ultra Dual-Core
Mobile ZM-82 running at 2.2GHz, 4GB memory and an Ubuntu 14.04 64-bit operating
system. As specified by the competition rules, only one CPU is used. In order to generate
comparable results, the time limit is set according to the benchmarking tool provided on the
website of the competition. For the stated equipment, the benchmarking tool suggests a time
limit of 480s.

ALNS is used to generate solutions for the comp instance set, with ten runs on each
instance. Moreover, the algorithm keeps track of the selection rates of each operator. The
average selection rates over all runs and each instance are then used as an input for LNS. By
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Table 4 ALNS versus LNS with predefined selection probabilities

Instance LNS predefined prob. ALNS Best knowna

Average Best Average Best

comp01 5.0 5 5.0 5 5

comp02 41.5 34 44.1 33 24

comp03 71.7 68 75.0 71 64b

comp04 35.1 35 35.2 35 35

comp05 305.2 294 307.8 292 284b

comp06 47.8 41 48.4 39 27

comp07 14.5 10 19.3 12 6

comp08 41.0 39 41.4 39 37

comp09 102.8 100 103.0 100 96

comp10 14.3 7 14.9 11 4

comp11 0.0 0 0.0 0 0

comp12 319.4 306 324.8 310 294b

comp13 60.7 59 63.4 60 59

comp14 54.1 51 54.9 52 51

comp15 72.1 66 74.7 67 62b

comp16 33.8 26 36.1 29 18

comp17 75.7 67 75.6 63 56

comp18 66.9 64 67.5 65 61b

comp19 62.6 59 66.0 61 57

comp20 27.2 19 26.2 21 4

comp21 97.0 93 98.5 92 74

Average 73.73 68.71 75.32 69.38 62.76

a http://satt.diegm.uniud.it/ctt/ (accessed: 2015-07-01)
b New best known solution found by the proposed algorithm

employing LNS with predefined operator selection probabilities one can omit the adaptive
procedure and thus extra iterations may be executed within the same time. Moreover, the
algorithm makes use of the adjusted selection probabilities from the very beginning. While
for some instances, separate tuning (yielding instance-specific selection probabilities) could
give slightly better results, it will be seen that this robust tuning over all instances will
provide excellent results on average. The reheat limit is set to 80,000 for LNS, while the
other parameter values are those stated in Table 3.

LNS with predefined selection probabilities proves to be superior compared to ALNS, as
shown in Table 4. Average refers to the average penalty over ten runs and best presents the
best result out of these runs. The column Best known shows the best known solutions, as
stated on the website of the Timetabling Research Group at the University of Udine, whereas
bold numbers indicate proven optimality. The proposed algorithm found new best solutions
for the instances comp03, comp05, comp12, comp15 and comp18 during the tuning and
experimental phases.

The results for the instances comp01,…,comp21 are shown in Table 5, where our
approach is compared with the algorithms by Abdullah and Turabieh (2012), Bellio et al.
(2016), Abdullah et al. (2012) and the two best algorithms of the ITC-2007, i.e., the algo-
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Table 5 Average results for the CB-CTT ITC-2007 instances

Instance LNSa Abd.&T.b Bellioc Müllerd Abd.et ale Lü&Haod

comp01 5.00 5.00 5.23 5.00 5.00 5.00

comp02 41.50 36.36 52.94 61.30 53.90 61.20

comp03 71.70 74.36 79.16 94.80 84.20 84.50

comp04 35.10 38.45 39.39 42.80 51.90 46.90

comp05 305.20 314.45 335.13 343.50 339.50 326.00

comp06 47.80 45.27 51.77 56.80 64.40 69.40

comp07 14.50 12.00 26.39 33.90 20.20 41.50

comp08 41.00 40.82 43.32 46.50 47.90 52.60

comp09 102.80 108.36 106.10 113.10 113.90 116.50

comp10 14.30 8.36 21.39 21.30 24.10 34.80

comp11 0.00 0.00 0.00 0.00 0.00 0.00

comp12 319.40 320.27 336.84 351.60 355.90 360.10

comp13 60.70 64.27 73.39 73.90 72.40 79.20

comp14 54.10 64.36 58.16 61.80 63.30 65.90

comp15 72.10 72.73 78.19 94.80 88.00 84.50

comp16 33.80 23.73 38.06 41.20 51.70 49.10

comp17 75.70 76.36 77.61 86.60 86.20 100.70

comp18 66.90 75.64 81.10 91.70 85.80 80.70

comp19 62.60 66.82 66.77 68.80 78.10 69.50

comp20 27.20 13.45 46.13 34.30 42.90 60.90

comp21 97.00 100.73 103.32 108.00 121.50 124.70

Average 73.73 74.37 81.92 87.22 88.13 91.13

a Our approach, LNS with predefined operator selection probabilities
b Tabu-based memetic approach, Abdullah and Turabieh (2012)
c Simulated annealing, Bellio et al. (2016)
d http://www.cs.qub.ac.uk/itc2007/winner/finalorder.htm
e Multi-start Great Deluge, Abdullah et al. (2012)

rithms byMüller (2009) and Lü and Hao (2010). Their results are either those reported on the
website of the competition or taken from the respective papers, as described in the footnotes.
One has to note, that Bellio et al. (2016) use an iteration limit being roughly equivalent to
the time limit, instead of the actual time limit.

In column LNS the average results of LNS over 10 runs with random seeds are presented.
The results of the algorithms of the competition and those by Abdullah et al. (2012) are
averages over 10 runs too, while Abdullah and Turabieh (2012) apply 11 runs and Bellio
et al. (2016) use 31 runs. Italicized values indicate that the corresponding algorithm performs
best compared to the other ones on the respective instance. LNS with predefined selection
probabilities is superior to the other approaches on twelve instances and clearly outperforms
the best algorithms of the ITC-2007.

Our results for the instance setsDDS,EasyAcademy and Udine are presented in Table 6
and are compared solely with the results by Bellio et al. (2016), since few authors have pub-
lished solutions for these instance sets yet. For this purpose, we retained the parameter setting
and the operator selection probabilities resulting from the tuning on the comp instances. The
column LNS avg. refers to the average outcome over ten runs, while LNS best presents the best
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Table 6 Results for the new instances

Instance LNS avg.a Belliob Best knownc LNS bestd

DDS1 120.60 110.26 48 106

DDS2 0.00 0.00 0 0

DDS3 0.00 0.00 0 0

DDS4 36.00 21.13 17 27

DDS5 0.00 0.00 0 0

DDS6 7.10 9.87 0 4

DDS7 0.00 0.00 0 0

EasyAcademy01 65.00 65.26 65 65

EasyAcademy02 0.00 0.06 0 0

EasyAcademy03 3.00 2.06 2 2

EasyAcademy04 0.00 0.35 0 0

EasyAcademy05 0.00 0.00 0 0

EasyAcademy06 5.00 5.13 5 5

EasyAcademy07 0.60 0.48 0 0

EasyAcademy08 0.00 0.00 0 0

EasyAcademy09 6.30 5.16 4 4

EasyAcademy10 0.00 0.03 0 0

EasyAcademy11 0.00 2.90 0 0

EasyAcademy12 4.00 4.03 4 4

Udine1 11.10 13.29 0 7

Udine2 19.60 19.26 8 16

Udine3 7.70 8.52 0 4

Udine4 65.40 66.16 64 64

Udine5 1.60 3.13 0 0

Udine6 0.20 0.35 0 0

Udine7 1.40 2.03 0 0

Udine8 38.60 39.26 31 34

Udine9 26.90 29.84 21 23

a Our approach, LNS with predefined operator selection probabilities
b Simulated annealing, Bellio et al. (2016)
c http://satt.diegm.uniud.it/ctt/ (accessed: 2015-07-01)
d Our approach, best result out of ten runs

result out of these runs. In column Best known the best known solutions for these instances
are shown, where bold numbers indicate proven optimality.

Bellio et al. (2016) propose another set of instances, called Erlangen, which differ
significantly from the other instance sets, particularly in their huge problem size. These
instances cannot be solved well by our ALNS without retuning.

4.4 Statistics

Statistics about the intermediate solutions for the comp instances generated by ALNS are
presented in Table 7. The numbers correspond to averages over 10 runs. The column It. refers
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Table 7 Statistics about the intermediate solutions

Inst. It. Found
(%)

Inf.
(%)

Accept
(%)

2-stage
(%)

Greedy
(%)

Regret
(%)

Reh.

comp01 834,756 52.51 6.00 19.54 1.87 11.53 7.53 7.6

comp02 464,612 79.31 29.92 45.00 26.99 33.34 27.72 2.0

comp03 490,198 69.04 25.17 41.04 22.61 28.49 22.95 2.5

comp04 419,385 73.06 1.69 42.27 1.36 2.25 1.02 1.7

comp05 607,746 63.19 52.59 47.17 48.13 60.21 49.38 4.9

comp06 385,357 76.33 9.54 36.51 8.80 11.42 7.42 0.9

comp07 288,897 75.42 11.24 36.80 9.58 13.88 8.73 0.7

comp08 351,494 74.37 1.69 44.99 1.69 1.78 1.52 1.3

comp09 419,126 66.99 18.03 42.62 13.41 21.90 16.59 2.1

comp10 313,288 78.71 9.46 42.98 11.88 10.08 7.12 0.7

comp11 222,627 21.01 0.00 0.00 0.00 0.00 0.00 2.1

comp12 425,798 69.81 38.63 43.17 34.09 44.20 38.11 1.9

comp13 400,009 72.77 2.35 45.32 1.85 2.83 1.94 1.5

comp14 393,265 74.40 13.11 45.74 12.80 14.48 11.06 1.5

comp15 485,042 74.32 25.17 40.39 22.35 28.66 22.83 2.4

comp16 334,376 85.09 14.32 42.36 15.03 16.14 10.86 0.8

comp17 382,248 71.13 14.82 47.02 14.77 15.91 13.22 1.1

comp18 620,209 52.33 2.60 43.65 1.40 3.89 2.45 5.2

comp19 491,659 72.35 23.93 37.02 18.66 29.41 22.58 2.3

comp20 301,414 77.41 15.84 37.88 18.92 16.47 12.87 0.6

comp21 354,564 79.27 20.56 44.76 21.79 21.44 18.20 0.9

to the number of iterations executed within the time limit. Found shows the iteration, when
the best solution was found as percentage of the total number of iterations. Inf. indicates the
percentage of generated infeasible solutions. In Accept the number of accepted infeasible
solutions is given as a percentage of all infeasible solutions. 2-stage, Greedy and Regret
correspond to the percentage of infeasible solutions generated by 2-stage repair operators,
greedy heuristics and regret heuristics, respectively, with regard to the total number of solu-
tions produced by the respective group of operators. It is interesting to see that apparently the
greedy repair operators tend to generate infeasible solutions more frequently than the other
operators. Finally, Reh. shows the number of temperature reheats.

4.5 Statistical tests

In order to test the statistical significance of the obtained solutions for the comp instances,
we conducted Friedman’s test, where we compared our approach with the other algorithms
mentioned in Table 5. The test uses the average results for each instance and yields a p value
of 6.9 × 10−9 indicating that the results differ significantly for a critical level of α = 0.05.
Following Derrac et al. (2011), we then performed a post-hoc analysis by computing adjusted
p-values for the Friedman test with Holm’s and Hochberg’s procedures. LNS is considered
as control method being compared to all other algorithms. The average ranks and adjusted p
values (Friedman) are stated in Tables 8 and 9, respectively, whereas the same abbreviations
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Table 8 Average ranks Algorithm Avg. ranks

LNS 1.5476

Abd.&T. 2.0238

Bellio 3.3571

Müler 4.4048

Abd.et al 4.5476

Lü&Hao 5.1190

Table 9 p values Algorithm Unadjusted Holm Hochberg

Lü&Hao 6.18 × 10−10 3.09 × 10−9 3.09 × 10−9

Abd.et al 2.03 × 10−7 8.14 × 10−7 8.14 × 10−7

Müller 7.47 × 10−7 2.24 × 10−6 2.24 × 10−6

Bellio 0.00172 0.00345 0.00345

Abd.&T. 0.4095 0.4095 0.4095

for the authors are used as in Table 5. The results indicate that there is a significant difference
between LNS and most of the other algorithms (α = 0.05), except for the one by Abdullah
and Turabieh (2012).

5 Sensitivity analysis

Computational results underlying the analysis presented in this section have been computed
on the Vienna Scientific Cluster. Therefore, an iteration limit has been used as termination
criterion, computed for each instance as an average over five runs with the given time limit.
Since ALNS incorporates randomization, the actual computation time of a single run might
deviate from the requested time limit. The results are based on the comp instances with ten
runs per instance. Unless stated otherwise, the same parameter values have been used as for
the original version.

5.1 Contribution of the different operators

Operator statistics are listed in Table 10 indicating which operators are essential for a good
performance of ALNS. The column Selection presents the average selection frequencies of
the operators in percent. Deter. shows the average deterioration of the solution quality, given
that the respective operator is removed while keeping all other operators and using the same
iteration limit as for the original algorithm.

Apparently, all operators are useful as omitting them gives worse results, on average.With
regard to the destroy operators isolation and capacity and random period contribute themost.
2-stage best and regret are the most important repair operators. The selection rate of regret
may be reduced due to its high computational effort. The room assignment procedures and
the priority rules perform similarly.
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Table 10 Operator statistics Operator Selection % Deter. %

Random 15.19 0.40

Rand. penalty 12.21 0.60

Rand. period 13.33 1.30

Curriculum 2.75 0.87

Teacher 5.75 0.19

Worst 6.13 0.27

Related 9.86 0.77

Iso. and cap. 15.56 2.23

Spread and stab. 7.09 1.02

Room day 12.14 0.47

2-Stage best 22.44 4.68

2-Stage mean 1.53 1.08

Greedy 39.87 1.84

Regret 25.32 2.55

2-Stage best n. 4.69 0.54

2-Stage mean n. 0.84 0.78

Greedy noise 3.18 0.90

Regret noise 2.13 0.23

Greatest 14.64 0.64

Match 14.86 0.86

SD 10.65 0.73

LD 10.82 1.05

Random order 8.03 0.86

5.2 Effect of decreasing the destroy limit

Figure 1 shows the effects of destroying different numbers of lectures with regard to accepted
solutions and new best solutions. The histograms are based on ALNS without reheating and
without decreasing the destroy limit applied to comp06. Similar patterns can be observed for
other instances, though. The x-axis of each plot refers to the value that is passed to the destroy
operator as the requested number of removals. The y-axis indicates either the average number
of accepted solutions or the average number of new best solutions resulting from repairing a
partial solution with the respective number of removals. The search is split into segments of
one third of the total number of iterations. Histograms are plotted for each segment.

While ALNS approaches in the literature typically keep the destroy limit constant, Fig. 1
gives a clear indication that this is not the best choice. Indeed, the figures show that it is
rather unlikely that removing a large number of lectures will lead to a new best solution
immediately. Moreover, these solutions are barely accepted in later stages of the search.
Therefore, destroying a large number of lectures cannot contribute much to the solution
quality as the search proceeds. In addition, repairing partial solutions with many unscheduled
lectures is relatively costly in terms of computational effort. Consequently, the destroy limit
is reduced over iterations.
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Fig. 1 Benefit of different destroy limits, comp06. a accepted solutions in first third, b accepted solutions in
second third, c accepted solutions in last third, d new best solutions in first third, e new best solutions in first
third, f new best solutions in first third

Table 11 presents the effect of omitting features on the performance. Column Deteriora-
tion shows the deviation of the modified algorithm from ALNS. Since these modifications
typically affect the computational effort, the iteration limits have been adjusted. The last
two lines of the table refer to the algorithm with uniformly distributed operator selection
probabilities, i.e., without the adjustment scheme.

The feature of reheating the temperature turns out to be extremely useful. Contrary to
Ropke and Pisinger (2006), we find that adding noise to the evaluation function does not seem
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Table 11 Sensitivity analysis
w.r.t. particular features,
compared to ALNS

Modification Deterioration (%)

ALNS without noise operators 0.22

ALNS without extra penalty for MinWorkingDays 0.68

ALNS without decreasing the destroy limit 2.24

ALNS without decrease, adjusted destroy limit 0.30

ALNS without temperature reheats 2.28

ALNS without accepting infeasible solutions 0.65

Uniform operator selection 2.42

Uniform operator selection, without
noise operators

−0.26

to be very crucial for the performance of ALNS. Even without the use of any noise operator,
there is only a slight deterioration observable. This indicates that the different operators lead
to a sufficient diversification even without employing additional perturbation. It is interesting
to see, that by discarding the weak performing noise operators, the version with uniformly
distributed operator selection probabilities performs even slightly better than ALNS. This
can be explained by the gain resulting from the extra iterations due to the removal of the
adaptive mechanism. In case all parameter values are kept, decreasing the destroy limit has
a strong effect on the performance. Fixing the destroy limit requires a reduced destroy limit
compared to the original setting, though. ALNS with a fixed and adjusted destroy limit still
performs worse than the original version. Apparently, omitting any feature of the algorithm
will lead to a deterioration. However, when it comes to implementation in practice, some
operators or features may be dropped without a significant loss in quality, in order to make
the approach less complex.

6 Conclusion

This paper presented an adaptive large neighborhood search approach for solving the
curriculum-based course timetabling problem. Implemented features include a reduction of
the destroy limit over iterations, reheating the temperature of the simulated annealing accep-
tance scheme, allowing infeasible solutions, and taking the computation times of the repair
operators into account when adjusting their selection probabilities. The algorithm incorpo-
rates several destroy and repair operators, including problem-specific operators that tackle the
structure of timetabling problems. The performance of the algorithm was slightly enhanced
by encouraging the spread over days in the evaluation function of the potential insertion posi-
tions of the lectures. Surprisingly, adding perturbation to the evaluation of potential insertion
positions did not improve the performance significantly. The proposed approach generated
competitive results for the benchmark instances of the second international timetabling com-
petition. In particular, it outperformed the best algorithms of the competition.Newbest known
solutions were found for five instances.
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