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Abstract Due to increasing container traffic and mega-ships, many seaports face challenges
of huge amounts of truck arrivals and congestion problem at terminal gates, which affect
port efficiency and generate serious air pollution. To solve this congestion problem, we
propose a solution of managing truck arrivals with time windows based on the truck-vessel
service relationship, specifically trucks delivering containers for the same vessel share one
common time window. Time windows can be optimized with different strategies. In this paper,
we first propose a framework for installing this solution in a terminal system, and second
develop an optimization model for scaling time windows with three alternative strategies:
namely fixed ending-point strategy (FEP), variable end-point strategy and greedy algorithm
strategy. Third, to compare the strategies in terms of effectiveness, numerical experiments
are conducted based on real data. The result shows that (1) good planning coordination is
essential for the proposed method; and (2) FEP is found to be a better strategy than the other
two.

Keywords Container terminal operations - Gate congestion - Truck arrivals -
Time window - Optimization
1 Introduction

Due to the increasing container traffic and the introduction of mega-ships, congestion
becomes a big problem in many seaports, including truck congestion at terminal gate. The
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obvious reason is truck arrivals exceeding the gate capacity during peak hours. The gate
capacity (also depending on yard operation efficiency) is relatively stable when resources
and facilities are given. Even extending gate-opening hours is not possible in many seaports,
e.g. seaports in Asia already open for 24 x 7 h through the whole year. Therefore, it is essential
to search for solution on the demand side. Conventionally, terminals place no constraint on
arrival time, so a truck can schedule its arrival as preferred. With an effective and reliable
method, it can be beneficial to control the arrival fluctuation. Different control methods have
been developed and deployed in practice, e.g. terminal appointment system (TAS) (Morais
and Lord 2006) and Toll/tariff policy (Chen et al. 2011). This study addresses on the method
called vessel-dependent time windows (VDTWs).

The VDTWs method was originally used in some congested container terminals in China,
where the storage space is insufficient to meet the high throughput. The solution was to assign
time windows for outbound container deliveries: the truckers delivering outbound containers
for a same vessel have to follow a specific time window of arrivals, which is appointed by
the terminal operator. This solution can avoid trucks coming when storage space is fully
occupied. As a side effect, truckers’ behavior gets influenced and forms an arrivals pattern
that, the distribution of arrivals follows a Beta distribution within the time window (Yang
et al. 2010). This arrival pattern makes VDTWs method capable of reducing gate congestion,
hence we develop it into an arrival-management method for such a purpose. The economic
feasibility of this proposed management method is addressed in a previous study (Chen and
Yang 2010), but its practical application has not been systematically discussed. In this study
we try to fill this gap, aiming to answer questions incl. how VDTWs method can fit into
a terminal operation system and what strategies can maximize its effectiveness in reducing
congestion?

This paper is organized as follows. The literature review on gate congestion and man-
agement of truck arrival demand at maritime container terminals is discussed in Sect. 2.
Section 3 presents the three optimization strategies, i.e. fixed ending-point strategy (FEP),
variable ending-point strategy (VEP) and greedy algorithm strategy (GRA). For each strat-
egy, we develop an optimization model to minimize the total cost, incl. the cost of waiting
time and fuel consumption, the cost of containerized cargo storage time and yard fee and
the penalty of insufficient yard space. These optimization models are solved with Genetic
Algorithm based solution heuristics, which are presented in Sect. 4. Computational exper-
iments and analysis, as well as the results of numerical experiments are showed in Sect. 5.
Conclusions and further directions are presented in Sect. 6.

The main contribution of this study is to develop the VDTWs method as an effective
solution for customer arrival management in the context of container terminal operations.
The VDTWs solution can be used not only to alleviate congestion and air pollution, but also to
enhance the planning collaboration between seaside and landside operations in a seaport. This
solution is especially useful when a container terminal faces challenge of limited capacity
and has difficulties in promptly expanding its capacity. Due to time-consuming construction
of port facilities and the continuously increasing container transportation volume, many
container terminals can benefit from such a customer arrival management solution.

2 Literature review
During the last several years, a growing number of studies on gate congestion at maritime

container terminals have been conducted. Most of them focus on the management of truck
arrival demand. One of the major solutions of managing truck arrivals is terminal appointment
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system (TAS), which has received many research efforts. In a TAS system, the terminal
operator announces opening hours and entry quota within each hour through a proprietary
web-based information system, where truckers can choose an entry hour as they prefer. This
TAS system was firstly proposed by the Californian local government as a means to reduce air
pollution generated by heavy-duty truck engines. It was expected to save a significant number
of truck-hours by spreading out the demand throughout a whole day (Huynh 2005). Huynh
and Walton (2008) analyzed the effectiveness of this system on improving the efficiencies of
both terminals and trucks, and developed a methodology to determine the optimal number
of trucks the terminal can accept per time window. An improved concept of cooperative time
window system is proposed by Ioannou et al. (2006) that terminal operators and trucking
companies could communicate to generate an optimum time windows taking into account the
objectives and constraints of both sides. Regarding the performance of this system, points
of view in literature seem mixed, for example Giulianoa and O’Brienb (2007) found that
‘there is no evidence to suggest that the appointment system reduced queueing at terminal
gates and hence heavy diesel truck emissions’, and quite oppositely, successful experience
with appointment systems in Port of Vancouver has been reported (Morais and Lord 2006).
In order to further develop the terminal appointment system, Zehendner and Feillet (2014)
developed models for integrating the system with the allocation of straddle carriers, which
can increase not only the service quality of trucks, but also of trains, barges and vessels. Phan
and Kim (2015) focused on the process of negotiating truck arrival times among trucking
companies and a container terminal, and proposed a decentralized decision-making model to
support this negotiation considering the inconvenience of trucks from changing their arrival
times and the waiting cost of trucks in peak hours.

Another approach for managing truck arrivals studied in the literature is the VDTWs
method, which has been used at some container terminals in China. Its original purpose
was to facilitate the operations inside terminals, enabling terminal operators to organize
their production with as few interruptions of unplanned truck visits as possible. Yang et al.
(2010) found that the distribution of truck arrivals with outbound containers follows a Beta
distribution within a time window, which enables a prediction of truck arrivals given a vessel-
calling schedule and a corresponding set of time windows. This finding sets up the foundation
of managing truck arrivals by optimizing time windows. Chen and Yang (2010) developed
a heuristic algorithm to find a near optimal time window assignment that can minimize
the total cost of gate congestion. But some practical constraints were not included in their
research, such as yard capacity and the impact of vessel delays. Besides, the proposed heuristic
algorithm was not efficient enough for solving a real case problem and therefore needs
improvement.

Toll charge can also be used for managing truck traffic in a port area. A time-of-day
pricing is implemented by the Port Authority of New York and New Jersey. Ozbay et al.
(2006) examined whether spreading weekday peak period traffic to the hours just before
or after the peak toll rates might be successful for both cars and trucks. Chen et al. (2011)
proposed a two-phase model to search for a desirable pattern of time varying tolls that can
lead to optimal truck arrival pattern; the solution approach they use is to combine a fluid-based
queueing model and a toll-pricing model.

Besides the above research on solutions of managing truck arrivals, there are some studies
focusing on the supply aspect of gate capacity. A gate capacity depends on not only gate
facilities (such as lanes and clerks), but also the utilization of yard cranes. Sometimes the
bottleneck is at the yard, i.e. long waiting time for a yard crane to load the container (Huynh
2009). Huynh et al. (2004) developed a simulation model of container terminal yard operation
to analyze truck turn time with respect to crane availability and deployment, which is applied
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to find the number of yard cranes needed to achieve a desired truck turn time. Guan and
Liu (2009) used a multi-server queueing model to analyze maritime container terminal gate
congestion and developed an optimization model to find the needed lanes for different truck
arrival levels. Guan and Liu (2009) also stated that in practice the optimization of gate capacity
is not always feasible because the land may not always be available, so optimization methods
on the demand side could be more viable.

Lastly, the concept of time window optimization is also related to this paper. Time window
has for many years been introduced into the transport research field, however in most cases
it is considered as a constraint rather than a variable. Many studies focus on scheduling
problems with time window constraint, e.g. transit network scheduling (Mesa et al. 2014),
dock assignment problem (Berghman et al. 2014), airline scheduling problem (Erdmann et al.
2001), liner shipping scheduling (Boros et al. 2008) and vehicle routing problem as well
(Potvin and Rousseau 1993; Desaulniers et al. 1998). To the best of the authors’ knowledge,
very few studies have used time windows as a tool of managing traffic demand, Chen and
Yang (2010) is one of them.

3 The models

In this section, we propose a framework to install VDTW in a terminal operation system,
and then develop an optimization model for each time window strategy. These optimization
models share the same mathematic basics and variables, but differ slightly in either objective
function or constraints.

3.1 The VDTWs framework

The general framework for assigning vessel-dependent time windows for outbound container
entries can be described in Fig. 1. When a terminal operator receives an arrival announcement
from an arriving vessel, a time window for the corresponding export/outbound container
deliveries is considered. The starting point depends on the availability of yard capacity, and
if there is not enough yard space it has to be postponed. The ending point usually depends
on the estimated arrival time (ETA) of the vessel.

Given a set of time windows, one can predict truck arrivals in any time step using the
method developed by Yang et al. (2010), which first calculates the probability of a truck
arriving during a specific time step based on the Beta distribution, and then multiplies it with
the total number of trucks to get an estimation of the level of truck arrivals. Next step is to
estimate the congestion level based on the predicted truck arrivals using a queueing model. If
the congestion is serious, the time windows should be modified, and hence the truck arrival
prediction should also be updated; if the congestion is not serious, the terminal operator will
likely implement this time window plan. After all handling operations are finished and the
vessel departs, the occupied yard space will be released. During the whole process, there
is a risk that the vessel comes later than its ETA. If this happens, the related truck entries
operation will not be influenced but yard space will be occupied for longer time, which may
trigger adjustment of time windows for the following vessels.

In this study, we propose three strategies for optimizing time windows. First is the GRA
strategy, which aims to maximize the sum of time window lengths, based on the main con-
straint of the yard capacity. The basic idea of this strategy has been applied in some terminals,
where the operators believe that long time windows can increase truckers’ satisfaction and
reduce congestion. In this study, we will test this understanding in numerical experiments.
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Fig. 1 The framework of optimizing vessel-dependent time windows

The other strategies are FEP and VEP, and the difference between them is whether fixing the
ending-point of a time window to the corresponding vessel ETA or not. If not, it is called VEP
strategy, which has relatively higher variability and better ability to manage truck arrivals;
on the other hand, VEP has a risk of too early ending points, which means long container
storage time and low system efficiency. The FEP strategy keeps the ending-point fixed at
the ETA, therefore is relatively simpler and easier to apply. Its effectiveness for reducing
gate congestion is to be estimated and compared with the VEP strategy in the numerical
experiments.

3.2 The optimization models

In this section, we propose an optimization model for each time window strategy. In most liner
shipping markets, container lines provide weekly service; so a container terminal normally
would have the same vessel-calling schedule for every week. To cope with this characteristic,
we use a rolling horizon of one week in the following mathematical formulation.

Sets and Indices

i1,...,1I vessel index;
t 1,..., T time step.
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Parameters

ETA; the estimated arrival time of vessel i;

ETD; the estimated departure time of vessel i;

the volume of export/outbound containers to be loaded onto vessel i;
the gate processing rate ( vehicles/hour);

the unit value of waiting time per truck per hour;

the unit cost of fuel consumption per truck per hour;

YF the hourly yard fee per container;

\7e the average value of one container cargo;

rhour  the hourly interest rate;

Y the total yard storage capacity.

=R

Derived variables

ie the total cost;
WFC;; the cost of truck waiting and fuel consumption in time step ¢ of vessel i;
SYC;;  the yard fee and the storage time cost of cargos in time step ¢ for vessel i;

YC; the penalty for the insufficient yard space in time step ;
a;; the number of truck arrivals for vessel i in time step ¢;
af ; the number of reallocated truck arrivals for vessel i in time step #;
q: the queue length in time step ¢ (measured with the number of queueing vehicles );
w; the average waiting time of the trucks arriving in time step ¢ (hour);
Sit the average storage time of the containers arriving in time ¢ for vessel i (hour);
S the value of the storage time per TEU cargo per hour;
Vi the occupied yard space in time step ¢;
L; the length of time window i;
1 if ship i departs at time step ¢, i.e.ETD; =t
TD;; .

0 otherwise

Decision variables

1 if the starting-point of time window i is at time step ¢ _
0 otherwise ’
1 if the ending-point of time window i is at time step ¢

0 otherwise '

TS[[

TE;;

3.2.1 GRA strategy model

The objective of GRA strategy is to maximize the sum of the length of all time windows,
as defined in Eq. 1 that time window length is measured with L; = >, ¢ (TEj; — TS;;).
Equation 2 ensures that the occupied yard space should not exceed the total storage capacity
in the terminal in any time step. The occupied yard space is calculated in the way that: a
yard space of size V; will be reserved for vessel i when its time window starts (at time ¢
that has TS;; = 1), and released when the vessel departs (at time ¢ that has 7D;, = 1).
Equations 3-5 are the constraints for time window setting, which are formed based on the
practical experience. Equation 3 indicates that the starting point of every time window should
not be earlier than the corresponding ETA in the previous week, considering the weekly
rolling schedule. Equation 4 indicates that the starting point of every time window should
be at least 6 h earlier than the ending point, which is the minimal length of time window in
practice. Equation 5 ensures the ending point of every time window being no later than the
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corresponding estimated vessel arrival time, and its earliest possible value is two days before

the ETA.

max 3, 1= 3, 3 T < T50) o

Subject to
Viet+ D Vi (TSi = TDy) <Y Vi @
ETA; —24 x 7 < zr t % TSy Vi 3)
Li>6 Vi )
ETA; —48 < > t* TE; < ETA; Vi )

t

Zt TE; =1 Vi (6)
> TS =1 Vi )

3.2.2 FEP and VEP strategy models

Different from GRA strategy, FEP and VEP strategies aim to minimize the total opera-
tional cost of export/outbound container delivery system, which includes the time cost of
truck/driver waiting at a terminal gate, fuel consumption of engine idling, storage time of
the containerized cargos, yard fee for container storage and the penalty for insufficient yard
space, as shown in Eq. 8. For the VEP strategy, the constraints are modeled in Eqs. 9-13 and
Eqgs. 15-24. The constraints in Eqs. 9-13 are exactly the same as in Eqs. 3-7.

min TC = zi Z, (WFCj; + SYCj;) + zt YC, ®)
Subject to

ETA; —24 x 7 < Z, t TS Vi 9)
Li>6 Vi (10)
ETA; — 48 < Z t * TE;, < ETA; Vi a1

1
Zt TE; =1 Vi (12)
Zt TS;; =1 Vi (13)

The model for FEP strategy has a minor difference from the VEP model: the ending point of
each time window is fixed to the corresponding ETA, as shown in Eq. 14. So the FEP model
is same to the VEP model, except Eq. 11, which should be replaced with Eq. 14.

1 whent =ETA; .
TEi = [ 0 whenr # ETA; " (14)
The cost of waiting time and fuel consumption For each time step ¢ and vessel i, the truck
arrivals can be estimated with Eq. 15, where a;; is positive only when the time step ¢ is
within the time window i, otherwise a;; is 0. The parameters of the Beta distribution are
obtained from the previous study (Yang et al. 2010). As above mentioned, it is assumed that
a terminal has the same vessels calling each week. So for the vessel operation in the current
week, if any workload is allocated to the former or the next week, then the same workload
will be allocated back from the next or the former week. Therefore, truck arrivals should be
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updated with Eq. 16, to include this weekly rolling schedule condition. Given a constant gate
progressing rate, queue length can be calculated with Eq. 17. It is noted that, this queueing
calculation is handled in a deterministic way rather than a stochastic way. This is because the
classical stochastic queueing models, e.g. M/G/s, are not the best option for studying terminal
gate operations. Classical stochastic queueing models are based on the assumption of steady
state, but in a terminal system the peak hours are usually too short to reach the steady state.
So using stochastic queueing models may result in significant overestimation of queueing
length for those peak hours (Chen and Yang 2014). Comparatively, slight underestimation
of this deterministic queueing model is less risky. So we choose the deterministic queueing
model for this study.

otz

@i = Vi, x % where c:%, ifte [ leTk *TSik-‘rl,ZleTk * TE,-k] Vi, Vi
0 others
(15)
aj, = air + ai424x7) + Ai—24x7) Vi, Vi (16)
g =max (g1 + > o, — 0. 0) Vi a7
wr = (qr +¢qr-1) /2Q Vi (18)
WFCiy = (W + F) x w; x al, ViVt (19)

When the queue length is known, the waiting time of a truck can be estimated by the number
of trucks in front of it and the gate progressing rate, as shown in Eq. 18. Equation 19 calculates
the cost of waiting time and fuel consumption of the trucks that arrived in time step ¢ for
vessel i.

The cost of containerized cargo storage time and yard fee All export/outbound containers
are stored in the terminal before being loaded to the vessel, so the average storage time for
the containers that arrived in time step ¢ for vessel i can be estimated with Eq. 20. Then,
the cost of containerized cargo storage time and yard fee can be calculated with Eq. 22. It is
noted that the storage cost reduced in this optimization model (if any) is not necessarily the
realized cost reduction. This is because in reality, cargos are usually produced according to
production plan rather than logistics constraint, so if the terminal does not allow the cargo
coming into its yard, the cargo owner has to find a place to store it temporarily before the
gate opens. But this cost reduction can give an indication of the potential cost saving in this
aspect.

sit = ETA; —t —w, Vi, Vt (20)
S = VC X rpour 21
SYCi; = (S + YF) X sy x aj, Vi, Vi (22)

The cost of insufficient yard space Occupied yard space is calculated in Eq. 23, in the same
way as in Eq. 2. If the yard space is not available in a specific time step, an operation halt
will happen and all the trucks have to wait at the terminal gate until some storage space is
released. In order to reduce this kind of operation halt, we add a penalty function (Eq. 24)
into the model, to avoid infeasible solutions during the calculation.
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Y=y + ) Vi (TSi = TDip) ¥t (23)
999,999 when y, > Y
YG = ‘O when <Y vi 24

4 Solution heuristics

The above optimization model is nonlinear based on the discrete independent variables,
therefore is a NP-hard problem. NP-hard problems are usually solved with evolutionary based
algorithms. Evolutionary algorithms (EAs) are search methods inspired from natural selection
and survival of the fittest in the biological world. Among the different EA options, GA is easy
to implement and has been widely used to solve inherently intractable problems especially
scheduling problems (Gen and Cheng 1997; Jones et al. 2002). GAs have the advantage of
flexibility imposing no requirement for a problem to be formulated in a particular way, or
that the objective function is differentiable, continuous, linear, separable, or of any particular
data-type. Thus, they can be applied to any problem (e.g. single or multi-objective, single or
multi-level, linear or non-linear) for which there is a way to encode and compute the quality
of a solution. GA-based heuristics suffer from two main weaknesses (encountered by all
(meta) heuristics): (a) there are no optimality guarantees, and (b) there is no formal selection
of a search direction that guarantees global optimality. Considering the GA advantages (and
common disadvantages), we propose a GA-based heuristic to solve the optimization models
presented in Sect. 3.2. The GA-based heuristic is described in the rest of this section.
In this study, the GA is conducted with the following steps:

Step 1: A population of M individuals (solutions) is initialized by randomly selecting start
points and end points consistent with the constraint of Eqs. 3-5. These constraints
are considered here in order to make sure every solution is feasible.

Step 2: Evaluating the fitness value of each individual so as to give higher probability to better
solutions to contribute to next generations. The fitness value of each individual can
be computed as follows, where F' (xi) is the fitness value and Z (xi) is the objective
value of individual x.

M
Z .
F (xp) = M (25)
Z (xp)
Step 3: Selecting two parent solutions for reproduction by the roulette wheel selection

method.

Step 4: Putting both of the parent solutions into the mutation operation, where each bit of
them could be mutated. In order to get a reduced searching space, the mutation
operation in this research has the following features:

(a) Time windows that are near to a peak traffic time are given a high probability to
mutate, while the other time windows are given a low probability.

(b) For any time window, if chosen to mutate, both the start and end points can move
forwards or backwards up to 48h with uniform distribution. Of course, their move-
ments must be under the constraint of Eqs. 3-5, so that the new solutions will be
feasible.

(c) In order to reduce bad solutions generated in the mutation operation, a directional
function is developed to guide the movement of start points. The principle is that a
start point’s moving direction, forward or backward, depends on the available gate
capacities on both sides. A start point is always more likely to move towards the
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side with higher gate capacity. For any start point, the possibility of a forward (or
backward) movement, Dl.f (or lel), can be calculated with Eq. 26 (or Eq. 27), where
g 1s the available gate capacity of time step .

SE=T kTSt
2 K=T sy —a8 S
_ k=1 K*¥19jk

¢
D! = 2
l zzﬁj k«TSix+48 (26)
E=T sy —a8 81
p’=1-D/ vi 27

g = maX(Q — 1 — D, 0) Vi (28)
i

Step 5: Then both the parent solutions are sent into a crossover operator. In this study, we
try three different crossover methods: one-point crossover, two-point crossover and
uniform crossover. These three methods will be compared with each other in the
experiment analysis.

(a) One-point crossover: a point p € {1,..., N} is randomly generated, and then a
child solution will consist of the first p genes taken from the first parent, the rest
(N — p) genes taken from the second parent. The other child solution will consist of
the remaining genes.

(b) Two crossover: points p € {I,...,N —1}andgq € {p + 1,..., N} are randomly
generated, then a child solution will consist of the first p genes taken from the first
parent, the next (¢ — p) genes taken from the second parent, and the remaining
(N — g) genes taken from the first parent, or vice-versa.

(¢) Uniform crossover: for each bit in a child solution, a random number is generation
from uniform distribution: if it is smaller than 0.5, the corresponding gene from the
first parent is taken into the child solution, otherwise the corresponding gene from the
second parent will be taken. By doing so, approximately half of the genes from first
parent and the other half from second parent. After the child solution is completed,
the remaining genes will compose another child solution.

Step 6: Evaluating the child solutions and determining the new generation from all child and
parent solutions by elitism strategy, which allows the M best solutions to survive
and copies them into the next generation.

Step 7: Repeating steps 2—6 until the number of iteration reaches the pre-defined number.

5 Computational experiments and analysis

In this section, the proposed model and algorithm are applied in a real data test and a sce-
nario test. The real data comes from a Chinese maritime container terminal, which has big
throughput and serious road congestion as well. In a typical operation week, we collected
the complete data set from this terminal, incl. the weekly vessel-calling schedule, truck traf-
fic data, terminal system parameters and cost data. The vessel-calling schedule is shown in
Fig. 2: 14 vessels called the terminal during the week and generated 4798 truck trips. Some
other inputs are shown in Table 1.

The GA parameters are set to be 100 for population size, 1000 for iteration, 0.3 for
high mutation probability, and 0.05 for low mutation probability. The number of iteration
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Fig. 2 The vessel calling schedule. V; (rn) means that the vessel i generates n truck trips for delivering export
containers, and the numbers below the arrows are the vessels’ arrival times and departure times

Table 1 Input of the heuristic

Input Value

Yard space for export container storage 7500 TEU

Diesel idling fuel consumption 3.81/h

Price of fuel 6yuan/l

Time value of truck/driver waiting 40yuan/h

Average value of container cargo 184,000 yuan/TEU
The rate of interest 5 %lyear

The gate processing rate 40 vehicle/h

Yard tariff of export container 4yuan/TEU x day

is determined by trying some pilot calculations, in which it is observed that normally the
GA convergence is finalized at 200-300 generations, therefore 1000 iterations should be a
sufficient number. In general the GA takes 29s to complete the calculation of 1000 itera-
tions.

First, we select best crossover operator for GA from the one-point, two-point and uniform
operators, which have been introduced in step 5 of Sect. 4. These operators are run for 10
times and compared in terms of the objective value in Fig. 3. We can see that, for both
VEP and FEP strategies, two-point operator slightly outperforms the other two operators.
Therefore, we choose to use the two-point operator for the following experiment analysis.
Furthermore, Fig. 3 also shows the VEP strategy is a little more competitive than the FEP
strategy in minimizing the total cost.

Second, we present the results of different strategies. The near optimal solutions under
different strategies are shown in Fig. 4. Obviously, GRA strategy provides much longer time
windows than the other strategies.

In the rest of this section, we illustrate the comparison of these strategies, in terms of truck
arrivals, truck queue and required yard space. The comparison of truck arrivals is shown in
Fig. 5, where FEP and VEP strategies have almost the same distribution of truck arrivals,
but GRA strategy generates a very high arrival peak in the beginning of the week, which
substantially exceed the gate capacity. The consequence of this high arrival peak can be
observed in Fig. 6.

The curves in Fig. 6 show both truck queue lengths and the surpluses of gate capacity.
When a curve is above 0, it indicates the number of trucks waiting at the terminal gate
each hour; when a curve is below 0, it indicates the number of extra trucks that can be
accommodated in the hour, namely gate capacity surplus. We can see that both FEP and VEP
strategies have a surplus of gate capacity during most of the time. However, the congestion
under GRA strategy is quite serious as more than 200 trucks are waiting in queue at the
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Fig. 4 The optimized time windows under different strategies

gate at hour 36. This indicates, long time windows alone cannot prevent gate congestion,
and a good planning coordination technique is necessary for assigning a good time windows
plan.

Figure 7 shows the occupied yard space of each strategy. Where GRA strategy almost uses
up all yard space, FEP and VEP strategies save a significant percentage of the yard space.
Surplus of yard capacity is essential for the issue of vessel delay, which needs extra container
storage. In this test, keeping a yard capacity of 500 TEU free can help to deal with one 12-h
delayed vessel each day. The rest surplus of the yard space provides the terminal operator
with a large potential to increase the terminal throughput.
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Fig. 5 Modeled hourly truck arrivals under different strategies
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Fig. 6 Modeled hourly truck queue length and gate capacity residual under each strategy
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Fig. 7 Occupied yard space under different strategies

In brief, GRA strategy is not competitive because it can result in high utilization of yard
capacity and high total cost (nearly twice higher than the other two strategies). VEP strategy,
even though with more variability, does not perform significantly better than FEP strategy.

Additionally, in order to test the robustness of the strategies, six scenarios are created
based on the real data set. Specifically, the loading export/outbound container volume from
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Fig.8 Performances of the strategies in the scenario test. S(i) means scenario i. From S(1) to S(6), the loading
export container volume is increased/decreased by —20, —10, 10, 20, 30 and 40 % respectively. In diagram 3
and 4, the black lines show the ratio between GRA and FEP strategies

S(1) to S(6) is increased by —20, —10, 10, 20, 30 and 40 % respectively. In each diagram of
Fig. 8, the three strategies are compared in one aspect. First, by comparing S(1) and S(2) in
all the diagrams, we can see that when the loading volume is low, the GRA strategy seems
competitive, especially in terms of maximum queue length and average truck waiting time.
This can support the fact that GRA was applied successfully in practice. But we should be
aware that, when the loading volume increases, the performance of GRA strategy goes down
dramatically. Second, comparing FEP and VEP strategies in every scenario, we can see again
that FEP is almost as competitive as VEP. Therefore FEP strategy outperforms thanks to
its simplicity and effectiveness. Third, when we consider the robustness of FEP strategy,
it can be seen that even in S(5) with 30 % increased demand FEP still has an acceptable
performance, such as the maximum queue of 42 trucks, the average truck waiting time of
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22.9min and the yard capacity surplus of 1500 TEU. Therefore, time window optimization
under FEP strategy is capable to cope with a demand growth up to 30 % at the sample terminal.
To summarize, this VDTWs method can bring a big potential benefit to congested terminal
systems.

6 Conclusion

Due to the increasing container traffic and the introduction of mega-ships, landside gate
congestion has become a serious issue in many maritime container terminals. Most terminals
in Asia already provide 24 x 7h service, so no room is left for extending the gate opening
hours. One possible solution is to develop the vessel-dependent time windows as a method
of managing truck arrivals. This paper proposes a framework to implement this method and
three strategies to optimize time windows, namely FEP, VEP and GRA strategies. The result
of numerical experiments indicates that, (a) GRA strategy has a good performance in the
low loading volume scenarios, but is not a reliable choice when volume grows higher; (b)
the FEP and the VEP strategies have almost same effectiveness in various loading volume
scenarios, so the FEP strategies should be recommended due to its simplicity. There are some
implications from this study:

e Terminal gate congestion problem should be given sufficient emphasis by terminal opera-
tors. As the container volume continuously increases, gate congestion grows significantly
and generates more air pollution, which does not contribute to the greenness of port oper-
ations.

o To effectively manage gate congestion, it is necessary to adopt some solutions or methods
that match the nature of terminal operations. For controlling truck arrival distribution,
different options are available, including terminal appointment system, time-varying
toll charge and VDTWs. In general the VDTWs method can be applied in any ter-
minal, as long as all related parties would accept it. It is important to involve all parties
in this change management, as subjective opinions may also matter for a successful
implementation.

e Management of gate congestion should be addressed by careful assessment of its effec-
tiveness and reliability. A typical example is GRA strategy, which works well in a low
truck traffic condition, but not so well in high traffic condition.

e To assess a method of reducing gate congestion, understanding the pattern of truck arrival
behaviour is indispensable. This pattern should be identified from the characteristics of
local terminal operations, because truck traffic demand is generated by terminal opera-
tions.

There is a limitation in this study: the truck queueing phenomenon is modeled with fluid flow
approach, which neglects the stochastic nature of gate service system and therefore slightly
underestimates the queue length and waiting time. Queueing theory has been widely applied
in container terminal operation research, e.g. Dragovic et al. (2012) and Zrnic et al. (1999).
To improve the queueing estimation, recent developments in non-stationary queueing models
can be used in this study, for example the PSA method by Green and Kolesar (1991) and
PSFFA method by Wang et al. (1996).

There are some possibilities of future research, for example the planning collaboration
between sea- and landside operations in a congested container terminal. Most research
efforts have been spent on optimizing seaside operations, while the number of papers
focusing on trucks and trailers at container terminals is relatively limited. ‘Improved ter-
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minal performance cannot necessarily be obtained by solving isolated problems but by
an integration of various operations connected to each other’ (Stahlbock and Vof 2008,
pp-33). Therefore in order to achieve the overall utilization of a container terminal, how
to collaborate and integrate the seaside and landside operations becomes an important
question.
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