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Abstract We develop an interactive algorithm for biobjective integer programs that finds the
most preferred solution of a decision maker whose preferences are consistent with a quasi-
convex preference function to be minimized. During the algorithm, preference information is
elicited from the decision maker. Based on this preference information and the properties of
the underlying quasiconvex preference function, the algorithm reduces the search region and
converges to the most preferred solution progressively. Finding the most preferred solution
requires searching both supported and unsupported nondominated points, where the latter
is harder. We develop theory to further restrict the region where unsupported nondominated
points may lie. We demonstrate the algorithm on the generalized biobjective traveling sales-
person problem where there are multiple efficient edges between node pairs and show its
performance on a number of randomly generated instances.

Keywords Multiobjective decision making · Combinatorial optimization ·
Interactive method · Biobjective traveling salesperson problem

1 Introduction

In multiobjective problems nondominated points are of interest where each nondominated
point is better than any other feasible point in at least one objective. In practicalmultiobjective
integer programs, there are many nondominated points and finding all nondominated points
is computationally hard. Furthermore, the decision maker (DM) typically is not interested
in many of the nondominated points. Concentrating on the preferred regions is important in
such situations to reduce the computational burden.
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In the literature, there are different approaches that find the most preferred point of a DM.
One approach is to estimate the underlying preference function of the DM, which is unknown
to the DM and the analyst. However, estimating such a function that sufficiently represents
the DM’s preferences is problematic. Interactive approaches, on the other hand, aim to con-
verge to the most preferred point by progressively obtaining preference information from
a DM. There are many interactive approaches in the literature. Zionts (1981) developed an
interactive algorithm to choose between discrete alternatives for a DMwhose preferences are
consistent with a linear preference function. Korhonen et al. (1984) developed a version that
assumes a quasiconcave preference function and Köksalan and Sagala (1995) generalized
for any monotone preference function. Lokman et al. (2014) also considered a quasicon-
cave preference function but they addressed integer programs rather than choosing from an
available set of alternatives.

In this study, we develop an interactive algorithm for biobjective integer programs where
each objective is of minimization type. The algorithm finds the most preferred point of a DM
who is assumed to have an underlying quasiconvex preference function to be minimized.
Note that, this case is equivalent to maximizing a quasiconcave preference function (which is
more common in the literature) where all objectives are of maximization type. Tezcaner and
Köksalan (2011) developed an algorithm, BestSol, for biobjective integer programs to find
the most preferred point of a DM whose preferences are consistent with a linear preference
function. In this paper, we consider the more general case where the DM’s preferences are
consistent with a general quasiconvex function. These functions represent a wide spectrum
of preference structures including linear preference functions.

We demonstrate our algorithm on the generalized biobjective traveling salesperson prob-
lem (BOTSP). In this problem there are typically multiple efficient tours. Furthermore, the
generalized BOTSP is considered to have multiple efficient edges between each node pair.
The existence of these efficient edges lead to a separate combinatorial optimization problem:
the biobjective shortest path problem (BOSPP). A subset of these efficient edges appears in
the efficient tours.

We organize the paper as follows. We give some definitions in Sect. 2. We provide the
details of our interactive algorithm in Sect. 3 and discuss it on the generalized BOTSP in
Sect. 4. We demonstrate the algorithm on an example and present computational results on
randomly generated problems in Sect. 5. We make concluding remarks in Sect. 6.

2 Definitions

Before we present the problem in detail, we give some relevant definitions. These definitions
are adapted from Tezcaner and Köksalan (2011) and they will be used throughout the paper,
unless otherwise stated.

Let x = (x1, x2, . . . , xn) denote an integer-valued decision variable vector, X ⊂ Z
n the

feasible set, point z(x) = (z1(x), z2(x), . . . , z p(x)) the objective function vector correspond-
ing to the decision vector x, and Z = {z(x) : x ∈ X} ⊂ R

p the image of the feasible set in
objective space. Note that we refer to any vector in set X as a solution and its image in the
objective space Z as a point. We will refer to the most preferred (efficient) solution and the
most preferred (nondominated) point using the same distinction throughout the paper. We
assume, without loss of generality, that all objectives are to be minimized.

Definition 2.1 Apoint z(x) ∈ Z is said to be nondominated iff there does not exist z(x′) ∈ Z
such that z j (x′) ≤ z j (x) for j = 1, . . . , p and z j (x′) < z j (x) for at least one j . If there exists
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such a z j (x′), z j (x) is said to be dominated. The set of all nondominated points, ZND ⊂ Z ,

constitute the nondominated set.

Definition 2.2 If z(x) ∈ Z is nondominated, then x is said to be efficient, and if z(x) is
dominated, x is said to be inefficient. The set of all efficient solutions constitute the efficient
set.

Definition 2.3 A nondominated point z(x) ∈ ZND is a supported nondominated point iff
there exists a positive linear combination of objectives that is minimized by x. Otherwise,
z(x) is an unsupported nondominated point.

Definition 2.4 An extreme nondominated point is a supported nondominated point that has
the minimum possible value in at least one of the objectives.

From this point on, we will use the notation yi =
(
yi1, y

i
2, . . . , y

i
p

)
to denote vector

z(xi) = (z1(xi), z2(xi), . . . , z p(xi)) whenever we need to simplify the notation. Although
more than one x vector may correspond to the same y vector, we are only interested in one of
them since we operate in the objective space. Therefore, we assume that yi �= yj when i �= j
for the sake of further simplifying the notation.

Definition 2.5 Let T = {t |yt ∈ ZND} and yi ∈ ZND be a supported nondominated
point. Point yj ∈ Z , j �= i , is adjacent to yi iff there does not exist μt , λ ∈ R satisfying∑

t∈T,t �= j μt = 1, 0 ≤ μt ≤ 1, 0 < λ ≤ 1, and
∑

t∈T,t �= j μtyt ≤ λyj + (1 − λ)yi.

The above definition implies that adjacent nondominated points are supported nondomi-
nated points of the feasible solution space considered.

In a bicriteria problem, there are at most two nondominated points adjacent to a given
nondominated point (Ramesh et al. 1990).

Definition 2.6 Let
{
yi ∈ R

p, i = 1, . . . ,m
}
be a set of points. f : Rp → R is a quasiconvex

function if and only if f
(∑m

i=1 μiyi
) ≤ maxi

{
f (yi)

}
for μi ∈ R, i = 1, . . . ,m such that∑m

i=1 μi = 1, μi ≥ 0, i = 1, . . . ,m.

3 An interactive algorithm

As mentioned above, there are many nondominated points in multiobjective problems in
practice and it is neither practical nor necessary to generate all of them. In our interactive
approach, we aim to generate a small subset of the nondominated set while converging the
most preferred point. We select and provide the DM a pair of nondominated points and ask
for the preferred one. This procedure is repeated and the preferences of the DM lead our
search to the most preferred point of the DM.

We assume that the DM’s preferences are consistent with a quasiconvex preference func-
tion to be minimized. In the literature, quasiconcave preference functions (with objectives
to be maximized) are widely used. If all objectives are minimization type, the same theory
directly applies. We use Lemma 1 and Theorem 1 [adapted from Lemma 2 and Theorem 1
of Korhonen et al. (1984), respectively] to reduce the objective space corresponding to the
implied inferior regions based on the expressed preferences of the DM.
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Lemma 1 Consider a quasiconvex function f : R
p → R, and points yi ∈ R

p, i =
1, 2, . . . ,m.Let f

(
yk

)
> f

(
yi

)
, i �= k andY =

{
y|y = yk +

m∑
i=1;i �=k

μi (yk − yi), μi ≥ 0

}
.

If y ∈ Y, y �= yk then f (y) ≥ f (yk).

Proof The proof directly follows from the proof of Lemma 2 in Korhonen et al. (1984). 	

Theorem 1 Let f : R

p → R, be a nondecreasing quasiconvex function, yi ∈ R
p, i =

1, 2, . . . ,m, and y ∈ R
p be any point, and f

(
yk

)
> f

(
yi

)
, i �= k. If there is a feasible

solution to

yk +
m∑

i=1;i �=k

μi (yk − yi) ≤ y, μi ≥ 0, i = 1, . . . ,m,

then f (y) ≥ f
(
yk

)
.

Proof The proof directly follows from the proof of Theorem 1 in Korhonen et al. (1984). 	

Remark The set Y in Lemma 1 defines a cone. We will refer to the cone and the region
dominated by the cone as the cone-inferior region. If a DM’s preferences are consistent with
f , then any point y that is in the cone-inferior region is less preferred than yk according to
Theorem 1.

We present the following lemma to find the regions in the objective space that do not
contain any nondominated points using the information that two nondominated points are
adjacent.

Lemma 2 Let nondominated point yk be adjacent to a nondominated point yr, r �= k. Then,
there does not exist any yi, i �= k, r , that dominates some affine combination of yk and yr.

Proof Recall T = {
t |yt ∈ ZND

}
. For yr to be adjacent to yk, the following inequality does

not hold for any μt , λ ∈ R satisfying
∑

t∈T,t �=r μt = 1, 0 ≤ μt ≤ 1 and 0 < λ ≤ 1.
∑

t∈T,t �=r

μtyt ≤ λyr + (1 − λ)yk (1)

Or equivalently, ∑
t∈T,t �=r

μtyt − yk ≤ λ
(
yr − yk

)
(2)

Similarly, for yk to be adjacent to yr, the following inequality does not hold for any
μt , λ ∈ R satisfying

∑
t∈T,t �=k μt = 1, 0 ≤ μt ≤ 1 and 0 < λ ≤ 1.

∑
t∈T,t �=k

μtyt − yr ≤ λ
(
yk − yr

)
(3)

Suppose there exists a nondominated point yi dominating some affine combination of yk

and yr.

yi ≤ λryr + λkyk for some λk,λr ∈ R and λk + λr = 1. (4)

This inequality is equivalent to the following two inequalities.
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yi − yk ≤ λr

(
yr − yk

)
for some λr ∈ R. (5)

yi − yr ≤ λk

(
yk − yr

)
for some λk ∈ R. (6)

Setting μk = 1 − μi for μi > 0 and μt = 0 for t �= k, i in (2), we obtain the following
inequality.

yi − yk ≤ λ

μi

(
yr − yk

)
for 0 < λ,μi ≤ 1. (7)

Similarly, setting μr = 1 − μi for μi > 0 and μt = 0 for t �= r, i in (3), we obtain the
following inequality.

yi − yr ≤ λ

μi

(
yk − yr

)
for 0 < λ,μi ≤ 1. (8)

In (7) and (8), λ
μi

∈ R+ for 0 < λ,μi ≤ 1. λk or λr is positive to satisfy λk + λr = 1

in (4). If λr > 0, the inequality (5) becomes equivalent to (7) for λ
μi

= λr that contradicts

with yr being adjacent to yk. If λk > 0, the inequality (6) becomes equivalent to (8) for some
λ
μi

= λk that contradicts with yk being adjacent to yr. 	

With Lemma 3 we provide the theory showing the region that does not contain the most

preferred point and hence can be reduced, around a nondominated point that is preferred to
both its adjacent points.

Lemma 3 Let f : R
2 → R, be a quasiconvex function (to be minimized) that represents

the preferences of the DM, yi = (
yi1, y

i
2

)
, and ya and yc be the left and right adjacent

points of the supported nondominated point yb. Let f
(
yb

)
< f (ya) and f

(
yb

)
< f (yc) and

f (y∗) = miny∈ZND { f (y)}. Then
y∗ ∈ Y ∗ =

{
y|y = μaya + μbyb + μabη

(
ya, yb

)
, μa + μb + μab = 1, μa, μb, μab ≥ 0

}

∪
{
y|y = μcyc + μbyb + μcbη

(
yc, yb

)
, μc + μb + μcb = 1, μc, μb, μcb ≥ 0

}

where η
(
yi, yj

)
=

(
max

(
yi1, y

j
1

)
,max

(
yi2, y

j
2

))
.

Proof If point yb and points ya and yc are adjacent points, there does not exist any point
dominating any affine combinations of the adjacent point pairs due to Lemma 2. This
eliminates region Y1 = {

y|y < λaya + λbyb for all λa,λb ∈ R such that λa + λb = 1
} ∪{

y|y<λcyc+λbyb for all λc,λb ∈R such that λc+λb = 1
}
. We eliminate the cone-inf-

erior regions Y2 = {
y|y ≥ ya + μb

(
ya − yb

)
, μb ≥ 0

}
and Y3 = {

y|y ≥ yc + μb
(
yc − yb

)
,

μb ≥ 0} since y∗ /∈ {Y2 ∪ Y3} due to Lemma 1. For yd ∈ Y4 = {y|y j ≥ yij , j = 1, 2,

and y j > yij for at least one j for i = a, b, c}, f
(
yd

) ≥ f (ya) or f
(
yd

) ≥ f
(
yb

)
or

f
(
yd

) ≥ f (yc) . Therefore, y∗ ∈ Y ∗ = {
y|y = μaya + μbyb + μabη

(
ya, yb

)
, μa + μb+

μab = 1, μa, μb, μab ≥ 0} ∪ {
y|y = μcyc + μbyb + μcbη

(
yc, yb

)
, μc + μb + μcb = 1,

μc, μb, μcb ≥ 0}. 	

We demonstrate Lemma 3 in Fig. 1. Here, we have three nondominated points ya, yb and

yc. We eliminate the regions in which the most preferred point of the DM cannot lie. Given
that point yb is preferred to its two adjacent points, ya and yc, there cannot be any points in
Region 1 (which is the union of the regions dominating the affine combinations of ya and
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Fig. 1 Admissible regions for
the most preferred point

Obj. 2

Obj. 1

Region 2

Region 4

Region 1
Region 3

yb, and ya and yc) due to Lemma 2. The most preferred point of the DM cannot lie in the
cone-inferior regions 2 and 3 due to Theorem 1. Region 4 is composed of points dominated
by ya, yb or yc. Therefore, the only regions in which the most preferred point of the DM
can lie are the triangular regions between the current most preferred point, yb, and its two
adjacent points, ya and yc.

We do not impose any additional constraints on the objective space before finding the
supported nondominated point that is preferred to all its adjacent points. We refer to the
objective space that has no additional constraints as the original objective space.

The three additional constraints; an upper bound on the first objective (z1(x) ≤ UB1), an
upper bound on the second objective (z2(x) ≤ UB2), and a lower bound on the weighted
combination of these objectives (wz1(x) + (1 − w) z2(x) ≥ LB) define a region (triangle)
in which the most preferred point of the DMmay lie. We refer to the region defined by these
triangles as the reduced objective space. The nondominated points in the reduced objective
space are, by definition, unsupported nondominated points. In Fig. 1, we have two regions; the
left triangle and the right triangle. The left and right triangles’ bounds on the two objectives
are z1(x) ≤ yb1 and z2(x) ≤ ya2 − δ, and z1(x) ≤ yc1 − δ and z2(x) ≤ yb2 , respectively, where
δ is a sufficiently small positive constant. By subtracting δ from ya2 and yc1, we exclude the
inferior points ya and yc from the triangles. The lower bound on the weighted combination
of the two objectives is a redundant constraint since there are no solutions that violate this
constraint given the upper bounds on the objectives. Therefore, we will not use the lower
bound on the weighted combination of the two objectives.

We next summarize the steps of the interactive algorithm to find the most preferred point
of a DM whose preferences are consistent with a quasiconvex preference function for a
biobjective integer program. In this algorithm, we generalize the concepts used in Tezcaner
Köksalan (2011)’s approach for the quasiconvex case. We use the ideas in Lemmas 1, 2, 3,
and Theorem 1 above to narrow down the objective space.

3.1 The steps of the interactive algorithm (IA)

Let wLE = 1−ρ, and wRE = ρ. Throughout the algorithm, we use ρ as a sufficiently small
positive constant to prevent obtaining dominated points (see Steuer 1986, pp. 422–430 for
further discussion on how to choose ρ).

Step 1. Find the two extreme nondominated points of the problem minimizing U (x) =
wz1(x) + (1 − w)z2(x) for w = wLE and wRE , respectively, and denote them by yLE
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and yRE, respectively. If yLE = yRE, the problem has only one nondominated point. Let
y′ = yLE = yRE and go to Step 10. Otherwise, go to Step 2.

Step 2. Let w′ = yLE2 −yRE2(
yLE2 −yRE2

)+(
yRE1 −yLE1

)
Find the solution that minimizes the function, U (x) = wz1(x) + (1 − w)z2(x) formed

with weight w = w′. Let the corresponding point be y′. If y′ = yLE or yRE, set yL = yLE and
yR = yRE, and go to Step 3. Otherwise, go to Step 4.
Step 3. Ask the DM to compare yL with yR.

• If yL is preferred to yR, set the two bounds of the right triangle as z2(x) ≤ yL2 , z1(x) ≤
yR1 − δ. Set y′ = yL. Go to Step 8.

• If yR is preferred to yL, set the two bounds of the left triangle as z2(x) ≤ yL2 − δ,
z1(x) ≤ yR1 . Set y′ = yR. Go to Step 6.

Step 4. Find the left adjacent point, yL, of y′. Ask the DM to compare y′ and yL.

• If y′ is preferred to yL, set the two bounds for the left triangle as z2(x) ≤ yL2 − δ, z1(x) ≤
y′
1. If no bounds for the right triangle has been defined yet, go to Step 5; otherwise, go

to Step 6.
• If yL is preferred to y′, set the two bounds for the right triangle as z2(x) ≤ yL2 , z1(x) ≤

y′
1 − δ. Set y′ = yL. If y′ = yLE, go to Step 8 and if y′ �= yLE, go to Step 4.

Step 5. Find the right adjacent point, yR, of y′. Ask the DM to compare y′ with yR.

• If y′ is preferred to yR, set the two bounds for the right triangle as z1(x) ≤ yR1 − δ,
z2(x) ≤ y′

2. Go to Step 6.
• If yR is preferred to y′, set the two bounds for the left triangle as z2(x) ≤ y′

2 − δ, z1(x) ≤
yR1 . Set y′ = yR. If y′ = yRE, go to Step 6 and if y′ �= yRE, go to Step 5.

Step 6. Search for the left adjacent point of y′ in the left triangle.

• If there is no new nondominated point:

• If the bounds for the right triangle have been defined, go to Step 8.
• If no bounds for the right triangle has been defined yet, go to Step 10.

• If a new nondominated point is found, denote it by yL and go to Step 7.

Step 7. Ask the DM to compare y′ with yL.

• If y′ is preferred to yL, set z2(x) ≤ yL2 − δ for the left triangle and go to Step 6.
• If yL is preferred to y′, set z1(x) ≤ yL1 for the left triangle, and z2(x) ≤ yL2 and z1(x) ≤

y′
1 − δ for the right triangle. Set y′ = yL and go to Step 6.

Step 8. Search for the right adjacent point of y′ in the right triangle. If there is no new
nondominated point, go to Step 10. If a new nondominated point is found, denote it by yR

and go to Step 9.
Step 9. Ask the DM to compare y′ with yR.

• If y′ is preferred to yR, set z1(x) ≤ yR1 − δ for the right triangle and go to Step 8.
• If yR is preferred to y′, set z2(x) ≤ y′

2−δ and z1(x) ≤ yR1 for the left triangle, z2(x) ≤ yR2
for the right triangle. Set y′ = yR and go to Step 6.

Step 10. The most preferred point y∗ is y′.

To demonstrate, consider nondominated points ya, yb, yc, yd and ye in Fig. 2. The most
preferred point of the DM that minimizes the underlying preference function shown in Fig. 2a
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(a) (b) 

(c)

Obj. 1

 Obj. 2

Obj. 1

  Obj. 2 

DM’s underlying 
preference 
func�on 

Obj. 1 

Obj. 2

Fig. 2 Demonstration of the interactive algorithm. a Nondominated set. b Reducing the objective space
around yc . c Search within the reduced objective space

is yc. We find the two extreme nondominated points; ya and ye (step 1), and we find yc

minimizing the function passing through ya and ye (step 2). Since yc is preferred to both its
adjacent points yb and ye,we reduce the objective space to the two triangles shown in Fig. 2b
(steps 4 and 5). We discover that there are no new points in the left triangle (step 6). We
next find yd in the right triangle (step 8). The DM prefers yc to yd and we further reduce the
objective space accordingly as shown in Fig. 2c (step 9). Since there are no new points in
any of the two triangles, we conclude that yc is the most preferred point (step 10).

Note that there might be several efficient solutions that correspond to the same most
preferred point obtained. Our approach terminates with one of thosemost preferred solutions.

3.2 Finding adjacent points

During IA, we find adjacent points of y′ both in the original (in steps 4 and 5) and the
reduced objective spaces (in steps 6 and 8). We modify the method presented in Tezcaner
and Köksalan (2011) to find the adjacent points. Our modification is in the initialization step
to avoid searching for previously-found nondominated points.

We first explain the steps to find the left adjacent point of y′ in the original objective space.
Let S be a set that stores all nondominated points found in IA so far.

Step A.0. Let A = {
yi|yi ∈ S, yi1 < y′

1

}
. If A = ∅, find the left extreme nondominated

point, yLE minimizing U (x) = (1 − ρ)z1(x) + ρz2(x) where ρ is as before. Set yL = yLE
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and w′ = yL2 −y′
2(

yL2 −y′
2

)+(
y′
1−yL1

) . If A �= ∅, set w′ = minyi∈A

{
yi2−y′

2(
yi2−y′

2

)+(
y′
1−yi1

)
}

and yL =

argminyi∈A

{
yi2−y′

2(
yi2−y′

2

)+(
y′
1−yi1

)
}

.

Step A.1. Find the solution that minimizes U (x) = w′z1(x) + (1 − w′)z2(x) and denote
the corresponding objective function vector as ymin. If ymin = yL or y′, go to Step A.2.

Otherwise, let yL = ymin, w′ = yL2 −y′
2(

yL2 −y′
2

)+(
y′
1−yL1

) and go to Step A.1.

Step A.2. The left adjacent point of y′ is yL.

In Step A.0, we set the current left adjacent point of y′ to the left extreme nondominated
point if there are no other nondominated points in the region searched. In case there are other
points in the searched region, we examine the slopes of the lines joining each such point to
y′ and select the point that corresponds to the line that has the least-negative slope. We set w′
to the absolute value of the slope of the line joining y′ with its current left adjacent point. In
Step A.1, we keep updating the current left adjacent point of y′, each time minimizing U (x)
formed with a different w′. We terminate the algorithm when no new point exists.

A similar algorithm is used to find the right adjacent point of y′ in the original objective
space. The main difference is that the right adjacent point of y′ is the nondominated point
that is associated with the line having the most-negative slope, considering all lines joining
candidate points to y′.

To find the left adjacent point of y′ inside the left triangle defined by bounds UB1 and
UB2, we also follow steps A.0 to A.2. In this case A = {

yi|yi ∈ S, yi1 < UB1, yi2 ≤ UB2
}

and we use the additional constraints zk(x) ≤ UBk, k = 1, 2 each time we search for a
solution minimizing U (x).

Finding the right adjacent point of y′ inside the right triangle is similar.

3.3 Reducing the objective space further

During IA, we search for both supported and unsupported nondominated points. Supported
nondominated points can be found by optimizing an objective function that is a linear com-
bination of the two objectives. Thus, the problem reduces to its single objective version,
making the use of problem-specific algorithms possible, if available. On the other hand,
searching for unsupported nondominated points may turn out to be computationally hard
because of the constraints yik ≤ UBk, k = 1, 2, that need to be added to the original
problem. These additional constraints may cause additional computational difficulty. To
improve the computational effort for finding unsupported nondominated points, Tuyttens
et al. (2000) develop further constraints to reduce the search region. In this section, we
present Tuyttens et al.’s approach and improve it further to reduce a larger area in the search
region.

Tuyttens et al. study the so called two phase algorithm on the biobjective assignment
problem. In this algorithm, the nondominated frontier is generated in two phases. In the
first phase, the supported nondominated points are generated (see Fig. 3a). This phase is
computationally relatively easy because each supported nondominated point can be obtained
by minimizing a suitable linear combination of the two objectives. In the second phase,
unsupported nondominated points are found. To find the unsupported points, the nondom-
inated region between each adjacent supported nondominated point pair (see Fig. 3b) is
searched.
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(a) (b)
Obj. 1

  Obj. 2

Obj. 1

Obj. 2 

Fig. 3 The two phase algorithm. a Phase one. b Phase two

Tuyttens et al. propose an additional constraint that can be used to narrow down the
search space in the second phase. This constraint reduces the dominated part of the triangles
between supportednondominatedpoints as illustrated inFig. 4. Suppose twonewunsupported
nondominated points, y3 and y4, are found during the search between the two supported
nondominated points, y1 and y2. From the definition of dominance, we know that the shaded
region is dominated by the unsupported nondominated points. Tuyttens et al. construct a
line joining the two supported nondominated points, y1 and y2, and move it in the direction
of dominated points. They search for the first point where the line has no intersection with
the nondominated region inside the triangle. The idea is to cover as big a portion of the
shaded region as possible using a linear constraint. In the example in Fig. 4, there are three
possibilities for this line to pass through. These are the points that have the worst objective
values of the two neighboring nondominated points. Przybylski et al. (2008) refer to these
points as local nadir points. We demonstrate the local nadir points, η1, η2 and η3,with values(
η11, η

1
2

) = (
y31 , y

1
2

)
,
(
η21, η

2
2

) = (
y41 , y

3
2

)
, and

(
η31, η

3
2

) = (
y21 , y

4
2

)
, and the lines that pass

through them in Fig. 4b.
Among these three possibilities, only the line through η2 does not have an intersec-

tion with the nondominated regions. Therefore, the value of this line is set as an upper
bound

(
wz1(x) + (1 − w) z2(x) ≤ wy41 + (1 − w) y32 = UBc

)
as shown in Fig. 4c, where

w = y12−y22(
y12−y22

)+(
y21−y11

) . Przybylski et al. (2008) modify this bound exploiting the fact that all

objective coefficients are integer valued.
Although constraint wz1(x) + (1 − w) z2(x) ≤ UBc reduces a part of the dominated

set, a dominated region still remains unaccounted for. We improve this bound in order to
further reduce the unaccounted dominated region with linear constraints. We next develop
an algorithm to determine a number of upper bounds, which we refer to as weighted upper
bounds, in the triangles. Throughout the procedure below, we search within the triangle
defined by the two nondominated points y1, y2, and their nadir point, where we assume
y11 < y21 and y12 > y22 , without loss of generality. Let w be as above.

3.3.1 W-UB Procedure

Step U.0. Find local nadir points of all neighboring nondominated points within the triangle
and place them in set L . Denote the nadir point l as ηl .
Step U.1. Find the local nadir point that gives the largest combined objective value, η∗ =
argmax

ηl∈L

{
wηl1 + (1 − w)ηl2

}
. Set η0 = η∗.
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(a) (b)

(c)

Obj. 1

   Obj. 2 

Obj. 1

Obj. 2

Obj. 1 

   Obj. 2 

Fig. 4 The additional constraint in phase two. a Dominated regions. b Local nadir points. c Additional
constraint

Step U.2.Find the left adjacent nadir point, ηL0, of η0, treating the problem as amaximization
problem. If there are no left adjacent nadir points in the search space, set η0 = η∗ and go
to Step U.3. Otherwise, define a new weighted upper bound, w′z1(x) + (

1 − w′) z2(x) ≤
UB

(
w′) = w′η01 + (

1 − w′) η02 where w′ = ηL0
2 −η02(

ηL0
2 −η02

)+(
η01−ηL0

1

) . If ηL0
2 = y12 , set η0 = η∗

and go to Step U.3. If ηL0
2 �= y12 , set η

0 = ηL0 and go to Step U.2.
Step U.3. Find the right adjacent nadir point, ηR0, of η0, treating the problem as a maxi-
mization problem. If there are no right adjacent nadir points in the search space, terminate
the algorithm. Otherwise, define a new weighted upper bound w′z1(x) + (

1 − w′) z2(x) ≤
UB

(
w′) = w′η01 + (

1 − w′) η02 where w′ = η02−ηR0
2(

η02−ηR0
2

)+(
ηR0
1 −η01

) . If ηR0
1 = y21 , terminate the

algorithm. If ηR0
1 �= y21 , set η

0 = ηR0 and go to Step U.3.

We may visualize the set of local nadir points, L , as nondominated points of a problem
where more is better (maximization) in each criterion. With this analogy, steps U.2 and U.3
of theW-UB procedure finds the left and right adjacent points of a given nondominated (local
nadir) point where all points are readily available. To find the left adjacent point of η0, we
check the line that passes through η0 and any other point that has the first objective value
smaller than that of η0. The (local nadir) point corresponding to the line with the steepest
slope (most negative) is the left adjacent point. The right adjacent point of η0 is found in a
similar manner on the right side of η0 using the line that has the flattest slope (least negative)
among the candidate lines. Specifically, we find the left and right adjacent points of η0 as
follows:
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Fig. 5 Additional constraints in
phase two

Obj. 1

  Obj. 2 

ηL0 = argmaxnl∈Q

{
ηl2 − η02(

ηl2 − η02

) + (
η01 − ηl1

)
}

where Q =
{
ηl|ηl ∈ L , ηl1 < η01

}
.

ηR0 = argminnl∈Q

{
η02 − ηl2(

η02 − ηl2

) + (
ηl1 − η01

)
}

where Q =
{
ηl|ηl ∈ L , ηl1 > η01

}
.

Theseweighted upper bounds impose cuts in the feasible space eliminating a larger portion
of the dominated space. Using this procedure, we replace the bound given in the example
of Fig. 4c with the two bounds shown in Fig. 5. The procedure to generate such bounds
may be used to reduce the solution space in any biobjective integer program to improve
computational efficiency.

4 Generalized biobjective traveling salesperson problem

Wedeveloped IA to find themost preferred point of aDM for any biobjective integer program.
In this section, we demonstrate it on the generalized BOTSP.

Most of the literature on multiobjective traveling salesperson problem (MOTSP) assumes
that each node pair is connected with a single edge that is naturally efficient. This is not a
realistic assumption, since there would typically be a number of efficient edges each better
than another efficient edge in at least one objective, under the presence of multiple objectives.
We refer to the case where each node is connected by a number of efficient edges as the
generalized MOTSP. The MOTSP with a single edge between nodes is a special case of the
generalized MOTSP. More information on the generalized MOTSP can be found in Tezcaner
and Köksalan (2011).

MOTSP with a single edge between nodes is NP-hard (Ehrgott 2005, p. 279). Mostly,
heuristics have been developed for the solution of this problem. Lust and Teghem (2010) clas-
sify these solution approaches and develop a new method, two-phase Pareto local search, for
MOTSP.Paquete andStützle (2003) develop a two-phase local searchmethod and Jaszkiewicz
and Zielniewicz (2009) consider a Pareto memetic algorithm using path relinking and Pareto
local search. Jozefowiez et al. (2008), Karademir (2008) and Bérubé et al. (2009) consider a
special traveling salesperson problem (TSP), TSP with profits. Jozefowiez et al. approximate
the nondominated frontier by an evolutionary algorithm (EA), Karademir proposes a genetic
algorithm andBérubé generates the nondominated frontier using the ε-constraint method (see
Chankong and Haimes 1983). Hansen (2000) uses a scalarizing function to solve MOTSP.
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Node 1 
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Node 5

Node 1
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Fig. 6 Generalized BOTSP. a Efficient edges. b Efficient tours

Special cases of MOTSP are studied in Özpeynirci and Köksalan (2009, 2010). To the best
of our knowledge, Tezcaner and Köksalan’s (2011) study is the only one that defines and
addresses the generalized MOTSP. It develops a general interactive algorithm to find the
most preferred point for a biobjective integer program and implements it for the generalized
BOTSP.

Wedemonstrate a special generalizedBOTSPexample inFig. 6.Herewe consider the three
circular areas as regions to be avoided (as one of the objectives); central parts more important
to be avoided than those towards the circumferences. The other objective we consider is to
minimize total distance traveled.We have in total 5 nodes to visit in a terrain divided into grids
(equal-length intervals in both x and y axes). The vehicle is assumed to move horizontally,
vertically, or diagonally through a grid. There are three efficient edges between nodes 1 and 5
as shown in Fig. 6a. These efficient edges form due to the conflict between the two objectives.
The efficient edge that totally avoids the threat region has the largest distance, whereas the
edge with the shortest distance exposes the vehicle to the biggest threat. Figure 6b shows
two efficient tours that pass through all nodes. The dashed lines correspond to the first tour
(1-5-4-3-2-1 or equivalently 1-2-3-4-5-1 since the graph is assumed to be undirected) and the
light solid lines correspond to the second tour (1-4-3-5-2-1 or 1-2-5-3-4-1). The dark solid
lines are common to both tours.

In a realistic setting, an edge between a pair of nodes could correspond to a path that
passes through a set of subnodes. For example, subnodes would correspond to the corner
points of grids (grid points) in Fig. 6 and to the intersection points of highways in a road
network. Therefore, an edge corresponds to a path between a pair of nodes passing through
a subset of subnodes. Then, finding the efficient edges between a node pair requires solving
a BOSPP between that node pair. Although the BOSPP is NP-complete (Ehrgott 2005, p.
222), for practical size problems the number of efficient edges is typically small (see Müller-
Hannemann and Weihe 2006) and finding them is manageable in general. Once the efficient
edges are formed, they can be used as input and the generalized BOTSP can be formulated
as below.

Let G = (N , E) be an undirected graph with node set N = {1, 2, . . .} , ei jr be efficient
edge r connecting node pair (i, j), Ri j be the index set of efficient edges between node pair
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(i, j), and E =
{
e121, e122, . . . , e|N |,|N |−1,|R|N |,|N |−1|

}
be the set of all efficient edges. Let

xi jr be the binary decision variable that indicates whether efficient edge r ∈ Ri j is used in
the tour or not, cki jr denote the value of objective function k of efficient edge r ∈ Ri j , and
P = {(i, j)|i ∈ N , j ∈ N , i �= j} be the set of all node pairs. The problem can be formulated
as:

(G-BOTSP)

Min z1(x) =
∑

(i, j)∈P

∑
r∈Ri j

c1i jr xi jr (9)

Min z2(x) =
∑

(i, j)∈P

∑
r∈Ri j

c2i jr xi jr (10)

Subject to:∑
j∈N

∑
r∈Ri j

xi jr = 1 i ∈ N (11)

∑
i∈N

∑
r∈Ri j

xi jr = 1 j ∈ N (12)

ui − u j +
∑
r∈Ri j

(|N | − 1)xi jr

+
∑
r∈R ji

(|N | − 3)x jir ≤ |N | − 2 i, j ∈ N\ {1} , i �= j (13)

1 ≤ ui ≤ |N | − 1 i ∈ N\ {1} (14)

xi jr ∈ {0, 1} (i, j) ∈ P, r ∈ Ri j (15)

The two objectives, z1(x) and z2(x), are any two sum-type objectives. They are minimized
in (9) and (10), respectively. We assume that cki jr ≥ 0 for all (i, j) ∈ P, k = 1, 2, and
r ∈ Ri j . Equations (11) and (12) ensure departure from and arrival to each node, respectively.
There are different possible formulations for subtour elimination constraints. Laporte (1992)
reviews the algorithms developed for TSP. He covers some subtour elimination constraints
including the formulation introduced by Miller et al. (1960), which was strengthened later.
Constraints (13) and (14) are the strengthened version of Miller et al.’s formulation. This
formulation requires a smaller number of additional constraints compared to other subtour
elimination constraints. However it requires including |N | − 1 positive decision variables in
the formulation.

In order to solve (G-BOTSP), we first need to find all efficient edges between all node
pairs. An algorithm developed for solving multiobjective shortest path problems can be used
for this purpose. Alternatively, we may employ the ε-constraint method (see Chankong and
Haimes 1983) where one objective is optimized treating the other as a constraint to satisfy
an aspiration level, ε. Changing ε systematically all efficient edges can be found.

During IA, we find nondominated points both in the original and reduced objective spaces.
We next discuss these two cases.

4.1 Finding nondominated points in the original objective space

In Steps 1 through 5 of IA, we find tours for the combined objective U (x) = wz1(x) + (1−
w)z2(x) without imposing additional constraints in the objective space. The only difference
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of this formulation from the single-objective TSP is the existence of multiple efficient edges
between node pairs. Note that there is a unique efficient edge between each node pair (i, j)
that minimizes U (x). Recall that cki jr denotes the kth objective value of efficient edge r ∈
Ri j , k = 1, 2. Using the weights of U (x), we create a dummy edge for each node pair (i, j)
with the following edge cost:

ci j (w) = minr∈Ri j

{
wc1i jr + (1 − w) c2i jr

}
(i, j) ∈ P

We then solve the TSP using the following objective function, where hi j is a binary
variable to indicate whether or not the edge connecting node pair (i, j) is used.

Min z(h) =
∑

(i, j)∈P

ci j (w)hi j

We solve the resulting single-objective TSP using the Concorde software (see http://
www.math.uwaterloo.ca/tsp/concorde.html) inputting the dummy edge cost for each node
pair (i, j).

4.2 Finding nondominated points in the reduced objective space

In Steps 6–9 of IA, we have the following two constraints in addition to constraints (11)–(15).
∑

(i, j)∈P

∑
r∈Ri j

c1i jr xi jr ≤ UB1 (16)

∑
(i, j)∈P

∑
r∈Ri j

c2i jr xi jr ≤ UB2 (17)

As mentioned before, the nondominated points in the reduced objective space are unsup-
ported nondominated points. As we find new unsupported points, we can introduce cuts of
the form below usingW-UB Procedure to further reduce the objective space:

w′z1(x) + (
1 − w′) z2(x) ≤ UB

(
w′) (18)

The introduction of (16)–(18) destroys the input structure required by Concorde, making
it inapplicable. In the absence of Concorde, we may use any integer programming solver to
find unsupported nondominated points minimizingU (x) = w′z1(x)+ (1−w′)z2(x) subject
to constraints (11)–(18). In our application, we use the CPLEX solver.

5 Demonstration and computational results

In this section, we first provide an example problem to demonstrate our algorithm. The
problem is a special case of the generalized BOTSP, the unmanned air vehicle (UAV) route
planning problem. We then present computational results for randomly generated instances
of the generalized BOTSP.

5.1 An example

In the UAV route planning problem, the path the vehicle follows through a terrain visiting
all predetermined targets is searched for. This problem is a special case of the generalized
BOTSP. We consider a number of nodes (targets) to visit where each node is connected by
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Fig. 7 Nondominated set of the UAV route planning problem

a number of efficient edges. We assume there are two minimization-type objectives: total
distance travelled and total radar detection threat.

The approaches that have been developed for the route planning problem of UAVs are
mostly heuristic in nature (see, for example, Zheng et al. 2003; Foo et al. 2009; Wu et al.
2009; Waldock and Corne 2012). Many of them linearly combine the objectives forming
a single objective and search for an “optimal” solution rather than addressing the tradeoffs
between multiple efficient solutions. To the best of our knowledge, Tezcaner and Köksalan’s
(2011) approach is the only implementation of an interactive approach to biobjective UAV
route planning.

We demonstrate our algorithm using the UAV route planning problem introduced by Tez-
caner andKöksalan (2011),which they solved assuming an underlying linear preference func-
tion. In this problem, there are 5 nodes and 3 radars.Herewe assume that theDMhas an under-
lying Tchebycheff preference function f (y) = max[0.33 (

y1 − y∗∗
1

)
, 0.67

(
y2 − y∗∗

2

)] to be
minimized where y∗∗ = (y∗∗

1 , y∗∗
2 ) is a utopia point having values that are less than or equal

to the best possible values in each objective. We set y∗∗ = (0,0). We pretend that we do not
know f and use it only to simulate the preferences of the DM in responding to pairwise com-
parisons. For demonstration purposes, we provide the nondominated set of the problem in
the objective space in Fig. 7. There are three efficient tours and a set of nondominated points
for each tour. The efficient solutions of different tours are demonstrated by different shapes
in Fig. 7. The objective function values of each nondominated point are given in Table 1.
We see that the most preferred point of the DM is y∗ = (29.312, 12.764) when we plug its
objective values in f. In our algorithm, we pretend that we do not know the nondominated
set, f, or the most preferred point.

Before running the algorithm, we search for all efficient edges between all node pairs
using the ε-constraint method and find 44 of them.

In the first step of IA, we find the two extreme nondominated points, yLE = (29.312,
12.764) and yRE = (39.312, 4.744). We then go to Step 2 and find the nondominated point,
y′ = (32.140, 5.305), corresponding to the solution minimizingU (x) for w′ = 0.445. In Step
4, we find the left adjacent point of y′, yL = (29.312, 12.764), and ask the DM to compare y′
with yL. f implies that the DM prefers yL. Thus, we set the two bounds for the right triangle
as z2(x) ≤ 12.764, z1(x) ≤ 32.140-δ. The current most preferred point is set to y′ = (29.312,
12.764) and since y′ = yLE, we go to Step 8. We then search for the right adjacent point of
y′ = (29.312, 12.764) within the triangle and we find the three unsupported nondominated
points, (31.898, 8.344), (31.554, 8.491), and (30.726, 10.029), successively.
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Table 1 Nondominated points Nondominated
point

Distance Radar detection
threat

1 29.312 12.764

2 29.898 11.704

3 30.140 11.226

4 30.484 11.079

5 30.726 10.029

6 30.968 9.688

7 31.312 8.969

8 31.554 8.491

9 31.898 8.344

10 32.140 5.305

11 32.726 4.851

12 33.312 4.757

13 39.312 4.744

In this small example, we end up finding 9 of the 13 nondominated points and ask the DM
to compare 4 nondominated point pairs in order to find the most preferred point. We next
give some results for larger instances.

5.2 Computational results

To further demonstrate its performance, we test IA on several randomly generated instances.
We consider 5, 8, and 15-node generalized BOTSPs, in which we generate 20 efficient
edges between each node pair. For each problem type, we create 10 different instances
randomly generating the objective values of the edges from a uniform distribution with range
[0, 100].

We solve all the problems assuming that theDMhas an underlyingTchebycheff preference
function f (y) = max[λ (

y1 − y∗∗
1

)
, (1 − λ)

(
y2 − y∗∗

2

)] to be minimized, as above. We
solve the instances for three different weight values, λ = 0.2, 0.5, and 0.8. We implement
the algorithm in C++ and run the tests on a PC with Intel Core i7-3770 CPU, 8 GB RAM.

In order to report the size of the full nondominated set, we solve the whole problem
using the ε-constraint method. We report these in Table 2 in order to provide a sense of the
magnitude of the problem. We also present the averages and the ranges of the number of
nondominated points found, as well as the number of comparisons made by our algorithm in
Table 2. There is a large deviation in the total number of nondominated points between the
10 instances of each problem size as seen from the ranges in Table 2. This in turn leads to
large variations in the number of nondominated points found and the number of comparisons
made. The algorithm finds only a small percentage (2–15%) of the nondominated points in
all problems and eliminates roughly a third of the generated nondominated points directly,
without asking the DM.

Although there are variations in solution times, all problems are solved fast. For 5, 8, and
15-node problems, the average solution durations are 17.429, 31.546 and 95.997s, respec-
tively. As expected, the larger the problem size, the longer the execution times.
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6 Conclusions

In this study, we develop an interactive algorithm for bicriteria integer programs that finds the
most preferred point of a DM whose preferences are consistent with a quasiconvex function.
The algorithm gradually reduces the search region around the most preferred point of the DM
considering his/her preferences. We ask for comparison between adjacent points, which can
be supported or unsupported depending on the search region. To reduce the computational
effort in finding unsupported nondominated points, we improve the bound developed by
Tuyttens et al. (2000) and eliminate more of the search region.

We apply the interactive algorithm to the generalized BOTSP that has multiple efficient
edges between nodes and test the algorithm on randomly generated instances with 5, 8, and
15 nodes. The results show fast convergence to the most preferred point of the DM avoiding
unnecessary preference comparisons.

During the interactive algorithm, the majority of the computational effort is devoted to
the search for unsupported nondominated points in reduced objective spaces. In its current
version, the interactive algorithm can be applied to any biobjective integer program. When
the algorithm is applied to different problem types, problem specific approaches can be
used to improve the computational efficiency of the search for unsupported nondominated
points. Alternatively, for larger problem instances that are computationally prohibitive even
in the single-objective case, heuristics can be developed for the search for unsupported non-
dominated points. Another possibility for handling the computational complexity could be
to develop an approximation algorithm by defining a reasonable worst-case performance
bound. For example, a larger than warranted portion of the objective space can be reduced
each time a point is preferred to its adjacent points, allowing for a small deviation from the
most preferred point. Development of such heuristics is a promising area for future research.

Currently, our algorithm is applicable to any biobjective integer program. Generalizing
for mixed integer programs is another idea for future research. One main difficulty would be
the existence of continuous nondominated frontiers. In this case, the selection of the point
pairs to present to the DM should be reconsidered. Additionally, the space reduction after the
DM’s preferences might be modified considering the shape of the frontier. We should also
readdress the stopping condition due to the continuous frontier.
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