
Ann Oper Res (2018) 262:287–306
https://doi.org/10.1007/s10479-016-2138-z

S.I . : FINANCIAL ECONOMICS

Measurement errors in stock markets

Hachmi Ben Ameur1 · Fredj Jawadi2 ·
Abdoulkarim Idi Cheffou3 · Wael Louhichi4

Published online: 2 March 2016
© Springer Science+Business Media New York 2016

Abstract This paper points to further measurement errors in stock markets. In particular, we
show that the application of usual performance ratios to evaluate financial assets can lead to
inappropriate findings and consequently wrong conclusions. To this end, we analyze standard
performance ratios aswell as extreme loss-based financial ratios and compare the conclusions
with those provided by systemic risk measures. The application of these different measures
to both conventional and Islamic stock indexes for developed and emerging countries in the
context of the financial crisis yields two interesting results. First, the analysis of financial
performance exhibits further measurement errors. Second, the consideration of extreme loss
and systemic risk in computing performancemeasures increases the reliability of performance
analysis.

Keywords Measurement error · Financial performance · Systemic risk · Var ·
CoVaR and MES

JEL Classification C2 · C5 · G10

B Hachmi Ben Ameur
hechba@yahoo.fr

Fredj Jawadi
fredj.jawadi@univ-evry.fr

1 INSEEC Business School, 27 rue claude Vellefaux, 75010 Paris, France

2 UFR Sciences de Gestion et Sciences Sociales, Universit of Evry, 2, rue Facteur Cheval,
91000 Evry, France

3 EDC Paris Business School, Courbevoie, France

4 ESSCA Business School, Angers, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-016-2138-z&domain=pdf


288 Ann Oper Res (2018) 262:287–306

1 Introduction

Theories andmodels in Exact Science as in Social Science can accurately reflect reality if their
estimated value reflects the true value. However, the latter is often unobserved in practice
and its accuracy varies depending on the measurement instrument used. If the measuring
instrument is not exact, then this will result in a measurement error. Measurement error can
be defined as the difference between the true value of a quantity and the value obtained by
a measurement. Measurement error is known to include both random errors and systematic
errors (or statistical errors). While the latter means that a measured value contains an offset,
the former implies that a repeated measurement generates a measured value different from
the previous value (Taylor 1999). A measurement error can have different sources: (i) the
data collection and sampling method used, (ii) selection bias, (iii) the statistical procedure
and variables used, (iv) the econometric models and tests, (v) an ill-suited survey design,
etc.1

Obviously, measurement error is a serious problem in both Rocket Science and Economics
as it risks causing biased analyses and leading to incorrect conclusions. Measurement error
can have severe consequences, and it is therefore essential to assess the quality of measure-
ments in order to reduce such errors. While in Exact Science, instruments can be improved
through experimentation, but it is a difficult and expensive process inSocial Science.2 Accord-
ingly, various statistical methods have been introduced to deal with measurement errors.3 In
Economics, economists often make use of econometric tools and proceed through trial and
error until they arrive at the best method or model. This requires estimating different spec-
ifications, essaying different calibrations, using different variables and data, and applying
different methods and repeatability essays to validate an instrument.4

Furthermore, it is worth noting that measurement uncertainty and measurement error are
mostly important during periods of crisis than in periods of prosperity, as further errors would
amplify losses for investors and the economic system as a whole. For instance, following
the subprime crisis (2007) and the global financial crisis (2008–2009), several recent studies
showed the high level of measurement errors in economic, monetary and financial data as
well as in themethods andmodels under consideration. They suggest that themacroeconomic
models, financial methods and economic policies used have failed to reflect the reality of the
economic system over the last few decades. Their application resulted in significant errors
that were sources of bankruptcy for Some well-known banks, major losses for a number of
financial markets and investors, and a considerable risk that threatened to destroy the design
of the economic system, etc.

Accordingly, a growing recent body of literature has pointed to severalmajormeasurement
errors, and recommended urgent solutions to improvemeasurement processes. In this context,
a new US institution, the Society for Economic Measurement (SEM),5 was founded in 2013
byCarnegieMellonUniversity, theCenter for Financial Stability and theUniversity ofKansas
to promote economic measurement research. Research led by its first President, Professor
William A. Barnett (University of Kansans, USA), recommended using recent developments

1 For more details, see Fuller (1987), Caroll, Ruppert and Stefanski (1995), Hausman (2001), etc.
2 See Barnett (2015) for an excellent comparative analysis between Rocket Science and Economics Science.
3 See Cheng et al. (2011) for a survey of the treatment of classical and non-classical measurement errors.
Blackwell et al. (2015) also focused on the treatment of measurement errors and developed a unified approach
to deal with missing data problems and to limit measurement errors.
4 See Chen et al. (2011) for a recent survey on Nonlinear Models of Measurement Errors.
5 http://sem.society.cmu.edu/home.html.
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in econometrics, statistics and experimental economics to improve measurement. Indeed,
Barnett et al. (2009) compared simple-sum monetary aggregates with the Divisia monetary
aggregate indexes to identify measurement errors in monetary aggregates. Using a Markov
switching factor approach, the authors found significant differences between these indexes
which, interestingly, occurmore significantly around the beginnings and the ends of economic
recessions and during phases of high interest rate.

Barnett and Chauvet (2011) focused on the index number theory and showed that its use
could help the Fed to identify a financial crisis and to reduce the misperception of systemic
risk. Barnett (2012) also showed that obsolete monetary aggregates and data were often used,
especially in economic systems with complex financial instruments, leading the Fed to make
inappropriate decisions that prevented it from correctly assessing the excessive risk taken
by homeowners and being able to control the systemic risk. He concluded that increased
financial complexity and reduced data quality (by the application of a simple-sum monetary
aggregate) resulted in a toxic mix.

In spite of the large numbers of papers that have investigated the issue of measurement
errors in the monetary market, there are still a few studies on measurement errors in stock
markets, even though the latter were at the centre of the recent global financial crisis, since
several stock markets lost over 50 % in 2008. Almeida et al. (2010) pointed to the problem of
errors-in-variables that make the standard estimators inconsistent due to an attenuation bias.
Drerup et al. (2014) suggested measurement error in subjective expectations and showed
that these errors may affect portfolio choice due to the implementation of heterogeneous
decision-making rules.

The present paper also analyses measurement errors in stock markets. In particular, we
examine the topic with a focus on financial performance to show that the performance evalu-
ation of stocks is also subject to errors.6 This choice is justified by the fact that performance
evaluation is a key issue for investors as it provides them with a benchmark to decide on their
investments and to define the level of risk they might take. A measurement error when evalu-
ating the performance of financial assets can result in an incorrect analysis and severe losses,
thereby negatively impacting on the representation of individual decision-making processes.
Indeed, measurement error associated with performance evaluation is observed repeated as
most performance ratios require strict hypotheses (normality, symmetry, certainty, restrictive
measures for risk, estimate of risk premium, perfect expectations, etc.), while financial data
do not usually allow these assumptions to be checked, which makes performance ratios obso-
lete and their conclusions inappropriate and incorrect. The literature says little about errors in
financial performance measures as few papers have investigated the issue.7 Indeed, Eling and
Schuhmacher (2007) compared the ranking of 2763 hedge funds provided by the Sharpe ratio
with that of twelve other performance ratios8 and showed that the ranking was unchanged
despite significant deviation from normality. The authors concluded that it indicated the high
performance of hedge funds and affirmed that the choice of performance measure does not
affect their evaluation.

At the same time, in the aftermath of the global financial crisis, hedge funds were not just
considered as responsible for the underlying problem but were also the crisis propagators,
and they have since been sharply criticized. Moreover, several other, even well noted, finan-

6 Performance is often defined and measured through a risk-adjusted return. The most widely known perfor-
mance measure is given by the ratio of Sharpe (1966).
7 To our knowledge, this is the first paper on the topic.
8 Sharpe ratio, Treynor ratio, Jensen alpha, Omega ratio, Sortino ratio, Kappa 3, the upside potential ratio,
Calmar ratio, Sterling ratio, Burke ratio, the excess return on Value at Risk, the conditional Sharpe ratio and
the modified Sharpe ratio.
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cial assets and investments defaulted, resulting in major losses. Our explanation is that the
financial performance evaluation methods for the different assets were measured with errors,
including the subprime credits and housing assets. Indeed, at least three main arguments and
criticisms can be addressed. On the one hand, computation of performance ratios requires a
measure of the risk. However, as the latter is not observed in practice, it is often proxied, and
an incorrect proxy for risk may lead to significant measurement errors. For example, while
the Sharpe ratio refers to the standard deviation to proxy total risk, the Treynor ratio only
focuses on the systematic risk that is approximated by the market beta. Thus, unsurprisingly,
performance ratios can diverge and the question would be: what is the best performance
ratio? On the other hand, most well-known performance ratios evaluate risk taking average
and strong hypotheses (normality, symmetry, etc.) into account. Thus, they cannot include
further extreme risk and are therefore less reliable if normality does not hold. Furthermore,
to our knowledge, no performance takes further systemic risk into account, even though the
recent global financial crisis clearly showed the high level of such risk. All in all, taking these
limits into account, it seems likely that existing performance ratios provide poor information
and somewhat unreliable conclusions.

Accordingly, this paper contributes to present knowledge by highlighting the significant
measurement errors in stock markets when evaluating performance indexes in developed and
emerging markets. To this end, we first, apply the usual performance ratios for both conven-
tional and Islamic stock indexes and evaluate their performance under normal conditions.
Thereafter, further asymmetry and extreme losses are taken into account, and we compute
the performance using more robust ratios and identify contradictory conclusions with regard
to those of standard ratios, suggesting further evidence of measurement errors. Finally, we
focus on the systemic risk issue and show that the supposedly best-performing indexes are,
at the same time, systemically the riskiest.

While checking for measurement errors, we indirectly check what would be the most
appropriate performance ratio and it seems that taking further extreme risk and the systemic
risk into account is helpful. Interestingly, our findings lead us to advocate the use of extreme-
risk adjusted performance ratios (using the VaR and Conditional VaR as proxies) that are
also robust to systemic risk (e.g., using the CoVaR and MES) in order to correctly evaluate
financial assets and reduce stock market measurement errors.

This paper includes four sections. Section 2 presents the econometric methodology. The
main empirical results are discussed in Sect. 3. Section 4 concludes.

2 Econometric methodology

This section presents both standard and robust performance ratios. It discusses the limitations
of standard ratios and themost recent performance ratios, taking into accoun trobustmeasures
of systemic risk.

2.1 First performance ratios’ generation

The idea of first performance ratios is to evaluate the performance of risky financial assets
with regard to the relationship between their expected profitability-risk ratio and the return
from a risk-free asset. Among the first ratios, we cite the well-known Sharpe ratio introduced
by Sharpe (1964), initially used to classify American mutual funds.The simplicity of this
ratio made it very popular as it enables financial performance to be evaluated using only the
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two first moments. Formally, it measures the return per unit of risk [Eq. (1)], and the higher
the Sharpe ratio

(Si ) of an asset i , the better the combined performance of “risk” and return.

Si = E(Ri ) − r f
σ(Ri )

(1)

where E(Ri ) denotes the expected return of a risky asset i , σ(Ri ) denotes the standard
deviation considered as a risk proxy, r f is the risk-free return.

However, this ratio requires normality distribution for stock returns. Accordingly, with an
asymmetrical distribution and investors somewhat sensitive to such asymmetry, the Sharpe
ratio is no longer reliable. In addition, when using standard deviation to proxy the risk,
the ensuing risk measure includes both diversifiable (idiosyncratic) and non-diversifiable
(systematic) risk. Thus, not only penalizes both the upside and the downside potential of
portfolio return, but the ratio is also no longer appropriate since a rational investor is expected
to select an optimal portfolio that rejects idiosyncratic risk.

As an extension, Treynor (1965) corrected this bias and substituted total risk by systematic
risk. The latter is given by the market beta, noted βi = cov(Ri ,RM )

σ 2(RM )
, that can be obtained

from the market model, where cov(Ri , RM ) measures the covariance between the return of
an asset i (Ri ) and that of the market (RM ), while σ 2(RM ) measures the total market risk.
The Treynor ratio corresponds to:9

TR = E(Ri ) − r f
βi

(2)

As for Sharpe ratio, the higher the T R of an index i , the better its performance. However,
while the TR is preferred to the Si , its main limitation is that it supposes the stability of the
market beta which cannot be reliable (Ben Ameur et al. 2015).

Accordingly, Jensen introduced the Jensen’s alphameasure,which provides a performance
measuremore guided by its theoretical performance that is based on theCAPM (Capital Asset
Pricing Model). Formally, Jensen’ alpha of an asset i , noted αi , corresponds to:

αi = E(Ri ) − ⌊
r f + βi (E(RM ) − r f )

⌋
(3)

where E(RM ) denotes the expected market return.
In the same context, Modigliani and Modigliani (1997) proposed a risk-adjusted measure

of portfolio performance, noted M2, which presents the advantage of adjusting the portfolio
risk to the market risk. They derived it from the Sharpe ratio and expressed the performance
in units of percent return. This is a measure of the risk-adjusted returns of some investment
portfolios,meaning that it captures the portfolio returns, adjusted for the portfolio risk relative
to that of the market. Formally, it corresponds to:

M2 =
(

σ(RM )

σ (Ri )

)
(E(Ri ) − r f ) + r f

= Siσ(RM ) + r f (4)

As for previous performance measures, the higher the M2, the stronger the portfolio perfor-
mance.

9 Treynor ratio requires also implicitly normality distribution for stock returns as it is also based on first two
moments. The main difference with Sharpe ratio is that it involves the systematic risk instead of the intrinsic
risk.

123



292 Ann Oper Res (2018) 262:287–306

The last two measures of the first generation performance ratios were introduced by
Graham and Harvey (1994, 1996) and are notedGH1 andGH2 respectively. These measures
help to overcome two drawbacks associated with S as they provide measures for performance
while enabling the risk volatility asset to differ. They also allow the risk-free rate to be variable
and at the same time correlatedwith the risky asset. Thesemeasures are particularly interesting
as in practice there is a significant correlation between changes in interest rates (risk-free
asset) and the short-term profitability of financial markets (risky asset). Formally, themeasure
GH1 is determined by the combination of the benchmark portfolio and the risk-free asset
and corresponds to:

GH1 = E(Ri ) −
[
R f +

(
σi

σm

)
(
E(Rm) − R f

)
]

(5)

GH2 is defined as the difference between the portfolio incorporating the risky asset and the
risk-free asset and portfolio returns for the same market value volatility, and corresponds to:

GH2 =
[
R f +

(
σm

σi

)
(
E(Ri ) − R f

)
]

− E(Rm) (6)

2.2 Second performance ratio’s generation

Financialmarkets have experienced severalmajor variations and corrections over the last three
decades [the 1987 stock crash, the Internet Bubble (2000), the subprime crisis (2007), the
global financial crisis (2008–2009), etc.] that resulted in great volatility excess and extreme
losses. Furthermore, an analysis of the effects of the recent global financial crisis points to
the importance of high systemic risk that stimulated the propagation of the crisis from the US
to several developed and emerging financial markets. However, previous performance ratios
were not adapted to take extreme losses and therefore the tail distribution risk into account,
which led to several errors and incorrect notations for risky financial assets (i.e. subprime
assets). In order to adjust performance ratios to extreme risk and better take the linkage
increase between international financial markets into account, several extensions have been
proposed that we classify in a second generation of performance ratios.

Dowd (2000) proposes an adjusted to extreme risk ratio similar to the Sharpe ratio but
that proxies the risk by the Value-at-Risk (VaR) rather than total risk [Eq. (8)]. Let’s recall
that the VaR describes the possible loss of an investment, which is not exceeded for a given
probability and a given horizon.

Under the normal distribution hypothesis, the Value-at-Risk of an asset i corresponds to:

VaRi (α) = − (
Rd
i + zασi

)
(7)

where zα is the α-quantile of the standard normal distribution, Rd
i is the mean return, σi is

the volatility parameter,
Regarding the estimation of the VaR,10 the historical method is preferred in practice as it

does not require any assumption of the distribution, which is determined from the historical

10 In the literature, the parametric and non-parametric approaches can be used to estimate the Value-at-Risk
model. We identified three main methods: variance–covariance approach, historical simulation and Monte
Carlo simulation. The first is a parametric method based on the normality assumption of the distribution of the
market parameters and index. The second, non-parametric method is the easiest approach as only historical
data are used to determine the VaR for the market and the index. The third is also a non-parametric method that
requires two steps. In the first step, the volatilities and correlation parameters are calibrated using the historical
data. In the second step, simulation of the stochastic processes is used to establish the return distribution, and
the VaR can then be determined from this distribution.
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data. However, as the normality distribution hypothesis is often rejected for financial data,
Cornish–Ficher developed theModifiedValue-at-Risk that has the advantage of taking further
asymmetry (skewness excess) and leptokurtic character (Kurtosis excess) into account.

RVaRi (α) = E(Ri ) − R f

VaR(Ri )
(8)

While the VaR enables the probability of extreme risk to be taken into consideration, it
has been subject to some criticism as it is neither convex nor sub-additive. To overcome
these limitations, Martin et al. (2003) proposed another extension, the STARR ratio, whose
performance measure is based on the Conditional Value-at-Risk (CVaR). This risk measure
is more informative than the VaR as it evaluates the mean of large losses beyond VaR-level.
The CVaR also satisfies certain plausible axioms of Artzner et al. (1999) and is considered as
a coherent measure of risk in the literature (Pflug 2000). Formally, the CVaR is defined as:

CVaRi (α) = E [Ri (Ri ≤ VaRi (α) ] (9)

where Ri denotes the return of a risky asset i .
Hence, the corresponding performance ratio becomes:

RCVaRi (α) = E(Ri ) − R f

CVaR(Ri )
(10)

Biglova et al. (2004) proposed a performance measure called the Rachev ratio, based on
the ratio between average earnings and mean losses. The Rachev ratio is computed using
the same idea as a CVaR risk measure, with the particularity that it focuses on the right-tail
reward potential. Formally, the Rachev ratio corresponds to:

R − Ratio (α, β) = CVaR1−α

(
rrisk- f ree(benchmark) − rport f olio(asset)

)

CVaR1−α

(
rport f olio(asset) − rrisk- f ree(benchmark)

) (11)

where rport f olio(asset) the return of the portfolio or the index and rrisk- f ree(benchmark) the risk
free return or the market return.

The higher the Rachev ratio, the better the performance. However, this ratio focuses on
return distribution extremes and ignores most of the returns in the middle.

In the same context, the Darolles et al. (2009) L-performance measure is also recom-
mended as it is robust to outliers and can accommodate thick-tailed distributions. Formally,
it is based on the notion of trimmed L-moments, used in the analysis of catastrophic events
such as extreme floods or low flows, and corresponds to:

L p,α = VaRRi ,0.5 × (
VaR−Ri ,α − VaRRi ,α

)−1 (12)

where Ri denotes the return of a risky asset i and α the quantile.
Finally, to overcome the limitations of previous ratios, theOmega ratio [Eq. (13)], proposed

by Keating and Shadwick (2002), provides a measure that incorporates all the moments of
the return distribution including skewness and kurtosis. As financial assets do not show a
normal distribution, the performance analysis based on their mean and variance may induce
measurement and evaluation errors. Accordingly, the use of performance ratios that take the
probability of extreme losses into account would help to improve the analysis of financial
performance and the selection of optimal investments.
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� =

b∫

r
(1 − F (x)) dx

r∫

a
F (x) dx

(13)

Overall, the second generation of performance ratios contributes by taking further extreme
losses into consideration. However, thematter of systemic risk is still not included, something
that is more than required as, in the aftermath of the global financial crisis (2008–2009), the
importance of systemic risk was noted to be responsible for major losses even for financial
assets, investments and institutions with supposedly superior financial performance (com-
pared to the previous performance ratios). Accordingly, besides the evaluation of the financial
performance with these ratios, the consideration and the evaluation of the systemic risk in
evaluating the financial performance is required to complete the analysis of financial perfor-
mance and to minimize measurement and evaluation errors.

2.3 The measure of systemic risk contribution

With regard to systemic risk, this sub-section discusses two different measures that help
to improve the evaluation of financial performance while taking the further contribution of
systemic risk into account: (i) the CoVaR measure, and (ii) the marginal expected shortfall
approach.

2.3.1 The CoVaR measure

Adrian and Brunnermeier (2011) proposed a measure for systemic risk using the conditional
Value-at-Risk, called the CoVaR. If we consider two assets i and j , the CoVaR is defined as
the VaR of one asset at some probability quantile that is conditional on another asset that is at
itsVaR level for the same quantile. In otherwords,while theVaRdescribes the possible loss of
an investment, it does not exceed a given probability of 1−α P (Ri ≤ VaRi (α)) = α,where
Ri denotes the asset return i . The VaR of asset j, conditional on the event (Ri = VaRi (α)),
is denoted by, CoVaR j(i (α) = VaRi (α), where α is the quantile. Accordingly, we write:

P
(
Ri ≤ CoVaR j(i)(α) |Ri = VaRi (α)

) = α (14)

Thus, the contribution of the asset i to the risk of the asset j corresponds to:

�CoVaR j(i)(α) = CoVaR j(R=VaRi )(α) − CoVaR j(R=mediani )(α) (15)

where CoVaR j(R=mediani )(α) corresponds to the CoVaR when the market is not in stress.
By using theCoVaR and the�CoVaRmeasureswith regard to the Treynor ratio, we take

into account the further dynamic impact of the world market risk on each index. Accordingly,
our contribution consists of proposing the use of a dynamic measure to evaluate financial
performance. Indeed,measuring systemic riskwith theCoVaRcaptures the direct and indirect
spillover effect based on the covariation between the distribution tails of specific indices
and the benchmark index, while the use of the �CoVaR enables us to incorporate new
information at each time t provided by the new sample data sets. In practice, the estimation
of theCoVaR measure is determined by the quantile regressor method proposed by Koenker
and Bassett (1978), which has the advantage of not requiring any hypothesis regarding the
returns distribution. Furthermore, the quantile regression method analyzes the impact on the
distribution tails rather than on the average, as is the case with the Least Square method. It
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also allows us to resolve the problem of aberrant values of widely dispersed errors as the
quantiles are less sensitive to further outliers.

As for the �CoVaR, we use the sliding window technique, which enables us to capture
the contribution of extrememarketmovements on the extreme risk of each index. Thismethod
allows us to focus exclusively on the distribution tails of each indexwhile reproducing further
spillover effect between the world market risk (asset j) and a given asset i . Accordingly, we
proceed in different steps. First, we estimate the sensitivity of each specific index (i) relative
to the benchmark index ( j). Second, we estimate the contribution of each specific index to
the systemic risk of the global market index.

2.4 The marginal expected shortfall approach

The expected shortfall (ES) riskmeasure, introducedbyArtzner et al.(1999), refers to theVaR,
but is more appropriate than the VaR as it is not affected by the problem of subadditivity. The
idea consists of measuring the tail dependence in the return of market indices and considering
the tail dependence estimates as a measure of systemic risk. Acharya et al. (2010) define the
marginal expected shortfall (MES) as the marginal contribution of firm J to the expected
shortfall of the financial system. In this paper, we adapt the MES Approach from the risk
study of financial firms to the study of international systemic risk. This enables us to analyze
the further contagion effect related to extreme price variation and to identify the markets with
the highest contribution of systemic risk across time on other markets.

Formally, the MES for firm J is the expected value of the stock return RJ conditional on
the market portfolio return Ri being at or below the sample p-percent quantile. Let C be a
constant that corresponds to the level of market “tail risk” that we can choose, we can write:

MES(RJ , p) = E (RJ |Ri < VaR (Ri , p) = C ) (16)

The assets that contribute most significantly to the market decline are those with the highest
levels of MES. These assets are the most likely candidates to be systemically risky.

In practice, we use the methodology proposed by Brownlees and Engle (2010) to esti-
mate MES from market index i and the market index j . This approach consists of a
multi-stage estimation. In the first step, GARCH models are used to generate conditional
volatilities and standardized residuals. In the second step, the ADCC specification, which
allows us to determine the conditional asymmetric correlation and then the estimates of the
tail expectation, is determined by a nonparametric kernel estimation approach proposed by
Scaillet (2005). The main advantage of this approach is that the estimator does not require
any hypothesis regarding the distribution of the index returns. Furthermore, Brownless and
Engle (2010) showed that this approach yields smooth estimates of theMES, implying that the
dynamicMES estimates are not over sensitive to small changes in the systemic loss threshold
level.

Formally, let ri,t and r j,t be respectively the return of two market indices, with:

ri,t = σi,tεi,t

r j,t = σ j,tε j,t (17)

ri,t = σi,tρi,tε j,t + σi,t

√
1 − ρ2

i,tζi,t

W ith : (
ε j,t , ζi,t

) → F (18)

123



296 Ann Oper Res (2018) 262:287–306

where σi,t , σ j,t and ρi,t are respectively the volatilities of the market index j and i and
the conditional correlation between the two market indices. ε j,t , ζi,t the disturbances are
assumed to be independently and identically distributed. The joint distribution F allows for
the random variables to be uncorrelated but not independent.

3 Empirical analysis

3.1 The data and preliminary analysis

The data includes conventional and Islamic stock indexes from developed and emerging
markets, including the Dow Jones Developed Market (DJDM), the Dow Jones Emerging
Market (DJEM), the Dow Jones Islamic DevelopedMarket (DJIDM), the Dow Jones Islamic
Emerging Market (DJIEM) and the Dow Jones Global Market (DJGM) as the benchmark
index.While using theDJ indexes for both conventional and Islamic indexes,we didminimize
the risk of heterogeneity in the data under consideration. Furthermore, this sample allows
us to conduct a dual comparison for financial performance: Developed versus Emerging
markets and Conventional versus Islamic markets. As for the risk-free interest rate (r f ), we
use the 90-Day Treasury Bill as a proxy. Data is weekly and covers the period April 2004–
March 2014, which allows to evaluate financial performance in the context of the financial
crisis as well as during calm periods (before July 2007). Interestingly, our sample covers
several crises as well as stylized facts linked to the Gulf War, the subprime crisis and the
recent crisis, suggesting further evidence of time-variation in stock markets and investors’
behavior. Stock indexes are closing prices, and all data are obtained from the Bloomberg
database.

To get a preliminary idea of the performance of the different stock markets under consid-
eration with regard to the benchmark index (the DJGM), we plot each index with the DJG
index in Fig. 1 and note several results. First, all of the indexes seem to have undergone a
major correction during the subprime and financial crises, while they appear to have per-
formed better over the last few years. Second, the pegging of stock indexes to the DJGM is
more marked for developed indexes than for emerging prices. Third, the spread between the
DJGM and the Islamic indexes seems significantly reduced. Fourth, the strong time-variation
of these indexes suggests that their performance also evolves over time and that they share a
common trend by the end of the period, which may be associated with further systemic risk
effect.

Next, we applied three unit root tests (ADF, PP and KPSS) and illustrated that all of
the series are I(1). We then focused on stock return series, computed as a first logarithm
difference of stock prices.11 From Table 1, we note that all stock returns are close to zero
on average, which possibly reflects the correction induced by the financial crisis. The DJEM
shows the highest mean returns and standard deviation, which is in line with previous studies
on emerging markets. The third and fourth moment statistics point to significant asymmetry
and leptokurtic excess, while the strong rejection of normality confirms that the distribution
queues are higher than those of normal distribution. Furthermore, the negative value for
skewness may suggest further nonlinearity and non-normality in the data, which makes the
use of some financial performance ratios inappropriate

11 The results of the unit root tests are not reported but are available upon request.
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Fig. 1 The dynamics of Dow
Jones indexes
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Table 1 Descriptive statistics and normality test

DJ Global DJ Dev DJ Emer DJ Isla Emer DJ Isla Dev

Min return –0.0960 –0.0960 –0.0964 –0.0870 –0.0927

Max return 0.0500 0.0498 0.0751 0.0465 0.0455

Mean return 0.0004 0.0004 0.0006 0.0004 0.0005

STD 0.0069 0.0114 0.0146 0.0104 0.0111

Variance return 0.0001 0.0001 0.0002 0.0001 0.0001

Skewnes –1.4584 –1.4831 –1.0311 –1.0206 –1.3690

Kurtosis 11.3630 11.6546 7.9084 10.7083 11.1564

Jarque–Bera test 2.9286e+003 3.0777e+003 1.4202e+003 2.5270e+003 2.8077e+003

Table 2 First generation performance measures for (a) the whole period, (b) sub-period 1 and (c) sub-
period 2

DJDM DJEM DJIEM DJIDM

(a)

Sharpe 0.0093 0.0204 0.0078 0.0175

Treynor 0.0001 0.0002 9.9290.10?5 0.00002

Jensen Alpha 3.98e–06 1.81e–04 –3.7e–06 9.60e–05

M2 3.58e–06 1.31e–04 –1.39e–05 9.75e–05

Graham Harvey 1 3.54e–06 1.67e–04 –1.26e–05 9.41e–05

Graham Harvey 2 3.56e–06 1.31e–04 –1.39e–05 9.75e–05

(b)

Sharpe 0.0042 0.1263 –0.013 0.0821

Treynor 0.0002 0.00098 –0.0001 0.0002

Jensen Alpha –5.3e–05 8.27e–04 –3.7e–04 –1.16e–04

M2 –5.44e–05 5.08e–04 –4.34e–04 –1.22e–04

Graham Harvey 1 –5.34e–05 7.56e–04 –4.14e–04 –1.26e–04

Graham Harvey 2 –5.43e–05 5.07e–04 –4.34e–04 –1.22e–04

(c)

Sharpe 0.0013 –0.0113 0.0138 0.014

Treynor 1.798 e–05 –0.00016 0.0002 0.0002

Jensen Alpha 3.28 e–06 –1.68e–04 –1.77e–04 1.92e–04

M2 3.32e–06 –1.34e–04 –1.99e–04 2.01e–04

Graham Harvey 1 3.28e–06 –1.66e–04 –1.78e–04 1.92e–04

Graham Harvey 2 3.32e–06 –1.34e–04 –1.99e–04 2.01e–04

3.2 Measurement errors in financial performance analysis

We computed the different financial performance ratios and analyzed their results. To better
apprehend the evolution of the financial performance of stock indexes, we break down the
sample under consideration into two subsamples: (i) sample 1: before the subprime crisis
(April 2004–July 2007), (ii) sample 2: after the subprime crisis (August 2007–March 2014)
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and we recomputed these ratios. We reported the main results of the computation of the first
generation performance ratios in Table 2a, b, c.

3.2.1 Financial performance analysis with first generation ratios

Our analysis over the whole period points to higher financial performance for the DJEM,
while the DJIEM seems to show the lowest performance (Table 2a). After breaking down
the sample into two subsamples to take the crisis effect into account, we show that before
the crisis, the DJIEM is still the best performing index of all the first generation performance
ratios, while the DJIDM supplants the other indexes after the crisis.

This conclusion is in line with several previous studies (Jawadi et al. 2014; Arouri et
al. 2013; etc.) which show that the crisis had a knock-on effect on Islamic finance that
became a form of hedging and refuge for investors. However, these results should be con-
sidered with caution as the data properties make the application of the first generation
performance ratios inappropriate and its conclusions incorrect. Indeed, the data under con-
sideration do not follow a normal and symmetrical distribution, which makes the reference
to the Sharpe ratio incorrect. Furthermore, Trenor and Jesen’s conclusion may not oper-
ate as they assume stability of the market beta, while Fig. 1 highlights further evidence of
time-variation. Finally, it is important to note that all of these ratios adjust return excess to
risk (total or systematic) that is adjusted in the mean, but they do not take further extreme
losses in the market into account, as observed in 2008. Accordingly, the application of
these ratios may result in incorrect conclusions and measurement errors. To remedy this
inconsistency, we also applied the second generation ratios for the full period and the two
sub-periods.

3.2.2 Financial performance analysis with second generation ratios

We compute the second generation ratios and reported them in Table 3a, b, c. Accord-
ingly, we obtain several interesting results. First, over the whole period, the DJEM seems
to be the best performer according to the RVaR, the RCVaR and the OMEGA ratios, while
the DJIEM is significantly better for the Rachev ratio. However, the DJDM performs bet-
ter than the other indexes according to the L-performance ratio. Second, when we focus
on the two subsamples, we note that the DJEM is preferred for the RVaR, the RCVaR,
the OMEGA and the L-performance ratios, while the Rachev ratio gives preference to the
DJIDM.With regard to the second subsample, the divergence between ratios is more explicit
(with the same ratio too, but for different levels of probability). Indeed, the DJDM is pre-
ferred only by the L-performance ratio, while the RCVaR preferred the DJEM. As for the
VaR (1 %) and the Rachev ratio, the DJIEM supplants the other markets, while the RVaR
(5 %) and the OMEGA ratios are higher for the DJIDM. Overall, these findings point to
two interesting conclusions. On the one hand, it seems important and necessary to include
further extreme losses and price variations when measuring financial performance as this
enables us to take the asymmetry and high-tail distribution inherent to the data into con-
sideration. On the other hand, the analysis based on the second generation ratios improves
the previous analysis when using more robust financial performance ratios. For example,
the Rachev ratio takes the specific properties of these indices into account, such as the
fact that asset return distributions are fat-tailed and skewed, and also by taking coherent
risk measure into account and focusing on some quantile of the distribution. The RVaR

123



300 Ann Oper Res (2018) 262:287–306

Table 3 Second generation performancemeasures for (a) thewhole period, (b) subsample 1 and (c) subsample
2

DJDM DJEM DJIEM DJIDM

(a)

RVaR 5 % 0.006 0.013 0.0045 0.0111

RVaR 1 % 0.0028 0.006 0.0031 0.0056

RCVaR 5 % (V0 = 100) 3.606e–05 0.023 1.991e–05 6.941e–05

RCVaR 1 % (V0 = 100) 2.050e–05 0.044 3.3407e−05 3.940e−05

Rachev 0.7146 0.755 0.901 0.737

L-performance 0.0464 0.045 0.025 0.044

OMEGA excess return 0.9914 1.027 0.987 1.015

(b)

RVaR 5 % 0.0254 0.0766 –0.0075 0.0171

RVaR 1 % 0.0142 0.0878 –0.0047 0.0106

RCVaR 5 % (V0 = 100) 0.000178 0.0166 –5.85e–05 0.000134

RCVaR 1 % (V0 = 100) 0.00013 0.0836 –4.5831e–05 0.000102

Rachev 0.7022 0.6733 0.7217 0.7517

L-performance 0.0609 0.1032 0.0636 0.068

OMEGA excess return 1.0669 1.3277 0.9817 1.0396

(c)

RVaR 5 % 0.00084 −0.0075 0.0068 0.0096

RVaR 1 % 0.00044 −0.0084 0.0059 0.0050

RCVaR 5 % (V0 = 100) 5.115e–06 0.0245 5.968e–05 5.4426e–05

RCVaR 1 % (V0 = 100) 2.927e–06 0.0534 3.313e–05 3.0109e–05

Rachev 0.6869 0.7496 0.8328 0.6977

L-performance 0.0822 0.0094 0.027 0.0284

OMEGA excess return 0.9587 0.9255 0.9936 0.9953

and RCVaR for (1 and 5 %) focus on extreme values of the historical distribution. Over-
all, this yields results that differ from previous analyses, suggesting further evidence of
measurement and evaluation errors. However, the results of the second generation analyses
are not unanimously conclusive as they vary per sample and according to the ratio under
consideration.

3.2.3 The systemic risk issue

Furthermore, while the ratios in Table 3 are more robust and adjusted to risk, none of them
can take the systemic risk issue into account. The latter is even more important in that it
can be transmitted rapidly from one market to another (as in 2008), and can consequently
cripple the other markets, even if they show high performance. Accordingly, it is essential to
take the contribution of systemic risk into account when evaluating financial performance,
as recommended in the Basel III agreement. Before moving on to examine the systemic
risk contribution, we illustrate the level of market linkages during calm and crisis periods
while computing the unconditional correlation matrix that we reported in Table 4a, b, c.
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Table 4 Correlation matrix for
(a) the whole period, (b)
subsample 1 and (c) subsample 2

DJGM DJDM DJEM DJIEM DJIDM

(a)

DJGM 1

DJDM 0.9957 1

DJEM 0.8923 0.8663 1

DJIEM 0.9063 0.9216 0.7234 1

DJIDM 0.9802 0.9829 0.8597 0.9132 1

(b)

DJGM 1

DJDM 0.9986 1

DJEM 0.8672 0.8447 1

DJIEM 0.872 0.8805 0.6477 1

DJIDM 0.9712 0.9723 0.8281 0.8633 1

(c)

DJGM 1

DJDM 0.9953 1

DJEM 0.8987 0.8722 1

DJIEM 0.9117 0.9279 0.7381 1

DJIDM 0.9818 0.9849 0.8665 0.9209 1

Accordingly, we note high unconditional bilateral correlation between all of the stockmarkets
as well as with the global benchmark, indicating strong linkages between these markets,
and suggesting further evidence of systemic risk between these areas. We also note that
most correlations (even with Islamic stock markets) increase after the global financial crisis.
However, once again, computation of this matrix also requires normality as it is based on the
Pearson correlation test. The rejection of normality and leptokurtic excess in our data makes
it less reliable, however.

In order to fill the gap, we check for systemic risk by investigating the sensitivity of
our indexes to the global markets while carrying out a quantile regression estimation. This
framework has a triple advantage. First, it provides a robust measure of the sensitivity of our
indexes to the global market while investigating the quantile properties, enabling the high
level tail of the distribution of our data to be taken into account. This provides a more robust
beta measure from the quantile regression than that employed by the Treynor index. Second,
this robust investigation indirectly enables us to evaluate the level of systemic risk between the
markets under consideration and the global markets. Third, the quantile regression estimates
are used to generate estimates of the �CoVaR measure. We report the main results of the
quantile regression in Table 5.

From Table 5, we observe that all parameters are statistically significant. The DIEM is
more sensitive to global market variations than the other markets, while the beta is higher
than 1 for the two quantile values α = 1 % and α = 5 %. This suggests that the DJEM
may amplify the global market risk, and it also suggests strong evidence of systemic risk
transmission between this market and the benchmark market. We can also note that the
standard emerging and developed index for the two quantiles α = 1% and α = 5% are more
sensitive to the global market than the Islamic indexes. For example, the DJIEM presents a
lower value of beta. Overall, this analysis confirms the hypothesis of systemic risk and points
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Table 5 Beta estimation with quantile regression method

Quantile regression beta

b0 b1

y = DJ Emer x = DJ GLO α = 1 % Parameters −0.0175 1.4138

t stat −13.1839 4.9308

y = DJ Emer x = DJ GLO α = 5 % Parameters −0.0102 1.2437

t stat −19.1270 20.9152

y = DJ Isla Emer x = DJ GLO α = 1 % Parameters −0.0121 0.7803

t stat −10.5613 2.3205

y = DJ Isla Emer x = DJ GLO α = 5 % Parameters −0.0066 0.8877

t stat −17.8851 28.5055

y = DJ Dev x = DJ GLO α = 1 % Parameters −0.0019 0.9908

t stat −11.532 43.8592

y = DJ Dev x = DJ GLO α = 5 % Parameters −0.0012 0.9874

t stat −12.9692 61.3165

y = DJ Isla Dev x = DJ GLO α = 1 % Parameters −0.0061 0.9411

t stat −10.4149 12.8017

y = DJ Isla Dev x = DJ GLO α = 5 % Parameters −0.0034 0.9775

t stat −15.6965 37.0758

to a risk that financial performance ratio calculations might fail to take this systemic risk into
account.

3.2.4 The measure of the systemic risk effect

Hereafter, in order to measure the contribution of systemic risk and identify which market
appears to show greater systemic risk, we apply two different non-parametric approaches:
(i) the �CoVaR approach and (ii) the marginal expected shortfall. Both require dynamic
analyses, but while the former only provides a threshold for losses, the latter enables us
to measure the average losses for a given probability. In practice, for both approaches,
our estimation covers two levels: α = 1 % and α = 5 %. We report the main results
of the �CoVaR in Fig. 2a,b, while Fig. 3a, b report those of the marginal expected
shortfall.

In practice, we first apply the dynamic �CoVaR for two quantiles α = 1 % and
α = 5 % using a sliding window approach for the period from 04/2004 to 03/2014
such as the estimation interval at each time t is [t − K , t] with K the time delay equal
to two years as in previous studies. This choice gives us a long enough period for a distri-
bution with sufficient information on the distribution tails. Accordingly, we note that both
DJEM and DJIEM indexes show significant sensitivity toward the DJGM index, with the
DJEM displaying higher dependency. The latter, considered by the first generation finan-
cial performance ratio as the best performing ratio, is the most systemically risky index
too. In other words, this index is the source of the greatest systemic risk, involving major
losses. This finding illustrates a form of measurement and evaluation error when the nota-
tion of this financial asset is provided by standard performance ratios. It is also important
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a

b

Fig. 2 a Delta CoVaR for α = 5 %. b Delta CoVaR for α = 1 %

to note that the systemic risk apparent from Fig. 2a, b reached its maximum level in
2008, which implies that measurement errors are higher in crisis periods than in calm peri-
ods.

However, the �CoVaR method, even based on a dynamic approach and quantile regres-
sion, only computes the loss threshold. In order to compute expected losses in the mean, we
use the marginal expected shortfall (MES) approach and reporte the main results on Fig. 3a,
b. From these figures, we also note that the DJEM has the highest level of systemic risk as
it is associated with the highest losses. It is also the most closely linked to the DJGM index.
This means that, even when considering the evaluation of losses in mean with the MES
approach, our findings identify the DJEM index as the most important systemic index. As for
the �CoVaR method, the findings from the MSE approach point to further measurement
and evaluation stock market errors when considering usual performance ratios. These ratios
overnote subprime credits, which, because of the rapid transmission of the systemic risk, led
to a major global financial crisis in 2008.
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a

b

Fig. 3 aMES for α = 5 %. bMES for α = 1 %

4 Conclusion

This paper focuses on a hot topic linked to measurement errors. Tackling it from a financial
performance perspective, it shows that the use of first generation performance ratios can
lead to incorrect conclusions. Indeed, these ratios are conditioned by strong assumptions
associated with normality and symmetry, etc. The frequent violation of these hypotheses
makes these ratios inappropriate. Accordingly, the recent financial literature identified a
second generation of financial performance ratios, which have the advantage of not requiring
such hypotheses and of being risk adjusted while taking further extreme losses into account.
While these robust ratios improve the performance analysis and provide amore precise result,
they are not suitable for taking further evidence of systemic risk into consideration. However,
the systemic risk is considerable, especially during crisis periods. From an empirical point of
view, the evaluation of systemic risk contribution with two non-parametric approaches over
the period 2004–2014 shows that the DIEM index, which is considered as the best performing
financial asset, appears to be the major source of systemic risk. In addition, DJIEM, despite
being considered as a hedge area, seems to amplify systemic risk. These findings highlight the
importance of measurement errors in stock markets due to the application of such financial
performance ratios. These errors not only induce major losses and even bankruptcy for
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several banks, financial institutions and markets, but also lead to a global financial crisis
and a major economic downturn for several developed and emerging economies. A further
future extension of this research would be to develop a new financial performance ratio that
incorporates the systemic risk dimension.

References

Acharya, V. V., Pedersen, L. H., Philippon, T., Richardson, M. P. (2010). Measuring systemic risk. SSRN:
http://ssrn.com/abstract=1573171.

Adrian, T., & Brunnermeier, M. (2011) . CoVaR, Working Paper, National Bureau of Statistics.
Almeida, H., Campello, M., & Galvao, A. F. (2010). Measurement errors in investment equations. The Review

of Financial Studies, 23(9), 3279–3328.
Arztner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance,

3, 203–228.
Barnett, W. A. (2012).Getting it wrong: how faulty monetary statistics undermine the fed, the financial system,

and the economy. Cambridge: MIT Press.
Barnett, W. A. (2015). Collaboration with or without coauthorship: Rocket science versus economic science.

In M. Szenberg & L. Ramrattan (Eds.), Intellectual collaborative experiences. Cambridge: Cambridge
University Press.

Barnett, W. A., & Chauvet, M. (2011). How better monetary statistics could have signaled the financial crisis.
Journal of Econometrics, 161(1), 6–23.

Barnett, W. A., Chauvet, M., & Tierney, H. L. R. (2009). Measurement error in monetary aggregates: a markov
switching factor approach. Macroeconomic Dynamics, 13(S2), 381–412.

Ben Ameur, H., Idi Cheffou, K., Jawadi, F., & Louhichi, W. (2015). Modeling beta changes with three regime
threshold market model,Working Paper presented at the 9th CFE conference, London, December 12–14,
2015.

Biglova, A., Ortobelli, S., Rachev, S. T., & Stoyanov, S. (2004). Different approaches to risk estimation in
portfolio theory. Journal of Portfolio Management, 31, 103–112.

Blackwell, M., Honaker, J., & King, G. (2015). A unified approach to measurement error and missing data:
Overview. Sociological Methods & Research.

Brownlees, C. T., & Engle, R. F. (2010). Volatility, correlation and tails for systemic risk measurement. SSRN:
http://ssrn.com/abstract=1611229.

Carroll, R., Ruppert, J., & Stefanski, L. A. (1995). Measurement error in nonlinear models: A modern per-
spective. London: Chapman and Hall.

Chang, C. C., Chen, S. S., Chou, R. K., & Hsin, C. W. (2011). Intraday return spillovers and its variations
across trading sessions. Review of Quantitative Finance and Accounting, 36, 355–390.

Chen, X., Hong, H., & Nekipelov, D. (2011). Nonlinear models of measurement errors. Journal of Economic
Literature, 49(4), 901–937.

Darolles, S., Gouriéroux, C., & Jasiak, J. (2009). L-performance with an application to hedge funds. Journal
of Empirical Finance, 16(4), 671–685.

Dowd,K. (2000).Adjusting for risk:An improved sharpe ratio. International reviewofEconomics andFinance,
9(3), 209–222.

Drerup, T., Enke, B., & Von Gaudecker, H. M. (2014). Measurement error in subjective expectations and the
empirical content of economic models. Netspar Discussion Paper No. 10/2014-043.

Eling, M., & Schuhmacher, F. (2007). Does the choice of performance measure influence the evaluation of
hedge fund? Journal of Banking and Finance, 31(9), 2632–2647.

Fuller, W. (1987).Measurement Error Models. New York: Wiley.
Graham, J., & Harvey, C. (1994). Market timing ability and volatility implied in investment newsletters’

asset allocation recommendations. Unpublished working paper, National Bureau of Economic Research,
Cambridge, MA.

Graham, J. R., & Harvey, C. R. (1996). Market timing ability and volatility implied in investment newsletters’
asset allocation recommendations. Journal of Financial Economics, 42, 397–422.

Hausman, J. (2001). Mismeasured variables in econometric analysis: problems from the right and problems
from the left. The Journal of Economic Perspectives, 15, 57–67.

Keating, C., & Shadwick,W. (2002). A universal performancemeasure. Journal of PerformanceMeasurement,
6(3), 59–84.

123

http://ssrn.com/abstract=1573171
http://ssrn.com/abstract=1611229


306 Ann Oper Res (2018) 262:287–306

Martin, D., Rachev, S., & Siboulet, F. (2003). Phi-alpha optimal portfolios and extreme risk management,
Wilmott Magazine of Finance, November/2003, pp. 70–83.

Modigliani, F., &Modigliani, L. (1997). Risk-adjusted performance. Journal of Portfolio Management, 23(2),
45–54.

Pflug, G. (2000). Some remarks on the value-at-risk and the conditional value-at-risk. In S. Uryasev (Ed.),
Probabilistic constrained optimization: methodology and applications. Berlin: Kluwer Academic Pub-
lishers.

Scaillet, O. (2005). Nonparametric estimation of conditional expected shortfall. Insurance and Risk Manage-
ment Journal, 74, 639–660.

Sharpe, W. F. (1966). Mutual fund performance. Journal of Business, 39(1), 119–138.
Taylor, J. R. (1999). An introduction to error analysis: The study of uncertainties in physical measurements.

Sausalito: University Science Books.
Treynor, J. (1965). How to rate management of investment funds. Harvard Business Review, 43(1), 63–75.

123


	Measurement errors in stock markets
	Abstract
	1 Introduction
	2 Econometric methodology
	2.1 First performance ratios' generation
	2.2 Second performance ratio's generation
	2.3 The measure of systemic risk contribution
	2.3.1 The CoVaR measure

	2.4 The marginal expected shortfall approach

	3 Empirical analysis
	3.1 The data and preliminary analysis
	3.2 Measurement errors in financial performance analysis
	3.2.1 Financial performance analysis with first generation ratios
	3.2.2 Financial performance analysis with second generation ratios
	3.2.3 The systemic risk issue
	3.2.4 The measure of the systemic risk effect


	4 Conclusion
	References




