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Abstract This paper focuses on the study of optimality conditions and duality in nonsmooth
fractionalmultiobjective optimizationproblems.Applying someadvanced tools of variational
analysis and generalized differentiation, we establish necessary optimality conditions for
(weakly) efficient solutions of a fractional multiobjective optimization problem involving
inequality and equality constraints. Sufficient optimality conditions for such solutions to
the considered problem are also obtained by means of (strictly) generalized convex-affine
functions. In addition, we address a dual problem to the primal one and examine duality
relations between them.
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1 Introduction

Optimality conditions and duality for (weakly) Pareto/efficient solutions in fractional multi-
objective optimization problems have been investigated intensively by many researchers (see
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e.g., Antczak 2006, 2008; Bahatia and Garg 1998; Bector et al. 1993; Chen 2002; Chinchu-
luun and Pardalos 2007; Chinchuluun et al. 2007; Kim et al. 2006; Konno and Kuno 1990;
Kuk et al. 2001; Lee and Lai 2005; Lai and Ho 2012; Lalitha et al. 2003; Liu 1996; Liu
and Yokoyama 1999; Liu and Feng 2007; Long 2011; Nobakhtian 2008; Niculescu 2007;
Soleimani-damaneh 2008; Zalmai 2006 and the references therein). One of the main tools
used to examine a fractional multiobjective optimization problem is that one employs the
separation theorem of convex sets (see e.g., Rockafellar 1970) to provide necessary optimal-
ity conditions for (weakly) efficient solutions of the considered problem and exploits various
kinds of (generalized) convex/or invex functions to formulate sufficient optimality conditions
for such solutions. It should be noted further that since the kinds of (generalized) invex func-
tions mentioned above have been constructed via the convexified/Clarke subdifferential of
locally Lipschitz functions, we therefore have to remain using tacitly the separation theorem
of convex sets in the proof schemes.

In fact, a characteristic of a fractional multiobjective optimization problem is that its
objective function is generally not a convex function. Even under more restrictive con-
cavity/convexity assumptions fractional multiobjective optimization problems are generally
nonconvex ones. Besides, the (approximate) extremal principle (Mordukhovich 2006a),
which plays a key role in variational analysis and generalized differentiation, has been
well-recognized as a variational counterpart of the separation theorem for nonconvex sets.
Hence using the extremal principle and other advanced techniques of variational analysis
and generalized differentiation to establish optimality conditions seems to be suitable for
nonconvex/nonsmooth fractional multiobjective optimization problems.

In this work, we employ some advanced tools of variational analysis and general-
ized differentiation (e.g., the nonsmooth version of Fermat’s rule, the sum rule and the
quotient rule for the limiting/Mordukhovich subdifferential, and the intersection rule for
the normal/Mordukhovich cone) to establish necessary optimality conditions for (weakly)
Pareto/efficient solutions of a nonsmooth fractional multiobjective optimization problem
with inequality and equality constraints. Since the limiting/Mordukhovich subdifferential of
a real-valued function at a given point is contained in the convexified/Clarke subdifferen-
tial of such a function at the corresponding point (cf. Mordukhovich 2006a), the necessary
optimality conditions formulated in terms of the limiting subdifferential are sharper than
the corresponding ones expressed in terms of the convexified subdifferential. Sufficient opti-
mality conditions for such solutions to the considered problem are also provided by means
of introducing (strictly) generalized convex-affine functions defined in terms of the limiting
subdifferential for locally Lipschitz functions. Along with optimality conditions, we state a
dual problem to the primal one and explore weak, strong and converse duality relations under
assumptions of (strictly) generalized convexity-affineness. Furthermore, examples are given
for analyzing and illustrating the obtained results.

In passing, we wish to point out that besides the (weakly) Pareto/efficient solutions, the
notion of super minimality/efficiency introduced by Borwein and Zhuang (1993) and more
recently investigated by Bao and Mordukhovich (2009) plays also an important role in mul-
tiobjective optimization. Since the latter paper successfully established necessary optimality
conditions for such efficiency in a general setting by using the above-mentioned generalized
differential constructions, it could be possible to obtain results in this vein for fractional
multiobjective optimization problems. We leave this for future study.

The rest of the paper is organized as follows. Section 2 contains some basic definitions
from variational analysis and several auxiliary results. In Sect. 3, we first establish necessary
optimality conditions for (weakly) efficient solutions of a fractional multiobjective optimiza-
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tion problem. Then we supply sufficient optimality conditions for such solutions. Section 4
is devoted to describing duality relations.

2 Preliminaries

Throughout the paper we use the standard notation of variational analysis (see e.g., Mor-
dukhovich 2006a, b). Unless otherwise specified, all spaces under consideration are assumed
to be Asplund (i.e., Banach spaces whose separable subspaces have separable duals). The
canonical pairing between space X and its topological dual X∗ is denoted by 〈· , ·〉, while
the symbol ‖ · ‖ stands for the norm in the considered space. As usual, the polar cone of a
set � ⊂ X is defined by

�◦ := {x∗ ∈ X∗ | 〈x∗, x〉 ≤ 0 ∀x ∈ �}. (2.1)

Also, for each m ∈ N := {1, 2, . . . }, we denote by R
m+ the nonnegative orthant of R

m .

Given a multifunction F : X ⇒ X∗, we denote by

Lim sup
x→x̄

F(x) :=
{

x∗ ∈ X∗∣∣ ∃ sequences xn → x̄ and x∗
n

w∗−→ x∗

with x∗
n ∈ F(xn) for all n ∈ N

}

the sequential Painlevé-Kuratowski upper/outer limit of F as x → x̄, where the notation
w∗−→ indicates the convergence in the weak∗ topology of X∗.
A set � ⊂ X is locally closed if for each x̄ ∈ �, there is a neighborhood U of x̄ such that

�∩ clU is closed. From now on, we always assume that sets under consideration are locally
closed. Given � ⊂ X , the regular/Fréchet normal cone to � at x̄ ∈ � is defined by

N̂ (x̄;�) :=
{

x∗ ∈ X∗
∣∣∣ lim sup

x
�−→x̄

〈x∗, x − x̄〉
‖x − x̄‖ ≤ 0

}
, (2.2)

where x
�−→ x̄ means that x → x̄ with x ∈ �. If x̄ /∈ �, we put N̂ (x̄;�) := ∅.

The limiting/Mordukhovich normal cone N (x̄;�) at x̄ ∈ � is obtained from N̂ (·;�) by
taking the sequential Painlevé–Kuratowski upper limits as

N (x̄;�) := Lim sup

x
�−→x̄

N̂ (x;�). (2.3)

If x̄ /∈ �, we put N (x̄;�) := ∅.

For an extended real-valued function ϕ : X → R := [−∞,∞], we set
gphϕ := {(x, μ) ∈ X × R | μ = ϕ(x)}, epiϕ := {(x, μ) ∈ X × R | μ ≥ ϕ(x)}.

The limiting/Mordukhovich subdifferential of ϕ at x̄ ∈ X with |ϕ(x̄)| < ∞ is defined by

∂ϕ(x̄) := {x∗ ∈ X∗ | (x∗,−1) ∈ N ((x̄, ϕ(x̄)); epiϕ)}. (2.4)

If |ϕ(x̄)| = ∞, then one puts ∂ϕ(x̄) := ∅. It is known (cf. Mordukhovich 2006a) that when
ϕ is a convex function, the above-defined subdifferential coincides with the subdifferential
in the sense of convex analysis (Rockafellar 1970).

Considering the indicator function δ(·;�) defined by δ(x;�) := 0 for x ∈ � and by
δ(x;�) := ∞ otherwise, we have a relation between the Mordukhovich normal cone and
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the limiting subdifferential of the indicator function as follows (see Mordukhovich 2006a,
Proposition 1.79):

N (x̄;�) = ∂δ(x̄;�) ∀x̄ ∈ �. (2.5)

The nonsmooth version of Fermat’s rule (see e.g., Mordukhovich 2006a, Proposi-
tion 1.114), which is an important fact for many applications, can be formulated as follows:
If x̄ ∈ X is a local minimizer for ϕ : X → R, then

0 ∈ ∂ϕ(x̄). (2.6)

The following limiting subdifferential sum rule is needed for our study.

Lemma 2.1 (See Mordukhovich 2006a, Theorem 3.36) Let ϕi : X → R, i =
1, 2, . . . , n, n ≥ 2, be lower semicontinuous around x̄ ∈ X, and let all these functions
except, possibly, one be Lipschitz continuous around x̄ . Then one has

∂(ϕ1 + ϕ2 + · · · + ϕn)(x̄) ⊂ ∂ϕ1(x̄) + ∂ϕ2(x̄) + · · · + ∂ϕn(x̄). (2.7)

Combining this limiting subdifferential sum rule with the quotient rule (cf. Mordukhovich
2006a, Corollary 1.111(ii)), we get an estimate for the limiting subdifferential of quotients.

Lemma 2.2 Let ϕi : X → R, i = 1, 2, be Lipschitz continuous around x̄ . Assume that
ϕ2(x̄) �= 0. Then one has

∂

(
ϕ1

ϕ2

)
(x̄) ⊂ ∂

(
ϕ2(x̄)ϕ1

)
(x̄) + ∂

( − ϕ1(x̄)ϕ2
)
(x̄)

[ϕ2(x̄)]2 . (2.8)

Recall Mordukhovich (2006a) that a set � ⊂ X is sequentially normally compact (SNC)
at x̄ ∈ � if for any sequences

xk
�→ x̄ and x∗

k
w∗→ 0 with x∗

k ∈ N̂(xk;�),

one has ‖x∗
k ‖ → 0 as k → ∞. Obviously, this SNC property is automatically satisfied

in finite dimensional spaces. The interested reader is referred to Fabian and Mordukhovich
(2003) for a comprehensive comparison of the SNC property and other constructions of this
type.

A function ϕ : X → R is called sequentially normally compact (SNC) at x̄ ∈ X if gph ϕ

is SNC at (x̄, ϕ(x̄)). According to Mordukhovich (2006a, Corollary 1.69(i)), ϕ is SNC at
x̄ ∈ X if it is Lipschitz continuous around x̄ .

In what follows, we also need the intersection rule for the normal cones under the fulfill-
ment of the SNC condition.

Lemma 2.3 (See Mordukhovich 2006a, Corollary 3.5) Assume that �1,�2 ⊂ X are closed
around x̄ ∈ �1 ∩ �2 and that at least one of {�1,�2} is SNC at this point. If

N (x̄;�1) ∩ ( − N (x̄;�2)
) = {0},

then

N (x̄;�1 ∩ �2) ⊂ N (x̄;�1) + N (x̄;�2).
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3 Optimality conditions in fractional multiobjective optimization

This section is devoted to studying optimality conditions for fractional multiobjective opti-
mization problems. More precisely, by using the nonsmooth version of Fermat’s rule, the
sum rule and the quotient rule for the limiting subdifferentials, and the intersection rule for
the Mordukhovich cones, we first establish necessary optimality conditions for (weakly)
efficient solutions of a fractional multiobjective optimization problem. Then by imposing
assumptions of (strictly) generalized convexity-affineness, we give sufficient optimality con-
ditions for such solutions.

Let � be a nonempty locally closed subset of X, and let K := {1, . . . , m}, I :=
{1, . . . , n} ∪ ∅ and J := {1, . . . , l} ∪ ∅ be index sets. In what follows, � is always assumed
to be SNC at the point under consideration. This assumption is automatically fulfilled when
X is a finite dimensional space.

We consider the following fractional multiobjective optimization problem:

minRm+

{
f (x) :=

(
p1(x)

q1(x)
, · · · ,

pm(x)

qm(x)

) ∣∣∣ x ∈ C

}
, (P)

where the constraint set C is defined by

C := {
x ∈ � | gi (x) ≤ 0, i ∈ I, h j (x) = 0, j ∈ J

}
, (3.1)

and the functions pk, qk, k ∈ K , gi , i ∈ I, and h j , j ∈ J are locally Lipschitz on X. For
the sake of convenience, we further assume that qk(x) > 0, k ∈ K for all x ∈ �, and
that pk(x̄) ≤ 0, k ∈ K for the reference point x̄ ∈ �. Also, we use hereafter the notation
g := (g1, . . . , gn), h := (h1, . . . , hl) and f := ( f1, . . . , fm), where fk := pk

qk
, k ∈ K .

Definition 3.1 (i) We say that x̄ ∈ C is an efficient solution of problem (P), and write
x̄ ∈ S(P), iff

∀x ∈ C, f (x) − f (x̄) /∈ −R
m+\{0}.

(ii) A point x̄ ∈ C is called a weakly efficient solution of problem (P), and write x̄ ∈ Sw(P),
iff

∀x ∈ C, f (x) − f (x̄) /∈ −int Rm+.

For x̄ ∈ �, let us put

I (x̄) := {i ∈ I | gi (x̄) = 0}, J (x̄) := { j ∈ J | h j (x̄) = 0}.
Definition 3.2 We say that condition (CQ) is satisfied at x̄ ∈ � if there do not exist βi ≥
0, i ∈ I (x̄) and γ j ≥ 0, j ∈ J (x̄), such that

∑
i∈I (x̄) βi + ∑

j∈J (x̄) γ j �= 0 and

0 ∈
∑

i∈I (x̄)

βi∂gi (x̄) +
∑

j∈J (x̄)

γ j
(
∂h j (x̄) ∪ ∂(−h j )(x̄)

) + N (x̄;�).

It is worth to mention here that when considering x̄ ∈ C defined in (3.1) with � = X
in the smooth setting, the above-defined (CQ) is guaranteed by the Mangasarian-Fromovitz
constraint qualification (see e.g., Mordukhovich 2006a for more details).

The following theorem gives a Karush–Kuhn–Tucker (KKT) type necessary optimality
condition for (weakly) efficient solutions of problem (P).
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Theorem 3.3 Let the (CQ) be satisfied at x̄ ∈ �. If x̄ ∈ Sw(P), then there exist λ :=
(λ1, . . . , λm) ∈ R

m+\{0}, β := (β1, . . . , βn) ∈ R
n+, and γ := (γ1, . . . , γl) ∈ R

l+ such that

0 ∈
∑
k∈K

λk

(
∂pk(x̄) − pk(x̄)

qk(x̄)
∂qk(x̄)

)
+

∑
i∈I

βi∂gi (x̄)

+
∑
j∈J

γ j
(
∂h j (x̄) ∪ ∂(−h j )(x̄)

) + N (x̄;�), βi gi (x̄) = 0, i ∈ I. (3.2)

Proof Let x̄ ∈ Sw(P) and let

ϕ(x) := max
k∈K

{
pk(x)

qk(x)
− pk(x̄)

qk(x̄)

}
.

We are going to show that

ϕ(x̄) ≤ ϕ(x) ∀x ∈ C. (3.3)

Indeed, if this is not the case, then there exists x0 ∈ C such that ϕ(x0) < ϕ(x̄). Since

ϕ(x̄) = 0, it holds that maxk∈K

{
pk (x0)
qk (x0)

− pk (x̄)
qk (x̄)

}
< 0. Thus,

f (x0) − f (x̄) ∈ −int R
m+,

which contradicts the fact that x̄ ∈ Sw(P).
We assert by (3.3) that x̄ is a minimizer of the following scalar problem

min
x∈C

ϕ(x).

Thus, x̄ is a minimizer of the following unconstrained scalar optimization problem

min
x∈X

ϕ(x) + δ(x; C). (3.4)

Applying the nonsmooth version of Fermat’s rule (2.6) to problem (3.4), we have

0 ∈ ∂
(
ϕ + δ(·; C)

)
(x̄). (3.5)

Since the function ϕ is Lipschitz continuous around x̄ and the function δ(·; C) is l.s.c around
this point, it follows from the sum rule (2.7) applied to (3.5) and from the relation in (2.5)
that

0 ∈ ∂ϕ(x̄) + N (x̄; C). (3.6)

On the one side, employing the formula for the basic subdifferential of maximum functions
(see Mordukhovich 2006a, Theorem 3.46(ii)) and the sum rule (2.7) we obtain

∂ϕ(x̄) = ∂

(
max
k∈K

{
pk

qk
(·) − pk(x̄)

qk(x̄)

})
(x̄)

⊂
{∑

k∈K

αk∂

(
pk

qk

)
(x̄)

∣∣∣ αk ≥ 0, k ∈ K ,
∑
k∈K

αk = 1

}
.
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Taking (2.8) into account, we arrive at

∂ϕ(x̄) ⊂
{∑

k∈K

αk
∂
(
qk(x̄)pk

)
(x̄) + ∂

( − pk(x̄)qk
)
(x̄)

[qk(x̄)]2
∣∣∣ αk ≥ 0, k ∈ K ,

∑
k∈K

αk = 1

}

=
{∑

k∈K

αk
qk(x̄)∂pk(x̄) − pk(x̄)∂qk(x̄)

[qk(x̄)]2
∣∣∣ αk ≥ 0, k ∈ K ,

∑
k∈K

αk = 1

}
, (3.7)

where the equality holds due to the fact that −pk(x̄) ≥ 0, qk(x̄) > 0 for all k ∈ K .

On the other side, by letting

�̃ := {
x ∈ X | gi (x) ≤ 0, i ∈ I,

h j (x) = 0, j ∈ J
}
,

we have C = �̃ ∩ �. The (CQ) being satisfied at x̄ entails that there do not exist βi ≥ 0, i ∈
I (x̄), and γ j ≥ 0, j ∈ J (x̄) = J such that

∑
i∈I (x̄) β j + ∑

j∈J γ j �= 0 and

0 ∈
∑

i∈I (x̄)

βi∂gi (x̄) +
∑
j∈J

γ j
(
∂h j (x̄) ∪ ∂(−h j )(x̄)

)
.

Hence, we get by Mordukhovich (2006a, Corollary 4.36) that

N (x̄; �̃) ⊂
{ ∑

i∈I (x̄)

βi∂gi (x̄) +
∑
j∈J

γ j
(
∂h j (x̄) ∪ ∂(−h j )(x̄)

) ∣∣∣ βi ≥ 0, i ∈ I (x̄),

γ j ≥ 0, j ∈ J
}
. (3.8)

As the (CQ) is satisfied at x̄ and � is assumed to be SNC at this point, we apply Lemma 2.3
to obtain the following

N (x̄; C) = N (x̄; �̃ ∩ �) ⊂ N (x̄; �̃) + N (x̄;�). (3.9)

It follows from (3.6)–(3.9) that

0 ∈
{∑

k∈K

αk

qk(x̄)

(
∂pk(x̄) − pk(x̄)

qk(x̄)
∂qk(x̄)

) ∣∣∣ αk ≥ 0, k ∈ K ,
∑
k∈K

αk = 1

}

+
⎧⎨
⎩

∑
i∈I (x̄)

βi∂gi (x̄) +
∑
j∈J

γ j
(
∂h j (x̄) ∪ ∂(−h j )(x̄)

) ∣∣∣ βi ≥ 0, i ∈ I (x̄), γ j ≥ 0, j ∈ J

⎫⎬
⎭

+ N (x̄;�). (3.10)

Now, put βi := 0 for i ∈ I\I (x̄), and let λk := αk
qk (x̄)

for k ∈ K . It is clear that (3.10) implies
(3.2) and so, the proof is complete. ��

A simple example below shows that the conclusion of Theorem 3.3 may fail if the (CQ)
is not satisfied at the point in question.

Example 3.4 Let f : R → R
2 be defined by

f (x) :=
(

p1(x)

q1(x)
,

p2(x)

q2(x)

)
,

where p1(x) = p2(x) := x, q1(x) = q2(x) := x2 + 1, x ∈ R, and let g, h : R → R

be given by g(x) := x2, h(x) := 0, x ∈ R. We consider problem (P) with m := 2 and
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� := (−∞, 0] ⊂ R. Then C = {0} and thus, x̄ := 0 ∈ Sw(P)(= S(P)). In this setting,
we have N (x̄;�) = [0,+∞). Now, we can check that condition (CQ) is not satisfied at x̄ .

Meantime, x̄ does not satisfy (3.2) either.

We refer the reader to a result (Bao et al. 2007) about necessary optimality conditions for
a more general multiobjective fractional program with equilibrium constraints by way of a
different approach. More concretely, the paper (Bao et al. 2007) considers the problem (P)
with an additional equilibrium constraint:

0 ∈ G(x) + Q(x),

where G, Q : X ⇒ Y are multifunctions between Banach spaces. Their approach is to
compute the Mordukhovich/limiting coderivative of the epigraphical multifunction of the
component functions ϕk := pk

qk
, k ∈ K for deriving the optimality conditions. Under a con-

straint qualification condition (Bao et al. 2007, Theorem 4.2) obtains a KKT type necessary
optimality condition for a (local) weakly efficient solution x̄ involving the values of the lim-
iting coderivatives of D∗G(x̄, ȳ) and D∗Q(x̄, ȳ), where ȳ ∈ G(x̄) ∩ (−Q(x̄)), and of the

subdifferentials
∂
(

qk (x̄)pk

)
(x̄)+∂

(
−pk (x̄)qk

)
(x̄)

[qk (x̄)]2 , k ∈ K .Hence, Bao et al. (2007, Theorem 4.2) is
more general than Theorem 3.3 due to the former contains the data of equilibrium constraint
D∗G(x̄, ȳ) and D∗Q(x̄, ȳ). However, by exploiting the exclusive structure of our problem,
we can elaborate separately the subdifferentials of the functions pk and qk, k ∈ K at the
referenced point and turn the necessary optimality criterion into a traditional representation
of the KKT condition (cf. 3.2), which allows us to be able to provide sufficient optimality
conditions and explore duality relations in the sequel.

The next example illustrates that Theorem 3.3 works better in comparison with some of
the existing results about optimality conditions for fractional multiobjective optimization
problems, for instance (Kim et al. 2006).

Example 3.5 Let f : R → R
2 be defined by

f (x) :=
(

p1(x)

q1(x)
,

p2(x)

q2(x)

)
,

where p1(x) = p2(x) := |x |, q1(x) = q2(x) := −|x | + 1, x ∈ R, and let g : R → R

be given by g(x) := −x − 1, x ∈ R. Let us consider problem (P) with K := {1, 2}, I :=
{1}, J := ∅, and � := (−1, 1) ⊂ R. It is easy to check that x̄ := 0 ∈ Sw(P) and the (CQ) is
satisfied at this point. So, in this setting we can apply Theorem 3.3 to conclude that x̄ satisfies
condition (3.2). Meanwhile, since the functions q1, q2 are not differentiable at x̄ (Kim et al.
2006, Theorem 2.2) is not applicable to this problem.

It should be noted further that, in general, a feasible point of problem (P) satisfying
condition (3.2) is not necessarily to be a weakly efficient solution even in the smooth case.
This will be illustrated by the following example.

Example 3.6 Let f : R → R
2 be defined by

f (x) :=
(

p1(x)

q1(x)
,

p2(x)

q2(x)

)
,

where p1(x) = p2(x) := x3 − 1, q1(x) = q2(x) := x2 + 1, x ∈ R, and let g, h : R → R

be given by g(x) := −x2, h(x) := 0, x ∈ R. Let us consider problem (P) with m := 2
and � := (−∞, 1] ⊂ R. Then C = � and thus, x̄ := 0 ∈ C . In this setting, we have
N (x̄;�) = {0}. Observe that x̄ satisfies condition (3.2). However, x̄ /∈ Sw(P).
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By virtue of Example 3.6, obtaining sufficient optimality conditions for (weakly) efficient
solutions of problem (P) requires concepts of (generalized) convexity-affineness-type for
locally Lipschitz functions.

Definition 3.7 (i) We say that ( f, g; h) is generalized convex-affine on � at x̄ ∈ � if
for any x ∈ �, u∗

k ∈ ∂pk(x̄), v∗
k ∈ ∂qk(x̄), k ∈ K , x∗

i ∈ ∂gi (x̄), i ∈ I, and
y∗

j ∈ ∂h j (x̄) ∪ ∂(−h j )(x̄), j ∈ J there exists ν ∈ N (x̄;�)◦ such that

pk(x) − pk(x̄) ≥〈u∗
k , ν〉, k ∈ K ,

qk(x) − qk(x̄) ≥〈v∗
k , ν〉, k ∈ K ,

gi (x) − gi (x̄) ≥〈x∗
i , ν〉, i ∈ I,

h j (x) − h j (x̄) =ω j 〈y∗
j , ν〉, j ∈ J,

where ω j = 1 (respectively, ω j = −1) whenever y∗
j ∈ ∂h j (x̄) (respectively, y∗

j ∈
∂(−h j )(x̄)).

(ii) We say that ( f, g; h) is strictly generalized convex-affine on � at x̄ ∈ � if for any
x ∈ �\{x̄}, u∗

k ∈ ∂pk(x̄), v∗
k ∈ ∂qk(x̄), k ∈ K , x∗

i ∈ ∂gi (x̄), i ∈ I, and y∗
j ∈

∂h j (x̄) ∪ ∂(−h j )(x̄), j ∈ J there exists ν ∈ N (x̄;�)◦ such that

pk(x) − pk(x̄) >〈u∗
k , ν〉, k ∈ K ,

qk(x) − qk(x̄) ≥〈v∗
k , ν〉, k ∈ K ,

gi (x) − gi (x̄) ≥〈x∗
i , ν〉, i ∈ I,

h j (x) − h j (x̄) =ω j 〈y∗
j , ν〉, j ∈ J,

where ω j = 1 (respectively, ω j = −1) whenever y∗
j ∈ ∂h j (x̄) (respectively, y∗

j ∈
∂(−h j )(x̄)).

It is clear that if� is convex, pk, qk, k ∈ K , gi , i ∈ I are convex, and h j , j ∈ J are affine,
then ( f, g; h) is generalized convex-affine on � at x̄ ∈ � with ν := x − x̄ for each x ∈ �.

And besides, when qk(x) ≡ 1 for k ∈ K (i.e., f := (p1, . . . , pm)), the above-defined notions
reduce respectively to L-(strictly) invex-infine functions given in Chuong (2012), Chuong
and Kim (2014). Hence, the class of generalized convex-affine functions surely contains
some nonconvex functions (see e.g., Chuong 2012, Example 3.3). The reader is referred to
Chuong (2012, 2013), Chuong and Kim (2014), Sach et al. (2003) for some properties and
applications of (L-) invex-infine functions.

We are now in a position to provide sufficient conditions for a feasible point of problem (P)
to be a weakly efficient (or efficient) solution.

Theorem 3.8 Assume that x̄ ∈ C satisfies condition (3.2).

(i) If ( f, g; h) is generalized convex-affine on � at x̄, then x̄ ∈ Sw(P).

(ii) If ( f, g; h) is strictly generalized convex-affine on � at x̄, then x̄ ∈ S(P).

Proof Since x̄ satisfies condition (3.2), there exist λ := (λ1, . . . , λm) ∈ R
m+\{0}, μ :=

(μ1, . . . , μn) ∈ R
n+, γ := (γ1, . . . , γl) ∈ R

l+, u∗
k ∈ ∂pk(x̄), v∗

k ∈ ∂qk(x̄), k ∈ K , x∗
i ∈

∂gi (x̄), i ∈ I with μi gi (x̄) = 0, and y∗
j ∈ ∂h j (x̄) ∪ ∂(−h j )(x̄), j ∈ J such that

−
⎡
⎣∑

k∈K

λk

(
u∗

k − pk(x̄)

qk(x̄)
v∗

k

)
+

∑
i∈I

μi x∗
i +

∑
j∈J

γ j y∗
j

⎤
⎦ ∈ N (x̄;�). (3.11)

We first justify (i). Assume on the contrary that x̄ /∈ Sw(P). This means that there is
x̂ ∈ C such that
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f (x̂) − f (x̄) ∈ −int Rm+. (3.12)

By the generalized convex-affine property of ( f, g; h) on � at x̄, for x̂ above, there exists
ν ∈ N (x̄;�)◦ such that

∑
k∈K

λk

(
〈u∗

k , ν〉 − pk(x̄)

qk(x̄)
〈v∗

k , ν〉
)

+
∑
i∈I

μi 〈x∗
i , ν〉 +

∑
j∈J

γ j 〈y∗
j , ν〉

≤
∑
k∈K

λk

[
pk(x̂) − pk(x̄) − pk(x̄)

qk(x̄)

(
qk(x̂) − qk(x̄)

)] +
∑
i∈I

μi
(
gi (x̂) − gi (x̄)

)

+
∑
j∈J

1

ω j
γ j

(
h j (x̂) − h j (x̄)

)

=
∑
k∈K

λk

(
pk(x̂) − pk(x̄)

qk(x̄)
qk(x̂)

)
+

∑
i∈I

μi
(
gi (x̂) − gi (x̄)

)

+
∑
j∈J

1

ω j
γ j

(
h j (x̂) − h j (x̄)

)
,

where ω j ∈ {−1, 1}, j ∈ J. Due to the definition of polar cone (2.1), it follows from (3.11)
and the relation ν ∈ N (x̄;�)◦ that

0 ≤
∑
k∈K

λk

(
〈u∗

k , ν〉 − pk(x̄)

qk(x̄)
〈v∗

k , ν〉
)

+
∑
i∈I

μi 〈x∗
i , ν〉 +

∑
j∈J

γ j 〈y∗
j , ν〉. (3.13)

Hence,

0 ≤
∑
k∈K

λk

(
pk(x̂) − pk(x̄)

qk(x̄)
qk(x̂)

)
+

∑
i∈I

μi
(
gi (x̂) − gi (x̄)

)

+
∑
j∈J

σ j
(
h j (x̂) − h j (x̄)

)
, (3.14)

where σ j := γ j
ω j

∈ R, j ∈ J. In addition, it holds that

∑
i∈I

μi
(
gi (x̂) − gi (x̄)

) +
∑
j∈J

σ j
(
h j (x̂) − h j (x̄)

) ≤ 0

due to the fact that μi gi (x̄) = 0, μi gi (x̂) ≤ 0, i ∈ I , and h j (x̄) = 0, h j (x̂) = 0, j ∈ J. So,
we get by (3.14) that

0 ≤
∑
k∈K

λk

(
pk(x̂) − pk(x̄)

qk(x̄)
qk(x̂)

)
.

This entails that there is k0 ∈ K such that

0 ≤ pk0(x̂) − pk0(x̄)

qk0(x̄)
qk0(x̂) (3.15)

due to λ ∈ R
m+\{0}. The inequality in (3.15) is equivalent to the following one

fk0(x̄) ≤ fk0(x̂),

which contradicts (3.12) and, therefore, the proof of (i) is complete.

123



Ann Oper Res (2016) 244:367–383 377

Now, we prove (ii). Suppose to the contrary that x̄ /∈ S(P). Then there is x̂ ∈ C such that

f (x̂) − f (x̄) ∈ −R
m+\{0}. (3.16)

By the strictly generalized convex-affine property of ( f, g; h) on � at x̄, for x̂ above, there
exists ν ∈ N (x̄;�)◦ such that

∑
k∈K

λk

(
〈u∗

k , ν〉 − pk(x̄)

qk(x̄)
〈v∗

k , ν〉
)

+
∑
i∈I

μi 〈x∗
i , ν〉 +

∑
j∈J

γ j 〈y∗
j , ν〉

<
∑
k∈K

λk

[
pk(x̂) − pk(x̄) − pk(x̄)

qk(x̄)

(
qk(x̂) − qk(x̄)

)] +
∑
i∈I

μi
(
gi (x̂) − gi (x̄)

)

+
∑
j∈J

1

ω j
γ j

(
h j (x̂) − h j (x̄)

)
,

where ω j ∈ {−1, 1}, j ∈ J. Similar to the proof of (i), we obtain (3.13) and then arrive at

0 <
∑
k∈K

λk

(
pk(x̂) − pk(x̄)

qk(x̄)
qk(x̂)

)
.

This entails that there is k0 ∈ K such that

0 < pk0(x̂) − pk0(x̄)

qk0(x̄)
qk0(x̂).

Equivalently,

fk0(x̄) < fk0(x̂).

It together with (3.16) gives a contradiction, which completes the proof. ��

4 Duality in fractional multiobjective optimization

In this section we propose a dual problem to the primal one in the sense of Mond and Weir
(1981) and examine weak, strong, and converse duality relations between them. Note further
that another dual problem formulated in the sense of Wolfe (1961) can be similarly treated.

Let z ∈ X, λ := (λ1, . . . , λm) ∈ R
m+\{0}, μ := (μ1, . . . , μn) ∈ R

n+, and γ :=
(γ1, . . . , γl) ∈ R

l+. In connectionwith the fractionalmultiobjective optimization problem (P),
we consider a fractional multiobjective dual problem of the form:

maxRm+

{
f̄ (z, λ, μ, γ ) :=

(
p1(z)

q1(z)
, · · · ,

pm(z)

qm(z)

) ∣∣∣ (z, λ, μ, γ ) ∈ CD

}
. (D)

Here the constraint set CD is defined by

CD := {
(z, λ, μ, γ ) ∈ � × (Rm+\{0}) × R

n+ × R
l+ | 0 ∈

∑
k∈K

λk

(
∂pk(z) − pk(z)

qk(z)
∂qk(z)

)

+
∑
i∈I

μi∂gi (z) +
∑
j∈J

γ j
(
∂h j (z) ∪ ∂(−h j )(z)

) + N (z;�),

〈μ, g(z)〉 + 〈σ, h(z)〉 ≥ 0 ∀σ ∈ S(0, ||γ ||)},
where S(0, ||γ ||) := {σ ∈ R

l | ||σ || = ||γ ||}.
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We need to address here that an efficient solution (resp., a weakly efficient solution) of
problem (D) is similarly defined as in Definition 3.1 by replacing −R

m+ (resp., int Rm+) by
R

m+ (resp., −int Rm+). Also, we denote the set of efficient solutions (resp., weakly efficient
solutions) of problem (D) by S(D) (resp., Sw(D)).

In what follows, we use the following notation for convenience.

u ≺ v ⇔ u − v ∈ −int Rm+, u ⊀ v is the negation of u ≺ v,

u � v ⇔ u − v ∈ −R
m+\{0}, u � v is the negation of u � v.

The first theorem in this section describes weak duality relations between the primal
problem (P) and the dual problem (D).

Theorem 4.1 (Weak Duality) Let x ∈ C and let (z, λ, μ, γ ) ∈ CD.

(i) If ( f, g; h) is generalized convex-affine on � at z, then

f (x) ⊀ f̄ (z, λ, μ, γ ).

(ii) If ( f, g; h) is strictly generalized convex-affine on � at z, then

f (x) � f̄ (z, λ, μ, γ ).

Proof Since (z, λ, μ, γ ) ∈ CD , there exist λ := (λ1, . . . , λm) ∈ R
m+\{0}, μ :=

(μ1, . . . , μn) ∈ R
n+, γ := (γ1, . . . , γl) ∈ R

l+, u∗
k ∈ ∂pk(z), v∗

k ∈ ∂qk(z), k ∈ K , x∗
i ∈

∂gi (z), i ∈ I, and y∗
j ∈ ∂h j (z) ∪ ∂(−h j )(z), j ∈ J such that

−
⎡
⎣∑

k∈K

λk

(
u∗

k − pk(z)

qk(z)
v∗

k

)
+

∑
i∈I

μi x∗
i +

∑
j∈J

γ j y∗
j

⎤
⎦ ∈ N (z;�), (4.1)

〈μ, g(z)〉 + 〈σ, h(z)〉 ≥ 0 for all σ ∈ R
l with ||σ || = ||γ ||. (4.2)

In order to justify (i), we assume to the contrary that

f (x) ≺ f̄ (z, λ, μ, γ ).

This means that

f (x) − f (z) ∈ −int Rm+. (4.3)

By the generalized convex-affine property of ( f, g; h) on � at z, for such x , there exists
ν ∈ N (z;�)◦ such that

∑
k∈K

λk

(
〈u∗

k , ν〉 − pk(z)

qk(z)
〈v∗

k , ν〉
)

+
∑
i∈I

μi 〈x∗
i , ν〉 +

∑
j∈J

γ j 〈y∗
j , ν〉

≤
∑
k∈K

λk

[
pk(x) − pk(z) − pk(z)

qk(z)

(
qk(x) − qk(z)

)] +
∑
i∈I

μi
(
gi (x) − gi (z)

)

+
∑
j∈J

1

ω j
γ j

(
h j (x) − h j (z)

)

=
∑
k∈K

λk

(
pk(x) − pk(z)

qk(z)
qk(x)

)
+

∑
i∈I

μi
(
gi (x) − gi (z)

)

+
∑
j∈J

1

ω j
γ j

(
h j (x) − h j (z)

)
,
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where ω j ∈ {−1, 1}, j ∈ J. Due to the definition of polar cone (2.1), it follows from (4.1)
and the relation ν ∈ N (z;�)◦ that

0 ≤
∑
k∈K

λk

(
〈u∗

k , ν〉 − pk(z)

qk(z)
〈v∗

k , ν〉
)

+
∑
i∈I

μi 〈x∗
i , ν〉 +

∑
j∈J

γ j 〈y∗
j , ν〉.

Thus,

0 ≤
∑
k∈K

λk

(
pk(x) − pk(z)

qk(z)
qk(x)

)
+

∑
i∈I

μi
(
gi (x) − gi (z)

)

+
∑
j∈J

σ j
(
h j (x) − h j (z)

)
, (4.4)

where σ j := γ j
ω j

∈ R, j ∈ J. In addition, due to x ∈ C,
∑

i∈I μi gi (x) ≤ 0 and∑
j∈J σ j h j (x) = 0. So, (4.4) entails that

0 ≤
∑
k∈K

λk

(
pk(x) − pk(z)

qk(z)
qk(x)

)
−

∑
i∈I

μi gi (z) −
∑
j∈J

σ j h j (z)

=
∑
k∈K

λk

(
pk(x) − pk(z)

qk(z)
qk(x)

)
− (〈μ, g(z)〉 + 〈σ, h(z)〉),

where σ := (σ1, σ2, . . . , σl) ∈ R
l . Moreover, since ||σ || = ||γ ||, (4.2) is valid and, thus, we

obtain

0 ≤
∑
k∈K

λk

(
pk(x) − pk(z)

qk(z)
qk(x)

)
.

This entails that there is k0 ∈ K such that

0 ≤ pk0(x) − pk0(z)

qk0(z)
qk0(x) (4.5)

due to λ ∈ R
m+\{0}. The inequality in (4.5) is equivalent to the following one

fk0(z) ≤ fk0(x),

which contradicts (4.3). The proof of (i) is complete.
Let us now prove (ii). Assume to the contrary that

f (x) � f̄ (z, λ, μ, γ ),

or equivalently,

f (x) − f (z) ∈ −R
m+\{0}. (4.6)

By the strictly generalized convex-affine property of ( f, g; h) on � at z, for such x , there is
ν ∈ N (z;�)◦ such that
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∑
k∈K

λk

(
〈u∗

k , ν〉 − pk(z)

qk(z)
〈v∗

k , ν〉
)

+
∑
i∈I

μi 〈x∗
i , ν〉 +

∑
j∈J

γ j 〈y∗
j , ν〉

<
∑
k∈K

λk

[
pk(x) − pk(z) − pk(z)

qk(z)

(
qk(x) − qk(z)

)] +
∑
i∈I

μi
(
gi (x) − gi (z)

)

+
∑
j∈J

1

ω j
γ j

(
h j (x) − h j (z)

)
,

where ω j ∈ {−1, 1}, j ∈ J. Proceeding similarly as in the proof of (i), we arrive at

0 <
∑
k∈K

λk

(
pk(x) − pk(z)

qk(z)
qk(x)

)
.

This entails that there is k0 ∈ K such that

0 < pk0(x) − pk0(z)

qk0(z)
qk0(x). (4.7)

Equivalently,

fk0(z) < fk0(x),

which contradicts (4.6) and therefore completes the proof. ��
The next example asserts the importance of the generalized convex-affine property of

( f, g; h) imposed in Theorem 4.1. Namely, the conclusion of the theorem may go awry if
this property has been violated.

Example 4.2 Let f : R → R
2 be defined by

f (x) :=
(

p1(x)

q1(x)
,

p2(x)

q2(x)

)
,

where p1(x) = p2(x) := x3, q1(x) = q2(x) := x2 + 1, x ∈ R, and let g, h : R → R be
given by g(x) := −|x | and h(x) := x2 + x for x ∈ R. Consider the problem (P) with m := 2
and � := (−∞, 0] ⊂ R. Then C = {−1, 0} and let us select x̄ := −1 ∈ C . Now, consider
the dual problem (D). By choosing z̄ := 0 ∈ �, λ̄ := ( 12 ,

1
2 ), μ̄ := 1, and γ̄ := 1, it holds

that (z̄, λ̄, μ̄, γ̄ ) ∈ CD and that

f (x̄) =
(

−1

2
,−1

2

)
≺ (0, 0) = f̄ (z̄, λ̄, μ̄, γ̄ ),

showing that the conclusion of Theorem 4.1 fails to hold. The reason is that ( f, g; h) is not
generalized convex-affine on � at z̄.

Strong duality relations between the primal problem (P) and the dual problem (D) read
as follows.

Theorem 4.3 (Strong Duality) Let x̄ ∈ Sw(P) be such that the (CQ) is satisfied at this
point. Then there exists (λ̄, μ̄, γ̄ ) ∈ (Rm+\{0}) × R

n+ × R
l+ such that (x̄, λ̄, μ̄, γ̄ ) ∈ CD and

f (x̄) = f̄ (x̄, λ̄, μ̄, γ̄ ).

(i) If in addition ( f, g; h) is generalized convex-affine on � at any z ∈ �, then
(x̄, λ̄, μ̄, γ̄ ) ∈ Sw(D).
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(ii) If in addition ( f, g; h) is strictly generalized convex-affine on � at any z ∈ �, then
(x̄, λ̄, μ̄, γ̄ ) ∈ S(D).

Proof Thanks to Theorem 3.3, we find λ̄ := (λ1, . . . , λm) ∈ R
m+\{0}, μ̄ := (μ1, . . . , μn) ∈

R
n+, and γ̄ := (γ1, . . . , γl) ∈ R

l+ such that

0 ∈
∑
k∈K

λk

(
∂pk(x̄) − pk(x̄)

qk(x̄)
∂qk(x̄)

)
+

∑
i∈I

μi∂gi (x̄) +
∑
j∈J

γ j
(
∂h j (x̄) ∪ ∂(−h j )(x̄)

)

+ N (x̄;�), μi gi (x̄) = 0, i ∈ I.

In addition, due to x̄ ∈ C, h j (x̄) = 0 for all j ∈ J , and thus, 〈μ̄, g(x̄)〉 + 〈σ, h(x̄)〉 = 0 for
all σ ∈ S(0, ||γ̄ ||)). So, we conclude that (x̄, λ̄, μ̄, γ̄ ) ∈ CD . Obviously,

f (x̄) = f̄ (x̄, λ̄, μ̄, γ̄ ).

(i) If ( f, g; h) is generalized convex-affine on � at any z ∈ �, then by invoking (i) of
Theorem 4.1, we obtain

f̄ (x̄, λ̄, μ̄, γ̄ ) = f (x̄) ⊀ f̄ (z, λ, μ, γ )

for any (z, λ, μ, γ ) ∈ CD . It means that (x̄, λ̄, μ̄, γ̄ ) ∈ Sw(D).

(ii) If ( f, g; h) is strictly generalized convex-affine on � at any z ∈ �, then by invoking
(ii) of Theorem 4.1, we assert that

f̄ (x̄, λ̄, μ̄, γ̄ ) � f̄ (z, λ, μ, γ )

for any (z, λ, μ, γ ) ∈ CD . Hence, (x̄, λ̄, μ̄, γ̄ ) ∈ S(D). ��
Remark 4.4 Observe that the (CQ) imposed in Theorem 4.3 plays an important role in estab-
lishing the strong duality results. More precisely, if x̄ is a weakly efficient solution of the
primal problem at which the (CQ) is not satisfied, then we might not find out a triplet
(λ̄, μ̄, γ̄ ) ∈ (Rm+\{0}) × R

n+ × R
l+ such that (x̄, λ̄, μ̄, γ̄ ) belongs to the feasible/constraint

set of the dual problem. In this case, of course, we do not have strong dual relations. Let us
look back at Example 3.4.

We close this section by presenting converse-like duality relations between the primal
problem (P) and the dual problem (D).

Theorem 4.5 (Converse Duality) Let (x̄, λ̄, μ̄, γ̄ ) ∈ CD .

(i) If x̄ ∈ C and ( f, g; h) is generalized convex-affine on � at x̄, then x̄ ∈ Sw(P).

(ii) If x̄ ∈ C and ( f, g; h) is strictly generalized convex-affine on � at x̄, then x̄ ∈ S(P).

Proof Since (x̄, λ̄, μ̄, γ̄ ) ∈ CD , there exist λ̄ := (λ1, . . . , λm) ∈ R
m+\{0}, μ̄ :=

(μ1, . . . , μn) ∈ R
n+, γ̄ := (γ1, . . . , γl) ∈ R

l+, u∗
k ∈ ∂pk(x̄), v∗

k ∈ ∂qk(x̄), k ∈ K , x∗
i ∈

∂gi (x̄), i ∈ I, and y∗
j ∈ ∂h j (x̄) ∪ ∂(−h j )(x̄), j ∈ J such that

−
⎡
⎣∑

k∈K

λk

(
u∗

k − pk(x̄)

qk(x̄)
v∗

k

)
+

∑
i∈I

μi x∗
i +

∑
j∈J

γ j y∗
j

⎤
⎦ ∈ N (x̄;�), (4.8)

〈μ̄, g(x̄)〉 + 〈σ, h(x̄)〉 ≥ 0 for all σ ∈ R
l with ||σ || = ||γ̄ ||. (4.9)
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It follows by (4.9) that

〈μ̄, g(x̄)〉 ≥ |〈γ̄ , h(x̄)〉| ≥ 0. (4.10)

Let x̄ ∈ C . We have gi (x̄) ≤ 0 for all i ∈ I and thus, 〈μ̄, g(x̄)〉 ≤ 0. This together with
(4.10) yields 〈μ̄, g(x̄)〉 = 0. Then μi gi (x̄) = 0 for all i ∈ I. So, we assert by virtue of (4.8)
that x̄ satisfies condition (3.2). To finish the proof, it remains to apply Theorem 3.8. ��
Acknowledgments The authors are grateful to the referees for the valuable comments and suggestions.
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