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Abstract Conjugate gradient methods are an important class of methods for unconstrained
optimization, especially for large-scale problems. Recently, they have been much studied. In
this paper, a new family of conjugate gradientmethod is proposed for unconstrained optimiza-
tion. This method includes the already existing two practical nonlinear conjugate gradient
methods, which produces a descent search direction at every iteration and converges globally
provided that the line search satisfies the Wolfe conditions. The numerical experiments are
done to test the efficiency of the new method, which implies the new method is promising.
In addition the methods related to this family are uniformly discussed.
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convergence
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1 Introduction

Consider the unconstrained optimization problem

minf(x), x ∈ Rn (1)

where f is a smooth function and its gradient is available. Conjugate gradient methods are a
class of important methods for solving (1), especially for large scale problems, which have
the following form:

xk+1 = xk + αkdk (2)
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where xk is the current iterate, αk is a positive scalar and called the step length which is
determined by some line search, and dk is the search direction generated by the rule

dk =
{

−gk for k = 1;
−gk + βkdk−1 for k ≥ 2,

(3)

where gk = � f (xk) is the gradient of f at xk , and βk is a scalar. The strongWolfe conditions,
namely,

f (xk + αkdk) − f (xk) ≤ δαkg
T
k dk (4)∣∣∣g (xk + αkdk)

T dk
∣∣∣ ≤ −σgTk dk, (5)

where 0 < δ < σ < 1. The scalar βk is chosen so that the method (2), (3) reduces to the
linear conjugate gradient method in the case when f is convex quadratic and exact line search(
g(xk + αkdk)T dk = 0

)
is used. For general functions, however, different formula for scalar

βk result in distinct nonlinear conjugate gradient methods, (see Dai and Yuan 1999; Fletcher
and Reeves 1964; Polyak 1969; Fletcher 1987; Shanno 1978). Since Fletcher and Reeves
(FR) introduced the linear conjugate gradient method in 1964, with

βFR
k = ‖gk‖2

‖gk−1‖2
, (6)

where ‖.‖ means the Euclidean norm. For non-quadratic objective functions, the global
convergence of (FR) method was proved when the exact line search or strong Wolfe line
search (Al-Baali 1985; Dai andYuan 1996)was used. However, if the condition (5) is satisfied
for σ < 1, the above method of (FR) with the strong Wolfe line search can ensure a descent
search direction and converge globally provided only for the case when f is quadratic (Dai
et al. 2000; Dai and Yuan 1999). The conjugate descent (CD) method of Fletcher (1987),
where

βCD
k = ‖gk‖2

−gTk−1dk−1
, (7)

ensures a descent direction for general functions if the line search satisfies the strong Wolfe
conditions (4), (5) with σ < 1. But the global convergence of the method is proved (see Dai
et al. 2000) only for the case when the line search satisfies (4) and

σgTk dk ≤ g (xk + αkdk)
T dk ≤ 0. (8)

For any positive constant σ2, an example is constructed in Dai et al. (2000) showing that
conjugate descent method with αk satisfying (4) and

σ1g
T
k dk ≤ g (xk + αkdk)

T dk ≤ −σ2g
T
k dk, (9)

need not converge. Recently, Dai and Yuan (1999) proposed a nonlinear conjugate gradient
method, which has the form (2), (3) with

βDY
k = ‖gk‖2

dTk−1yk−1
, (10)

where yk−1 = gk − gk−1. A remarkable property of the DY method is that it provides a
descent search direction at every iteration and converges globally provided that the step size
satisfies the Wolfe conditions, namely, (4) and

σgTk dk ≤ g (xk + αkdk)
T dk . (11)
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By direct calculations, we can deduce an equivalent form for βDY
k , namely

βDY
k = gTk dk

gTk−1dk−1
. (12)

In Dai and Yuan (2003), proposed a class of globally convergent conjugate gradient methods,
in which

βk = ‖gk‖2
λ ‖gk−1‖2 + (1 − λ)

(
dTk−1yk−1

) , (13)

where λ ∈ [0, 1] is a parameter, and proved that the family of methods using line searches
that satisfy (4) and (9) converges globally if the parameters σ1, σ2, and λ are such that

σ1 + σ2 ≤ λ−1.

In addition, Sellami et al. (2015) proposed a new two-parameter family of conjugate
gradient methods, in which

βk = (1 − λk) ‖gk‖2 + λk
(−gTk dk

)
(1 − λk − μk) ‖gk−1‖2 + (λk + μk)

(−gTk−1dk−1
) ,

whereλk ∈ [0, 1] andμk ∈ [0, 1−λk] are parameters, and proved that the new two-parameter
family can ensure a descent search direction at every iteration and converges globally under
line search condition (4) and (9) where the scalars σ1 and σ2 satisfy the condition

σ1 + σ2 ≤ 1 + μkσ1

1 − λk
.

Observing that the formula (7) and (10) share same numerators and two denominators.
In this paper we can use combinations of these numerators and denominators to obtain the
following new family of conjugate gradient methods

β∗
k = (1 − λ) ‖gk‖2 + λ

(−gTk dk
)

(1 − λ)
(−gTk−1dk−1

) + λ
(−gTk−1dk−1

) (14)

Thus by the above equality in (14), we deduce an equivalent form of β∗
k ,

β∗
k = (1 − λ) ‖gk‖2 + λ

(−gTk dk
)

−gTk−1dk−1
(15)

with λ ∈ [0, 1] being a parameter. We see that the above formula for β∗
k is special forms of

β∗
k = φk

φ′
k−1

, (16)

where φk satisfies that

φk = (1 − λ) ‖gk‖2 + λ
(
−gTk dk

)
, (17)

and

φ′
k−1 = (1 − λ)

(
−gTk−1dk−1

)
+ λ

(
−gTk−1dk−1

)
= −gTk−1dk−1 (18)

It is clear that the formula (15) is a generalization of the two previous methods are defined
by (7) and (10).
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The rest of this paper is organized as follows. Some preliminaries are given in the next
section. Section 3 provides two convergence theorems for the general method (2), (3) with
β∗
k defined by (16). Section 4 includes the main convergence properties of the new family of

conjugate gradient methods with Wolfe line search, and we study methods related to the new
nonlinear conjugate gradient method (15). The preliminary numerical results are contained
in Sect. 5. Conclusions and discussions are made in the last section.

2 Preliminaries

For convenience, we assume that gk �= 0 for all k, for otherwise a stationary point has been
found. We give the following basic assumption on the objective function.

Assumption 2.1 (i) f is bounded below on the level set £ = {x ∈ Rn; f (x) ≤ f (x1)};
(ii) In some neighborhood N of £, f is differentiable and its gradient g is Lipschitz contin-

uous, namely, there exists a constant L > 0 such that

‖g(x) − g (x̃)‖ ≤ L ‖x − x̃‖ , for all x, x̃ ∈ N (19)

Some of the results obtained in this paper depend also on the following assumption.

Assumption 2.2 The level set £ = {x ∈ Rn; f (x) ≤ f (x1)} is bounded.
If f satisfies Assumption 2.1 and 2.2, there exists a positive constant γ such that

‖g(x)‖ ≤ γ, for all x ∈ £. (20)

The conclusion of the following lemma, often called the Zoutendijk condition, is used to
prove the global convergence of nonlinear conjugate gradient methods. It was originally
given in Zoutendijk (1970).

Lemma 2.3 Suppose Assumption 2.1 holds. Let {xk} be generated by (2) and dk satisfy
gTk dk < 0. If αk is determined by the Wolfe line search (4), (11), then we have

∑
k≥1

(
gTk dk

)2
‖dk‖2

< ∞. (21)

In the latter section, we need the following lemmas, the first of which is derived from Hu
and Storey (1991), Pu and Yu (1990), whereas the second is self-evident and will be used for
many times.

Lemma 2.4 Suppose that {ai } and {bi } are positive number sequences. If∑
k≥1

ak = ∞, (22)

and there exist two constants c1 and c2 such that for all k ≥ 1,

bk ≤ c1 + c2

k∑
i=1

ai , (23)

then we have that ∑
k≥1

ak
bk

= ∞. (24)

123



Ann Oper Res (2016) 241:497–513 501

Lemma 2.5 Consider the following 1-dimensional function,

ρ(t) = a + bt

c + dt
, t ∈ R1, (25)

where a, b, c, and d �= 0 are given real numbers. If

bc − ad > 0, (26)

ρ(t) is strictly monotonically increasing for t <
−c

d
and t >

−c

d
; otherwise, if

bc − ad < 0, (27)

ρ(t) is strictly monotonically decreasing for t <
−c

d
and t >

−c

d
.

3 Algorithm and convergence properties

Now we can present a new descent conjugate gradient method, namely NDCG method, as
follows:

Algorithm 3.1 Step 0: Given x1 ∈ R, set d1 = −g1, k = 1. If g1= 0, then stop.
Step 1: Find a αk > 0 satisfying the Wolfe conditions (4) and (11).
Step 2: Let xk+1 = xk + αkdk and gk+1 = g(xk+1). If gk+1 = 0, then stop.
Step 3: Compute β∗

k+1 by the formula (15) and generate dk+1 by (3).
Step 4: Set k := k + 1, go to Step 1.
In order to establish the global convergence result for the Algorithm 3.1, we will impose

the following basic lemma.

For simplicity, we define

rk = −gTk dk
φk

, (28)

and

tk = ‖dk‖2
φ2
k

. (29)

Lemma 3.1 For the method (2), (3) with β∗
k defined by (16),

tk = 2
k∑

i=1

ri
φi

−
k∑

i=1

‖gi‖2
φ2
i

, (30)

holds for all k ≥ 1.

Proof Since d1 = −g1. (30) holds for k = 1. For i ≥ 2, it follows from (3) that

di + gi = β∗
i di−1. (31)

Squaring both sides of the above equation, we get that

‖di‖2 = −‖gi‖2 − 2gTi di + β∗2
i ‖di−1‖2 . (32)
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Dividing (32) by φ2
i and applying (16) and (29),

ti = ‖di−1‖2
φ′
i−1

2 + 2
ri
φi

− ‖gi‖2
φ2
i

. (33)

Using (18), (17) and since, d1 = −g1 we get that

‖d1‖2
φ′
1
2 = ‖g1‖2

‖g1‖4
= ‖g1‖2

φ2
1

. (34)

Summing the above expression (33) over i , we obtain

tk = t1 + 2
k∑

i=2

ri
φi

−
k∑

i=2

‖gi‖2
φ2
i

. (35)

Since d1 = −g1 and t1 = ‖g1‖2
φ2
1

, the above relation is equivalent to (30). So (30) holds for

k ≥ 1. 
�
Theorem 3.2 Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider
the method (2), (3) and (16), if for all k, dk satisfy gTk dk < 0 and αk is determined by the
Wolfe line search (4), (11), and if ∑

k≥1

r2k = ∞, (36)

we have that

lim
k−→∞ inf ‖gk‖ = 0. (37)

Proof Equation (3) can be re-written as

gTi di + ‖gi‖2 = β∗
i g

T
i di−1. (38)

Squaring both sides of the above equation, we get that

− 2gTi di − ‖gi‖2 ≤
(
gTi di

)2
‖gi‖2

, (39)

dividing (39) by φ2
i and applying (30)

tk ≤
k∑

i=1

r2i
‖gi‖2

. (40)

We proceed by contradiction. Assume that

lim
k−→∞ inf ‖gk‖ �= 0. (41)

Then there exists a positive constant γ such that

‖gk‖ ≥ γ, f or all k. (42)

We can see from (40) that,

tk ≤ 1

γ 2

k∑
i=1

r2i . (43)
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The above relation, (36) and Lemma 2.4, yield

∑
i≥1

r2i
ti

= ∞. (44)

Thus, by the definition (28) and (29), we know that (44) contradicts (21). This concludes the
proof. 
�
Theorem 3.3 Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider
the method (2), (3) and (16), if for all k, dk satisfy gTk dk < 0 and αk is determined by the
Wolfe line search (4), (11), and if

∑
k≥1

‖gk‖2
φ2
k

= ∞, (45)

we have that

lim
k−→∞ inf ‖gk‖ = 0. (46)

Proof Noting that

tk ≥ 0 for all k, (47)

Squaring the right side of equation (39), we get that(
−2gTi di − ‖gi‖2

)2 ≥ 0.

Hence, we have

4
(
gTi di

)2 + ‖gi‖4 + 4
(
gTi di

)
‖gi‖2 ≥ 0. (48)

Summing this expression over i and dividing (48) by
(
φ2
i ‖gi‖2

)
, we obtain

4
k∑

i=1

(
gTi di

)2
φ2
i ‖gi‖2

≥ −4
k∑

i=1

(
gTi di

)
φ2
i

−
k∑

i=1

‖gi‖2
φ2
i

. (49)

On the other hand, we can get from (30) and (47)

−2
k∑

i=1

gTi di

φ2
i

≥
k∑

i=1

‖gi‖2
φ2
i

.

Direct calculation show that,

− 4
k∑

i=1

gTi di

φ2
i

−
k∑

i=1

‖gi‖2
φ2
i

≥
k∑

i=1

‖gi‖2
φ2
i

. (50)

The above relation (49) and (50) imply that

4
k∑

i=1

(
gTi di

)2
φ2
i ‖gi‖2

≥
k∑

i=1

‖gi‖2
φ2
i

.
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Thus if (45) holds, we also have that

∑
k≥1

(
gTk dk

)2
‖gk‖2 φ2

k

= ∞. (51)

Because (40) still holds, it follows from (51), the definition of rk and Lemma 2.4, that

∑
k≥1

(
gTk dk

)2
‖gk‖2 ‖dk‖2

= ∞. (52)

The above relation and Lemma 2.3 clearly give (37). This completes our proof.
Thus we have proved two convergence theorems for the general method (2), (3) with β∗

k
defined by (16).

It should also be noted that the sufficient descent condition, namely

gTk dk ≤ −c ‖gk‖2 , (53)

where c is a positive constant, is not invoked in Theorems 3.2 and 3.3. The sufficient descent
condition (53) was often used or implied in the previous analysis of conjugate gradient
methods (see Al-Baali 1985; Gilbert and Nocedal 1992). This condition has been relaxed to
the descent condition (gTk dk < 0) in the convergence analysis (Dai and Yuan 1999) of the
FR method and the convergence analysis (Dai et al. 2000) of any conjugate gradient method.


�

4 Global convergence of new conjugate gradient method

In this section,we establish someglobal convergence of the new family of nonlinear conjugate
gradientmethods under certain line searches conditions and themethods related to this family
are uniformly discussed.

We consider the method (2), (3) with φk satisfying

φk = (1 − λ) ‖gk‖2 + λ
(
−gTk dk

)
, (54)

where λ ∈ [0, 1]. (54) and (3) show that

gTk dk = −‖gk‖2 + β∗
k g

T
k dk−1

= −‖gk‖2 + (1 − λ) ‖gk‖2 + λ
(−gTk dk

)
−gTk−1dk−1

gTk dk−1. (55)

The above relation imply that

gTk dk = − (1 − λ)
(−gTk dk−1

) − gTk−1dk−1

λgTk dk−1 − gTk−1dk−1
‖gk‖2 . (56)

Thus by (55), we deduce an equivalent form of β∗
k ,

β∗
k = ‖gk‖2

λgTk dk−1 − gTk−1dk−1
. (57)
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Substituting (56) into (54), we obtain that

φk = −gTk−1dk−1

λgTk dk−1 − gTk−1dk−1
‖gk‖2 . (58)

By this relation,we can show an important property ofφk underWolfe line searches and hence
obtain the global convergence of the new family of nonlinear conjugate gradient methods
(57) under some assumptions.

Theorem 4.1 Suppose that x1 is a starting point for which Assumption 2.1 and 2.2 hold.
Consider the method (2), (3), (16) and (54), if gTk dk < 0 for all k and αk is computed by the
Wolfe line search (4), (11), then

φk

‖gk‖2
≤ (1 − λσ)−1 . (59)

Further, the method converges in the sense that

lim
k−→∞ inf ‖gk‖ = 0. (60)

Proof Since (11), we have that

g (xk + αkdk)
T dk ≥ σgTk dk . (61)

By direct calculations show that

λgTk dk−1 − gTk−1dk−1 ≥ (1 − λσ)
(
−gTk−1dk−1

)
. (62)

Dividing (58) by ‖gk‖2 and applying (62) implies the truth of (59). Therefore, by (20) and
(62) that

∑
k≥1

‖gk‖2
φ2
k

≥ (1 − λσ)2

‖gk‖2
≥ (1 − λσ)2

γ 2 = ∞. (63)

Thus (37) follows from Theorem 3.3.
In the following, we can show that, for any λ ∈ (0, 1] , the method (2), (3), (16) and

(54) ensures the descent property of each search direction and converges globally under line
search condition (4) and (9) where the scalar σ2 satisfy certain condition. For this purpose,
we define

rk = − gTk dk

‖gk‖2
, (64)

and

lk = gTk+1dk

gTk dk
, (65)

it is obvious that dk is a descent direction if and only if rk > 0. For the above relation, (56)
and (65), we can write

rk = 1 + (1 − λ)lk−1

1 − λlk−1
. (66)


�
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Theorem 4.2 Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider
themethod (2), (3), (16) and (54), where λ ∈ [0, 1) and αk satisfies the line search conditions
(4) and (9). If the scalar σ2 in (9) is such that

σ2 ≤ (1 − λ)−1, (67)

then we have for all k ≥ 1

0 < r̄k < (1 − σ1)
−1 . (68)

Further, the method converges in the sense that (37) is true.

Proof The right hand side of (66) is a function of λ, lk−1 and rk−1, which is denoted as
h(λ, lk−1, r̄k−1). We prove (68) by induction. Noting that d1 = −g1 and hence r̄1 = 1,

we see that (68) is true for k = 1 . We now suppose that (68) holds for k − 1, namely,

0 < r̄k−1 < (1 − σ1)
−1 . (69)

It follows from (9)

− σ2 ≤ lk−1 ≤ σ1. (70)

Then by Lemma 2.5, the fact that λ ∈ [0, 1), we get that

r̄k ≤ h (λ, σ1, r̄k−1) < h
(
λ, σ1, (1 − σ1)

−1)
= 1 + σ1

1 − λσ1

≤ 1 + σ1

1 − σ1

= (1 − σ1)
−1 . (71)

On the other hand, by Lemma 2.5 and relation (67), we also have that

r̄k ≥ h (λ,−σ2, r̄k−1) > h
(
λ,−σ2, (1 − σ1)

−1) ≥ 0. (72)

Thus (68) is true for k, by induction, (68) holds for k ≥ 1.
To show the truth of (37), by Theorem 3.2, it suffices to prove that

max {rk−1, rk} ≥ c1, (73)

for all k ≥ 2 and some constant c1 ≥ 0. In fact, if

r̄k−1 ≤ 1, (74)

by Lemma 2.5, the fact that λ ∈ [0, 1) , we can get that

r̄k ≥ h (λ,−σ2, 1)
Δ= c2. (75)

Since c2 ∈ (0, 1) , we then obtain

max {r̄k−1, r̄k} ≥ c2, (76)

for all k ≥ 2. By the definition (28) of rk and relation (54), we have that

rk = r̄k
1 + λ(r̄k − 1)

. (77)

Which, with (76) and lemma (23), implies that (73) holds with c1 = c2. This completes our
proof. 
�
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Thus we have some general convergence results are established for the new family of
nonlinear conjugate gradient methods (57). It is easy to see from (57) that the new family
of conjugate gradient methods includes the two nonlinear conjugate gradient methods men-
tioned above. For the case when λ = 1, the method is proved to generate a descent search
direction at every iteration and converge globally of the DY method under the Wolfe line
search conditions (4), (11) (see Dai and Yuan 1999). If λ = 0, then the method ensures
a descent direction for general functions and is proved to global convergence under strong
Wolfe line search (4), (5) of the method CD (see Dai et al. 2000).

In addition, the methods related to the FR method and the DY method in Hu and Storey
(1991), Dai and Yuan (1999) can also be regarded as special cases of the new family methods
(57). For example, to combine the nice global convergence properties of the FR method and
the good numerical performances of the PRP method, namely

βPRP
k = gTk yk−1

‖gk−1‖2
. (78)

Hu and Storey (1991) extended the result in Al-Baali (1985) to any method (2) and (3) with
βk satisfying

βk ∈
[
0, βFR

k

]
. (79)

Gilbert and Nocedal (1992) further extended the result to the case that

βk ∈
[
−βFR

k , βFR
k

]
. (80)

Dai and Yuan (2001) studied the hybrid conjugate gradient algorithms and proposed the
following hybrid methods

βk = max
{
0,min

{
βHS
k , βDY

k

}}
. (81)

where βHS
k is the choice of Hestenes and Stiefel (1952) and βDY

k appears in Dai and Yuan
(1999). Furthermore, Dai and Yuan (1999) proved that the method (2) and (3) with βk

satisfying

βk ∈
[

σ − 1

1 + σ
βk, βk

]
, (82)

where βk stands for the formula (10), and with αk chosen by the Wolfe line search give the
convergence relation (37). For methods related to the method (57). We have the following
result, where sk is given by

sk = βk

β∗
k
, (83)

where β∗
k stands for the formula (15). We prove that any method (20), (21) with the strong

Wolfe line search produces a descent search direction at every iteration and converges globally
if the scalar βk is such that

− c ≤ sk ≤ (1 − σ)−1, (84)

where c = (1 + σ)/(1 − σ) > 0.
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Theorem 4.3 Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider
the method (2) and (3), where

βk = τk ‖gk‖2
λgTk dk−1 − gTk−1dk−1

, (85)

and where αk is computed by the strong Wolfe line search (4) and (9) with σ ≤ 1

2
. For any

λ ∈ [0, 1], if

τk ∈
[
1 + λσ

σ − 1
,
1 − λσ

1 − σ

]
, (86)

and βk is such that

sk ∈ [−c, (1 − σ)−1] , (87)

then if gk �= 0 for all k ≥ 1, we have that

0 < r̄k < (1 − σ)−1 f or all k ≥ 1. (88)

Further, the method converges in the sense that (37) is true.

Proof From relation (15), (85) and by direct calculations we can show that

rk = 1 − (λ − τk)lk−1

1 − λlk−1
, (89)

and

sk = τk

1 − λ(1 − τk)lk−1
, (90)

where rk and lk are defined by (64) and (65). Now the right hand side of (89) is a function of λ,
τk , lk−1 and rk−1, which can be denoted as h(λ, τk, lk−1, r̄k−1). We prove (88) by induction.
Noting that d1 = −g1 and hence r̄1 = 1, we see that (4.34 ) is true for k = 1. We now
suppose that (88) holds for k − 1, namely,

0 < r̄k−1 < (1 − σ)−1. (91)

It follows from (5)

|lk−1| ≤ σ. (92)

Then by Lemma 2.5, and the fact that λ ∈ [0, 1], we get that

r̄k ≤ max

{
h

(
λ,

1 − λσ

1 − σ
, lk−1, r̄k−1

)
, h

(
λ, ,

1 + λσ

σ − 1
, lk−1, r̄k−1

)}

≤ max

{
h

(
λ, ,

1 − λσ

1 − σ
, σ, r̄k−1

)
, h

(
λ, ,

1 + λσ

σ − 1
,−σ, r̄k−1

)}

< max

{
h

(
λ, ,

1 − λσ

1 − σ
, σ, (1 − σ)−1

)
, h

(
λ, ,

1 + λσ

σ − 1
,−σ, (1 − σ)−1

)}

= 1 + σ

1 − σ
= (1 − σ)−1, (93)
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where σ ≤ 1
2 is also used in the equality. For the opposite direction, we can prove that

r̄k > min

{
h

(
λ, ,

1 − λσ

1 − σ
,−σ, (1 − σ)−1

)
, h

(
λ, ,

1 + λσ

σ − 1
, σ, (1 − σ)−1

)}
≥ 0.

(94)

Thus (88) is true for k, by induction, (88) holds for k ≥ 1.
We now prove (37) by contradiction and assuming that

‖g(x)‖ ≥ γ, for some γ > 0, (95)

for all k ≥ 1, since dk + gk = βkdk−1, we have that

‖dk‖2 = β2
k ‖dk−1‖2 − 2gTk dk − ‖gk‖2 . (96)

Dividing both sides of (96) by
(
gTk dk

)2
and using (64) and (83), we obtain

‖dk‖2(
gTk dk

)2 = β2
k ‖dk−1‖2(
gTk dk

)2 + 2

r̄k ‖gk‖2
− 1

r̄2k ‖gk‖2

=
(
skβ∗

k

)2 ‖dk−1‖2(
gTk dk

)2 + 1

‖gk‖2
[
1 −

(
1 − 1

r̄k

)2
]

. (97)

In addition, by the definition (64) of r̄k , the relation (3) and (83), we get

r̄k ‖gk‖2 = −gTk dk = ‖gk‖2 − skβ
∗
k g

T
k dk−1, (98)

the above relation and the definition (65) imply that

skβ
∗
k = (1 − r̄k)

lk−1
(
gTk−1dk−1

) ‖gk‖2 . (99)

Relation (97) and (99), we obtain

‖dk‖2(
gTk dk

)2 = (1 − r̄k)2 ‖dk−1‖2
r̄2k l

2
k−1

(
gTk−1dk−1

)2 + 1

‖gk‖2
[
1 −

(
1 − 1

r̄k

)2
]

. (100)

Denote

mk = 1 − r̄k
r̄klk−1

, (101)

where lk−1 �= 0. Now we prove that

|mk | ≤ 1, f or all k ≥ 2. (102)

the right hand side of (101) is a function of lk−1 and rk , which can be denoted as h(lk−1, r̄k).
We can get by (88), (92) and Lemma 2.5 that

mk ≤ max {h (σ, r̄k) , h(−σ, r̄k)}
< max

{
h

(
σ, (1 − σ)−1) , h

(−σ, (1 − σ)−1)} = 1. (103)
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Thus we have that

mk ≥ min {h (−σ, r̄k) , h (σ, r̄k)}
> min

{
h

(−σ, (1 − σ)−1) , h
(
σ, (1 − σ)−1)} = −1. (104)

Therefore (101) holds for all k ≥ 2.
By (102) and (100), we obtain

‖dk‖2(
gTk dk

)2 ≤ ‖dk−1‖2(
gTk−1dk−1

)2 + 1

‖gk‖2
. (105)

Because ‖d1‖2 /
(
gT1 d1

)2 = 1/ ‖g1‖2 , (105) shows that

‖dk‖2(
gTk dk

)2 ≤
k∑

i=1

1

‖gi‖2
, (106)

for all k. Then we get from this and (95) that

(
gTk dk

)2
‖dk‖2

≥ γ 2

k
, (107)

which implies that

∑
k≥1

(
gTk dk

)2
‖dk‖2

= +∞. (108)

This contradicts the Zoutendijk condition (21). Therefore (37) holds. 
�

5 Numerical results

In this section, we will test the following four conjugate gradient algorithms:

PRPSW : the PRPmethodwith the strongWolfe conditions,where δ = 10−2 andσ = 0, 1.
PRPSW+ : the PRP method with nonnegative values of βk = max

{
0, βPRP

k

}
and the

strong Wolfe conditions, where δ = 10−2 and σ = 0, 1.
NDCGSW : Algorithm 3.1 with the Wolfe conditions (4) and (9), where the scalar σ2
satisfy the condition (67), in addition, δ = 10−2, σ1 = σ2 = σ = 0, 1, λ = 0, 5.
NDCGW : Algorithm 3.1 with the standard Wolfe conditions, where δ = 10−2, σ = 0, 1,
λ = 0, 5.

In this paper, all codes were written inMatlab and run on PCwith 3.0 GHz CPU processor
and 1GB RAM memory and Linux operation system. During our experiments, the strategy
for the initial step length is to assume that the first-order change in the function at iterate xk
will be the same as that obtained at the previous step (Hu and Storey 1991). In other words,
we choose the initial guess α0 satisfying:

α0 = αk−1
Ψk−1

Ψk
for all k > 1,
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where Ψk = gTk dk, when k = 1, we choose α0 = 1
‖g(x1)‖ . In the case when an uphill search

direction does occur, we restart the algorithm by setting dk = −gk , but this case never occurs
for NDCGSW and NDCGW . We stop the iteration if the inequality ‖g(xk)‖ < 10−6 10 is
satisfied. The iteration is also stopped if the number of iteration exceed 10,000, but we find
that this never occurs for our tested problems. The test problems we used are described in
Hillstrome et al. (1981). Each problem was tested with various values of n changing from
n = 500 to 1000.

Table 1 list numerical results. The meaning of each column is as follows:

“N” The number of the test problem

“Problem” The name of the test problem

“n” The dimension of the test problem

“NI” The number of iterations

“NF” The total number of function evaluations

“NG” The total number of gradient evaluations

“CPUtime(s)” The total CPU time in seconds which should be taken to compute all of these problems

We can see from the above table that, the average performances of the NDCGSW is better
than that of the PRP method. Also see that, the NDCGW outperforms other three algorithms
for solving these problems, especially for problems 3, 4, 7, 9, 11 and 12. Table 1, shows the
performance of these methods relative to CPU time. To solve all the 26 problems, the CPU
time (in seconds) required by the PRPSW , PRPSW+ , NDCGSW and NDCGW are 3.5688e+2,
3.5441e+2, 3.3435e+2 and 3.3112e+2, respectively.These preliminary results obtained are
encouraging.

6 Conclusions and discussions

In this paper, we have proposed a new family of nonlinear conjugate gradient methods, and
studied the global convergence of these methods. The new family not only includes the two
already known simple and practical conjugate gradient methods, but has other family of
conjugate gradient methods as subfamily. First, we can see that, the descent property of the
search direction plays an important role in establishing some general convergence results of
themethod in the form (16)withweakWolfe line search (4) and (11) even in the absence of the
sufficient descent condition (3.27), namely, Theorems 3.2, 3.3, 4.1. Next, from Theorem 4.2,
we proved that the new family can ensure a descent search direction at every iteration and
converges globally under line search condition (4) and (9) where the scalar σ2 satisfy the
condition (67). From Theorem (56), we have carefully studied methods related to the method
(57). Denote sk to be the size of βk with respect to β∗

k . If τk and sk belongs to some interval,
namely, (86) and (87) respectively, the correspondingmethods are shown to produce a descent
search direction at every iteration and converge globally provided that the line search satisfies
the strong Wolfe conditions (4) and (9) with σ ≤ 1

2 . In summary, our computational results
show that this new descent nonlinear conjugate gradient method, namely NDCGW method
not only converges globally, but also outperforms the original PRP method in average. The
results,wehope, can stimulatemore studyon the theory and implementations on the conjugate
gradient methods with the Wolfe line search. For future research, we should investigate to
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Table 1 Test results on PRPSW / PRPSW+ / NDCGSW / NDCGW methods

N Problem n PRPSW PRPSW+ NDCGSW NDCGW

NI/NF/NG NI/NF/NG NI/NF/NG NI/NF/NG

1 Extended
rosenbrock

500 34/127/17 45/165/113 46/109/72 50/123/88

1000 29/90/42 29/108/38 57/202/126 49/141/81

2 Extended powell
singular

500 326/582/478 89/191/1 54 99/212/177 94/193/145

1000 165/323/260 57/122/112 100/238/197 96/217/170

3 Penalty 1 500 68/165/122 79/227/159 45/247/154 49/240/160

1000 73/169/135 94/297/189 48/158/123 66/236/160

4 Penalty 2 500 838/1102/986 897/1515/1142 224/146/156 441/310/252

1000 115/217/166 109/289/170 71/205/153 88/244/171

5 Variably
dimensioned

500 47/50/28 47/50/28 47/50/28 47/50/28

1000 23/70/60 23/70/60 23/70/60 23/70/60

6 Trigonometric 500 51/140/103 49/132/103 55/149/105 55/109/70

1000 57/102/68 57/102/68 61/110/79 63/106/71

7 Discrete
boundary value

500 1347/2122/2115 1347/2122/2115 139/263/240 124/191/161

1000 140/189/185 140/189/185 37/68/56 34/47/39

8 Discrete integral
equation

500 13/17/10 13/17/10 13/17/10 13/17/10

1000 13/17/10 13/17/10 13/17/10 13/17/10

9 Chebyquad 500 360/411/267 291/118/99 158/78/56 200/105/79

1000 289/321/169 126/120/103 91/80/21 103/90/67

10 Broyden
tridiagonal

500 84/90/87 103/151/125 195/214/201 167/141/163

1000 105/224/102 373/225/263 1008/1074/1051 2014/2030/2070

11 Broyden banded 500 360/113/156 264/106/100 261/93/99 167/69/76

1000 507/206/171 225/138/131 139/71/31 76/112/68

12 Helical valley 500 8750/2890/3050 7350/2572/2192 44/33/38 56/45/41

1000 7673/5099/4381 6984/4346/2678 47/34/29 72/49/54

13 Powel badly
scaled

500 74/92/41 74/92/41 74/92/41 74/92/41

1000 74/92/41 74/92/41 74/92/41 74/92/41

CPU time(s) 3.5688e+2 3.5441e+2 3.3435e+2 3.3112e+2

find the practical performance of the method (57). Furthermore, we can investigate whether
Theorems 4.2 and 4.3 can be extended to the case that λ > 1 or λ < 0.
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