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Abstract In this paper, we discuss a multi-period portfolio selection problem in emerging
markets. To provide investors with more choices, we propose four multi-period cardinality
constrained portfolio selection models with interval coefficients in both objective functions
and constraints. The proposed models can be equivalently represented as the parameter
programming problems with interval coefficients in constraints. We utilize the definition
of the possibility degree for interval inequality to handle the interval inequality constraints
in the proposed models and express investors’ different risk attitudes. Then, the proposed
models are transformed into deterministic models. After that, we design a new dynamic
differential evolution algorithmwith self-adapting control parameter to solve the transformed
deterministic models. Finally, we provide a numerical example to illustrate the applications
of the proposed models and demonstrate the effectiveness of the designed algorithm.

Keywords Multi-period portfolio · Interval coefficient · Order relation ·
Possibility degree · Differential evolution algorithm

1 Introduction

Portfolio selection aims at selecting a set of securities to optimize a performance measure
under some specific constraints, particularly a budget constraint. Investors often want to
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obtain a most profitable return and avoid risk at the same time. However, how to construct a
satisfying portfolio has become a challenging problem owing to the uncertainty associated
with the returns of securities.

In real financial markets, there exist many non-random factors that affect portfolio
decision-making such as economic, social, political, people’s psychological factors and
so on. Especially, experts’ knowledge and experiences play important roles in portfolio
decision-making. So, in many cases, the market data of risky assets are usually imprecise
and ambiguous. Fuzzy set theory in Zadeh (1965) has been regarded as a powerful tool
for describing an uncertain environment with vagueness, ambiguity or some other type of
fuzziness, which appears in many aspects of financial markets, such as portfolio managers’
unpredictable behaviors. With the wide use of fuzzy set theory, more and more people have
realized that they could use it to investigate the fuzzy uncertainty associated with financial
markets. To model the fuzzy uncertainty associated with financial markets, the return of a
risky asset is characterized by a fuzzy variable with possibility distribution. A possibility dis-
tribution is identified to reflect the returns of risky assets associated with possibility grades
offered by portfolio experts. Tanaka et al. (2000) pointed out that fuzzy portfolio models inte-
grated the historical data and human factors to catch variations of stock markets better. By
using fuzzy mathematical approaches, quantitative analysis, qualitative analysis, the experts’
knowledge and the investors’ subjective opinions can be better incorporated into a portfolio
selection model as mentioned by Wang and Zhu (2002).

Fuzzy portfolio selection problem has been researched from 1990s. Various researchers
have investigated fuzzy portfolio selection problem by using different approaches and pro-
posed kinds of portfolio optimization models. For example, Watada (1997) proposed a fuzzy
portfolio selection model by using fuzzy numbers to represent decision makers’ aspiration
levels for the expected return rate and a certain degree of risk. Inuiguchi and Tanino (2000)
introduced a novel possibilistic programming approach to investigate portfolio selection
problem based on the minimax regret criterion and yielded a distributive investment solu-
tion. By using fuzzy goal programming approach, Parra et al. (2001) presented a multiple
criteria model for portfolio selection. León et al. (2002) discussed some fuzzy optimiza-
tion schemes for managing portfolio selection problems under the framework of risk–return
tradeoff. Bilbao-Terol et al. (2006) formulated a fuzzy compromise programming model for
portfolio selection. Gupta et al. (2008) applied fuzzy mathematical programming to develop
comprehensive models for asset portfolio optimization. Tiryaki and Ahlatcioglu (2009) used
fuzzy analytic hierarchy process to investigate fuzzy portfolio selection problem. Calvo et al.
(2014) proposed a fuzzy multi-criteria model for portfolio selection with non-financial goals.
In Vercher et al. (2007), Zhang et al. (2007) and Zhang et al. (2009), possibility theory was
applied to handle uncertainty and solve portfolio optimization problems. Huang (2008),
Zhang et al. (2011), Li et al. (2012) and Gupta et al. (2013) used credibility theory to study
portfolio selection problems in a fuzzy economic environment.

All the literature mentioned above are formulated under the framework of fuzzy set the-
ory. They assume that investors can accurately predict the possibility distributions of the
uncertain parameters on risky assets by historical data. However, in emerging markets or
financial incidents, it is impossible for investors to predict the possibility distributions of the
uncertain parameters on risky assets due to lack of historical information. In these cases, the
investors have no choice but to predict the approximate ranges of the uncertain parameters on
risky assets based on experts’ experiences and their own market sentiment. Nowadays, some
researchers have used interval programming approaches to study fuzzy portfolio selection
problems. Lai et al. (2002) developed an interval absolute semideviation model for portfo-
lio selection. Wang and Zhu (2002) employed interval programming for portfolio selection.
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Ida (2003, 2004) discussed multi-objective portfolio selection problems with interval coeffi-
cients. Giove et al. (2006) formulated a minimax regret portfolio selection problem in which
the prices of the securities were considered as interval variables. Based on fuzzy decision
theory, Fang et al. (2006) proposed a linear interval programming model for the portfolio
rebalancing problem with transaction costs. Li and Xu (2007) dealt with a possibilistic port-
folio selection model with interval center values. Bhattacharyya et al. (2011) utilized the
concept of interval numbers in fuzzy set theory to extend the classical mean–variance model
into a mean–variance–skewness model with transaction cost for fuzzy portfolio selection.
Liu (2011) discussed the uncertain portfolio selection problem where the returns of risky
assets were represented by interval numbers. Wu et al. (2013) studied an interval portfolio
selection model in which both the returns and the risks of risky assets were defined as interval
numbers.

Though, there are some researches about portfolio selection problems in emerging mar-
kets, most of them are mainly focused on single period portfolio selection. In the real world,
an investor’s behavior is usually multi-period. Thus, it is necessary to investigate multi-
period portfolio selection problems in emerging markets. Recently, Liu et al. (2013) studied
a multi-period portfolio selection problem in emerging markets by using interval program-
ming approach. However, they still neglected many real constraints such as floor and ceiling
constraints and cardinality constraints. As far as investors are concerned, cardinality con-
straints enable them to limit the complexity of a portfolio and control transaction costs.
Bound constraints enable them to control the amount invested on each asset. Based on the
facts mentioned above, we investigate multi-period portfolio selection problem with some
real features in emergingmarkets by using interval programming approach. Our contributions
can be summarized as the following three aspects: (1)We propose four interval portfolio opti-
mization models with cardinality constraints for multi-period portfolio selection in emerging
markets. To achieve greater flexibility in portfolio selection, we incorporate some decision
criteria including return, transaction costs, risk, liquidity, diversification degree, bound con-
straints and cardinality constraints into the proposed models. (2) We first use the concepts
of possibility degree of interval inequalities to express investors’ different risk attitudes and
transform the proposed interval programming portfolio selection models into deterministic
forms. (3) Considering the complexity of the proposed models, we design a new dynamic
differential evolution algorithm with a self-adapting control parameter to solve them.

The remainder of this paper is structured as follows. In Sect. 2, we summarize some basic
concepts about interval numbers. In Sect. 3, we propose four interval portfolio optimization
models with cardinality constraints for multi-period portfolio selection in emerging markets.
In Sect. 4, based on the definition of possibility degree for interval inequality,we transform the
proposed interval programmingmodels into the corresponding deterministic forms. Then, we
design a new dynamic differential evolution algorithm with self-adapting control parameter
to solve the deterministic models. In Sect. 5, we give a numerical example to demonstrate
the applications of our models and the effectiveness of the designed algorithm. Finally, we
present conclusions of our study in Sect. 6.

2 Basic conceptions

Denote the set of all real numbers by R. An ordered pair in a bracket defines an interval
number

ã = [a, a] = {x : a ≤ x ≤ a, x ∈ R}, (1)
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where a and a are the lower and upper bounds of interval number ã. In the special case, when
a = a, ã is reduced to a real number. The center and width of interval number ã = [a, a] are
defined as

m (̃a) = 1
2 (a + a) and w(̃a) = 1

2 (a − a). (2)

Using m (̃a) and ω(̃a), the interval number ã can be rewritten as

ã = 〈m (̃a), ω(̃a)〉
= {x : m (̃a) − ω(̃a) ≤ x ≤ m (̃a) + ω(̃a), x ∈ R}.

Notice thatm (̃a) is the crisp value of ã, which behaves like the expected value of a uniform
distribution. ω(̃a) is similar to the spread of a symmetrical fuzzy number. It represents the
uncertainty associated with interval number ã and behaves likes the fluctuation range of a
random variable, which is determined by historical data and human’s subjective judgement
in decision making.

Definition 1 (Alefeld and Herzberger (1983)). Let ◦ ∈ {+,−,×,÷} be a binary operation
on R. For any given two interval numbers ã and˜b, the binary operation on them is defined
by

ã ◦˜b = {x ◦ y : x ∈ ã, y ∈˜b},
where 0 is not in˜b for the case of division.

Let ã = [a, a] and˜b = [b, b] be two interval numbers, and let λ ∈ R be a real number.
The binary operations on interval numbers used in this paper are given as follows (see Moore
(1966))

ã +˜b = [a + b, a + b], (3)

λ̃a =
{ [λa, λa], if λ ≥ 0,

[λa, λa], if λ < 0,
(4)

ã ± λ = [a ± λ, a ± λ], (5)

ã ×˜b = [min{ab, ab, ab, ab},max{ab, ab, ab, ab}]. (6)

Let ã1 = [a1, a1], ã2 = [a2, a2], . . . , ãn = [an, an] be n interval numbers, and let
λ1, λ2, . . . , λn be n nonnegative real numbers. Then, the linear combination of the n interval
numbers can be expressed by

λ1ã1 + λ2ã2 + . . . + λnãn =
[

n
∑

i=1

λi ai ,
n
∑

i=1

λi ai

]

. (7)

It follows from Eqs. (2) and (7) that

λ1m (̃a1) + λ2m (̃a2) + . . . + λnm (̃an) =
n
∑

i=1

λim (̃ai ),

λ1ω(̃a1) + λ2ω(̃a2) + . . . + λnω(̃an) =
n
∑

i=1

λiω(̃ai ).

Definition 2 (Ishibuchi and Tanaka (1990)). Let ã and˜b be two interval numbers. Then, the
interval inequality ã �˜b is defined as follows

ã �˜b if and only if a ≥ b and a ≥ b.
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For describing the interval inequality above in detail, Jiang et al. (2008) gave the concept
of possibility degree as follows.

Definition 3 For any given two interval numbers ã = [a, a] and˜b = [b, b], the possibility
degree of ã �˜b (denoted by P (̃a �˜b)) is defined as

P (̃a �˜b) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1, if a ≥ b,
a−b
a−a + b−a

a−a · a−b
b−b

+ 1
2 · b−a

a−a · b−a
b−b

, if b ≤ a < b ≤ a,

a−b
a−a + 1

2 · b−b
a−a , if a < b < b ≤ a,

1
2 · a−b

a−a · a−b
b−b

, if a < b ≤ a < b,
a−b
b−b

+ 1
2 · a−a

b−b
, if b ≤ a < a < b,

0, if a < b.

Especially, in Definition 3, if˜b is reduced into a real number b, then

P (̃a � b) =
⎧

⎨

⎩

0, if b > a,
a−b
a−a , if a < b ≤ a,

1, if b ≤ a.

(8)

If ã is reduced into a real number a in Definition 3, then

P(a �˜b) =

⎧

⎪

⎨

⎪

⎩

0, if a < b,
a−b
b−b

, if b < a ≤ b,

1, if a ≥ b.

(9)

Thus, the possibility degree in the concept of an interval inequality represents the degree to
which one interval number is larger or smaller than another.

Notice that an interval number is similar to a uniform distribution in form. However, they
have obvious difference as follows: The interval number can be viewed as a special fuzzy
number whose membership function takes the value 1 over the interval and 0 anywhere else.
Correspondingly, a uniform distribution variable is special case of random variable which
takes a constant value in an interval, and 0 anywhere else. In financial decision-making, an
interval number can be regarded as an alternative for a uniform distribution, in which the
un-quantifiable factors such as experts’ knowledge and investors’ subjective opinions can
be easily reflected. What’s more, in contrast with the uniform distribution, we need less
information to determine the interval number of a parameter than to determine the uniform
distribution. It only requires us to determine the lower and upper bounds of the interval by
using both historical data and human subjective judgement. Unlike the uniform distribution,
it does not require us to determine any distribution function defined over the interval with
equal probability.

3 Interval programming models for multi-period cardinality constrained
portfolio selection

In this section, we discuss a multi-period portfolio selection problem in emerging markets,
in which the expected proceeds, the variances of the return rates and the turnover rates on
securities are characterized by interval numbers. We propose four multi-period cardinality
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constrained portfolio selection models with interval coefficients. In the proposed models, we
use the expected proceeds of a portfolio as the investment return, the variance of the return
rate on a portfolio as the investment risk and the turnover rate of a portfolio as the portfolio
liquidity. Before formulating the proposed models, we first introduce an interval estimation
approach to predict the aforementioned three factors of interval values.

3.1 Estimation of the interval-valued expected proceeds, variance and turnover
rate

Since the future states of securities cannot be accurately predicted in emerging markets, in
this paper, we use the interval estimation approach in Fang et al. (2008) to predict the interval
values of the investment return, investment risk and turnover rate of a security. Here, we use
the estimation of the investment return interval of the security as an example to introduce the
estimation approach.

Traditionally, the arithmetic mean of the historical proceeds of a security is used as the
approximate value of its expected proceeds. So the expected proceeds of the security is a
crisp value in this way. However, using the traditional estimation approach, we need to solve
the following two main problems. Firstly, if the observation period of the historical data of
the security is long, it may lead to the result that the influence of both the earlier historical
data and the recent data are the same. However, in the real world, the later historical data
of the security most often indicate that the performance of a corporation is more important
than that of the earlier historical data. Secondly, if the historical data of the security are not
enough, one cannot accurately estimate the statistical parameters due to data scarcity.

To take the two problems above into consideration, it is a good idea to characterize the
expected proceeds of a security as an interval number rather than a crisp value based on
the arithmetic mean of historical data. Investors may make use of a corporation’s financial
reports and the historical data of the security to determine its expected proceeds interval. To
determine the expected proceeds interval of a security, let us consider the following three
factors:

(1) Arithmetic mean proceeds factor Although the arithmetic mean of the proceeds of a
security should not be represented as its expected proceeds directly, it is a good approximation.
Generally, the arithmetic mean proceeds factor of security i at period t is calculated by its
historical data as follows

rat,i = 1
t−t0

t−1
∑

s=t0

rs,i , t − 1 ≥ t0,

where t0 is the starting period and t the current period and rs,i is the real proceeds of unit
capital invested on security i at period s.

(2)Historical proceeds tendency factor The historical proceeds tendency is also an important
index for predicting the future proceeds of a security. In the real world, if the recent proceeds
of the security have been increasing, we believe that its expected proceeds will be greater
than the arithmetic mean proceeds based on historical data. Conversely, if the recent proceeds
of the security have been declining, we believe that its expected proceeds will be smaller
than the arithmetic mean proceeds based on historical data. Denote the historical proceeds
tendency factor of security i at period t as rht,i , which reflects the tendency of the proceeds

on security i . The value of rht,i can be regarded as the arithmetic mean proceeds of the recent
historical data on security i . The observation period of recent historical data is subjectively
determined by experts. In many cases, the value of rht,i can be directly given by experts.
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(3) Forecast proceeds factor: The third factor influencing the expected proceeds of a security
is its estimated future proceeds. According to the financial reports of a corporation, if the
proceeds on the corporation’s stocks will increase, then we believe that the expected proceeds
of security i at period t is larger than its arithmetic mean proceeds factor rat,i . Contrarily, if the
proceeds of the corporation’s stocks will decrease in future, then we believe that the expected
proceeds of security i at period t is smaller than its arithmetic mean proceeds factor rat,i .

Denote the forecast proceeds factor of security i at period t by r f
t,i . The value of r

f
t,i can be

determined by some forecasts based on the financial reports and experts’ experiences.
Using the three factors above,we can determine lower and upper limits of the expected pro-

ceeds of security i at period t .We set theminimumandmaximumvalues of the three factors as
the lower and upper limits of its expected proceeds, denoted them by r t,i = min{rat,i , rht,i , r f

t,i }
and r t,i = max{rat,i , rht,i , r f

t,i }. Then, the expected proceeds of security i at period t can be
estimated by r̃t,i = [r t,i , r t,i ]. Similarly, the turnover rate of security i at period t can be esti-

mated by˜lt,i = [min{lat,i , lht,i , l ft,i },max{lat,i , lht,i , l ft,i }] and the covariance of the return rates of
securities i and j can be estimated by˜δt,i j = [min{δat,i j , δht,i j , δ f

t,i j },max{δat,i j , δht,i j , δ f
t,i j }].

Here, lat,i , l
h
t,i and l

f
t,i denote the arithmetic mean, historical tendency and future forecast fac-

tors of the turnover rate of security i at period t , respectively; δat,i j , δ
h
t,i j and δ

f
t,i j denote the

arithmetic mean, historical tendency and future forecast covariance factors of securities i and
j at period t , respectively. For convenience, we denote˜lt,i = [lt,i , lt,i ] and˜δt,i j = [δt,i j , δt,i j ]
in the following sections.

3.2 Assumptions and notations

Suppose that an investor with initial wealth W0 selects n securities from emerging markets
for constructing T consecutive time periods investment. At the beginning of each of the
following T − 1 periods, the investor can reallocate his wealth. Owing to lack of historical
data, the proceeds, the turnover rates and the variances of the return rates on the n securities
in the T investment periods are assumed to be interval numbers. To aid the description, we
introduce the following notations:

r̃t,i the expected proceeds of per unit capital invested on security i at period t , where
r̃t,i = [r t,i , r t,i ];

˜δt,i j the covariance of the return rates on securities i and j at period t , where˜δt,i j =
[δt,i j , δt,i j ];

ct,i the transaction cost rate of security i at period t , where ct,i is a real number;
xt,i the investment proportion of security i at period t ;
xt the portfolio at period t , where xt = (xt,1, xt,2, . . . , xt,n);
˜δt the variance of the return rate on the portfolio at period t ;
˜lt,i the turnover rate of security i (i = 1, 2, . . . , n), where˜lt,i = [lt,i , lt,i ];
Wt the available wealth at the end of period t for all t = 1, 2, . . . , T .

3.3 Decision objective and investment constraints

With the same consideration as Markowitz (1987), we assume that the transaction costs
at period t is a V-shaped function of the differences between the given portfolio at period
t − 1 and the new portfolio at period t . Hence, the transaction costs of the portfolio xt =
(xt,1, xt,2, . . . , xt,n) at period t can be expressed as
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Ct =
n
∑

i=1

ct,i
∣

∣xt,i − xt−1,i
∣

∣ , t = 1, 2, . . . , T . (10)

Using the interval estimation approach in Sect. 3.1, the expected proceeds of per unit capital
invested on security i at period t can be given by

r̃t,i = [r t,i , r t,i ] =
[

min
{

rat,i , r
h
t,i , r

f
t,i

}

,max
{

rat,i , r
h
t,i , r

f
t,i

}]

. (11)

Considering the fact that short selling may increase investment risk and incur transaction
costs, as is usual in most of the existing literature, we assume that short selling is not allowed
over the whole investment horizon, that is, xt,i ≥ 0 (i = 1, 2, . . . , n; t = 1, 2, . . . , T ). From
Eq. (7), the expected proceeds of per unit capital invested on the portfolio at period t can be
represented as the following interval number

˜Rt =
n
∑

i=1

xt,i r̃t,i =
[

n
∑

i=1

xt,i r t,i ,
n
∑

i=1

xt,i r t,i

]

. (12)

Derived from Eqs. (5), (10) and (12), the expected net proceeds of per unit capital invested
on the portfolio at period t is

˜RN ,t =
n
∑

i=1

xt,i r̃t,i − Ct =
[

n
∑

i=1

xt,i r t,i − Ct ,

n
∑

i=1

xt,i r t,i − Ct

]

. (13)

According to Eqs. (6) and (13), the wealth obtained at the end of period t is

Wt = Wt−1˜RN ,t = Wt−1

[(

n
∑

i=1

xt,i r t,i − Ct

)

,

(

n
∑

i=1

xt,i r t,i − Ct

)]

. (14)

It follows from Eqs. (6) and (14) that the terminal wealth obtained at the end of period T is

WT = W0

T
∏

t=1

˜RN ,t = W0

[

T
∏

t=1

(

n
∑

i=1

xt,i r t,i − Ct

)

,

T
∏

t=1

(

n
∑

i=1

xt,i r t,i − Ct

)]

. (15)

Then, by Eqs. (2) and (15), the crisp value of the terminal wealth WT is

m(WT ) = 1

2
W0

[

T
∏

t=1

(

n
∑

i=1

xt,i r t,i − Ct

)

+
T
∏

t=1

(

n
∑

i=1

xt,i r t,i − Ct

)]

. (16)

According to the assumption above, the covariance of the return rates on securities i and
j (i, j = 1, 2, . . . , n) at each period are characterized by interval numbers. Similar to the
estimation of the expected proceeds above, the arithmeticmean covariance factor of securities
i and j at period t can be computed by δat,i j = 1

t−t0

∑t−1
s=t0 δs,i j . Assume that the historical

covariance tendency factor δht,i j and the forecast covariance factor δ
f
t,i j are directly given by

experts. Then, the covariance of the return rates of securities i and j can be expressed by

˜δt,i j = [δt,i j , δt,i j ] =
[

min
{

δat,i j , δ
h
t,i j , δ

f
t,i j

}

,max
{

δat,i j , δ
h
t,i j , δ

f
t,i j

}]

.

By Eqs. (3) and (4), the variance of the return rate on the portfolio at period t is

˜δt =
n
∑

i=1

n
∑

j=1

xt,i xt, j˜δt,i j =
⎡

⎣

n
∑

i=1

n
∑

j=1

xt,i xt, jδt,i j ,
n
∑

i=1

n
∑

j=1

xt,i xt, jδt,i j

⎤

⎦ . (17)
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Liquidity is another one of the main concerns for portfolio managers. It measures the
degree of probability of being able to convert an investment into cash without any significant
loss in value. The liquidity of a security is commonly measured by its turnover rate, which is
the proportion of turnover volume to the tradable volume. Generally, investors prefer greater
liquidity. Especially, in a bull market, the returns of securities with high liquidity tend to
increase with time. According to the assumption above, the turnover rates of securities at
each period are characterized by interval numbers. By using the estimation approach of
Sect. 3.1, the arithmetic mean turnover rate factor of security i at period t can be estimated
by lat,i = 1

t−t0

∑t−1
s=t0 ls,i . Assume that the historical turnover rate tendency factor lht,i and

the forecast turnover rate factor l ft,i are directly given by experts. Then, the turnover rate of
security i at period t can be given as an interval number with the following form

˜lt,i = [r t,i , r t,i ] =
[

min
{

rat,i , r
h
t,i , r

f
t,i

}

,max
{

rat,i , r
h
t,i , r

f
t,i

}]

.

Then, derived from Eq. (7), the turnover rate of the portfolio at period t can be represented
by

˜lt =
n
∑

i=1

xt,i˜lt,i =
[

n
∑

i=1

xt,i l t,i ,
n
∑

i=1

xt,i l t,i

]

. (18)

To construct a diversified portfolio, investors usually wish to control the maximum and
minimum fractions of the capital invested on each security. Mathematically, the lower and
upper bound constraints on xt,i can be expressed as

mt,i zt,i ≤ xt,i ≤ Mt,i zt,i , i = 1, 2, . . . , n; t = 1, 2, . . . , T,

where mt,i and Mt,i are the maximum and minimum fractions of the capital invested on
security i at period t ; zt,i is a binary variable which will be 1 if security i at period t is held
and 0 otherwise.

There is a widely accepted policy for reducing the investment risk of a portfolio by not
allocating the whole investment in just a few securities. This idea is reflected in a well-known
saying that “don’t put all your eggs in one basket”. However, how to construct a well diversi-
fied portfolio has become a problem to researchers. So far, some researchers have investigated
the problem and used proportion entropy to measure the diversification degree of a portfolio,
see for example Fang et al. (1997). Similarly, we also use proportion entropy to measure
the diversification degree of the portfolio at each period. Mathematically, the diversification
degree of the portfolio xt = (xt,1, xt,2, . . . , xt,n) at period t can be represented by

h(xt ) = −
n
∑

i=1

xt,i ln(xt,i ), t = 1, 2, . . . , T . (19)

In the real world, to control transaction costs and reduce the complexity of a portfolio,
investor may wish to restrict the maximum number of securities in the portfolio at each
period. In this paper, we assume that the investor intends to hold not more than K securities
in the portfolio at period t . Then, the cardinality constraints about the portfolio at period t
can be expressed by

n
∑

i=1

zt,i ≤ K , t = 1, 2, . . . , T,

where zt,i ∈ {0, 1} is a binary variable that controls whether security i at period t should be
selected in the portfolio or not.
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3.4 Model formulation

Based on the discussion in the previous section, we investigate a multi-period portfolio prob-
lem in emerging markets by taking several criteria into consideration including transaction
costs, expected proceeds, variance, turnover rate, diversification degree, bound constraints
and cardinality constraints. To demonstrate the effects of these decision criteria on portfolio
selection and provide investors with more choices, we propose four multi-period cardinal-
ity constrained portfolio optimization models with interval coefficients, viz., the return–risk
(RR) model, the return–risk–liquidity (RRL) model, the return–risk–entropy (RRE) model
and the return–risk–liquidity–entropy (RRLE) model.

(1) In the RRmodel, we assume that an investor intends to seek an investment strategywith
the objective of maximizing terminal wealth. Meanwhile, as shown in Constraints (20)–(24),
the investor requires that the expected proceeds of the portfolio on unit capital investment
at period t must achieve or exceed the preset minimum proceeds level Rt , the variance of
the return rate on the portfolio at period t must not exceed the preset maximum tolerable
variance level Vart , the maximum number of securities in the portfolio at period t must be not
more than K , the investment proportion of at period t must sum to one and the investment
proportion on each selected security at period t must satisfy the lower and upper bound
constraints. Then, the RRmodel for the multi-period portfolio selection in emerging markets
can be formulated as the following interval programming problem (P1):

(P1)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

max WT =
[

W0

T
∏

t=1

(

n
∑

i=1
xt,i r t,i − Ct

)

,W0

T
∏

t=1

(

n
∑

i=1
xt,i r t,i − Ct

)]

s.t.

[

n
∑

i=1
xt,i r t,i − Ct ,

n
∑

i=1
xt,i r t,i − Ct

]

� Rt , (20)
[

n
∑

i=1

n
∑

k=1
xt,i xt,kδti,k,

n
∑

i=1

n
∑

k=1
xt,i xt,kδ

t
i,k

]

	 Vart , (21)

n
∑

i=1
zt,i ≤ K , zt,i ∈ {0, 1}, (22)

n
∑

i=1
xt,i = 1, xt,i ≥ 0, (23)

mt,i zt,i ≤ xt,i ≤ Mt,i zt,i , i = 1, 2, . . . , n; t = 1, 2, . . . , T . (24)

From Constraint (23), we have xt,i ≥ 0 for all i = 1, 2, . . . , n and t = 1, 2, . . . , T . It
indicates that short selling is not allowed over the whole investment horizon.

(2) In the RRL model, we assume that the investor not only considers the criteria in the
model (P1) but also takes the effect of the turnover rate of the portfolio at each period into
consideration. As shown in Constraint (25), he demands that the turnover rate of the portfolio
at period t must be larger than or equal to the given turnover rate level lt . Then, on the basis
of (P1), the RRL model for the multi-period portfolio selection in emerging markets can be
formulated as the following interval programming problem (P2):

(P2)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

max WT =
[

W0

T
∏

t=1

(

n
∑

i=1
xt,i r t,i − Ct

)

,W0

T
∏

t=1

(

n
∑

i=1
xt,i r t,i − Ct

)]

s.t. Constraints (20)–(24),
[

n
∑

i=1
xt,i l t,i ,

n
∑

i=1
xt,i l t,i

]

� lt .

(25)

(3) In the RRE model, we assume that the investor considers all the criteria in the RR
model (P1). Meanwhile, he requires that the diversification degree of the portfolio at period
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t must be no less than the preset minimum diversification level et as shown in Constraint
(26). Then, on the basis of (P1), the RRE model can be formulated as the following interval
programming problem (P3):

(P3)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

max T =
[

W0

T
∏

t=1

(

n
∑

i=1
xt,i r t,i − Ct

)

,W0

T
∏

t=1

(

n
∑

i=1
xt,i r t,i − Ct

)]

s.t. Constraints (20)–(24),

−
n
∑

i=1
xt,i ln(xt,i ) ≥ et .

(26)

(4) In the RRLE model, we assume that the investor takes all the decision criteria in the
aforementioned three models into consideration. Then, the RRLE model can be formulated
as the following interval programming problem (P4):

(P4)

⎧

⎪

⎨

⎪

⎩

max WT =
[

W0

T
∏

t=1

(

n
∑

i=1
xt,i r t,i − Ct

)

,W0

T
∏

t=1

(

n
∑

i=1
xt,i r t,i − Ct

)]

s.t. Constraints (20)–(26).

3.5 Deterministic multi-period portfolio optimization models

Notice that the proposed four models in previous section are interval programming problems
with interval coefficients in both objectives and inequality constraints. To solve the proposed
models, it is necessary to transform them into deterministic programming models. In this
section, we first transform the proposed models into parameter programming problems with
interval coefficients in inequality constraints. Then, based on the definitions of the possibility
degree for the interval inequalities, we can convert the interval inequality constraints in the
transformed models into deterministic inequality constraints.

3.5.1 Treatment of the uncertain objective functions

To handle the uncertain objective functions in the proposed models, we apply a commonly-
used variable transformation method to transform them into the corresponding parameter
programming problems with interval coefficients in constraints. Here, we take the RR model
(P1) as an example to introduce the treatment of its uncertain objective function. By using
the variable transformation method, the RR model (P1) can be equivalently converted into
the following parameter programming model (P

′
1):

(P
′
1)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

max f

s.t. Constraints (20)–(24),
[

W0

T
∏

t=1

(

n
∑

i=1
xt,i r t,i − Ct

)

,W0

T
∏

t=1

(

n
∑

i=1
xt,i r t,i − Ct

)]

� f.

(27)

Similarly, models (P2), (P3) and (P4) can be converted into the corresponding parameter
programming models. Denote them by (P

′
2), (P

′
3) and (P

′
4), respectively.

3.5.2 Treatment of the uncertain inequality constraints

In stochastic optimization problems (see Liu et al. (2003)), we often make an uncertain
inequality constraint satisfied with a confidence level and transform it into deterministic
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inequality constraint. Analogously, in fuzzy optimization problems, we can make an interval
inequality constraint satisfied with a possibility degree level and convert it into deterministic
inequality constraint.

In this paper, for the uncertainty inequality constraints in Constraints (20), (21), (25) and
(27), we use the definitions of the possibility degree for interval inequalities in Eqs. (8) and
(9) to transform them into the corresponding deterministic forms. Let θ

˜Rt
, θ̃lt and θWT be

the possibility degree levels of Constraints (20), (25) and (27), respectively. Then, by Eq.
(8), the three interval inequality constraints can be, respectively, converted into deterministic
inequality constraints as follows

n
∑

i=1

xt,i r t,i − Ct − Rt ≥ θ
˜Rt

n
∑

i=1

xt,i (r t,i − r t,i ), (28)

n
∑

i=1

xt,i l t,i − lt ≥ θ̃lt

n
∑

i=1

(xt,i l t,i − lt,i ), (29)

W0

T
∏

t=1

(

n
∑

i=1

xt,i r t,i−Ct

)

− f ≥θWT W0

[

T
∏

t=1

(

n
∑

i=1

xt,i r t,i−Ct

)

−
T
∏

t=1

(

n
∑

i=1

xt,i r t,i−Ct

)]

.

(30)

For the uncertainty inequality constraint in Constraint (21), we denote its possibility degree
level by θ̃δt

. Then, by Eq. (9), it can be transformed into the following deterministic inequality
constraint

Vart −
n
∑

i=1

n
∑

k=1

xt,i xt,kδ
t
i,k ≥ θ̃δt

n
∑

i=1

n
∑

k=1

xt,i xt,k(δ
t
i,k − δti,k). (31)

Notice that, with the increasing of θ
˜Rt
, θ̃lt , θWT and θ̃δt

, the investor will become more and
more conservative to demand that Constraints (28)–(31) should be held. Thus, we can freely
express investor’s different risk attitudes by varying the values of the possibility degree levels
on the aforementioned uncertain inequality constraints.

Then, by Eqs. (28), (30) and (31), the model (P
′
1) can be transformed into the following

deterministic parameter programming problem (P
′′
1 ):

(P
′′
1 )

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

max f

s.t. W0

T
∏

t=1

(

n
∑

i=1
xt,i r t,i−Ct

)

− f ≥θWT W0

[

T
∏

t=1

(

n
∑

i=1
xt,i r t,i−Ct

)

−
T
∏

t=1

(

n
∑

i=1
xt,i r t,i−Ct

)]

,

n
∑

i=1
xt,i r t,i−Ct − Rt ≥ θ

˜Rt

n
∑

i=1
xt,i (r t,i − r t,i ),

Vart −
n
∑

i=1

n
∑

k=1
xt,i xt,kδti,k ≥ θ̃δt

n
∑

i=1

n
∑

k=1
xt,i xt,k(δ

t
i,k − δti,k),

n
∑

i=1
xt,i = 1, xt,i ≥ 0,

n
∑

i=1
zt,i ≤ K , zt,i ∈ {0, 1},

mt,i zt,i ≤ xt,i ≤ Mt,i zt,i , i = 1, 2, . . . , n, t = 1, 2, . . . , T .

By substituting Eqs. (28)–(31) into the models (P
′
2), (P

′
3) and (P

′
4), the corresponding deter-

ministic parameter programming models can also be obtained. Denote them by (P
′′
2 ), (P

′′
3 )

and (P
′′
4 ), respectively.
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It is well known that portfolio selection is affected bymany realistic investment constraints
including cardinality constraints, bound constraints and so on. To highlight the effects of both
the cardinality constraints and the bound constraints on portfolio selection, on the basis of
the model (P

′′
1 ), we formulate a contrast model without considering Constraints (22) and

(24) as follows

(P5)
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⎪

⎪
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max f

s.t. W0

T
∏

t=1

(

n
∑

i=1
xt,i r t,i−Ct

)

− f ≥θWT W0

[

T
∏

t=1

(

n
∑

i=1
xt,i r t,i−Ct

)

−
T
∏

t=1

(

n
∑

i=1
xt,i r t,i−Ct

)]

,

n
∑

i=1
xt,i r t,i − Ct − Rt ≥ θ

˜Rt

n
∑

i=1
xt,i (r t,i − r t,i ),

Vart −
n
∑

i=1

n
∑

k=1
xt,i xt,kδti,k ≥ θ̃δt

n
∑

i=1

n
∑

k=1
xt,i xt,k(δ

t
i,k − δti,k),

n
∑

i=1
xt,i = 1, xt,i ≥ 0, t = 1, 2, . . . , T .

4 Solution algorithm

Because Constraint (22) is a 0–1 integer constraint and the first derivatives of Constraints
(28) and (30) are discontinuous, traditional optimization approaches usually fail to find the
optimal solutions of the models mentioned in previous section. In this section, we design a
new dynamic differential evolution algorithm with self-adapting control parameter to solve
them.

Differential evolution (DE) is a stochastic population-based search method, which was
originally proposed by Storn and Price (1995). Like other evolutionary algorithms (EAs),
it encodes each decision variable by a real number and utilizes the three important oper-
ators (i.e., mutation, crossover and selection) to evolve from randomly generated initial
population to final individual solution. The key idea of DE is a scheme for generating trial
vectors. Mutation and crossover operators are used to generate trial vectors, and the selec-
tion operator determines which of the vectors will survive into the next generation (see
Brest et al. (2006)).

DE is of simple concept, few control parameters, easy implementation and high con-
vergence characteristics (see Storn and Price (1997)), and has attracted much attention
and wide applications for solving the unconstrained optimization problems. But, DE lacks
an explicit mechanism to guide the search process towards the feasible region, which
limits its application. As we know, many real-world optimization problems are with
constraints. The main challenge in solving constrained optimization is how to balance
the search between feasible and infeasible regions effectively. Namely, how to design
an efficient constraint-handling mechanism to locate the global optimum in the feasi-
ble region. Numerous researchers have concentrated on constraint-handling mechanisms
for DEs and presented a series of approaches for handling constraints (see e.g., Mezura-
Montes et al. (2010) and Wang and Li (2010)). To solve constrained optimization problems
with mixed-type variables, Mohamed and Sabry (2012) designed a novel dynamic dif-
ferential evolution algorithm. On the basis of Alia and Törn (2004) and Mohamed and
Sabry (2012), we design a new dynamic differential evolution with self-adapting control
parameter to solve the proposed models. Here, we introduce its fitness function, rep-
resentation and coding, constraint-handling, mutation, crossover, selection and stopping
criterion.
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4.1 Fitness function

The fitness function is a factor for measuring the quality of a solution. In an optimization
problem, fitness is often determined by the value of its objective function. Thus, for the
maximization problems, the individual with higher fitness will have more chance to generate
offspring. For example, in the maximization problem (P

′′
1 ), we regard its objective function

as the fitness function of the designed algorithm.

4.2 Representation and coding

In this algorithm, we use the hybrid representation to define a portfolio, in which two vectors
are expressed as the following forms

� = {z1,1, z1,2, . . . , z1,n; . . . ; zT,1, zT,2, . . . , zT,n}, (32)

X = {x1,1, x1,2, . . . , x1,n; . . . ; xT,1, xT,2, . . . , xT,n}. (33)

To simplify the description, we denote � and X by X = (x1, x2, . . . , xT ) with xt =
(xt,1, xt,2, . . . , xt,n) and � = {z1, z2, . . . , zT } with zt = (zt,1, zt,2, . . . , zt,n) for all
t = 1, 2, . . . , T . Here, zt is a binary vector that specifies whether a particular security par-
ticipates in the portfolio at period t , where zt,i ∈ {0, 1} (i = 1, 2, . . . , n; t = 1, 2, . . . , T ).
xt is a real-valued vector used to compute the investment proportions of the budget invested
on the portfolio at period t , where xt,i ∈ [0, 1] (i = 1, 2, . . . , n; t = 1, 2, . . . , T ).

4.3 Constraint-handling

Similar to Chang et al. (2000) and Mishra et al. (2014), we perform the following repair
mechanism to find the portfolio at period t associated with zt and xt . First, if the number
of securities in the portfolio at period t (i.e., the number of 1’s in zt ) exceeds the maximum
allowable number K , then we delete (by changing its value from 1 to 0 in zt ) those securities
with the (n−K )–smallest weights in xt . In this way, we can keep the portfolio at each period
satisfy the cardinality constraints (i.e., Constraint (22)).

To meet the budget constraint (i.e., Constraint (23)), we perform the following normal-
ization operation

x ′
t,i = xt,i zt,i

∑n
j=1 xt, j zt, j

, i = 1, 2, . . . , n; t = 1, 2, . . . , T . (34)

Since the normalized investment proportion in Eq. (34) may not satisfy the bound constraints,
we need to discuss the following three different cases.
Case 1: If both the lower and upper bound constraints are presented, then the adjusted
investment proportions are computed by

x ′
t,i = yt,i + xt,i zt,i

∑n
j=1 xt, j zt, j

⎛

⎝1 −
n
∑

j=1

yt, j

⎞

⎠ , t = 1, 2, . . . , T, (35)

where yt, j = mt, j zt, j + Mt, j (1 − zt, j ) means that the investment proportion xt,i cannot
escape either the lower or upper bound.
Case2: If the investment proportionhas to be adjustedonly for the lower bound constraint, and
there is no restriction on the upper bound constraint, then the adjusted investment proportions
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are calculated by

x ′
t,i = mt,i zt,i + xt,i zt,i

∑n
j=1 xt, j zt, j

⎛

⎝1 −
n
∑

j=1

mt, j zt, j

⎞

⎠ , t = 1, 2, . . . , T . (36)

Case 3: If the investment proportion has to be adjusted for the upper bound constraint, and
there is no restriction on the lower bound constraint, then the adjusted investment proportions
are computed by

x ′
t,i = Mt,i zt,i − xt,i zt,i

∑n
j=1 xt, j zt, j

(

n
∑

i=1

Mt,i zt,i − 1

)

, t = 1, 2, . . . , T . (37)

For the remaining inequality constraints in the maximization problem, we rewrite them
into the common forms g j (x) ≤ 0 ( j = 1, 2, . . . , q). Then, the violation value of the solution
X is defined as

Viol(X) =
q
∑

j=1

g j (x)

gmax, j (x)
, (38)

where g j (x) is the j th constraint of the problem and gmax, j (x) is the largest violation of the
constraint g j (x) found so far.

According to the feasibility-based rule inDeb (2000), we compare each trial vector with its
corresponding target vector in current population by taking both fitness values and violation
values into consideration. We replace the target vector by the trial vector as an individual of
next generation by the following criteria:

(i) The trial vector is feasible and the target vector is infeasible;
(ii) Both the trial vector and the target vector are feasible, but the fitness value of the trial

vector is no less than the corresponding target vector;
(iii) Both the trial vector and the target vector are infeasible, but the violation value of the

trial vector is smaller the corresponding target vector.

After repeating this operation N times, we can obtain a population with N initialized
individuals.

4.4 Mutation operation

Since the basic mutation strategy DE/rand/1/bin slows down the convergence of DE algo-
rithms, we design a new mutation strategy with self-adapting control parameter to perform
mutation operation as follows: For each target vector XG

i , a mutant vector V is generated as

if (rand[0, 1] ≤ 0.5) (39)

then VG+1
i = XG

r + F(XG
b − XG

w) (40)

else VG+1
i = XG

r1 + F(XG
r2 − XG

r3) (41)

where G is the current generation number; XG
r is a randomly chosen vector at generation G;

XG
b and XG

w are the best and the worst vectors in the entire population at current generation,
respectively; rand[0, 1] is a random number in [0,1]; r1, r2, r3 ∈ {1, 2, . . . , N } are randomly
chosen indices; F is a self-adapting control parameter with the following form (see Alia and
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Törn (2004))

F =
⎧

⎨

⎩

max
(

Fmin, 1 −
∣

∣

∣

fmax
fmin

∣

∣

∣

)

, if | fmax
fmin

| < 1,

max
(

Fmin, 1 −
∣

∣

∣

fmin
fmax

∣

∣

∣

)

, otherwise,

where fmin and fmax are the minimum and maximum objective values of vector X at current
generation, Fmin is the minimum value of F . In Alia and Törn (2004), the value of Fmin is
set as 0.4.

4.5 Crossover operation

To balance between global exploration ability and local exploitation tendency in constrained
optimization, a dynamic non-linear increased crossover probability scheme is performed as
follows

uG+1
i, j =

{

xG+1
i, j , if rand( j) ≤ CR or j = randn(i),

vGi, j , if rand( j) > CR and j �= randn(i),
(42)

where j = 1, 2, . . . , nT ; rand( j) is the j th evaluation of a uniform randomgenerator number;
randn(i) ∈ {1, 2, . . . , nT } is a randomly chosen index and it ensures that uG+1

i gets at least
one element from vG+1

i ; the crossover probability CR is defined as

CR = CRmax + (CRmin − CRmax)
(

1 − G
Gmax

)p
.

Here, Gmax is the maximum generation number; CRmin and CRmax are the minimum and
maximum values of CR, respectively; p is a positive number. In this paper, the values of
CRmin, CRmax and p are set as 0.5, 0.95 and 4, respectively.

4.6 Selection operation

In this algorithm, the selection operation is based on a greedy selection strategy. Namely, if
the trial vector uG+1

i yields a better fitness function value than XG
i , then we set u

G+1
i as XG

i .
Otherwise, we retain XG

i . Thus, the selection operation can be expressed as

XG+1
i =

{

uG+1
i , if f (uG+1

i ) > f (XG+1
i ),

XG
i , if f (uG+1

i ) ≤ f (XG+1
i ).

(43)

4.7 Stopping criterion

We terminate the algorithm when the maximum number of generations Gmax is reached or
there is no improvement after a certain number of generations.

The concrete procedures of the designed algorithm are summarized as follows:
Step 1: Input population size N , crossover rate parameters (CRmin, CRmax and p) and max-
imum generation number Gmax;
Step 2:Randomly generate N initial individuals and convert them into corresponding feasible
ones by using the constraint-handing mechanisms;
Step 3: Calculate the fitness value of each individual;
Step 4: Perform mutation operation by Eqs. (39)–(41) and crossover operation by Eq. (42);
Step 5: Compare the fitness values of the offspring uG+1

i and its parent XG
i , and then select

out the better one as an individual for next generation by Eq. (43);
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Table 1 The interval-valued proceeds and turnover rates of the 8 stocks at each period

St. i Proceeds Turnover rates

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

St. 1 [1.0463, 1.0825] [1.0527, 1.0963] [1.0469, 1.0670] [0.0143, 0.0255] [0.0103, 0.0294] [0.0168, 0.0438]

St. 2 [0.9910, 1.0419] [0.9901, 1.0486] [1.0446, 1.0943] [0.0331, 0.0470] [0.0245, 0.0461] [0.0170, 0.0422]

St. 3 [1.0265, 1.0536] [1.0324, 1.0584] [1.0260, 1.0485] [0.0322, 0.0467] [0.0263, 0.0392] [0.0223, 0.0406]

St. 4 [1.0352, 1.0679] [1.0383, 1.0602] [1.0078, 1.0442] [0.0252, 0.0374] [0.0181, 0.0377] [0.0313, 0.0473]

St. 5 [1.0492, 1.0929] [1.0512, 1.0887] [1.0674, 1.0918] [0.0124, 0.0265] [0.0232, 0.0412] [0.0221, 0.0341]

St. 6 [1.0452, 1.0602] [1.0299, 1.0741] [1.0395, 1.0688] [0.0221, 0.0343] [0.0161, 0.0301] [0.0160, 0.0451]

St. 7 [1.0441, 1.0839] [1.0354, 1.0614] [1.0371, 1.0504] [0.0167, 0.0340] [0.0232, 0.0412] [0.0121, 0.0493]

St. 8 [1.0307, 1.0503] [1.0388, 1.0869] [1.0423, 1.0819] [0.0322, 0.0441] [0.0121, 0.0311] [0.0243, 0.0350]

Step 6: Check the stopping criterion. If the stopping criterion is satisfied, then quit the
iteration operation and report the best individual as the optimal solution. Otherwise, go back
to Step 3.

5 Numerical example

In this section, we give a numerical example to illustrate the applications of the proposed
models and demonstrate the validity of the designed algorithm.

Assume that an investor chooses 8 stocks from the Shanghai Stock Exchange for his
investment. He intends to make three consecutive periods investment among the 8 stocks
with initial wealth 10,000 RMB. To simulate the real transaction, we collect the historical
data about weekly return rates, variances and turnover rates of the 8 stocks from January
2010 to January 2013. We set each year as an investment period to handle these historical
data. In this example, the values of rat,i , δ

a
t,i and l

a
t,i are calculated by their arithmetic means

of the historical data in the recent a year for i = 1, 2, . . . , 8 and t = 1, 2, 3. Namely, the
value of t0 is set as 1. The values of rht,i , δ

h
t,i and l

h
t,i are subjectively given by experts. Here,

we assume that they are calculated by their arithmetic means of the historical data in the
first half of the recent a year. The values of r f

t,i , δ
f
t,i and l ft,i are roughly computed by their

arithmetic means of the historical data in the second half of the recent a year. According
to the interval estimation approach in Fang et al. (2008), the proceeds obtained by per unit
capital investment, the turnover rates and the covariances of the return rates on the 8 stocks
at each period are characterized by interval numbers as shown in Tables 1 and 2.

In this example, the maximum holding number of stocks in the portfolio at each period
is set as 6, that is, K = 6. The transaction costs of per unit capital adjustment are set as
0.003 for all stocks over the whole investment horizon. The minimum expected return level
of the portfolio on unit capital investment at each period is set as 1.0475. The maximum
risk tolerance levels for the portfolios in the three investment periods are set as 0.012, 0.015
and 0.018, respectively. The minimum expected turnover rate level of the portfolio at each
period is set as 0.21. The diversification degree of the portfolio at each period is set as
1.6. The lower and upper bounds of the investment proportion of each selected stock over
the whole investment horizon are set as 0.005 and 0.3, respectively. The parameters of the
designed algorithm are set as follows: The population size is 200 and themaximumgeneration

123



562 Ann Oper Res (2016) 244:545–569

Ta
bl
e
2

T
he

in
te
rv
al
-v
al
ue
d
co
va
ri
an
ce
s
of

th
e
re
tu
rn

ra
te
s
on

th
e
8
st
oc
ks

at
ea
ch

pe
ri
od

t
St
.i

St
.1

St
.2

St
.3

St
.4

St
.5

St
.6

St
.7

St
.8

t
=

1
St
.1

[0
.0
05

,0
.0
21

]
[0
.0
05

,0
.0
12

]
[0
.0
06

,0
.0
12

]
[0
.0
03

,0
.0
17

]
[0
.0
07

,0
.0
19

]
[0
.0
03

,0
.0
12

]
[0
.0
05

,0
.0
16

]
[0
.0
05

,0
.0
15

]

St
.2

[0
.0
05

,0
.0
12

]
[0
.0
06

,0
.0
07

]
[0
.0
06

,0
.0
10

]
[0
.0
01

,0
.0
10

]
[0
.0
08

,0
.0
11

]
[0
.0
03

,0
.0
07

]
[0
.0
05

,0
.0
10

]
[0
.0
06

,0
.0
08

]

St
.3

[0
.0
06

,0
.0
12

]
[0
.0
06

,0
.0
07

]
[0
.0
07

,0
.0
12

]
[0
.0
01

,0
.0
13

]
[0
.0
09

,0
.0
14

]
[0
.0
04

,0
.0
09

]
[0
.0
05

,0
.0
13

]
[0
.0
06

,0
.0
11

]

St
.4

[0
.0
03

,0
.0
17

]
[0
.0
01

,0
.0
10

]
[0
.0
01

,0
.0
13

]
[0
.0
02

,0
.0
15

]
[0
.0
02

,0
.0
16

]
[0
.0
01

,0
.0
10

]
[0
.0
01

,0
.0
14

]
[0
.0
01

,0
.0
12

]

St
.5

[0
.0
07

,0
.0
19

]
[0
.0
08

,0
.0
11

]
[0
.0
09

,0
.0
14

]
[0
.0
02

,0
.0
16

]
[0
.0
10

,0
.0
17

]
[0
.0
04

,0
.0
10

]
[0
.0
07

,0
.0
15

]
[0
.0
08

,0
.0
13

]

St
.6

[0
.0
03

,0
.0
12

]
[0
.0
03

,0
.0
07

]
[0
.0
04

,0
.0
09

]
[0
.0
01

,0
.0
10

]
[0
.0
04

,0
.0
10

]
[0
.0
02

,0
.0
06

]
[0
.0
02

,0
.0
10

]
[0
.0
03

,0
.0
08

]

St
.7

[0
.0
05

,0
.0
16

]
[0
.0
05

,0
.0
10

]
[0
.0
05

,0
.0
13

]
[0
.0
01

,0
.0
14

]
[0
.0
07

,0
.0
15

]
[0
.0
02

,0
.0
10

]
[0
.0
04

,0
.0
13

]
[0
.0
05

,0
.0
12

]

St
.8

[0
.0
05

,0
.0
15

]
[0
.0
06

,0
.0
08

]
[0
.0
06

,0
.0
11

]
[0
.0
01

,0
.0
12

]
[0
.0
02

,0
.0
10

]
[0
.0
03

,0
.0
08

]
[0
.0
05

,0
.0
12

]
[0
.0
06

,0
.0
11

]

t
=

2
St
.1

[0
.0
00

,0
.0
31

]
[0
.0
01

,0
.0
14

]
[0
.0
01

,0
.0
20

]
[0
.0
00

,0
.0
10

]
[0
.0
01

,0
.0
21

]
[0
.0
01

,0
.0
13

]
[0
.0
01

,0
.0
09

]
[0
.0
01

,0
.0
19

]

St
.2

[0
.0
01

,0
.0
14

]
[0
.0
02

,0
.0
06

]
[0
.0
03

,0
.0
09

]
[0
.0
02

,0
.0
05

]
[0
.0
03

,0
.0
09

]
[0
.0
04

,0
.0
06

]
[0
.0
03

,0
.0
04

]
[0
.0
05

,0
.0
08

]

St
.3

[0
.0
01

,0
.0
20

]
[0
.0
03

,0
.0
09

]
[0
.0
03

,0
.0
13

]
[0
.0
02

,0
.0
07

]
[0
.0
03

,0
.0
14

]
[0
.0
03

,0
.0
09

]
[0
.0
03

,0
.0
06

]
[0
.0
05

,0
.0
12

]

St
.4

[0
.0
00

,0
.0
10

]
[0
.0
02

,0
.0
05

]
[0
.0
02

,0
.0
07

]
[0
.0
01

,0
.0
03

]
[0
.0
02

,0
.0
07

]
[0
.0
02

,0
.0
04

]
[0
.0
02

,0
.0
03

]
[0
.0
03

,0
.0
06

]

St
.5

[0
.0
01

,0
.0
21

]
[0
.0
03

,0
.0
09

]
[0
.0
03

,0
.0
14

]
[0
.0
02

,0
.0
07

]
[0
.0
03

,0
.0
15

]
[0
.0
02

,0
.0
09

]
[0
.0
03

,0
.0
06

]
[0
.0
05

,0
.0
13

]

St
.6

[0
.0
01

,0
.0
13

]
[0
.0
04

,0
.0
06

]
[0
.0
03

,0
.0
09

]
[0
.0
02

,0
.0
04

]
[0
.0
02

,0
.0
09

]
[0
.0
02

,0
.0
06

]
[0
.0
02

,0
.0
04

]
[0
.0
04

,0
.0
08

]

St
.7

[0
.0
01

,0
.0
09

]
[0
.0
03

,0
.0
04

]
[0
.0
03

,0
.0
06

]
[0
.0
02

,0
.0
03

]
[0
.0
03

,0
.0
06

]
[0
.0
02

,0
.0
04

]
[0
.0
02

,0
.0
03

]
[0
.0
05

,0
.0
06

]

St
.8

[0
.0
01

,0
.0
19

]
[0
.0
05

,0
.0
08

]
[0
.0
05

,0
.0
12

]
[0
.0
03

,0
.0
06

]
[0
.0
05

,0
.0
13

]
[0
.0
04

,0
.0
08

]
[0
.0
05

,0
.0
06

]
[0
.0
08

,0
.0
11

]

t
=

3
St
.1

[0
.0
02

,0
.0
05

]
[0
.0
02

,0
.0
14

]
[0
.0
02

,0
.0
09

]
[0
.0
01

,0
.0
04

]
[0
.0
04

,0
.0
25

]
[0
.0
01

,0
.0
07

]
[0
.0
03

,0
.0
06

]
[0
.0
04

,0
.0
12

]

St
.2

[0
.0
02

,0
.0
14

]
[0
.0
02

,0
.0
38

]
[0
.0
03

,0
.0
25

]
[0
.0
01

,0
.0
11

]
[0
.0
03

,0
.0
70

]
[0
.0
01

,0
.0
18

]
[0
.0
04

,0
.0
18

]
[0
.0
05

,0
.0
34

]

St
.3

[0
.0
02

,0
.0
09

]
[0
.0
03

,0
.0
25

]
[0
.0
03

,0
.0
17

]
[0
.0
01

,0
.0
07

]
[0
.0
03

,0
.0
46

]
[0
.0
01

,0
.0
12

]
[0
.0
04

,0
.0
12

]
[0
.0
05

,0
.0
23

]

St
.4

[0
.0
01

,0
.0
04

]
[0
.0
01

,0
.0
11

]
[0
.0
01

,0
.0
07

]
[0
.0
01

,0
.0
03

]
[0
.0
01

,0
.0
19

]
[0
.0
00

,0
.0
05

]
[0
.0
01

,0
.0
05

]
[0
.0
03

,0
.0
10

]

St
.5

[0
.0
04

,0
.0
25

]
[0
.0
03

,0
.0
70

]
[0
.0
03

,0
.0
46

]
[0
.0
01

,0
.0
19

]
[0
.0
03

,0
.1
27

]
[0
.0
01

,0
.0
34

]
[0
.0
04

,0
.0
33

]
[0
.0
05

,0
.0
62

]

St
.6

[0
.0
01

,0
.0
07

]
[0
.0
01

,0
.0
18

]
[0
.0
01

,0
.0
12

]
[0
.0
00

,0
.0
05

]
[0
.0
01

,0
.0
34

]
[0
.0
01

,0
.0
09

]
[0
.0
01

,0
.0
09

]
[0
.0
01

,0
.0
16

]

St
.7

[0
.0
03

,0
.0
06

]
[0
.0
04

,0
.0
18

]
[0
.0
04

,0
.0
12

]
[0
.0
01

,0
.0
05

]
[0
.0
04

,0
.0
33

]
[0
.0
01

,0
.0
09

]
[0
.0
05

,0
.0
08

]
[0
.0
07

,0
.0
16

]

St
.8

[0
.0
04

,0
.0
12

]
[0
.0
05

,0
.0
34

]
[0
.0
05

,0
.0
23

]
[0
.0
03

,0
.0
10

]
[0
.0
05

,0
.0
62

]
[0
.0
01

,0
.0
16

]
[0
.0
07

,0
.0
16

]
[0
.0
03

,0
.0
09

]

123



Ann Oper Res (2016) 244:545–569 563

number is 1000. The values of CRmin and CRmax are set as 0.5 and 0.95. To demonstrate the
performances of the proposed models, we assume that the possibility degree level for each
interval inequality constraint is 0.8. After running the designed algorithm 1000 iterations on
each model, we record the corresponding investment strategies as shown in Table 3.

Table 3, representing the investment strategies obtained by different models, shows that
different portfolio selection models reflect investors’ different investment intentions. From
Table 3, we can find that most of the investor’s wealth is allocated among Stocks 1, 5, 6, 7
and 8. If the investor uses the model (P1) to make his portfolio decision, he should follow
the investment strategies listed in lines 2, 3 and 4 of Table 3 to adjust his wealth at the
beginning of each period. Namely, at the beginning of period 1, the investor needs to assign
his initial wealth among Stocks 1, 4, 5, 6 and 7 by the investment proportions of 0.2747,
0.0053, 0.2993, 0.2975 and 0.1231, respectively. At the beginning of period 2, the investor
needs to adjust his wealth again. After adjustment, he holds Stocks 1, 4, 5, 6, 7 and 8 by the
investment proportions of 0.2998, 0.0052, 0.2999, 0.0935, 0.0050 and 0.2965, respectively.
Subsequently, at the beginning of period 3, the investor needs to adjust hiswealth again. In this
investment period, he constructs a portfolio among Stocks 1, 2, 5, 6, 7 and 8 by the investment
proportions of 0.2988, 0.0092, 0.1830, 0.2109, 0.0064 and 0.2917, respectively. In this case,
the crisp value of terminal wealth is 11,945.76 RMB. If the investor uses the model (P2)
to make his portfolio decision. He should allocate his wealth by the investment strategies
listed in lines 5, 6 and 7 of Table 3 at the beginning of each period. The corresponding crisp
value of terminal wealth is 11,879.92 RMB. If the investor uses the model (P3) to make his
portfolio decision, he should follow the investment strategies listed in lines 8, 9 and 10 of
Table 3 to allocate his wealth at the beginning of each period. In this case, the crisp value of
terminal wealth is 11,909.30RMB. If the investor selects themodel (P4) tomake his portfolio
decision, he should follow the investment strategies listed in lines 11, 12 and 13 of Table 3.
In this case, the crisp value of terminal wealth is 11,875.29 RMB. If the investor selects all
stocks in equal investment proportions and hold them over the whole investment horizon,
the corresponding crisp value of terminal wealth obtained at the end of period 3 is 11,616.94
RMB. After comparison, we can find out that the crisp value of the terminal wealth obtained
by any one of the proposed models is larger than the one obtained by the equal-weighted
investment. It follows that the portfolios generated by the proposed models perform better
than the equal-weighted one. To highlight the effects of both the cardinality constraints and
the bound constraints on portfolio selection, we also use the designed algorithm to solve
the model (P5) and record the corresponding numerical results in lines 14, 15 and 16 of
Table 3. It can be observed that, in the sense of terminal wealth, the result of the model (P1)
is preferable to the result of the contrast model (P5). Thus, we can conclude that both the
cardinality constraints and the bound constraints do affect the optimal portfolio composition.
In addition, we also calculate the expected proceeds obtained by per unit capital, the turnover
rate and the variance of the return rate on the portfolio at each period obtained by different
models as shown in Table 4.

To demonstrate the fact that the proposed models can express the investor’s different
investment preference freely, we take the model (P1) as an example and vary the possibility
degree level on each interval inequality constraint from 0.60 to 0.80. Under each risk attitude
case, a run of the designed algorithm with 1000 generations shows that the investor should
assign hiswealth according to the investment strategies listed in Table 5. FromTable 5, we can
find that different possibility degree levels on interval inequality constraints lead to different
investment strategies.With the increasing of the possibility degree level, the investor becomes
more conservative and the obtained terminal wealth becomes smaller, which is consistent
with the real world investment case. If the investor is not satisfied with any one of these
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Table 4 The expected proceeds ˜Rt , variance˜δt and turnover rate˜lt of the portfolio at period t obtained by
different models

t ˜Rt ˜δt ˜lt ˜Rt ˜δt ˜lt

Model (P1) Model (P2)

t = 1 [1.0465, 1.0791] [0.0049, 0.0138] [0.0049, 0.0138] [1.0441, 1.0772] [0.0054, 0.0136] [0.0183, 0.0319]

t = 2 [1.0458, 1.0888] [0.0027, 0.0164] [0.0027, 0.0164] [1.0457, 1.0843] [0.0022, 0.0141] [0.0174, 0.0357]

t = 3 [1.0477, 1.0764] [0.0027, 0.0218] [0.0027, 0.0218] [1.0474, 1.0719] [0.0031, 0.0217] [0.0181, 0.0416]

Model (P3) Model (P4)

t = 1 [1.0454, 1.0785] [0.0049, 0.0138] [0.0049, 0.0138] [1.0441, 1.0771] [0.0051, 0.0137] [0.0051, 0.0137]

t = 2 [1.0455, 1.0857] [0.0022, 0.0149] [0.0022, 0.0149] [1.0455, 1.0837] [0.0020, 0.0138] [0.0020, 0.0138]

t = 3 [1.0476, 1.0742] [0.0026, 0.0218] [0.0026, 0.0218] [1.0476, 1.0720] [0.0028, 0.0218] [0.0028, 0.0218]

obtained portfolios, he can obtain more portfolios by varying the possibility degree levels
on these interval inequality constraints. Thus, we can conclude that investors’ investment
intentions can be freely expressed by the proposed models.

To illustrate the effectiveness of the designed algorithm, we also use the dynamic dif-
ferential evolution (DDE) algorithm in Mohamed and Sabry (2012) to solve the proposed
four models. The parameters of the DDE algorithm are set the same as the designed algo-
rithm. We vary the number of generations from 1000 to 5000 to illustrate the stability of the
designed algorithm and record the comparative computational results as shown in Table 6.
From Table 6, we can find that the objective value of each model obtained by our algorithm
is larger than the one obtained by the DDE algorithm. In addition, we also calculate the
maximum deviation of objective for each model with respect to different generations. The
maximum deviation generated by the designed algorithm for each model is smaller than the
one generated by the DDE algorithm. Thus, we can conclude that the designed algorithm is
more suitable for solving the proposed models.

6 Conclusions

Due to serious lack of historical information in emerging markets, the returns, risks and
turnover rates of securities usually cannot be predicted accurately. In this paper, we assume
that the investor can estimate their approximate ranges. Namely, they are characterized by
interval numbers. We propose four multi-period cardinality constrained portfolio selection
models with interval coefficients. We use the definitions of the possibility degree for interval
inequalities to handle the uncertainty inequality constraints in the proposed models and
express investors’ different risk attitudes. Then, the proposedmodels are transformed into the
corresponding deterministic forms.After that, we design a newdynamic differential evolution
algorithm with self-adapting control parameter to solve them. Finally, a numerical example
with real data from the Shanghai Stock Exchange is given to illustrate the ideas of our models
and the validity of the designed algorithm. Comparative analysis is also given to demonstrate
the effects of real constraints on portfolio decision. Computational results indicate that the
proposed models can freely express investors’ different investment preferences by adjusting
the possibility degree levels on the uncertainty constraints and the designed algorithm is
suitable for solving our models.
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