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Abstract In this paper we present a general integer programming-based approach for the
minimal perturbation problem in university course timetabling. This problem arises when
an existing timetable contains hard constraint violations, or infeasibilities, which need to be
resolved. The objective is to resolve these infeasibilities while minimising the disruption or
perturbation to the remainder of the timetable. This situation commonly occurs in practical
timetabling, for example when there are unexpected changes to course enrolments or avail-
able rooms. Our method attempts to resolve each infeasibility in the smallest neighbourhood
possible, by utilising the exactness of integer programming. Operating within a neighbour-
hood of minimal size keeps the computations fast, and does not permit large movements of
course events, which cause widespread disruption to timetable structure. We demonstrate
the application of this method using examples based on real data from the University of
Auckland.

Keywords Minimal perturbation problems · University course timetabling · Integer
programming · Decision support systems

1 Introduction

University course timetabling is a well-known problem in which a time period and a room
are determined for each course event (e.g. a lecture). Construction of a timetable may be
conducted prior to the start of enrolment, or after enrolment data is known. The former case
is referred to as curriculum-based timetabling, because time clashes between courses are
determined by sets of courses known as curricula. The latter case is referred to as enrolment-
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based timetabling because clashes can be determined and weighted by known enrolments
for each course.

In a practical setting, both of these problems are applicable to some extent (Kingston
2013a). The timetable is typically constructed significantly prior to the start of enrolments,
and it will commonly need to be modified as enrolments take place. During each of these
phases, the situation can arise where an existing timetable becomes infeasible due to changes
in the underlying data. Theminimal perturbation problemaddresses how tomodify an existing
timetable so that feasibility is found with a minimal amount of perturbation (or disruption)
to the structure of the timetable.

The minimal perturbation problem is first comprehensively addressed in the context of
general dynamic scheduling (El Sakkout et al. 1998). Sakkout and Wallace (2000) propose
an algorithm based on constraint programming techniques, which leverages the efficiency of
linear programming to solve part of the problem.

Recent work on the minimal perturbation problem has been in the broader context of
general constraint satisfaction problems (CSPs). Zivan et al. (2011) develop a branch-and-
bound-based tree search in “difference-space”, where nodes represent the set of variables
perturbed. Fukunaga (2013) develops an improved search method in “commitment-space”
where nodes represent the commitment of a variable to a value.

To our knowledge, Barták et al. (2004) are the first to study minimal perturbation prob-
lems in the context of university course timetabling, proposing a constraint satisfaction
heuristic combined with a branch-and-bound process. The authors continue this work with
a local search-based metaheuristic, known as “iterative forward search”, which significantly
improves performance (Müller et al. 2005). Finally, Rudová et al. (2011) present a summary
of this approach as part of a broader course timetabling process, which is implemented at Pur-
due University, USA. This includes detailed results on the iterative forward search algorithm
as applied to minimal perturbation problems, and is described in a practical setting.

A similar problem is addressed by Kingston (2013b) in the context of high school
timetabling. Infeasibilities are repaired using an ejection chain heuristic, although the per-
turbation or disruption to the overall timetable is not considered.

In this paper we present a new general method for solving minimal perturbation problems
which arise in practical course timetabling. In Sect. 2 we discuss the real-world timetabling
process, and the most common situations where minimal perturbation problems are required
to be solved. In Sect. 3 we outline our proposed algorithm. Around each infeasibility, we
define a small neighbourhood of events, time periods, and rooms, which we are willing to
perturb. Within this neighbourhood, an integer programme is solved to maximise the number
of events assigned to a suitable time period and room, as detailed in Sects. 4 and 5. Utilising
the exactness of integer programming, we only expand the size or scope of the neighbour-
hood when we have certainty that the current neighbourhood is insufficient to resolve or
lessen the infeasibility. In Sect. 6 we further describe how to limit the size of the neighbour-
hood, to ensure the computational tractability of each integer programme. This process also
prevents large movements of course events, which are seen as disruptive to the timetable
structure.

In Sects. 7 and 8 we demonstrate the application of this method using examples based
on real data from the University of Auckland. Finally, in Sect. 9 we discuss potential exten-
sions to our method. The expanding neighbourhood methodology has been successfully
demonstrated in other real-world applications, such as minimising disruption in dynamic rail
crew scheduling (Rezanova and Ryan 2010). This work is an expanded version of a PATAT
conference paper (Phillips et al. 2014), with refinements to the algorithm and additional
results.

123



Ann Oper Res (2017) 252:283–304 285

2 Minimal perturbation problems in university course timetabling

A complete solution to the university course timetabling problem specifies a time period and
room for every course event. The solution can be considered feasible if it does not include
any violated hard constraints, or infeasibilities. Quality measures, or soft constraints, are
desirable features of a feasible solution which may also be considered. For a coverage of
commonly used hard and soft constraints, we refer to the benchmarking paper by Bonutti
et al. (2012).

University course timetabling is widely accepted to be a dynamic problem in prac-
tice, where data may continually change throughout construction and implementation of
a timetable (McCollum 2007; Kingston 2013a). For complex timetabling at large universi-
ties, we discuss howminimal perturbation problems can arise in each stage of the timetabling
process. We draw on our own experiences at the University of Auckland, which bears many
similarities to other large universities considered in the timetabling literature.

The early construction phase of timetabling occurs when most timetabling data has been
gathered, and construction of a timetable is starting. Many time or room assignments are
considered to be tentative, and may be changed relatively freely. At this stage, almost any
changes to the data are possible e.g. new or removed courses, changes to staff employment
status, room availabilities etc. Some infeasibilities may not need to be resolved until the data
is more complete.

The late construction phase occurs when the timetable is close to being finalised for pub-
lication. This stage is the most similar to curriculum-based timetabling which is addressed
widely in the literature. Major changes to the data are less likely at this stage, and all infea-
sibilities should be resolved. Infeasibilities may also arise due to the method of constructing
the timetable (as opposed to solely due to changes in the data). For example, if faculties
choose their own time assignments independently (often “rolled-forward” from the previous
year with changes), this can produce a time assignment for which there is no feasible room
assignment.

In this paper, we address this situation at the University of Auckland where time assign-
ments have been determined in close collaboration with faculties. Changing the time period
for an event is disruptive, whereas the room assignment may be more freely perturbed. This
application of the minimal perturbation problem has not been previously addressed in uni-
versity course timetabling, however Ásgeirsson (2012) develops heuristics for a conceptually
similar situation within staff scheduling.

The enrolment phase of timetabling begins once the timetable is published, and students
have started to select courses. This phase extends into the semester, and a further distinction
can be made on whether the semester has started. Once enrolments have begun, it can be
disruptive to change either the time period or the room assignment for an event. However, the
former is often particularly disruptive, as students and staff may have external obligations
affecting their personal timetable.

During this phase, many potential changes to the data can cause an infeasibility. The most
common example occurs when a course receives an unexpectedly high enrolment, so that the
existing room assignment is no longer suitable. At the University of Auckland, it is a legal
requirement that there may not be an excess or overflow of students in a room. Although
not all events will be attended by every enrolled student (e.g. sickness, retention, recorded
lectures), the first events of a semester are typically well attended.

We also consider an example where the availability of one or more rooms is lost. A room
may become temporarily unavailable for reasons such as damage to the premises or equip-
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ment, or if there is nearby construction work. Alternatively, a roommay become permanently
unavailable, for example if it is repurposed from teaching space to office space. Note that
the minimal perturbation problem may be solved to explore the impact of potential changes,
which significantly broadens its application. At the University of Auckland, repurposingmay
be conducted if a particular type of room is under-utilised, e.g. if there are several similar
tutorial rooms, each of which are occupied in less than 40% of time periods.

We finally note that unexpected changes to the data are not necessarily due to unpre-
dictability in real-world circumstances, and may instead be due to errors or omissions. A
large quantity of data is required to represent all aspects of the timetabling problem, and data
is frequently subject to change between timetabling semesters. Ideally, all data is known and
corrected in the construction phase of timetabling, however it is possible for residual errors
to remain undetected until the enrolment phase. For example, misreporting of room attributes
may occur when facilities have been added, upgraded or discontinued. A less conspicuous
data error may occur if a faculty has provided an incomplete list of courses which share
common students with a new course (i.e. part of the same curriculum).

As previouslymentioned, infeasibilities can arise as a result of any violated hard constraint
in either the time or room assignment. However, rather than considering an infeasibility as
the violation of a particular type of constraint, it is useful to generalise each infeasibility as
one or more unassigned events. For example, if an event is no longer suitable for its assigned
room, it is treated as an unassigned event (as opposed to infeasibly assigned to the room).
Similarly, if a curriculum is introduced which causes a conflict between two events in the
same time period, one (or both) are unassigned.

By this process, a timetabling solutionwith various violated constraintsmaybe represented
by two sets of events; those which are feasibly assigned to a time period and room, and those
which are not assigned. Additionally, each unassigned event has a preferred time period
which is typically at the time it was previously assigned. When the minimal perturbation
problem is solved, perturbations for all events are calculated with respect to the current (or
preferred) time period.

For practical minimal perturbation problems, we can have reasonable confidence that
it is possible to find a feasible solution without major perturbation to the existing timetable
structure.Whether the infeasibilities arise from rolling forward an old timetablewith changes,
or if there are unexpected changes to enrolment, it is likely that the infeasible timetable will
be “close” to feasibility, i.e. only a small number of events will need to change time period
or room. Furthermore, because rooms are utilised in approximately 50% of available time
periods (Beyrouthy et al. 2007), usually there aremany solutions, orways to restore feasibility.

3 Expanding neighbourhood algorithm

Solving the minimal perturbation problem requires assigning both a time period and a room
for each event, rather than addressing these problems separately. However, building a model
with variables indexed over all events, time periods and rooms could easily result in millions
of binary variables (Burke et al. 2008), which would be intractable. As a result, we would like
to build a model which resolves each infeasibility in as small a neighbourhood as possible.
The neighbourhood around an infeasibility is defined by a restricted set of events which can
be moved, and subsets of time periods and rooms to which events can be moved. All events
outside this neighbourhood are fixed to their existing time and room assignment.
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Because we clearly do not have a priori knowledge of the minimum neighbourhood size
required to resolve a given infeasibility, we propose an expanding neighbourhood algorithm
which addresses each infeasiblity sequentially. In each iteration, we choose a time period
with unassigned events to focus on. Around this time period, we generate a small neigh-
bourhood, which defines a restricted set of possibilities for how events can be reassigned.
For example, the neighbourhood may be defined to only consider events of similar size to
the unassigned events, and only to/from the time periods 1h before or after their current
time period. Within this neighbourhood an integer programme (IP) is solved to maximise
the number of neighbourhood events which can be assigned to a suitable time period and
room. If it is not possible to increase the number of assigned events inside the neighbourhood,
we are required to expand the size of the neighbourhood. The neighbourhood is continually
expanded until we are able to assign more events inside the neighbourhood than were previ-
ously assigned. At this stage we can re-solve the neighbourhood IP to find a solution which
minimises the disruption caused by assigning this number of events.

This process constitutes one iteration of the algorithm, resulting in a decrease in the number
of unassigned events. The algorithm continues to iterate until all events are assigned. Within
each iteration, note that we stop expanding the neighbourhood once the number of assigned
events can be improved, rather than only when all neighbourhood events are assigned. This
means wemay use more than one iteration to resolve the infeasibilities in a given time period.
This algorithm is presented as Algorithm 1.

Algorithm 1 Expanding Neighbourhood Algorithm

1: while true do

2: t ← GetInfeasibleTimePeriod(Timetable)
3: if t does not exist then
4: terminate successfully
5: end if

6: N ← GenerateInitialNeighbourhood(t)

7: searching ← true
8: while searching do

9: I P ← BuildNeighbourhoodIP(N)
10: Events Assignable ← I P .Solve(obj: MaxEventHours)

11: if |Events Assignable| > |N .Events Assigned| then
12: Events Assignable ← I P .Solve(obj: MinDisruption)
13: T imetable.Update(Events Assignable)

14: searching ← false
15: else
16: N .Expand()
17: end if
18: end while

19: end while

Each iteration of Algorithm 1 requires the solution of at least two IPs. These include the
first IP which maximises the number of assignable events in the initial neighbourhood, and
the final IP which minimises the disruption in the final neighbourhood. An additional IP
must also be solved each time the neighbourhood is expanded. Although a large number of
iterations and IPsmay be required, each IPmodelwill be relatively small, due to the optimistic
methodology of startingwith a small neighbourhood and only increasing themodel sizewhen
necessary.
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The use of an exact method is well-suited to the minimal perturbation problem. In con-
trast to other methods (e.g. manual or heuristic), the major advantage of incorporating integer
programming is that it provides certainty of whether we are required to expand the neigh-
bourhood. If the maximum number of assignable events is equal to the current number of
assigned events, we have certainty that a given neighbourhood is of insufficient size. This
statement cannot be made if manual or heuristic methods are used. Furthermore, because the
size of each neighbourhood is kept small, our method is very fast. This is a notable advantage
over a manual approach.

In the following sections we explore the application of this algorithm to the minimal
perturbation problem as it exists within course timetabling. The definition of the starting
neighbourhood, and the process of expansion, should each be dependent on the nature of the
given infeasibility. The neighbourhood definition should not only uphold the constraints of
the time and room assignment problems, but also be tailored to include the variables which
are likely to resolve the infeasibility.

4 Event-based neighbourhood model

Solving the minimal perturbation problem using Algorithm 1 requires the solution of a
number of integer programmes. For each neighbourhood considered in each iteration, we
solve an IP to maximise the number of events which can be assigned to a time period and
room. Once the number of assigned events can be increased, we solve an IP to determine the
optimal way to assign additional events while minimising the disruption to the remainder of
the timetable.

To describe the neighbourhood IPs, we use notation defined in Table 1. A simplified
representation of a neighbourhood is a subset of the original timetabling problem, where we
consider a subset of events EN ⊆ E , time periods TN ⊆ T , and rooms RN ⊆ R. However,
in practice only a subset of time periods are suitable for a given event e, i.e. Te ⊆ TN .
Similarly for the room assignment, Ret ⊆ RN , as not every room is suitable for every event,
and not every room is available in every time period. Therefore, the precise representation
of a neighbourhood is given by the set of variables as indexed over all event-time-room
assignments for e ∈ EN , t ∈ Te, and r ∈ Ret .

When solving a minimal perturbation problem, we must consider the effect of the fixed
events (i.e. e ∈ E\EN ) on the set of suitable time periods and rooms for neighbourhood
events. Many explicit constraints in the time assignment and room assignment models which
relate to fixed events can be represented implicitly in the minimal perturbation model. For
example, consider a time assignment which requires that courses teach a maximum of one
lecture event on any given day. If a fixed event from course c is taught on day d , any neigh-
bourhood events of this course may not be moved to this day i.e. Te ∩Td = ∅ ∀e ∈ (c∩ EN ).
Similarly, we represent the effect of fixed events on the curriculum and teacher constraints
e.g. if an event from curriculum curr is fixed in a time period within the neighbourhood,
no events from courses in this curriculum can be moved to this time period. If the minimal
perturbation problem is solved during the enrolment phase of timetabling, we note the set
of curricula may be different from the curricula used to construct the timetable. It is impor-
tant that no enrolled student has a timetable which becomes infeasible after the minimal
perturbation problem is solved.

We also consider the complication of long events, which are contiguous blocks of events
from a particular course such as a tutorial spanning multiple hours. The constituent events
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Table 1 Notation

E All events T All time periods

EN Events in neighbourhood N TN Time periods in neighbourhood
N

Ec Events of course c Te Time periods suitable for event e

Ecurr Events of courses in
curriculum curr

Td Time periods on day d

EF Events which are
single-period or the first of
a long event

t − 1 The time period preceding t on
the same day

Etr Events suitable for
assignment to time period t
and room r

D All days of the timetabling
domain

e − 1 The event preceding e in a
long event

DN Days of neighbourhood time
periods TN

C All courses H All hours of the timetabling day

CN Courses which include an
event in EN

HN Hours of neighbourhood time
periods TN

Cstab Courses which request time
stability for their events

ht The hour of time period t

ce The course which teaches
event e

R All rooms

CU All curricula RN Rooms in neighbourhood N

CUN Curricula which include a
course in CN

Rt Rooms available in time period t

Ret Rooms suitable for event e and
available in time period t

from a long event may be perturbed, however they must remain in contiguous time periods.
In many cases it will also be required that all events of a long event are taught in the same
room, which is referred to as contiguous room stability.

For some neighbourhood definitions, long events will lie partially in the neighbourhood,
i.e. one or more constituent events are fixed, and one or more are in the neighbourhood. This
situation is the simplest if we are not concerned with contiguous room stability. In this case,
the constituent events which are in the neighbourhood are permitted to change room, but not
time period. If we also wish to enforce contiguous room stability, it is not possible to perturb
only a single constituent event without perturbing the full long event. In this situation, we
can either expand the neighbourhood so that the long event is entirely included, or fix all
parts of the long event. In our implementation, the decision to expand the neighbourhood is
only made if this long event is unassigned i.e. is part of the infeasibility which needs to be
resolved.

Once these constraints are implicitly satisfied in the neighbourhood sets, the neigh-
bourhood model is only required to enforce constraints which relate to the assignment of
neighbourhood events relative to each other. Using notation defined in Table 1, we present
an integer programming formulation of an event-based neighbourhood perturbation model.
In this formulation, the binary variables xetr take the value 1 if event e ∈ EN is to be
taught at time t ∈ Te in room r ∈ Ret . Solving the following IP (1)–(7) will determine

123



290 Ann Oper Res (2017) 252:283–304

the maximum number of neighbourhood events which can be assigned to a time period and
room.

maximise
∑

e∈EN

∑

t∈Te

∑

r∈Ret

xetr (1)

subject to
∑

e∈Etr

xetr ≤ 1 t ∈ TN , r ∈ Rt (2)

∑

t∈Te

∑

r∈Ret

xetr ≤ 1 e ∈ EN (3)

∑

e∈
(c∩EF )

∑

t∈
(Te∩Td )

∑

r∈Ret

xetr ≤ 1 c ∈ CN , d ∈ DN (4)

∑

e∈Ecurr

∑

r∈Ret

xetr ≤ 1 curr ∈ CUN , t ∈ TN (5)

xetr − x(e−1)(t−1)r = 0 e ∈ (EN\EF ), t ∈ Te, r ∈ Ret (6)

xetr ∈ {0, 1} e ∈ EN , t ∈ Te, r ∈ Ret (7)

The objective function (1) maximises the total number of events which are assigned to a
time period and room. Constraints (2) ensure that each available room in each time period
is occupied by a maximum of one event, while constraints (3) ensure that each event is
assigned to at most one room in any time period. Constraints (4) ensure that two events from
the same course cannot be assigned to any time period on the same day. Because long events
are represented as more than one individual event, only the first event e ∈ EF in any long
event is included in each constraint. Constraints (5) ensure that two events from the same
curriculum cannot be assigned to the same time period. Lastly, constraints (6) enforce strict
time contiguity and room stability on the constituent events of a long event.

If room stability is not required for long events, constraints (6) can be altered so that each
constraint is summed over all suitable rooms (rather than applied as one constraint per room)
allowing the assigned room to change between individual event-hours.

Oncewe have increased the number of assigned events, wewish tominimise the disruption
caused by assigning this number of events. For a weighting of penalties vetr , we solve the
following modified IP (8)–(9), which includes (2)–(7).

minimise
∑

e∈EN

∑

t∈Te

∑

r∈Ret

vetr ∗ xetr (8)

subject to: (2)–(7)
∑

e∈EN

∑

t∈Te

∑

r∈Ret

xetr = |Events Assignable| (9)

The objective (8) minimises the total timetable disruption between the proposed timetable
solution, and the initial (infeasible) timetable. Each assignment variable is multiplied by a
disruption coefficient. The disruption penalties for an event can vary depending on the number
of time periods moved, whether the room changes, and how this relates to any fixed events
from this course. With sufficient available data, precise disruption penalties can be specified
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for each perturbation. Constraints (9) are introduced to ensure themaximumnumber of events
are assigned.

5 Course-based neighbourhood model

Although the event-based formulation is versatile at modelling the disruption for perturbing
each event, it is not able to model the time stability for a course. The time stability quality
measure favours scheduling all weekly events from a course at the same time of day. Because
only some courses are concerned with time stability, we define Cstab ∈ C as this subset. We
further define CNstab as the set of courses which are concerned with time stability and also
include an event within the neighbourhood N , i.e. CNstab = CN ∩ Cstab. Let the variable
ych take the value 1 if any event of course c is taught in hour h in the timetable.

Building on the event-based formulation for minimising disruption, we propose the fol-
lowing course-based integer programme.

minimise (8) +
∑

c∈CNstab

∑

h∈HN

wch ∗ ych (10)

subject to: (2)–(7), (9)

xetr − yceht ≤ 0 e ∈ EN , t ∈ Te, r ∈ Ret (11)

ych ∈ {0, 1} c ∈ CNstab, h ∈ HN (12)

The objective function (10) consists of the event-based disruption (8) and an expression
to penalise each course for each unique hour of the day it uses for any of its events. Clearly
each course must use a minimum of one unique hour, which is ignored when reporting the
penalty to time stability. Constraints (11) appropriately tie the values of the ych variables to
the xetr variables.

This course-based IPmaybe used in place of the event-based IP inAlgorithm1 (on line 12).
Although no additional modifications to the algorithm are required, this approach benefits
substantially from a tailored neighbourhood definition. In order tominimise the time stability,
the neighbourhood should clearly be chosen so that many such potential perturbations can
be made.

6 Defining the neighbourhood

As introduced in the previous sections, our method defines a neighbourhood around each
infeasibility, instead of formulating a monolithic integer programme with all events, time
periods and rooms. To maximise the effectiveness of our algorithm, each neighbourhood (as
defined by e ∈ EN , t ∈ Te, and r ∈ Ret ) is tailored to address the particular infeasibilitywhich
we are attempting to resolve. This section explains how we define the starting neighbour-
hood and rules for neighbourhood expansion, so that we prioritise favourable perturbation
variables.

In addition to focussing the search on variables which correspond to a low disruption, we
also consider which variables are the most likely to resolve a given infeasibility. Prioritising
such variables reduces the number of expansions required, and allows the neighbourhood
to remain as small as possible. This in turn corresponds to smaller IPs and a shorter overall
solve time.
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Table 2 Course-based perturbation example

(a) A 2-h perturbation, with loss of time stability

(b) Three 2-h perturbations, without loss of time stability

In Sect. 6.1 we address which time periods to include in the neighbourhood. The set of
time periods largely determines the disruptions associated with the perturbation variables, as
time perturbations are the most disruptive. In Sect. 6.2 we address which rooms to include
in the neighbourhood, which can be focussed to resolve the given infeasibility.

With a definition for the set of time periods and rooms to include in the neighbourhood, the
set of events is simply determined. In addition to the unassigned events (which comprise the
infeasibility), we consider the events currently assigned to the time period and room which
we are introducing to the neighbourhood.

6.1 Neighbourhood time periods

Because each unassigned event has a desired time period, it is logical to expand the neigh-
bourhood around this time period. The starting neighbourhood will consist only of variables
whichmake a small perturbation from the current timetable, i.e. thosewhich allowmovements
within and around this time period. As the neighbourhood expands, events frommore distant
time periods (relative to the infeasibility) are considered, and we permit larger movements
of individual events.

When using an event-based model of disruption, we apply a disruption penalty of 1 for
each hour of the day moved and 2 for each day moved. There is also a small penalty (ε) for
changing roomwithin the same time period. The disruption coefficients provide a simple way
to determine the order in which additional time periods are included in the neighbourhood.

For a course-based model, the disruption is computed as the sum of event-based and
course-based disruptions [as specified by (10)]. In this work we apply a penalty of 5 for each
disruption to time stability (i.e. an additional hour). This penalty must be sufficiently large
to offset the event-based penalty of moving several events from a course.

In Table 2 we provide an example, where infeasibility can be resolved by perturbing one
event by 2h. However, this solution (shown in Table 2a) results in a course-based disruption
of 5, in addition to the event-based disruption of 2 (for a total of 7). The solution in Table 2b
is able to maintain time stability by moving all 3 events of this course by 2h, for a total
disruption of 6. This example demonstrates a situation where it is less disruptive to move
additional events, to avoid the large course-based penalty. However, if this course consisted
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Fig. 1 An example room and event attribute set graph

of 4 events, or if a perturbation of 3h was required, it would be less disruptive to only move
the single event (for these chosen penalty coefficients).

When using a course-based model of disruption, it is not useful to simply expand the
neighbourhood around a central time period, as is suitable for event-based models. In order
to generate variableswhich avoid a time stability disruption,when the neighbourhood expands
into a new time period, the neighbourhood should expand into all time periods in the week
at the same hour. The solution in Table 2b clearly can only be found if the neighbourhood
includes all “10a.m.” time periods across the week.

Finally we note that in all iterations of Algorithm 1, the perturbation penalties are cal-
culated relative to the starting timetable. This means that an event which is perturbed in an
early iteration may have its perturbation penalty reduced (or removed) in a later iteration.

6.2 Neighbourhood rooms

When considering a set of neighbourhood time periods around an infeasibility, we consider
which rooms from each time period to include. We are most likely to increase the number
of assigned events by considering rooms which are approximately the same size as the
unassigned events. Including these rooms in the neighbourhood creates opportunities for
unassigned events to find a suitable room in a “nearby” time period. However, due to a
generally high room utilisation, such rooms are typically occupied by other events. Due to
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the further complicating factors of staff and curricula (which constrain each event differently),
solutions to minimal perturbation problems typically involve a series of perturbations (see
Sect. 8).

The suitability of an event-to-room assignment depends on the size and attributes of the
room. Abstractly, the most useful rooms to include in the neighbourhood are those which
are approximately the same size and feature the set of attributes as required the unassigned
events.

To formalise themethod inwhich rooms are considered for inclusion in the neighbourhood,
we use a hierarchy of room and event attribute sets and sizes, as depicted in Fig. 1. In this
figure, rooms are represented by rectangular nodes, with an associated size (i.e. maximum
student capacity) and set of room attributes. Events are represented by circular nodes, with
a minimum room size (i.e. number of students) and set of required room attributes. The arcs
point to the immediate superiors of each node, i.e. those which feature (or request) a superset
of their room attributes, and are of at least the same size. This means that an event can be
feasibly assigned to any room which is its descendent, or equivalently, a room can host any
event which is its ancestor.

This representation allows us to identify which rooms feature the combination of attributes
and size that is most likely to resolve a given infeasibility. For an unassigned event, in each
neighbourhood time period we initially include the closest superior rooms in the attribute set
graph. By definition, this identifies the rooms which “fit” this event the best (in terms of size
and attributes). Subsequently, we need to include rooms both from the superior and inferior
sides of the unassigned event. The total number of rooms included in the neighbourhood is
set as a proportion of all possible rooms.

For example, if the unassigned events require large tutorial rooms, including superior
rooms in the neighbourhood ensures that we consider rooms which are larger and suitable for
tutorials. This will resolve the infeasibility if such rooms are vacant in nearby time periods.
However, we also include inferior rooms (such as smaller tutorial rooms, or larger non-tutorial
rooms). If a large tutorial room is occupied by an event which can instead be taught in an
inferior room, these inferior rooms must be in the neighbourhood to allow this movement.
The inferior and superior rooms are identified from the hierarchy graph, and are added using
a greedy breadth-first-search until the required proportion of rooms is met.

For a given neighbourhood, the proportion of rooms added in the infeasible time period
may be chosen as greater than the proportion of rooms used in the “distant” time periods. In
this work, 50% of all inferior and superior rooms may be considered for an unassigned event
in the infeasible time period. In themost distant time period, this proportion is reduced to 20%
(with a linear relationship between, based on the distance penalty). As the neighbourhood
expands in time, the proportion of rooms included in existing time periods is allowed to
increase, to expand the search.

The effectiveness of this method to identify the critical rooms can be significantly affected
by the quality of the partial room assignment. When the minimal perturbation problem
arises as part of the construction phase of timetabling (e.g. as described in Sect. 2), a room
assignment algorithm can ensure a high quality partial room assignment. In this workwe have
used a lexicographic algorithm (see Phillips et al. 2015) which generates a room assignment
that is Pareto optimal with respect to the event hours, seated student hours, seat utilisation
and room preference.

Maximising the event hours in the room assignment ensures that the smallest possible
number of events remain unassigned to a room. Therefore, in order to find a suitable room
for unassigned events (without causing other events to be unassigned), perturbations to the
time assignment are necessarily required.
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Maximising the number of seated student hours in the room assignment ensures that any
unassigned events will be as small as possible. As a result, if we observe that large events
remain unassigned, we can infer a shortage of large rooms in the associated time periods. This
would not necessarily be true if we had only maximised the event hours. Without maximising
the seated student hours, the existence of unassigned large events could be due to a general
lack of rooms of any size.

The room assignment process also maximises the seat utilisation, where it is favourable
to assign events to rooms which are closely matched in size. This optimisation is important,
particularly for time periods which do not contain an unassigned event themselves, but are
adjacent or near to time periods with unassigned events. In the case of a complete room
assignment for a particular time period, the previous optimisations (of event hours and seated
student hours) would permit assigning small events in larger rooms than necessary, provided
it is still possible to assign all events. Maximising the seat utilisation will result in the largest
(most flexible) rooms remaining vacant.

The room assignment process may be further altered to include one or more quality
measures addressing the room attributes. For example, prioritising the assignment of events
which require many attributes, or assigning events into rooms with a good “fit” in terms
of attributes. These are analogous to maximising seated student hours, and seat utilisation
respectively. However, for our datasets the attributes are less important than the room sizes,
because rooms with a similar size (but different attribute sets) are typically “close” on the
hierarchy and will be added to the neighbourhood early in the solution process.

For minimal perturbation problems where we are not able to re-assign rooms using a
room assignment algorithm, such as in the enrolment phase, we cannot make the previous
inferences about the cause of infeasibility. In this situation it may be possible to resolve the
infeasibility by perturbing very few events (or even no events), such as when an unassigned
event can be simply assigned to a suitable vacant room in the same time period.

7 Results for construction phase problems

To demonstrate our algorithm, we first present results on minimal perturbation problems
from the construction phase of timetabling. We use datasets from Semesters 1 and 2 at the
University of Auckland in 2010 and 2013.

The timetabling problem from 2010 involves approximately 2300 events, 72 rooms, and
50 weekly time periods (8a.m. to 6p.m., Monday to Friday). Although the dataset from
2013 is structurally similar, it is notably larger in size, involving approximately 5000 events,
250 rooms, and 50 time periods. This increase in timetable size is predominantly due to an
expansion in the scope of which events and rooms are managed by the centralised timetabling
administration, instead of being administered independently by individual faculties.

The second important difference between the timetabling problems in 2010 and 2013
is the measurement of timetable quality for the existing timetable. In the 2010 timetabling
process, time stability was a consideration for many courses and is upheld for many courses
in the existing time assignment. To maintain this consideration, in our results on the 2010
dataset, perturbations are measured using both the event-based and course-based models of
disruption. By constrast, time stability for courses was not considered in the 2013 timetabling
process, so an event-based model is more appropriate.

The disruption penalties and expansion rules are given in Sect. 6. It is important to note that
we demonstrate one particular implementation of the expanding neighbourhood algorithm.
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Based on an understanding of the specific priorities and bottlenecks of another university
system, it may be more appropriate to more readily expand the neighbourhood into many
new time periods (allowing large movements in time for individual events), but only consider
a small subset of potential rooms.

All computational tests in this section are conducted using Gurobi 5.6 on 64-bit Ubuntu
14.04, with a quad-core 3.5GHz processor (Intel i5-4690).

7.1 UoA 2010

The timetabling process at the University of Auckland in 2010 involved each faculty gener-
ating a time assignment for their own courses. The individual faculty time assignments were
then collated by timetable administrators into a time assignment for the full university. Based
on this time assignment, IPs are solved to assign the maximum number of events to suitable
rooms, resulting in a partial room assignment (Phillips et al. 2015). In this section we solve
the minimal perturbation problem to find a suitable time period and room for the unassigned
events in each semester.

7.1.1 Event-based model

Solving the minimal perturbation problem using an event-based IP formulation, within the
expanding neighbourhood algorithm (Algorithm 1) gives the results shown in Table 3. The
first group of rows gives a summary of the overall process, listing the total number of events
assigned (which were previously unassigned), the number of iterations of the expanding
neighbourhood algorithm required, the total number of IPs solved, and the total time taken.
The next group of rows lists the event-based perturbations applied to the timetable over the
entire process. For each perturbation type the number of events perturbed is stated, and the
total disruption (weighted for each type of perturbation) is given. We also list the course-
based perturbations applied, although these are not measured or penalised by this model.
These perturbations refer to the number of extra hours used by events of each course which
desires time stability. Finally, the last group of rows gives an indication of the size of the
integer programmes, by listing information on the largest (as measured by the number of
variables) IP solved.

The results in Table 3 demonstrate that it is possible to find a feasible time and room
assignment for all events within a short solve time. As stated in Sect. 2, this is our expectation,
as the starting timetable is already close to feasibility.

The total amount of disruption to the timetable also appears acceptable. Only a small
number of events are required to change time period, and the perturbations are relatively
minor (i.e. events remain close to their original time period).

The small size of the largest IP demonstrates the importance of focussing the neigh-
bourhood (from Sect. 6). The number of events and time periods in the neighbourhood is
significantly smaller than the total number of events and time periods. During development
of this method, we observed significantly larger neighbourhoods before finding a feasible
solution, which resulted in a poorer performance.

The short solve time can be partly attributed to the small neighbourhoodswhich correspond
to a low number of variables and constraints in the IPs. However, we also note that these
problems benefit from an integerising structure in the IP, which is similar to that of assignment
problems (or bipartite matching). Optimal integer solutions are typically found near (or at)
the optimal LP solution.
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Table 3 UoA 2010 event-based
timetable construction results

Semester 1 Semester 2

Summary

Assigned events 26 23

Iterations of Algorithm 1 17 10

Neighbourhood IPs solved 40 25

Total solve time (s) 0.9 0.5

Event-based perturbations

Change of room 4 3

0day, 1h 23 24

0day, 2h 8 7

0day, 3h 2 2

Total penalty 45 42

Course-based perturbations

1 extra hour 3 3

2 extra hours 0 2

Total penalty 15 25

Largest IP

Events |E | 101 131

Time periods |T | 4 4

Rooms |R| 50 55

Variables 4977 9131

Constraints 1323 1752

Solve time (s) 0.1 0.1

7.1.2 Course-based model

Solving the same problem as the previous section using a course-based IP formulation, gives
the results shown in Table 4. This table uses the same row headings as Table 3.

The results in Table 4 demonstrate that it is possible to consider a more complex objective
involving auxiliary variables, and still maintain relatively short solve times.

The total amount of disruption to the timetable is similar to when the event-based model is
used, except it consists of an increased event-based disruption and no course-based disruption.
We specifically observe an increase in the number of “lateral” perturbations of 1day and 0h,
as these avoid incurring a penalty to the time stability.

The size of largest neighbourhood is significantly greater for these problems than the event-
based problems. As explained in Sect. 6.1, this is due to the requirement of considering time
periods across the full week, rather than a smaller number centred around a particular time
period.

The course-based IPs require a significantly longer solve time than in the event-based case.
In addition to an increased number of variables and constraints, this is due to the increased
opportunities for fractionality, and a corresponding integrality gap.

7.2 UoA 2013

The 2013 data at the University of Auckland requires us to solve a minimal perturbation
problem with a greater number of unassigned events than for 2010. This is because our
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Table 4 UoA 2010 course-based
timetable construction results

Semester 1 Semester 2

Summary

Assigned events 26 23

Iterations of Algorithm 1 12 8

Neighbourhood IPs solved 24 16

Total solve time (s) 7.0 5.0

Event-based perturbations

Change of room 10 18

0day, 1h 18 27

0day, 2h 8 2

0day, 3h 0 1

1day, 0h 8 8

1day, 1h 3 0

Total penalty 59 50

Course-based perturbations

Total penalty 0 0

Largest IP

Events |EN | 345 381

Time periods |TN | 15 15

Rooms |RN | 66 61

Variables 48,201 68,263

Constraints 28,037 37,813

Solve time (s) 1.7 2.7

process uses an algorithmically generated time assignment, instead of a faculty-provided
time assignment which is already close to feasibility.

7.2.1 Event-based perturbation

Solving the minimal perturbation problem using an event-based IP formulation, within the
expanding neighbourhood algorithm (Algorithm 1) gives the results shown in Table 5. This
table uses the same row headings as Table 3.

The problems addressed in Table 5 are notably larger (in terms of the number of unassigned
events) than those faced in the 2010 dataset. In particular for the Semester 2 problem, many
unassigned events require a large number of iterations of Algorithm 1, many IPs solved, and
a greater overall solve time. The size of the largest neighbourhood is also greater than the
neighbourhoods for the 2010 event-based results. This can be explained by the nature of the
2010 data, which originates from a “rolled-forward” timetable which is close to feasibility.
When many events are unassigned in a small number of neighbouring time periods, several
neighbourhood expansions may be required. However, consistent with the philosophy of our
method, the largest neighbourhood remains at a manageable size with a solve time of less
than 1s.

As with the previous results, the majority of perturbations correspond to an event moving
by 1h. However, in the case of the most difficult data from Semester 2, a small number of
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Table 5 UoA 2013 event-based
timetable construction results

Semester 1 Semester 2

Summary

Assigned events 33 110

Iterations of Algorithm 1 17 37

Neighbourhood IPs solved 37 114

Total solve time (s) 5.2 33.2

Event-based perturbations

Change of room 0 2

0day, 1h 35 100

0day, 2h 16 25

0day, 3h 1 6

0day, 4h 0 5

1day, 0h 0 2

1day, 1h 0 2

Total penalty 70 198

Largest IP

Events |EN | 162 333

Time periods |TN | 7 13

Rooms |RN | 238 246

Variables 11,999 63,971

Constraints 18,692 37,813

Solve time (s) 0.2 0.9

events are perturbed by 4h. Depending on details of the specific events involved, this may
be acceptable or it may be considered too great a perturbation. For example, if this event is
part of a curriculum taught as a morning or afternoon programme, a perturbation of 4h may
either remain within the existing time bounds of this curriculum, or constitute a substantial
4h extension.

Ultimately these construction-phase results (along with those from 2010) can be consid-
ered promising, as a feasible time and room assignment is found for all events.

8 Results for enrolment phase problems

To demonstrate our algorithm on another type of minimal perturbation problem, we present
results from the enrolment phase of the timetabling process. We analyse two scenarios which
can cause infeasibility in an existing timetable, based on the datasets from Semester 2 at
the University of Auckland in 2010 and 2013. The same perturbation penalties and solve
parameters are used as in Sect. 7.

8.1 UoA 2010 over-enrolment

This example is used to analyse the problem arising when courses are subject to an unexpect-
edly high enrolment, such that the existing room assignment is no longer feasible. Table 6
defines such a situation for two introductory courses which are scheduled during “peak” time
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Table 6 Scenario changes to course enrolments

Course name Time periods Planned enrolment Revised enrolment

SOCIO 100 Monday 12p.m., Thursday 2p.m. 320 500

LAW 121G Monday 12p.m., Wednesday 12p.m., Friday 12p.m. 269 500

periods. These particular courses are susceptible to an unpredictable enrolment, as they are
available to new-entrant students, and may be taken as an elective by students from many
academic programmes.

This situation is modelled as five unassigned events, because the existing room assign-
ments are no longer valid. If this situation had arisen within the construction phase of
timetabling, we could initially re-solve the room assignment algorithm. This can improve
the partial room assignment, such as assigning one of these events and leaving a smaller
event unassigned. However, this is typically not suitable for an enrolment phase problem, as
it may result in significant perturbations to the room assignment. Therefore, we address this
situation solely as a minimal perturbation problem.

8.1.1 Event-based perturbation

Wefirst solve the problem of unassigned events using an event-based IP formulation. Because
this problem is small (in terms of the number of unassigned events) the solution can be
presented visually, as shown in Table 7. The five unassigned events (i.e. the events of
“SOCIO100” and “LAW121”) are bolded, and perturbations are demonstrated using arcs.
Each perturbation affecting the time assignment is shown using a bold arc. When the arc
from one event points to another event, this represents the former event “displacing” the
latter event, in terms of occupying its assigned room. This must be accompanied by a pertur-
bation of the latter event to find a new suitable room. A simple case is shown on Wednesday,
between “LAW121” and “PROP344”. In this case, there is a vacant room at 11a.m. which
is suitable for “PROP344”, but not for “LAW121”. If the vacant room were suitable for the
unassigned event, a room perturbation would not have been required in the optimal solution.
A more complex chain of perturbations is shown on Monday, originating from “LAW121”.

In the perturbations on Friday, note that the event from “LAW121” does not change time
period, but causes “STATS108” to move to an hour earlier instead. This type of manoeuvre
commonly occurs in solutions to minimal perturbation problems, and is understood through
the set of suitable time periods for each event. Some events are relatively inflexible in potential
movements (due to curricula, staffing and other requirements), and a feasible solution may
involve moving another event which has greater flexibility.

This solution corresponds to a total event-based disruption of 6, comprised of 6 1-h
perturbations. Solving the 12 IPs required for this problem was very rapid, as each involved
less than 1500 variables, and terminated in less than 1s.

8.1.2 Course-based perturbation

In the previous solution (Table 7), three courses (“LAW121”, “CHEMM121”, and
“STATS108”) incurred a disruption to time stability. To address the situation where time
stability is important, we solve theminimal perturbation problem using a course-basedmodel
of disruption.
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Table 7 Event-based solution

Table 8 Course-based solution

The solution to this problem is presented visually in Table 8,where the impact ofmodelling
time stability is evident. For example, all three events from “LAW121” are reassigned to 1h
later in the day to maintain the structure. Also, to preserve time stability for “HIST102”
which moves from 11a.m. on Monday, an event on Wednesday similarly moves an hour
later. This solution shows the lateral perturbation of an event from “COMLA201”, which
moves from 1p.m. on Friday to 1p.m. on Thursday, so that time stability in unaffected.
Finally, an interesting pair of perturbations occur between events from “POLIT113” and
“ANTHR106” where a simple swap of assigned room occurs at 12p.m. on Thursday. This is
explained by observing that “ANTHR106” consists of a long event, which requires the same
room for the events at 12p.m. and at 1p.m.. Therefore, this room swap is ultimately part of
the chain of perturbations used to assign the Friday event from “LAW121”.

This solution corresponds to a total event-based disruption of 9, comprised of 7 1-h
perturbations, and 1 1-day perturbation. Although this is a greater penalty than in the event-
based solution, we are now able to resolve the infeasibilities with no disruption to the time
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Table 9 UoA 2013 loss of room
availability results

Semester 2

Summary

Assigned events 52

Iterations of Algorithm 1 18

Neighbourhood IPs solved 37

Total solve time (s) 5.92

Event-based perturbations

Change of room 54

0day, 1h 33

0day, 2h 4

0day, 3h 1

Total penalty 44

Largest IP

Events |EN | 296

Time periods |TN | 4

Rooms |RN | 215

Variables 24,237

Constraints 13,600

Solve time (s) 0.3

stability. Solving the IPs required for this problem was again rapid, with less than 5000
variables in the largest case, and cumulative run-time of less than 1s.

8.2 UoA 2013 loss of room availability

This example analyses the problemarisingwhen a roombecomes unavailable, after it has been
used in the timetabling process and has events currently assigned. Although the total number
of available rooms is decreased, if the unavailable room is relatively common (i.e. there are
equivalent or superior rooms in the hierarchy graph), this problem can typically be resolved.
Because the unassigned events are necessarily spread across many different time periods, it
is likely that each infeasibility can be resolved locally.

For this example we remove two rooms, “206-201” and “206-220”, which are shared
by events from many departments, and are originally scheduled to host 52 events in total.
These rooms possess a standard set of lecture room attributes (e.g. two data projectors,
tiered seating), and can seat 44 and 107 students respectively. Solving this problem using an
event-based model gives the results shown in Table 9.

Similar to the results in Tables 3 and 5, Table 9 demonstrates that it is possible to find
a feasible time and room assignment for all events within a short solve time. However, the
total amount of disruption penalty can be considered particularly low for this number of
unassigned events. This is because some events are able to be assigned to a suitable room
without perturbing the time assignment, i.e. suitable vacant rooms exist in some of the time
periods.

The results in this section demonstrate both the broad application of minimal perturbation
problems, and the effectiveness of our proposed algorithm. The visual representations of
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even the simple solutions also suggest it would difficult for a human timetabler to identify
such a set of perturbations quickly.

9 Conclusion and future work

In this paper we have proposed a general integer programming-based approach for minimal
perturbation problems which arise in practical university course timetabling. This approach
is versatile, as there are many possibilities for customisation in the way the neighbourhoods
are constructed and expanded. We have shown two applications of this process on real data
from the University of Auckland.

An extension to the proposed method involves modelling a more complex definition
of disruption. Presently, the quality of the time assignment is upheld implicitly, by treating
perturbations as equivalent to disruption. However, if the time assignment has been generated
with respect to known quality measures, it may be possible to explicitly model quality within
each neighbourhood.

We would also like to consider a notion of equity or fairness when choosing a set of
perturbations, so that no faculty or course is excessively inconvenienced. Techniques from
multiobjective optimisation would be useful in this case, so that multiple solutions can be
generated with a different weighting of total disruption versus equity of disruption. These
solutions could be provided to a human timetabler through a decision support system, and
assessed in the context of priorities of the particular university groups involved.
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