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Abstract In this article we extend the research on risk-based asset allocation strategies by
exploring how using an SRI universe modifies properties of risk-based portfolios. We focus
on four risk-based asset allocation strategies: the equally weighted, the most diversified
portfolio, the minimum variance and the equal risk contribution. Using different estimators
of the matrix of covariances, we apply these strategies to the EuroStoxx universe of stocks,
the Advanced Sustainability Performance Index (ASPI) and the complement of the ASPI in
the EuroStoxx universe from March 15, 2002 to May 1, 2012. We observe several impacts
but one is particularly important in our mind. We observe that risk-based asset allocation
strategies built on the entire universe, concentrate their solution on non-SRI stocks. Such
risk-based portfolios are therefore under-weighted in socially responsible firms.

Keywords Socially responsible investment · Alternative and risk-based strategies ·
Performance · Diversification · Turnover · Robust covariances matrix

1 What are smart beta strategies and socially responsible investment?

Against a background of market disappointments, such as poor performance of market
capitalisation weighted indices and active portfolios, risk-based strategies stand out as finan-
cial vehicles for sophisticated institutional investors. Risk-based strategies are heuristic and
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quantitative asset allocation strategies that are special cases of the risk budgeting allocation
approach. It is one type of alternative weighting approach to asset allocation, the other being
the fundamental allocation (Arnott et al. 2005). The different alternative weighting strategies
are also known as smart beta strategies. Risk-based strategies define the weights of assets in
portfolios as functions of individual and common asset risks. These strategies are heuristic
because they do not rely on any formal equilibrium model of expected return.

The adoption of risk-based strategies is justified by different arguments (Maillard et al.
2010). Themain one is that when back-tested, risk-based strategies outperform the traditional
CW investment strategy. However, risk-based strategies also have several drawbacks. One of
them is a lack of theoretical background supporting their historical efficiency. These strategies
also involve issues of stability (i.e. turnover) and concentration in terms of weighting of the
components of portfolios. To overcome these drawbacks, asset managers follow different
implementation approaches.1

In parallel with the rise of risk-based strategies and fuelled by the increasing public con-
cern for sustainable development, a type of investment generally called socially responsible
investment (SRI), is rapidly gaining favour with institutional investors. Briefly, SRI incorpo-
rates non-financial criteria into the construction of financial portfolios. These criteria include
respecting simple subjective rules (e.g. no investment in gambling or tobacco businesses),
or meeting a minimum level of extra-financial performance (e.g. investment in issuers that
have low carbon emissions or low rate of fatalities compared to industry competitors). Extra-
financial performance is evaluated by extra-financial rating agencies such as VIGEO.

The popularity of SRI is partly explained by a large literature showing that corporate extra-
financial performance can lead to superior economic and/or financial performance through
different mechanisms (Renneboog et al. 2008; Kitzmueller and Shimshack 2012). One of the
motivations to adopt SRI is therefore to capture unpriced extra-financial characteristics so as
to obtain higher risk-adjusted returns when market decide to price them. The financial moti-
vation for adoption of SRI resembles the intuition justifying alternative weighting schemes.
Actually, SRI can be considered a risk-based approach, between fundamental and risk based
allocations,2 where assets that do not match extra-financial criteria are given a weight equal
to zero. Note that SRI can also be considered as an additional secondary non-financial goal
in the mean-variance portfolio selection model as in Calvo et al. (2014).

In the light of these two parallel trends, risk-based strategies and SRI, we seek to extend
the research on risk-based allocation by examining the impact of using an SRI universe
on certain characteristics of risk-based portfolios. We look at four risk-based strategies,
the equally weighted (EW), the most diversified portfolio (MDP), the minimum variance
(MV) and the equal risk contribution (ERC). Using different estimators of the matrix of
covariances, we apply these strategies to the EuroStoxx universe of stocks, the Advanced
Sustainability Performance Index (ASPI) universe and the complement of the ASPI universe
in the EuroStoxx universe.3

At least five types of impact of using the ASPI universe of stocks emerge from our study.
Based on the latter we are able to conclude that combining the risk-based strategies with
the SRI approach does modify some properties of risk-based portfolios. This means that the

1 Some of the implementation choices will be discussed in this paper, in the section on data and methodology.
2 Fundamental allocations define the weights as a function of issuers’ fundamental statistics see Arnott et al.
(2005).
3 The EuroStoxx is a subset of the EuroStoxx 600 that contains a variable number of stocks, roughly 300,
traded in Eurozone countries. The ASPI universe is a subset of EuroStoxx that contains the 120 best rated
stocks. This social performance rating is given by VIGEO. The complement of the ASPI universe in the
EuroStoxx universe is the universe of about 180 stocks that are in the EuroStoxx but not in the ASPI universe.
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adoption of SRI is not neutral, and needs particular attention from the institutional investors.
In particular, we observed that risk-based strategies applied on the EuroStoxx favour stocks
that do not belong to the ASPI universe. It means that an investor who follows one of those
strategies will underweight firms that are socially responsible while this is not an explicit
constraint of its allocation strategy.

In the rest of the paper we first present the four risk-based strategies examined. Section 2
gives the data and methodology for our back-tests and in Sect. 3 we analyze portfolios
characteristics. The last section reviews the robustness of our results regarding risk models
and concludes.

2 Smart beta strategies: calculation of weights

Usually there are four common types of risk-based strategies yielding four types of risk-based
portfolios. In this section we review these four strategies and their particular risk contribution
properties.

The first type is the EW portfolio. The EW portfolio depends solely on the number n of
components and its weights wi are given by:

∀i, wi = 1

n
(1)

This portfolio is straightforward and presents good out-of-sample performance compared
to optimal portfolios (DeMiguel et al. 2009). It is perfectly diversified in weights, by con-
struction.

The second type is the MV portfolio. The vector of weights w of the MV portfolio, with
the variance-covariance matrix Σ , is given by the following optimisation program:

w = arg min(w′Σw)

s.t.
n∑

i

wi = 1

∀i, 0 ≤ wi ≤ 1

(2)

This portfolio is straightforward to understand: it has the lowest ex ante volatility, does
not rely on expected return input and offers good relative performance (Clarke et al. 2006;
Scherer 2011). In addition, marginal risks (MR) are equal for all the components with a
weight different from zero.

∀i, j,
(

wi �= 0 ∧ w j �= 0 ⇒ δσ (w)

δwi
= δσ (w)

δw j

)
(3)

The third type of portfolio, theMDP (Choueifaty and Coignard 2008). To obtain the vector
of weights w of this portfolio, Choueifaty and Coignard (2008) introduce a diversification
measure that is maximized:

w = arg max

(
w′σ√
w′Σw

)

s.t.
n∑

i

wi = 1

∀i, 0 ≤ wi ≤ 1

(4)
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Table 1 Smart beta strategies: a comparison

Strategies Conditions on stocks Equivalent to

Same
volatility

Same expected
return

Same
correlation

Same sharpe
ratio

EW X X X Tangent

MV X Tangent

MDP/mMSR X MV

MDP/mMSR X Tangent

ERC X X Tangent

ERC X MDP/mMSR

ERC X (ρ = −1
N−1 ) MV

ERC X X EW

The table lists the conditions (columns) on stocks necessary for each strategy (lines) to be equivalent either to
one other strategy or to the tangent portfolio

This portfolio is more diversified and less sensitive to small modifications in inputs than
the MV portfolio. In addition, relative marginal risk (RMR) is equal for all the components
with a weight different from zero.

∀i, j,
(

wi �= 0 ∧ w j �= 0

⇒ 1

σi

δσ (w)

δwi
= 1

σ j

δσ (w)

δw j

) (5)

The last type is the ERC portfolio (Maillard et al. 2010) where the risk contribution (RC)
of each asset is the same.

∀i, j,
(

wi
δσ (w)

δwi
= w j

δσ (w)

δw j

)
(6)

It can be shown (Maillard et al. 2010) that the composition of this portfolio is given by
the following program:

w = arg min

⎛

⎝
n∑

i=1

n∑

j=1

(
wi (Σw)i − w j (Σw) j

)2
⎞

⎠

s.t.
n∑

i

wi = 1

∀i, 0 ≤ wi ≤ 1

(7)

This portfolio does not explicitly rely on expected return input, by construction it is well
diversified in terms of weights4 and risk, and it is less sensitive to slight modifications in
inputs than the MV or MDP portfolios.

4 There is no weight equal to zero in the original theory, but in practice see the numerical approach of Carvalho
et al. (2012), and the analytical work of Clarke et al. (2013) that shows why stocks with particular negative
values of the beta with an ERC portfolio can be excluded from the ERC.
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Table 1, based on the literature, summarizes how the different risk-based strategies stand
in relation to each other, and to the tangent portfolio. Note that depending on the statistical
properties of the stocks included in the portfolios, different strategies can yield the same
allocation and the latter can be the tangent portfolio. In particular, the ERC and the MDP
portfolios are to be identical when pairwise correlation is uniform. Since we use the constant
correlation matrix of covariances in our analyses, it is important to control for this case.

Finally these different approaches, apart from the EW portfolio, rely on the matrix of
variances and covariances Σ . In the next section we present the different risk models we use
to estimate our four portfolios.

3 Data and methodology of the study

We run our back-tests using daily returns (adjusted price and arithmetic returns) for three
different universes of stocks: the EuroStoxx, the ASPI and the complement of the ASPI in
the EuroStoxx universe. We use data fromMarch 15, 2002 to May 1, 2012. Our data sources
are, Datastream for prices and composition of the EuroStoxx, and IEM5 for composition
of the ASPI index. Finally, we calculate all returns in Euros6 and, following the indices
calculation methodology, we rebalance the portfolios at closing on the third Friday of March,
June, September and December. Portfolios’ weights are allowed to drift between rebalancing
dates and we exclude short-selling.

For the EuroStoxx and the complement universes of stocks, the weights of CW portfolios
are calculated using free float market capitalisation based on Datastream information. The
EW portfolios weights are given by the number of components, which is around 300 for
EuroStoxx and around 180 for the complement of ASPI in the EuroStoxx universe.7 For MV,
MDP, ERC portfolios, we estimate weights by optimizing the respective objective functions
introduced in the previous section. For the three optimisation programs, constraints are no
short-sells andno cashholdings. For theASPI universe of stocks, theweights ofCWportfolios
are calculated using information given by IEM. The EW portfolio weights are given by
N = 120, the number of components of ASPI.8 For MV, MDP, ERC portfolios, we estimate
weights by optimizing the respective objective functions introduced in previous section. For
EuroStoxx and the complement universe, optimisation constraints are no short-sells and no
cash holdings.

Note that the solutions of the MV, MDP and ERC optimisation programs depend on the
matrix of variances and covariances (the VCV matrix) of stock returns. The estimation of
the VCV matrix is challenging. Hence without any imposed structure the challenge is that
the number of parameters to estimate requires amount of data that are not always available
to obtain reliable estimates. Extreme case is when the number of stocks is larger or equal to
the number of historical returns per stock: the VCV matrix is singular or close to singularity.
Imposing some structure allows to diminish the number of parameters to estimate, but in
that case the challenge is to determine which structure to impose. Consequence of these
challenges is that estimates and therefore solutions given by the optimisations are not stable,

5 IEMis thefirm in charge of calculationmethodology for theASPI.VIGEO is a provider of social performance
ratings and sponsor of the ASPI.
6 By construction EuroStoxx is a Euro Zone universe.
7 As previously stated, the EuroStoxx is a subset of the EuroStoxx 600 that contains a variable number of
stocks, roughly 300 depending on the methodology stated by STOXX.
8 For 2 rebalancing dates ASPI is defined by N = 118 and N = 119.
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leading to high turnover. Different estimators of the VCV matrix have been proposed in the
literature, a reminder of the diversity of implementation that investors may face. To control
for the possible impact of the VCV matrices, we use four estimators: the empirical, the
constant correlation,9 the shrinkage estimator with the constant correlation VCVmatrix, and
the shrinkage estimator with the one-factor model VCVmatrix (Ledoit andWolf 2004).10 At
the outset and at each rebalancing, we update the VCVmatrix from a 260-day rolling window
of the most recent historical data.11 Another problem in MV and MDP optimisations is the
high concentration of solutions. As examined and proposed by Maillard et al. (2010), we run
MV and MDP optimisation programs with upper-bound constraints (5 or 10%) for weights.

As for our method of analysis, we first describe the portfolios that we obtain in terms
of number of components, number of differences between portfolios yielded by the same
strategy on different universes and, differences in weights for identical components in port-
folios yielded by the same strategy applied to different universes. This enables us to compare
portfolios. Second we focus on diversification, by analyzing for each portfolio and universe,
the relative mean difference coefficients for weights, risk budget,12 marginal risk, relative
marginal risk and risk contribution. The use of relative mean difference will be explained
later. Third we focus on turnover, by analyzing for each portfolio and universe, turnover of
components and turnover of weights. Regressions are performed for all three steps to analyze
the correlation of particular characteristics of portfolios with the strategy and the universe
used. These regressions give us the economic and statistical significance of the relations of
interest while controlling for particular parameters. Finally, we focus on performance. For
each portfolio and universe we report descriptive statistics regarding the statistical properties
of the distribution of returns of the different portfolios. We report annualized mean of daily
return, volatility, skewness and kurtosis of daily returns, historical maximum draw down,
volatility of daily tracking error and daily information ratio.13

Our default case is the empirical VCVmatrix. To develop analyses that are not dependent
on the VCV matrix, we also run the regressions on datasets that pool the back tests obtained
with the four VCV matrices. We discuss the impact of changing the risk model in Section 6.

4 Analysis of portfolios characteristics

4.1 Composition and differences in composition of portfolios

First, we analyzed portfolio composition. By counting the number of components, we distin-
guished two types of strategy: strategies that invest in the entire available universe (i.e. CW,
EW, ERC) and strategies that pick some stocks from the available universe (i.e. MV, MDP
and their bounded versions). Although this typology is obtained with the empirical VCV
matrix, it is stable when we switch to other types of VCV. Only the MDP strategy with a
constant VCV matrix is modified. In that case, it is similar to the ERC strategy (cf. Table 1).

9 The empirical VCV matrices is VCVe = 1
n−1 ∗ ∑n

i=1(ri − r̄)(ri − r̄)′. The constant correlation matrix is
a VCV matrix with empirical variances on the diagonal and average of empirical covariances on lower and
upper part of the VCV matrix.
10 See also Maillet et al. (2015) for an approach that is robust to parameter uncertainty.
11 For some stocks historical series are shorter than the VCV estimation window. For the ASPI universe, this
concerns two stocks out of 238, the smallest window is 100 days. For EuroStoxx and complement of ASPI
universe, this concerns 53 stocks out of 536, the smallest windows is 12 days.
12 Risk budget is defined as the product of the weight of component i combined with its volatility.
13 The benchmark used is our replication of EuroStoxx CW indice.
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Second, we built two measures to calculate differences in portfolio. Our first measure D1

is one minus portfolios A and B overlap. D1 is also half the absolute difference in weights
wi between the components of portfolios A and B. With n as overlapping components, this
measure is given by the following formulas:

D1(A, B) = 1 −
n∑

i=1

min(wAi , wBi ) = 1

2
∗

n∑

i=1

|wAi − wBi | (8)

When D1 equals 1, it means that the two portfolios do not overlap. The portfolios have
different lists of components. When D1 equals 0, it means that the two portfolio are identical.
Our second measure D2 is the relative number of differences in the list of components of
portfolio A with respect to the list of components of portfolio B. It is given by the following
formula:

D2(A, B) = 1 − card A ∩ B

min(card A, card B)
(9)

When D2 equals 1, it means that the two lists of components do not intersect. When D2

equals 0 it means that one list is equal to, or included in, the other. Using D1 in combination
with D2, enables us to allow for the fact that certain strategies only pick some stocks from
the available universe. Hence, while the two measures are consistent in the two extreme situ-
ations (perfect overlap and perfect difference), they can differ in other situations, especially
where there are highly concentrated solutions. Thus, we think it is important to explicitly
track differences in lists of components to avoid misleading comparisons based solely on
differences in weights.

Figure 1 presents time series ofmeasure D1 for each strategy built on different universes.14

For each strategy we calculate the three possible measures of differences D1. The first mea-
sures differences between a given strategy built on the ASPI universe and on its complement
in the EuroStoxx. The second and third respectively measure differences between a given
strategy built on the ASPI universe and on the EuroStoxx, and between a given strategy built
on the complement and on the EuroStoxx.

This analysis of the overlap of components yields several results. First, we observe a case
where D1 is always equals to one. It is the trivial case that measures differences between
strategy built on the ASPI universe and on its complement in the EuroStoxx. A second trivial
result is about measures of differences for the EW and the ERC strategies. Those measures
are driven by the number of components in studied universes and by the allocation rules that
invest same amount of money (or almost same amount for the ERC) in all stocks of universes.
Third, the CW portfolio built on the ASPI has fewer differences in weights compared to the
CW portfolio built on the EuroStoxx (i.e. high weight overlapping) than the CW portfolio
built on the complement universe. Because there are less stocks in the ASPI universe, our
proposed explanation is the positive correlation between belonging to ASPI and size of firms
in our sample.15

14 Our results are confirmed by measures D2.
15 We recall that D1, our difference in weight, is one minus the sum of the lowest weights of stocks that are
in the two portfolios based on the two different universes. As ASPI rules discard about 60% of the EuroStoxx
stocks, while we observe only 30% of weight differences, the remaining 40% stocks then must concentrate
about 70% of the weights. Consistent with this explanation by size of firms, on average the market values of
firms in the ASPI are 3.74 times greater than the market values of firms in complement of ASPI in EuroStoxx
universe. Finally, the relative mean differences of weights in the CWASPI we calculate in the next sub-section
indicate that firms in the ASPI are in general larger than in the EuroStoxx.
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Fig. 1 Weights differences

The fourth and last result is new and important. Within our sample, the MDP and the MV
asset allocation strategies built on the ASPI universe have very low overlap with portfolios
built on the EuroStoxx universe (i.e. low weight overlapping), while same allocations built
on the complement of the ASPI universe have very high overlap with portfolios built on the
EuroStoxx universe (i.e. highweight overlapping). Thismeans that the optimisation programs
behind the MDP and the MV asset allocation strategies concentrate the program solutions on
firms that are not socially responsible. Our proposed explanation for this tendency to invest in
the complement of ASPI universe is the combination of two facts: the characteristics of stocks
selected in the ASPI universe, and theoretical exposure of the different risk-based strategies
to usual factors (Bertrand and Lapointe 2015; Clarke et al. 2013). Indeed by construction
large firms are correlated to market, their beta tend to be close to one. For medium and small
firms their beta can diverge below and above one. Hence because of size bias, firms in ASPI
universe have a beta closer to one than firms in ASPI universe, which have a beta that can
diverge from one. For instance in Fig. 2 the historical median of beta for stocks in ASPI is
0.93 while median of beta for stocks in ASPI is 0.79. Finally we note that theMV and theMD
allocation strategies favor low-beta stocks. So the tendency to invest in the complement of
ASPI universe can be explained by differences in size of universe and by low-beta exposition
of universes.

Hence, an investor that uses those two strategies on the EuroStoxx universe will under-
weight stocks in the ASPI universe while he did not state this as an explicit constraint of
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Fig. 2 Beta versus Market value as of June 15, 2007

its allocation program. A second consequence is that, on an ex ante basis, MDP and MV
portfolios built on the ASPI universe are less optimal than portfolios built on the EuroStoxx
and complement of ASPI universes; the latter will be recalled in the section on performance.

4.2 Diversification of portfolios

The literature suggests that the advantage of risk-based allocations is better diversification
than with the CW allocation. Thus, given that SRI is criticized for reducing opportunities
for diversification, our main objective is to analyze how using an SRI universe impacts this
strong point of risk-based strategies.We now analyze the diversification of portfolios through
diversification of weights and diversification of risk budget, marginal risk, relative marginal
risk and risk contribution.

Usually, diversification is measured with the Gini coefficient; however the Gini coefficient
is valid only if the support of the analyzed distribution is null or positive. Since some of the
characteristics we analyze can take negative values, we measure diversification via relative
mean difference16 (RMD). For a given variable v, with n observations, the RMD is given by
the following formula:

RMDv =
1
n2

∑n
i=1

∑n
j=1 |vi − v j |
v̄

(10)

For each strategy, for each universe and for each VCV matrix, we calculate the RMDs
on the entire universe available and at each rebalancing date, for the weight distributions
and the four risk measures. We obtain four samples of time series of RMDs. The analysis
of time series yields one main interesting observation: contrary to usual criticism it emerges
that portfolios constructed on the ASPI universe tend to be the most diversified.17

16 The RMD is closely related to the Gini coefficient. The closer the relative mean difference gets to zero the
less concentrated the distribution is.
17 Whenwe focus on the degree of diversification of strategies built on the same universe, we observe rankings
similar toMaillard et al. (2010). Themost diversified are the EW and the ERC, followed by the CW, and finally
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After a brief analysis of RMD time serieswe analyze jointly themeasures of diversification
of the different characteristics of portfolios. Indeed the diversification of a portfolio is a notion
that covers different characteristics of a portfolio. We pool the five portfolios’ characteristics
of interest (i.e. weight, risk budget, marginal risk, relative marginal risk and risk contribution)
and run regressions of theRMDs on different factorswe detail later. The purpose is to identify,
in anunconditional and controlled statistical approach the relationship betweendiversification
and the use of the ASPI universe, while testing for statistical significance.

The approach consists in regressing two samples of pooled RMDs of weights and risk
measures on universe dummies, strategy dummies, interaction dummies, control dummies
and number of components in respective portfolios and universes. Sample A groups RMDs
obtained with the empirical VCV. Sample B groups RMDs obtained with the four VCV
matrices. The control dummies control for size of portfolio, size of universe of reference,
time and other technical controls. We control for the case of perfect diversification for the
differentVCVmatrices. That is, theEWandweights, theMDP,ERCand the risk contribution.
We control for the different types of characteristics analyzed.

The main result18 of the controlled regressions (Table 2) is that the ASPI universe is corre-
lated with higher diversification (cf. negative coefficient for ASPI), how strongly depending
on the strategy used. With the MV and the MDP, the effect on diversification is weaker than
with the CW, the EW, the ERC, whatever the VCV matrix used. We point out that these
negative interactions between strategies and universe constraints are consistent with cost of
constraining optimisations with a reduced universe. Therefore we can say that reducing the
universe has two opposite effects. It increases the diversification by grouping SRI and not SRI
stocks together, and it decreases the diversification effect of risk-based strategies because of
reducing universe of investment. The overall effect of using the ASPI universe is nonetheless
to increase diversification of risk-based portfolios.

4.3 Turnover of portfolios

The literature identifies one drawback of risk-based allocations as being a higher level of
turnover than with CW allocation, leading to higher transaction costs. Here, therefore, we
examine how using an SRI universe impacts this disadvantage of risk-based allocations, in
two steps.

First, we calculate two measures of the turnover of portfolios. T1 measures the turnover
of the weights, and is commonly defined by the following formula:

T1(t) =
n∑

i

|wi (t) − wi (t − 1)| (11)

Footnote 17 continued
the MDP and the MV, which are the most concentrated in risk and weights. When we focus on the degree
of diversification of strategies over the three universes and the five measures, we observe no modification in
ranking when switching from ASPI to EuroStoxx or to the complement of the ASPI in the EuroStoxx universe
of stocks.
18 Four further observations emerge from the regressions: first, adding bounds to the MV and MDP strategies
improves diversification but this improvement is not statistically significant; second, the complement of the
ASPI universe is also correlated with more diversified distributions; once again, however this is not statistically
significant. Third, portfolio size is positively related to diversification of distributions: the larger the portfolio,
the more diversified it is. Fourth, regressions confirm that the four risk-based strategies yield more diversified
distributions than the CW strategy, and that the EW and ERC strategies are the most strongly correlated with
higher diversification.
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Table 2 Analysis of diversification

Sample A Sample B

Coef. SD p value Coef. SD p value

CST 2.02 0.30 0.00 1.99 0.34 0.00

ASPI – 0.40 0.18 0.03 – 0.41 0.20 0.04
¯ASPI – 0.29 0.27 0.28 – 0.30 0.35 0.38

ERC – 0.41 0.32 0.20 – 0.46 0.29 0.12

EW – 0.41 0.22 0.07 – 0.42 0.30 0.16

MDP – 0.28 0.24 0.24 – 0.39 0.26 0.14

MV – 0.23 0.22 0.29 – 0.31 0.26 0.22

ASPI*ERC 0.03 0.21 0.89 0.05 0.19 0.81

ASPI*EW 0.06 0.12 0.60 0.06 0.15 0.68

ASPI*MDP 0.35 0.21 0.09 0.30 0.22 0.18

ASPI*MV 0.34 0.19 0.08 0.39 0.21 0.07
¯ASPI*ERC 0.10 0.31 0.73 0.10 0.34 0.77
¯ASPI*EW 0.11 0.26 0.67 0.11 0.34 0.75
¯ASPI*MDP 0.28 0.28 0.31 0.25 0.35 0.48
¯ASPI*MV 0.30 0.28 0.28 0.32 0.34 0.35

Port. size – 0.20 0.02 0.00 – 0.22 0.02 0.00

Univ. size 0.04 0.06 0.54 0.05 0.05 0.34

Time – 0.00 0.00 0.25 – 0.00 0.00 0.47

Bound 5% – 0.05 0.11 0.66 – 0.05 0.09 0.59

Bound 10% – 0.02 0.09 0.86 – 0.01 0.08 0.86

Controls Yes Yes

Adj. R squared 0.29 0.28

RMDi t = β0 + β1 ∗DASP I
i + β2 ∗D

¯ASP I
i + β3 ∗DERC

i + β4 ∗DEW
i + β5 ∗DMDP

i + β6 ∗DMV
i + β7 ∗

DASP I
i ∗ DStrategies

i + β8 ∗ D
¯ASP I

i ∗ DStrategies
i + β9 ∗ Controlsi t + εi t

We regress on group dummies measure of concentration of the distributions of the different characteristics
of interest. These regressions are estimated with a FGLS estimator with HC p values Beck and Katz (1995).
Sample A is a panel of 135 series with 41 dates that groups RMDs obtained with the empirical VCV. Sample
B is a panel of 450 series with 41 dates that groups RMDs obtained with the four VCV matrices. Universe
size and Portfolio size are actual size divided by 100. We control for the type of measure and for the cases
of perfect diversification that are predicted by theory. These regressions show significant positive correlation
between diversification and use of the ASPI universe. Significant coefficients at the confidence level of 10%
and below are in bold

By definition T1 is between 0 and 2 for one rebalancing and, for the first rebalancing,
the turnover equals 1. T2 measure the turnover of components at a rebalancing date. For a
portfolio that contains set of stocks At at time t , with I Nt the set of entering components at
time t and OUTt the set of exiting components at time t , component turnover is given by the
following formula:

T2(t) = card I Nt

card At
+ card OUTt

card At−1
(12)

By definition T2 is between 0 and 2 for one rebalancing and, for the first rebalancing, the
turnover equals 1. Using measure of turnover T1 with measure T2 enables us to allow for
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Fig. 3 Turnover of weights

the fact that some strategies only pick some stocks out of the available universe. Since there
is a difference between handling concentrated turnover and handling a diversified turnover,
we think it is important to explicitly keep track of the number of components that change
at rebalancing date. We calculate the two measures of turnover at each rebalancing date, for
each strategy, for each universe and for each VCV matrix. In total, we obtain 8 samples of
time series of measures of turnover.

The analysis of time series yields several observations,19 but overall we cannot tell whether
the utilisation of ASPI leads to higher turnover or not by simply looking at these time series
(Fig. 3).

To answer our question we run regressions of each measure of turnover on different
factors. As with diversification, the aim is to have controlled statistical measurements of
the relationship between turnover and use of the ASPI universe while testing for statistical
significance. The approach consists in regressing two samples ofmeasure T1 and two samples

19 The weight turnover is the lowest for EW portfolios (Fig. 3), the second lowest turnover being for the CW
strategy. The CW strategy is not the one with the lowest turnover in our case, contrary to Carvalho et al. (2012).
The third lowest turnover is for the ERC strategy. MV and MDP portfolios have similar weight turnovers,
those of the MV portfolios, however, being more volatile than the turnovers of the MDP portfolios. Similarly,
component turnover is the lowest for the EW, the CW and the ERC strategies. However, when measure T2 is
used, the three strategies have the same component turnover. Since they invest in the entire available universe,
this component turnover requests solely from universe modifications. MV and MDP strategies have similar
component turnovers; however the turnover of the MV strategy is more volatile than that of the MDP strategy.
No modification in these results is observed when switching from ASPI to EuroStoxx or to the complement
of the ASPI in the EuroStoxx universe of stocks.
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of measure T2 against universe dummies, strategy dummies and number of components in
portfolios and universes. For each measure, one sample groups the measures of turnover
obtained with the empirical VCV, while the other sample groups the measures of turnover
obtained with the four VCV matrices.

Finally the results of the controlled regressions show that the utilization of the ASPI
universe is associated to a larger turnover than the complement of ASPI and the EuroStoxx
universe, but this relationship is not statistically significant.20 The reason is thatASPI universe
has its own turnover which cumulates with turnovers of EuroStoxx universe and of the
allocation strategies.

4.4 Performance of portfolios21

We recall that strategies investing in the entire available universe (i.e. CW, EW, ERC) can be
distinguished from those that pick some stocks out of the available universe (i.e. MV, MDP
and their bounded versions). When all the strategies are compared (Table 3), all except the
unbounded MV strategy outperform the CW portfolio in the three universes. This is in line
with the literature.

The MV and the MDP portfolios only invest in some stocks and they are seen to be taking
big bets. The results of our back tests illustrate what happens when one of these bets is “lost”
or “won”. For instance, at the end of February 2009, Petroleos (CEPSA) lost 57% of its
value in three days. At that time, using the EuroStoxx universe, the MV strategy had more
that 80% invested in that stock and the MDP strategy had about 53% invested. Conversely,
the performance of the MV strategy applied to the ASPI universe of stocks illustrates what
happens when the bets are “won”. Because of this manner of weighting, the MV and MDP
strategies have the highest kurtosis and skewness of all the strategies.

When strategies investing in the entire available universe of stocks are compared to stock
picking strategies, we observe that they show distributions of returns that are less asymmetric
and prone to extremes. Moreover, of the strategies investing in the entire available universe
of stocks, it is the ERC strategy that has the lowest ex-post volatility, the smallest maximum
drawdown and the highest TEV. The ERC strategy also has the highest return and the lowest
ex-post volatility (Table 3).

We now turn to the impact of the universe of stocks on the characteristics of a given type
of strategy.

When we analyze the impact of the ASPI universe on the performance of strategies, the
main result is that the unbounded MV and MDP strategies on the ASPI universe outperform
all the other strategies on all the other universes (Table 3). This observation, together with
that on the optimality of risk-based solutions (cf. page 8), illustrates the gap between ex ante
optimisation and ex post realisation. These strategies yield better mean-variance portfolios
with high kurtosis and positive skewness. The latter is also true for the strategies that invest
in the entire universe (i.e. CW, EW, ERC). However, despite their positive skewness, the
CW, EW and ERC strategies yield significantly poorer mean-variance portfolios. Using the
ASPI universe has protected the MV and MDP strategies against extreme negative events
experienced by some firms with poor extra-financial performance. With that protection, the
advantage of the MV and MDP strategies in a context of financial crisis has been complete.

20 We do not report the results because of space constraints. They are available from the authors upon request.
21 Please see also Bertrand and Lapointe (2015) for a detailed analysis of the effect of using a SRI universe
on performance of risk-based strategies.

123



426 Ann Oper Res (2018) 262:413–429

Ta
bl
e
3

St
at
is
tic

s
of

pe
rf
or
m
an
ce

fo
r
po

rt
fo
lio

s
on

th
e
th
re
e
un

iv
er
se
s

1/
n

E
R
C

M
V

M
V

M
V

M
D

M
D

M
D

C
W

10
%

5
%

10
%

5
%

E
ur
oS

to
xx

A
nn

ua
la
ve
ra
ge

re
tu
rn

(%
)

2.
72

2.
98

−2
.1
8

5.
14

5.
29

2.
20

4.
81

3.
56

−0
.3
6

V
ol
at
ili
ty

(%
)

21
.2
4

17
.1
9

15
.7
3

12
.1
8

11
.5
9

15
.7
7

15
.1
3

13
.2
9

23
.1
4

Sk
ew

ne
ss

da
ily

re
tu
rn

−0
.0
6

−0
.1
5

−7
.5
0

3.
14

1.
53

1.
41

4.
08

0.
87

0.
12

K
ur
to
si
s
da
ily

re
tu
rn

8.
11

9.
34

15
4.
87

78
.6
5

39
.7
3

10
1.
95

12
0.
21

26
.5
5

8.
37

M
ax
.d

ra
w
do
w
n
(%

)
−6

3.
93

−6
1.
28

−7
2.
97

−4
6.
84

−4
3.
38

− 6
0.
68

−4
8.
52

−4
9.
58

−6
1.
79

T
E
V
(p
ts
)

0.
34

43
0.
54

91
1.
37

86
1.
14

13
1.
03

63
1.
22

46
1.
13

47
0.
97

40
–

In
fo
rm

at
io
n
ra
tio

0.
03

44
0.
02

35
−0

.0
05

1
0.
01

86
0.
02

10
0.
00

81
0.
01

75
0.
01

55
–

¯
A
SP

I

A
nn

ua
la
ve
ra
ge

re
tu
rn

(%
)

3.
32

3.
24

−3
.0
5

3.
87

4.
13

1.
15

3.
46

2.
75

0.
31

V
ol
at
ili
ty

(%
)

20
.3
0

16
.3
9

15
.9
3

11
.2
6

11
.4
3

13
.5
7

12
.7
9

13
.1
3

21
.4
4

Sk
ew

ne
ss

da
ily

re
tu
rn

−0
.1
2

−0
.2
2

−7
.4
3

0.
03

−0
.3
2

−2
.6
8

−0
.2
8

−0
.3
6

−0
.0
4

K
ur
to
si
s
da
ily

re
tu
rn

8.
36

9.
62

14
9.
35

11
.1
1

10
.9
2

41
.3
8

10
.8
0

11
.0
6

8.
38

M
ax
.d

ra
w
do
w
n
(%

)
−6

3.
65

−6
1.
84

−7
4.
29

−5
0.
63

−4
6.
99

−6
1.
16

−4
8.
75

−5
0.
57

−6
5.
69

T
E
V
(p
ts
)

0.
45

59
0.
64

03
1.
38

06
1.
05

51
0.
97

68
1.
09

22
0.
96

78
0.
92

02
0.
32

01

In
fo
rm

at
io
n
ra
tio

0.
03

11
0.
02

16
−0

.0
07

5
0.
01

54
0.
01

77
0 .
00

53
0.
01

52
0.
01

30
0.
00

81

123



Ann Oper Res (2018) 262:413–429 427

Ta
bl
e
3

co
nt
in
ue
d

1/
n

E
R
C

M
V

M
V

M
V

M
D

M
D

M
D

C
W

10
%

5%
10

%
5%

A
SP

I

A
nn

ua
la
ve
ra
ge

re
tu
rn

(%
)

1.
79

2.
75

8.
24

7.
08

4.
83

6.
64

5.
96

5.
12

−0
.5
5

V
ol
at
ili
ty

(%
)

23
.1
9

19
.9
1

14
.8
5

15
.1
1

14
.4
5

20
.2
9

17
.1
3

15
.8
4

24
.2
0

Sk
ew

ne
ss

da
ily

re
tu
rn

0.
04

0.
05

3.
56

3.
63

0.
72

7.
11

2.
76

0.
36

0.
18

K
ur
to
si
s
da
ily

re
tu
rn

7.
81

8.
94

93
.9
9

94
.3
4

22
.1
9

23
5.
63

74
.5
0

16
.6
0

8.
23

M
ax
.d

ra
w
do
w
n
(%

)
−6

4.
63

−5
9.
82

−4
2.
44

−4
4.
49

−4
9.
79

−5
0.
41

−5
3.
35

− 5
2.
76

−6
0.
30

T
E
V
(p
ts
)

0.
26

18
0.
37

33
1.
09

09
1.
03

76
0.
83

14
1.
25

72
0.
98

70
0.
78

81
0.
13

98

In
fo
rm

at
io
n
ra
tio

0.
03

17
0.
03

21
0.
03

03
0.
02

76
0.
02

40
0.
02

14
0.
02

47
0.
02

68
−0

.0
05

0

In
th
is
ta
bl
e
w
e
re
po
rt
st
at
is
tic
s
on

pe
rf
or
m
an
ce

of
al
lr
is
k-
ba
se
d
an
d
C
W

st
ra
te
gi
es

th
at
ar
e
si
m
ul
at
ed

on
th
e
re
sp
ec
tiv

e
un
iv
er
se
s
fr
om

M
ar
ch

15
,2

00
2
to

M
ay

1,
20

12
.A

nn
ua
l

av
er
ag
e
re
tu
rn

is
av
er
ag
e
da
ily

re
tu
rn

tim
es

26
0
(a
ri
th
m
et
ic
m
et
ho
d)
,a
nd

vo
la
til
ity

is
st
an
da
rd

de
vi
at
io
n
of

da
ily

re
tu
rn

tim
es

√ 26
0.

To
ca
lc
ul
at
e
St
an
da
rd

de
v.
da
ily

T
E
(T
E
V
)

an
d
In
fo
rm

at
io
n
ra
tio

al
ls
tr
at
eg
ie
s
ar
e
be
nc
hm

ar
ke
d
ag
ai
ns
tt
he

in
-h
ou
se

E
ur
oS

to
xx

C
W

po
rt
fo
lio

.I
nf
or
m
at
io
n
ra
tio

is
th
e
T
E
di
vi
de
d
by

T
E
V

123



428 Ann Oper Res (2018) 262:413–429

When the complement of ASPI universe is used, the strategies investing in the entire
universe yield the best performingportfolios,with highest returns and lowest ex-post volatility
(Table 3). However the distribution of returns of the CW, EW and ERC portfolios built on the
complement of ASPI tends to be exposed to negative extreme returns. This trend gets stronger
when we switch to strategies that pick some stocks out of the available universe. Hence, the
distribution of returns of the MV and MDP portfolios built on the complement of ASPI have
high kurtosis and negative skewness. This is consistent with the observation that investors
perceive a correlation between extreme specific risk and weak social performance (Waddock
andGraves 1997;Hong andKacperczyk 2009), andwith empirical findings (Boutin-Dufresne
and Savaria 2004).

When the EuroStoxx universe is used, we obtain statistics that are similar to these obtained
with the complement of ASPI. This is consistent with the high level of overlapping previously
revealed. The MV portfolios built on the EuroStoxx and complement of ASPI universes
also have ex-post volatilities higher than the volatility of the ASPI MV portfolio. Again
this observation, together with that on the optimality of risk-based solutions (cf. page 8),
illustrates the gap between ex ante optimisation and ex post realisation. It may also illustrate
the lower quality of the statistical inputs obtained with the EuroStoxx and complement of
ASPI universes.

5 Conclusion

Our intention here was to further explore risk-based allocations by examining how using an
SRI universe impacts the characteristics of risk-based portfolios. We studied four risk-based
strategies, the EW, the MDP, the MV and the ERC, using three universes of stocks, the
EuroStoxx, the ASPI and the complement of ASPI universe. We worked with four different
estimators of the VCV matrix: the empirical, the constant, the matrices shrunk towards a
constant and towards a one-actor model.

At least five types of impact of using the ASPI universe of stocks emerge from our study.
First, risk-based strategies applied on the EuroStoxx favour stocks that do not belong to the
ASPI universe. In fact, the lists of components and the weights of overlapping components
in EuroStoxx and ASPI differ widely. We consider the latter impact to be the most important
result of our study because it means that risk-based portfolios are under-weighted in socially
responsible investment firms. Second, grouping SRI firms together increases diversification
of the weight and risk measure distributions, but decreases the effect of risk-based asset
allocation strategies on diversification. These observations do not depend on type of VCV
and are consistent with the constraints imposed on optimisations program. Third, risk-based
portfolios built on the ASPI universe tend to present higher weight and component turnovers.
Again, these observations do not depend on type of VCV. Fourth, the distributions of returns
of portfolios built on the ASPI universe have positive skewness, while with the two other
universes, portfolios have distributions of returns with negative skewness. Fifth, on the ASPI
universe, all the risk-based strategies dominate the CW strategy, which is similar to findings
on the two other universes and consistent with the empirical literature.

Note that whatever the VCV estimator, using an SRI universe is seen to impact the charac-
teristics (i.e. diversification) of risk-based portfolios to the same degree. We only find some
differences in the degree to which use of risk-based strategies affects the performance of
SRI portfolios (Bertrand and Lapointe 2015). In addition more sophisticated VCV matrices
significantly decrease the turnover of weights and components.
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Finally, while recalling the usual limitations of back-testing, we conclude that using risk-
based strategies in combination with the SRI approach somewhat modifies the properties of
risk-based portfolios. Adopting SRI thus cannot be considered neutral and warrants careful
attention from institutional investors. Afirst valuable extension of thisworkwould be to check
the robustness of our results using a different SRI universe with different rating methodology
and covering different geographical zones. A second extension of this work would be to
deal with the effect of using a SRI universe on strategies based on Value-at-Risk, Expected
Shortfall or third and fourth moments.
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