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Abstract We consider the one-warehouse multi-retailer problem (OWMR) and perform
both theoretical and computational studies of different formulations for the problem. Sev-
eral formulations that were not yet directly applied to the OWMR are considered, namely
an echelon stock formulation strengthened with valid inequalities, a two-level lot-sizing
based formulation strengthened with valid inequalities, a multicommodity formulation and
a dynamic programming based formulation. These are also compared with a strengthened
echelon stock formulation and the previously best performing formulations available in the
literature, a transportation and a shortest path formulations, which were studied in a previous
work (Solyali and Süral in Ann Oper Res 196(1):517–541, 2012). The formulations were
ordered according to the provided linear relaxation bounds, assuming there is no available
stock at the beginning of the planning horizon. Experimental results using a commercial MIP
solver indicate that a partial version of the two-level lot-sizing based formulation strength-
ened with valid inequalities and the multicommodity formulation outperform the others,
especially as the sizes of the instances become larger. Besides, these two new best perform-
ing formulations allow the solver to prove optimality of instances for which not even the
linear relaxation could be solved using the previously best performing formulations.
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1 Introduction

Supply chain problems consist in determiningwhen and howmuch to produce in a production
site in order to satisfy certain demands considering that the places in which production occurs
and the places in which these products are required can be in different localities. In such
problems the transportation decision consists in determining the amount to transport in each
time period.As a consequence, the production of goods and their transportation to the retailers
is a common problem faced by many industries and is an essential feature of a supply chain.

The one-warehouse multi-retailer problem (OWMR) is one such example. It considers
a single production site that replenishes multiple retailers over a finite time horizon. Each
retailer has a time varying deterministic demand for each period in the time horizon and
there is no capacity limitation over the amount manufactured by the production site and the
amount transported to the retailers.

In recent years, most of the literature dealing with the OWMR has concentrated on the
development of approximation algorithms for the problem. Some examples are Levi et al.
(2006, 2008) and Stauffer et al. (2011). One of the few exceptions has been Solyali and
Süral (2012), in which the authors compared both theoretically and experimentally MIP
formulations for the problem and they could solve to optimality problems with up to 150
retailers and 30 time periods. They considered two situations: the first in which there is no
initial stock available at the beginning of the planning horizon and the second in which initial
stock is available. Our work complements their study in the sense that we show how even
larger instances can be solved more effectively using a standard mixed-integer programming
(MIP) solver through reformulation. As larger formulations become less effective as soon as
we increase the size of the problems, we look for alternative approaches that may provide an
effective way to tackle the problem computationally.

Some problems studied in the literature can be considered as special cases of the OWMR,
such as the uncapacitated two-level lot-sizing and the joint replenishment problem. The unca-
pacitated two-level lot-sizing, studied in Melo and Wolsey (2010), is a polynomial solvable
special case of the OWMR in which only one retailer is present. The uncapacitated two-level
lot-sizing also has an alternative extension denoted two-echelon lot-sizing problem in series
with intermediate demands, see Zhang et al. (2012), in which demands are present at the
retailer and also at the production site. The authors proposed inequalities describing a partial
description of the convex hull of solutions which could also be obtained as special cases of
the simple dicut inequalities studied in Rardin and Wolsey (1993). These inequalities can
alternatively be obtained from the projection of the multicommodity formulation into the
original space of variables. The joint replenishment problem, see Arkin et al. (1989) and
Robinson et al. (2009), is an NP-Hard special case of the OWMR in which storage is not
allowed at the production site.

Some extensions of the one-warehouse multi-retailer problem, or problems that can be
considered as such, are also treated in the literature. An obvious extension of the problem
is the multi-item version, studied in Federgruen and Tzur (1999). The OWMR also appears
as subproblems of certain multi-production site problems as the ones considered in Melo
and Wolsey (2012), Park (2005) and Sambasivan and Yahya (2005). It also appears as a
subproblem in the topic of integration of production and routing decisions, see Adulyasak
et al. (2015) for a recent review.

The remainder of this document is organized as follows. In Sect. 2, we give a formal
description of the one-warehouse multi-retailer problem, present a standard formulation for
the problem and show an equivalent problem. In Sect. 3, the formulations available in the
literature for the OWMR are described. In Sect. 4, we present some formulations that were
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not yet applied specifically to the OWMR, although certain of them were already applied to
extensions of the problem. A theoretical analysis of the linear relaxation bounds provided
by the different formulations is devised in Sect. 5. In Sect. 6, we report on computational
experiments that were carried out to measure the performance of the different approaches.
Some final remarks are drawn in Sect. 7.

2 The one-warehouse multi-retailer problem

In this section we formally introduce the one-warehouse multi-retailer problem and describe
a standard MIP formulation for the problem. We also show how the OWMR can be seen as
a multi-item uncapacitated two-level lot-sizing with joint setup costs at level zero.

In the one-warehousemulti-retailer problem there is one production site which replenishes
multiple (NC) retailers over a finite time horizon of NT periods. Each retailer has a time
varying deterministic demand dct for each period t in the time horizon, and in addition
we define dckl = ∑l

t=k d
c
t . The amount produced by the production site and the amount

transported from the production site to the retailers are unlimited. Production at a given
period t incurs a fixed cost ( f 0t ) plus an additional cost per unit produced ( p̃

0
t ). Transportation

from the production site to a retailer incurs a fixed transportation cost ( f ct ) plus a per unit
transportation cost ( p̃ct ). Storage is allowed at a cost both at the production site (h

0
t ) and at the

retailers (hct ). In this work, we assume there are no initial and final stocks. Also, we consider
nonnegative costs and demands.

Consider variables x0t to be the amount produced at the production site in period t , xct
to be the amount transported from the production site to retailer c in period t , s0t to be the
amount in stock at the production site at the end of period t , sct to be the amount in stock at
retailer c at the end of period t , yt to be equal to 1 if production occurs at the production site
in period t and to be 0 otherwise, and Y c

t to be equal to 1 if transportation occurs between
the production site and retailer c in period t and to be 0 otherwise. A standard formulation
for the problem is given by

(OWMR) min
NT∑

t=1

(
h0t s

0
t + p̃0t x

0
t + f 0t yt

) +
NC∑

c=1

NT∑

t=1

(
hct s

c
t + p̃ct x

c
t + f ct Y

c
t

)
(1)

s0t−1 + x0t =
NC∑

c=1

xct + s0t , ∀ 1 ≤ t ≤ NT, (2)

sct−1 + xct = dct + sct , ∀ 1 ≤ c ≤ NC, 1 ≤ t ≤ NT, (3)

x0t ≤ Myt , ∀ 1 ≤ t ≤ NT, (4)

xct ≤ MYc
t , ∀ 1 ≤ c ≤ NC, 1 ≤ t ≤ NT, (5)

s, x ∈ R
(NC+1)×NT
+ , (6)

y ∈ {0, 1}NT , Y ∈ {0, 1}NC×NT . (7)

The objective function minimizes the total cost which includes variable and fixed setup
production costs at the production site, variable and fixed transportation costs to the retailers,
and storage costs at the production site and at the retailers. Constraints (2) are balance
constraints for the production site. Constraints (3) are balance constraints for the retailers.
Constraints (4) and (5) are setup constraints respectively for the production site and for the
retailers. Constraints (6) and (7) are nonnegativity and integrality constraints on the variables.

123



102 Ann Oper Res (2016) 238:99–122

Fig. 1 Network flow representation for the OWMR

Observation 1 As with other production planning problems (see Pochet and Wolsey 2006)
the stock variables can be removed from the objective function and an equivalent one can be
obtained as

∑NT
t=1(p

0
t x

0
t + f 0t yt ) + ∑NT

t=1
∑NC

c=1(p
c
t x

c
t + f ct Y

c
t ) + K.

Observe that from constraints (2) we get s0t = ∑NT
k=t+1(

∑NC
c=1 x

c
k − x0k ) and from

constraints (3) we obtain sct = ∑NT
k=t+1(d

c
k − xck ). The new objective function can there-

fore be obtained by simply performing substitutions and algebraic manipulations in order
to eliminate variables s0 and sc from the original objective function. The new coeffi-
cients are p0t = p̃0t − ∑t−1

k=1 h
0
k and pct = p̃ct + ∑t−1

k=1(h
0
k − h1k), and the constant is

K = ∑NT
t=1 d

c
t
∑t−1

k=1 hk .
The one-warehouse multi-retailer problem can be represented by a fixed charge network

flow problem, as illustrated in Fig. 1 for a case with two retailers and four time periods. In
the figure, each square node (0, t) represents the period t at the production site while circle
nodes (c, t), 1 ≤ c ≤ NC , represent the period t at retailer c.

Observation 2 According to the property of extreme flows in a network (see Zangwill 1969),
there exists an optimal solution such that: (a) if there is a positive entering stock at the produc-
tion site/retailer in the beginning of period t, the flow arriving as production/transportation
at t is equal to zero; (b) if there is positive transportation from the production site to a retailer
c in period s it is used to satisfy demand from period s to period t, with s ≤ t ≤ NT .

This well-known property is key in the validity of the shortest path reformulation available
in the literature which will be presented in Sect. 3.3.

2.1 An equivalent problem: multi-item uncapacitated two-level lot-sizing with
joint setup costs at level zero

Note that the one-warehouse multi-retailer problem is equivalent to a multi-item uncapac-
itated production in series two-level lot-sizing with joint setup costs at level zero. Define
variables x0ct to be the amount produced for retailer (or item) c at the production site (or at
level zero) in period t , and s0ct to be the stock for retailer (or item) c at the production site
(or at level zero) at the end of period t . This equivalent problem can be formulated as
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(OWMR′) min
NT∑

t=1

(
p0t x

0
t + f 0t yt

) +
NC∑

c=1

NT∑

t=1

(
pct x

c
t + f ct Y

c
t

)
(8)

s0ct−1 + x0ct = xct + s0ct , ∀ 1 ≤ c ≤ NC, 1 ≤ t ≤ NT, (9)

sct−1 + xct = dct + sct , ∀ 1 ≤ c ≤ NC, 1 ≤ t ≤ NT, (10)

x0ct ≤ Myt , ∀ 1 ≤ c ≤ NC, 1 ≤ t ≤ NT, (11)

xct ≤ MYc
t , ∀ 1 ≤ c ≤ NC, 1 ≤ t ≤ NT, (12)

NC∑

c=1

x0ct = x0t , ∀ 1 ≤ t ≤ NT, (13)

s0, s, x0, x ∈ R
NC×NT+ , (14)

y ∈ {0, 1}NT , Y ∈ {0, 1}NC×NT . (15)

Note that OWMR’ can also be seen as an extended formulation for OWMR.

Observation 3 The feasible region of OWMR′ can be written as

XOWMR′ =
NC⋂

c=1

X2LSc ,

in which X2LSc is the set of feasible solutions of the uncapacitated two-level lot-sizing (2LSc)
related to retailer c, and the sets are only linked by the y variables.

(2LSc) s
0c
t−1 + x0ct = xct + s0ct , ∀ 1 ≤ t ≤ NT, (16)

sct−1 + xct = dct + sct , ∀ 1 ≤ t ≤ NT, (17)

x0ct ≤ Myt , ∀ 1 ≤ t ≤ NT, (18)

xct ≤ MYc
t ∀ 1 ≤ t ≤ NT, (19)

s0, s, x0, x ∈ R
NT+ , (20)

y ∈ {0, 1}NT , Y c ∈ {0, 1}NT . (21)

3 Formulations previously considered for the OWMR

An approach that has been applied very successfully to several production planning problems,
including the one-warehouse multi-retailer problem, is the use of extended formulations. In
this section, we describe the formulations studied in Solyali and Süral (2012), which are the
strengthened echelon stock formulation and the two best performing formulations for the
problem, namely the transportation and the shortest path formulations.

3.1 Strengthened echelon stock formulation

A strengthened echelon stock (SES) formulation was presented by Solyali and Süral (2012)
in which facility location reformulations are introduced for two relaxed uncapacitated lot-
sizing sets. Consider the relaxed set obtained via the aggregation of all retailers, i.e. summing
up constraints (2) with (3) for every retailer c = 1, . . . , NC , namely:
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NC∑

c=0

sct−1 + x0t =
NC∑

c=1

dct +
NC∑

c=0

sct , ∀ 1 ≤ t ≤ NT, (22)

x0t ≤ Myt , ∀ 1 ≤ t ≤ NT . (23)

In this way, the formulation is obtained with reformulations for the set implied by (22) and
(23) and for the one formed by (3) and (5).

Consider variables w0
kt to be the amount produced at the warehouse in period k to satisfy

demand of period t and wc
kt , for 1 ≤ c ≤ NC , to be the amount transported to retailer c in

period k to satisfy its demand of period t . The strengthened echelon stock formulation can
be described as

(SES) min
NT∑

t=1

(
p0t x

0
t + f 0t yt

) +
NC∑

c=1

NT∑

t=1

(
pct x

c
t + f ct Y

c
t

)
(24)

t∑

k=1

w0
kt =

NC∑

c=1

dct , ∀ 1 ≤ t ≤ NT, (25)

t∑

r=1

NT∑

k=r

w0
rk ≥

NC∑

c=1

t∑

r=1

NT∑

k=r

wc
rk, ∀ 1 ≤ t ≤ NT, (26)

t∑

k=1

wc
kt = dct , ∀ 1 ≤ c ≤ NC, 1 ≤ t ≤ NT, (27)

w0
kt ≤

NC∑

c=1

dct yk, ∀ 1 ≤ k ≤ t ≤ NT, (28)

wc
kt ≤ dct Y

c
k , ∀ 1 ≤ c ≤ NC, 1 ≤ k ≤ t ≤ NT, (29)

xct =
NT∑

k=t

wc
tk, ∀ 0 ≤ c ≤ NC, 1 ≤ t ≤ NT, (30)

w ∈ R
(NC+1)×NT×NT
+ , (31)

y ∈ {0, 1}NT , Y ∈ {0, 1}NC×NT . (32)

The objective function (24)minimizes the total cost, since it is equivalent to (1)when summed
up with a constant K as stated in Observation 1. Constraints (25) state that all the demands
must be produced at the warehouse. Constraints (26) enforce the amount produced at the
warehouse until a given period to be greater or equal than the amount transported to the
retailers until that period. Constraints (27) guarantee that the demand of a retailer for a given
period should be transported from the warehouse at most in that period. Constraints (28)
and (29) set the binary variables to one in case production and/or transportation occurs.
Constraints (30) link the facility location variables to the original ones. Constraints (31)
and (32) are nonnegativity and integrality constraints on the variables. This formulation has
O(NC × NT 2) variables and O(NC × NT 2) constraints.

3.2 Transportation formulation

Consider variables λcskt to be the amount produced at the production site in period s and
transported to retailer c in period k to satisfy its demand of period t . Levi et al. (2008)
formulated the OWMR with a transportation formulation as
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(T R) min
NT∑

t=1

(
p0t x

0
t + f 0t yt

) +
NC∑

c=1

NT∑

t=1

(
pct x

c
t + f ct Y

c
t

)
(33)

t∑

s=1

t∑

k=s

λcskt = dct , ∀ 1 ≤ c ≤ NC, 1 ≤ t ≤ NT, (34)

t∑

k=s

λcskt ≤ ysd
c
t , ∀ 1 ≤ c ≤ NC, 1 ≤ s ≤ t ≤ NT, (35)

k∑

s=1

λcskt ≤ Y c
k d

c
t , ∀ 1 ≤ c ≤ NC, 1 ≤ k ≤ t ≤ NT, (36)

NC∑

c=1

NT∑

k=s

NT∑

t=k

λcskt = x0s , ∀ 1 ≤ s ≤ NT, (37)

k∑

s=1

NT∑

t=k

λcskt = xck , ∀ 1 ≤ c ≤ NC, 1 ≤ k ≤ NT, (38)

λ ∈ R
NC×NT×NT×NT+ , (39)

y ∈ {0, 1}NT , Y ∈ [0, 1]NC×NT . (40)

The objective function (33) plus a constant K is equivalent to (1). Constraints (34) ensure
each of the demands is satisfied. Constraints (35) and (36) set the binary variables to one in
case production and/or transportation occur. Constraints (37) and (38) link the transportation
variables to the original ones. Observe that the Y variables are not constrained to be integer
since it was shown in Solyali and Süral (2012) that there exist solutions in which they assume
integer values when the y variables are integral, and [0, 1] denotes the set of real values
between zero and one. This formulation has O(NC × NT 3) variables and O(NC × NT 2)

constraints, disconsidering the nonnegativity restrictions.

3.3 Shortest path formulation

The shortest path formulation was presented in Solyali and Süral (2012) and it relies on the
properties of the extreme optimal solutions described in Observation 2. Consider variables
φc
srt to be the fraction of d

c
rt manufactured by the production site in s and sent to retailer c in

period r to satisfy its demands from period r to t . The formulation can thus be described as

(SP) min
NT∑

t=1

(
p0t x

0
t + f 0t yt

) +
NC∑

c=1

NT∑

t=1

(
pct x

c
t + f ct Y

c
t

)
(41)

NT∑

t=1

φc
11t = 1, ∀ 1 ≤ c ≤ NC, (42)

t−1∑

r=1

t−1∑

s=r

φc
rs,t−1 −

t∑

r=1

NT∑

s=t

φc
rts = 0, ∀ 1 ≤ c ≤ NC, 2 ≤ t ≤ NT, (43)

t∑

r=s:dcrt>0

φc
srt ≤ ys, ∀ 1 ≤ c ≤ NC, 1 ≤ s ≤ t ≤ NT, (44)
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r∑

s=1:dcrt>0

φc
srt ≤ Y c

r , ∀ 1 ≤ c ≤ NC, 1 ≤ r ≤ t ≤ NT, (45)

NC∑

c=1

NT∑

r=s

NT∑

t=r

dcrtφ
c
srt = x0s , ∀ 1 ≤ s ≤ NT, (46)

r∑

s=1

NT∑

t=r

dcrtφ
c
srt = xcr , ∀ 1 ≤ c ≤ NC, 1 ≤ r ≤ NT, (47)

φ ∈ [0, 1]NC×NT×NT×NT , (48)

y ∈ {0, 1}NT , Y ∈ [0, 1]NC×NT . (49)

The objective function (41) plus a constant K is equivalent to (1). Constraints (42) and (43)
are shortest path related restrictions. Constraints (44) and (45) set the binary variables to
one in case production/transportation occurs. Constraints (46) and (47) link the shortest path
variables to the original ones. Observe that the Y variables are not constrained to be integer
since it was shown in Solyali and Süral (2012) that they assume integer values when the
y variables are integral. Similar to the transportation formulation, SP has O(NC × NT 3)

variables and O(NC × NT 2) constraints, disconsidering the nonnegativity restrictions.

4 Formulations newly introduced for the OWMR

In this section, we present several formulations that were not yet applied specifically to the
one-warehousemulti-retailer problem, although certain of themhave already been considered
when dealing to a more general extension of the OWMR in Melo and Wolsey (2012). We
describe a Wagner–Whitin based formulation, a two-level lot-sizing Wagner–Whitin based
formulation, amulticommodity formulation and a two-level lot-sizing dynamic programming
based formulation.

4.1 Wagner–Whitin based formulation

The Wagner–Whitin based formulation was applied to a generalization of the OWMR in
Melo and Wolsey (2010) and is obtained by adding (l, S)-inequalities for certain relaxations
of the original problem. The formulation can be described as

(ESWW ) min
NT∑

t=1

(
p0t x

0
t + f 0t yt

) +
NC∑

c=1

NT∑

t=1

(
pct x

c
t + f ct Y

c
t

)

(2) − (7) (50)

NC∑

c=0

sct−1 +
l∑

k=t

NC∑

c=1

dckl yk ≥
NC∑

c=1

dctl , ∀ 1 ≤ t ≤ l ≤ NT, (51)

sct−1 +
l∑

k=t

dcklY
c
k ≥ dctl , ∀ 1 ≤ c ≤ NC, 1 ≤ t ≤ l ≤ NT . (52)

In this formulation, inequalities (51) are Wagner–Whitin (l, S)-inequalities for the relaxed
uncapacitated lot-sizing set implied by (22) and (23). Inequalities (52) are Wagner–Whitin
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(l, S)-inequalities for each of the retailers, i.e. the sets implied by constraints (3) and (5).
This formulation has O(NC × NT ) variables and O(NC × NT 2) constraints.

4.2 Two-level lot-sizing Wagner–Whitin based formulation

The two-level lot-sizing Wagner–Whitin based formulation is obtained by adding Wagner–
Whitin (l, S)-inequalities for certain relaxations of OWMR′ together with a family of dicut
inequalities and, as far as we know, it was not yet used for any variation of the OWMR. The
formulation can be described as

(2LSWW ) min
NT∑

t=1

(
p0t x

0
t + f 0t yt

) +
NC∑

c=1

NT∑

t=1

(
pct x

c
t + f ct Y

c
t

)

(9) − (15) (53)

s0ct−1 + sct−1 +
l∑

k=t

dckl yk ≥ dctl , ∀ 1 ≤ c ≤ NC, 1 ≤ t ≤ l ≤ NT, (54)

sct−1 +
l∑

k=t

dcklY
c
k ≥ dctl , ∀ 1 ≤ c ≤ NC, 1 ≤ t ≤ l ≤ NT, (55)

s0ct−1 + sct−1+
j∑

k=t

dckl yk +
l∑

k= j+1

dcklY
c
k ≥ dctl , ∀ 1 ≤ c ≤ NC, 1 ≤ t ≤ j < l ≤ NT .

(56)

Inequalities (54) are Wagner–Whitin (l, S)-inequalities for the relaxed set obtained by sum-
ming up constraints (9) and (10), namely

s0ct−1 + sct−1 + x0ct = dct + s0ct + sct , ∀ 1 ≤ t ≤ NT, (57)

x0t ≤ Myt , ∀ 1 ≤ t ≤ NT . (58)

Inequalities (55), similarly to (52), are Wagner–Whitin (l, S)-inequalities for each of the
retailers. Inequalities (56) are simple dicut inequalities that generalize the (l, S)-inequalities
for each two-level lot-sizing problem by considering production variables at both levels.
They can be alternatively seen as special cases of the two-echelon inequalities of Zhang et al.
(2012). This formulation has O(NC × NT ) variables and O(NC × NT 3) constraints.

4.3 Multicommodity formulation

In a multicommodity formulation each demand dct for the pair c, t is viewed as a distinct
commodity. Consider variables w0c

kt to be the amount produced at the production site in
period k to satisfy demand of retailer c in period t ,w1c

kt to be the amount transported from the
production site to retailer c in period k to satisfy demand of period t , σ 0c

kt to be the amount
stocked at the production site at the end of period k to satisfy demand of retailer c in period
t , and σ 1c

kt to be the amount stocked at retailer c at the end of period k to satisfy demand of
period t . The multicommodity formulation can be described as
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(MC) min
NT∑

t=1

(
p0t x

0
t + f 0t yt

) +
NC∑

c=1

NT∑

t=1

(
pct x

c
t + f ct Y

c
t

)
(59)

σ 0c
k−1,t + w0c

kt = w1c
kt + σ 0c

kt , ∀ 1 ≤ c ≤ NC, 1 ≤ k ≤ t ≤ NT, (60)

σ 1c
k−1,t + w1c

kt = δkt d
c
t + (1 − δkt )σ

1c
k,t , ∀ 1 ≤ c ≤ NC, 1 ≤ k ≤ t ≤ NT, (61)

w0c
kt ≤ ykd

c
t , ∀ 1 ≤ c ≤ NC, 1 ≤ k ≤ t ≤ NT, (62)

w1c
kt ≤ Y c

k d
c
t , ∀ 1 ≤ c ≤ NC, 1 ≤ k ≤ t ≤ NT, (63)

NC∑

c=1

NT∑

t=k

w0c
kt = x0k , ∀ 1 ≤ k ≤ NT, (64)

NT∑

t=k

w1c
kt = xck , ∀ 1 ≤ c ≤ NC, 1 ≤ k ≤ NT, (65)

w0, w1, σ 0, σ 1 ∈ R
NC×NT×NT+ , (66)

y ∈ {0, 1}NT , Y ∈ [0, 1]NC×NT , (67)

where δkt is equal to one if k = t and zero otherwise. The objective function (59) plus a con-
stant K is equivalent to (1). Constraints (60) are balance constraints for each commodity at the
production site. Constraints (61) are balance constraints for each commodity at the retailers.
Constraints (62) and (63) set the binary variables to one in case production/transportation
occurs. Constraints (64) and (65) link the multicommodity variables to the original ones.
This formulation has O(NC × NT 2) variables and O(NC × NT 2) constraints.

The result presented in Proposition 1 is similar to the one obtained in Solyali and Süral
(2012) for the transportation formulation.

Proposition 1 If the y variables are fixed, there exists an optimal solution in which the Y
variables assume integer values.

Proof Let y ∈ {0, 1}NT be the y variables in an integer feasible solution. Given fixed y, the
production cost can be included in the transportation cost in away that the ‘new’ transportation
cost to retailer c in period k can be calculated as pck = min1≤k′≤k{p0k′ | yk′ = 1} + pck . The
remaining problem to solve is given by

(F I X) min
NC∑

c=1

NT∑

t=1

(
pct x

c
t + f ct Y

c
t

)

σ 1c
k−1,t + w1c

kt = δkt d
c
t + (1 − δkt )σ

1c
k,t , ∀ 1 ≤ c ≤ NC, 1 ≤ k ≤ t ≤ NT,

w1c
kt ≤ Y c

k d
c
t , ∀ 1 ≤ c ≤ NC, 1 ≤ k ≤ t ≤ NT,

NT∑

t=k

w1c
kt = xck , ∀ 1 ≤ c ≤ NC, 1 ≤ k ≤ NT,

w1 ∈ R
NC×NT×NT+ ,

Y ∈ [0, 1]NC×NT ,

in which some w1c
t would have to be fixed to 0 in case the production could not have

occurred before period t . Observe that the only constraints linking the different retailers,
i.e. the setup constraints for the Y variables, is irrelevant in this model. In this way, (FIX) is
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composed simply ofmulticommodity reformulations for c uncapacitated lot-sizing problems.
It is known (see Pochet and Wolsey 2006) that, for each of these problems, the projection of
the multicommodity formulation into the original space gives the convex hull of the solutions
of the problem. Therefore, the Y variables assume integer values. ��
4.4 Two-level lot-sizing dynamic programming based formulation

The dynamic programming based formulation consists in using a strong formulation describ-
ing the convex hull of solutions for the two-level lot-sizing problem, and it was applied to a
generalization of the one-warehouse multi-retailer problem in Melo and Wolsey (2010).

We remark that this formulation has shortest path characteristics as it was obtained from
a dynamic programming algorithm. Consider variables υc

u j t to be equal to one if production
takes place at the warehouse in period u and the amount produced is dcjt . Also, define ωc

pjt
to be equal to one if transportation of dcjt happens to retailer c in period j using items from
a production batch dcpq at the warehouse in period u with [ j, t] a subinterval of the interval
[p, q] and u ≤ p ≤ j ≤ t ≤ q . The formulation can be described as

(DDP) min
NT∑

t=1

(
p0t x

0
t + f 0t yt

) +
NC∑

c=1

NT∑

t=1

(
pct x

c
t + f ct Y

c
t

)
(68)

NT∑

k=1

NT∑

j=k

υc
k j,NT = 1, ∀ 1 ≤ c ≤ NC, (69)

t∑

k=1

t∑

j=k

υc
k j t −

t+1∑

k=1

NT∑

j=t+1

υc
k,t+1, j = 0, ∀ 1 ≤ c ≤ NC, 1 ≤ t ≤ NT − 1, (70)

l∑

k=t

ωc
tkl −

NT∑

k=l+1

ωc
t,l+1,k −

t∑

k=1

υc
ktl = 0, ∀ 1 ≤ c ≤ NC, 1 ≤ t ≤ l ≤ NT,

(71)

NT∑

k=t

NT∑

j=k

υc
tk j ≤ yt , ∀ 1 ≤ c ≤ NC, 1 ≤ t ≤ NT, (72)

k∑

γ=1

NT∑

t=k

ωc
γ kt ≤ Y c

k , ∀ 1 ≤ c ≤ NC, 1 ≤ k ≤ NT, (73)

NC∑

c=1

NT∑

k=t

NT∑

j=k

υc
tk j d

c
k j = x0t , ∀ 1 ≤ t ≤ NT, (74)

k∑

γ=1

NT∑

t=k

ωc
γ kt d

c
kt = xck , ∀ 1 ≤ c ≤ NC, 1 ≤ k ≤ NT, (75)

υc
l jk, ωc

l jk ∈ R+, ∀ 1 ≤ c ≤ NC, 1 ≤ l ≤ j ≤ k ≤ T, (76)

x ∈ R
(1+NC)NT
+ , y ∈ {0, 1}NT , Y ∈ [0, 1]NC×NT . (77)

The objective function (68) plus a constant K is equivalent to (1). Constraints (69) and (70)
are shortest path related restrictions to the warehouse. Constraints (71) link the shortest path
related restrictions to the retailers with those corresponding to the warehouse. Constraints
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(72) and (73) are setup enforcing constraints. Constraints (74) and (75) link the new variables
to those of the two-level lot-sizing problem. Constraints (76) and (77) are nonnegativity and
integrality constraints on the variables. This formulation has O(NC × NT 3) variables and
O(NC × NT 2) constraints, disconsidering the nonnegativity restrictions.

5 A theoretical analysis of the linear relaxation bounds

In this section we make a theoretical study of the linear relaxation bounds provided by
the formulations described in Sects. 3 and 4. Define PESWW , PSES , P2LSWW , PMC ,
PT R , PSP and PDDP to be the polyhedra defined by the respective formulations, and let
zLP(ESWW ), zLP(SES), zLP(2LSWW ), zLP(MC), zLP(T R), zLP(SP) and zLP(DDP) denote their
linear relaxation bounds. In addition, consider P ′FORM = proj(x,y,Y )FORM , with FORM
being any valid extended formulation for the problem, to be the projection of the polyhedron
PFORM into the space of the original variables and define P ′SES , P ′2LSWW , P ′MC , P ′T R ,
P ′SP and P ′DDP . Certain results regarding the linear relaxation bounds of SES, T R and
SP were proved in Solyali and Süral (2012) and are stated next as Propositions 2 and 3.

Proposition 2 (Solyali and Süral (2012)) zLP(SES) ≤ zLP(T R).

Proposition 3 (Solyali and Süral (2012)) zLP(T R) ≤ zLP(SP).

Proposition 4 zLP(ESWW ) ≤ zLP(SES).

Proof The proof consists in showing that SES provides stronger reformulations than ESWW
for two relaxed uncapacitated lot-sizing sets, the first one implied by (22) and (23) and the
second by (3) and (5). The result follows from the fact that SES uses a facility location
reformulation, (25) and (28), which gives the convex hull of (22) and (23), and another
facility location reformulation, (27) and (29), providing also the convex hull of (3) and (5).
On the other hand, the addition of Wagner–Whitin inequalities in ESWW only provides
an approximation of the convex hull of these sets, i.e. (51) strengthen (22) and (23) while
(52) strengthen (3) and (5). In this manner, P ′SES ⊆ PESWW and therefore zLP(ESWW ) ≤
zLP(SES). ��
Example 1 Define an instance with parameters: NC = 1, NT = 4, d = (0, 10, 10, 10),
f 0 = (5, 3, 5, 3), p0 = (2, 4, 2, 1), f = (0, 0, 0, 0) and p = (0, 0, 0, 0).

Observation 4 SES dominates ESWW.

A strict dominance can be seen in Example 1, for which zLP(ESWW ) = 56.0004 <

zLP(SES) = 58.0.

Proposition 5 zLP(ESWW ) ≤ zLP(2LSWW ).

Proof The proof is very concise and consists in showing that inequalities (51) of ESWW can
be obtained as a linear combination of inequalities (54) of 2LSWW and are therefore weaker,
as the other inequalities, (52) and (55), are already equivalent. Observe that inequalities (54)
can be summed up over c in order to get

NC∑

c=1

s0ct−1 +
NC∑

c=1

sct−1 +
l∑

k=t

NC∑

c=1

dckl yk ≥
NC∑

c=1

dctl , ∀ 1 ≤ t ≤ l ≤ NT . (78)
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As s0t = ∑NT
c=1 s

0c
t , one can obtain (51) by simple substitution and thus P ′2LSWW ⊆ PESWW ,

implying zLP(ESWW ) ≤ zLP(2LSWW ). ��

Example 2 Define an instancewith parameters: NC = 2, NT = 5, d =
(
30 30 0 0 10

0 0 0 0 30

)

,

f 0 = (100, 100, 100, 100, 100), p0 = (4, 3, 2, 1, 0), f =
(
100 100 100 100 100

0 0 0 0 0

)

and

p =
(
4 3 2 1 0

4 3 2 1 0

)

.

Observation 5 2LSWW dominates ESWW.

A strict dominance can be seen in Example 2, for which zLP(ESWW ) = 835.0 <

zLP(2LSWW ) = 860.0.

Observation 6 There is no dominance when comparing SES and 2LSWW.

This can be observed from the solutions obtained for the instances in Examples 1 and 2.
When considering Example 1, zLP(2LSWW ) = 56.004 < zLP(SES) = 58.0. On the other
hand, for Example 2 zLP(SES) = 835.0 < zLP(2LSWW ) = 860.0.

Proposition 6 zLP(2LSWW ) ≤ zLP(MC).

Proof This result follows from the simple fact that inequalities (54), (55) and (56) of 2LSWW
are simple specific cases of the two-echelon inequalities described in Zhang et al. (2012) for
the two-echelon lot-sizing in case there are no intermediate demands, i.e. demands related
to level zero, in whose work it was shown that such inequalities can be obtained from the
projection of the multicommodity formulation. This implies that P ′MC ⊆ P2LSWW and
therefore zLP(2LSWW ) ≤ zLP(MC). ��

The next result shows that it is possible to use a multicommodity formulation which is one
order of magnitude smaller than that of the transportation formulation and yet get a linear
relaxation bound that is as strong as the one obtained by the later.

Proposition 7 zLP(MC) = zLP(T R).

Proof The proof consists in showing that a feasible solution to the linear relaxation of T R
can be converted into a solution to the linear relaxation of MC and the converse also holds.
Let (x, y, Y, w0, w1) ∈ PMC and (x, y, Y, λ) ∈ PT R , where the link between λ and w in
T R is given by

w0c
st =

t∑

k=s

λcskt , (79)

w1c
kt =

k∑

s=1

λcskt . (80)

First wewant to demonstrate that if (x̂0, x̂1, ŷ, Ŷ , λ̂) ∈ PT R then (x̂0, x̂1, ŷ, Ŷ , ŵ0, ŵ1) ∈
PMC . Using (79) and (80), nonnegativity of λ imply nonnegativity of w0 and w1 and con-
straints (62), (63), (64) and (65) follow by substitution. It suffices to show that constraints
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(60) and (61) are satisfied. Note that we can eliminate the stock variables σ 0 and σ 1 and
rewrite (60) and (61) respectively as

∑k

j=1
w0c

j t ≥
∑k

j=1
w1c

j t , ∀ 1 ≤ c ≤ NC, 1 ≤ k ≤ t ≤ NT, (81)
∑t

k=1
w1c
kt = dct , ∀ 1 ≤ c ≤ NC, 1 ≤ t ≤ NT . (82)

Constraints (34) imply

k∑

s=1

ŵ0c
st =

k∑

s=1

t∑

j=s

λ̂cs j t ≥
k∑

m=1

k∑

l=m

λ̂cmlt =
k∑

l=1

l∑

m=1

λ̂cmlt =
k∑

l=1

ŵ1c
lt , (83)

where the inequality holds due to the nonnegativity of the variables, and

t∑

k=1

ŵ1c
kt =

t∑

k=1

k∑

s=1

λ̂cskt =
t∑

s=1

t∑

k=s

λ̂cskt = dct . (84)

Thus, we have that (83) and (84) respectively imply (81) and (82).
The next step consitsts in showing that if (x̂0, x̂1, ŷ, Ŷ , ŵ0, ŵ1) ∈ PMC , then there exists

λ̂ such that (x̂0, x̂1, ŷ, Ŷ , λ̂) ∈ PT R . Observe that for each demand dct , variables w0c
kt , w

1c
kt ,

σ 0c
kt and σ 1c

kt related to commodity (c, t) describe a feasible flow of dct units arriving in
node (c, t). Note also that

∑t
k=1 ŵ1c

kt = dct . In what follows we restrain our attention to
the variables w0, w1, since σ 0 and σ 1 can be determined using the values of the former.
According to the well-known flow decomposition theorem of Ford and Fulkerson (1962) any
feasible flow on a network can be decomposed into paths and cycles. In our specific directed
network structure there are no directed cycles, what implies the feasible flow determined by
ŵ0c, ŵ1c can be decomposed into paths λ̂c according to the flow decomposition theorem,
as exemplified in Fig. 2. Such a decomposition can be done by using a flow decomposition
algorithm in a way that (79) and (80) are satisfied. By direct substitution using (79) and (80),
the constraints (35), (36), (37) and (38) are satisfied. It suffices to show that (34) is also
satisfied. We have

t∑

k=1

ŵ1c
kt = dct ,

and by substitution

t∑

s=1

t∑

k=s

λ̂cskt =
t∑

k=1

ŵ1c
kt = dct .

��

Proposition 8 zLP(SP) ≤ zLP(DDP).

Proof The proof consists in showing that both SP and DDP are in fact composed of reformu-
lations for a two-level lot-sizing for each retailer and as DDP gives the convex hull for each
of these sets it provides a better bound as noted in Observation 3. Define both formulations
as extended formulations of OWMR’, i.e. (9)–(15). In order to perform such an adaptation,
the changes in SP and DDP will be the substitution in SP of (46) by

NC∑

c=1

NT∑

r=s

NT∑

t=r

dcrtφ
c
srt = x0cs , ∀ 1 ≤ c ≤ NC, 1 ≤ s ≤ NT (85)
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(a)

(b)
Fig. 2 Flow decomposition example. a Flow represented by w0 and w1. b Flow decomposed into paths λ
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and the replacement in DDP of (74) by

NC∑

c=1

NT∑

k=t

NT∑

j=k

υc
tk j d

c
k j = x0ct , ∀ 1 ≤ c ≤ NC, 1 ≤ t ≤ NT . (86)

Constraints (13) should also be added to both formulations. Denote SP’ and DDP’ the men-
tioned formulations after the changes just described. Note that both SP’ and DDP’ give
a reformulation for each of the two-level lot-sizing problems related to a single retailer,
and they are simply linked by the y variables. We remark that zLP(SP ′) = zLP(SP) and
zLP(DDP ′) = zLP(DDP) as the original variables are simply determined by the other SP and
DDP constraints. It is known from Melo and Wolsey (2010) that DDP’ provides the convex
hull of solutions for eachof these two-level lot-sizing sets and therefore zLP(SP) ≤ zLP(DDP).

��
Corollaries 9 and 10 follow from Propositions 2 to 8.

Corollary 9 zLP(ESWW ) ≤ zLP(SES) ≤ zLP(MC) = zLP(T R) ≤ zLP(SP) ≤ zLP(DDP).

Corollary 10 zLP(ESWW ) ≤ zLP(2LSWW ) ≤ zLP(MC) = zLP(T R) ≤ zLP(SP) ≤
zLP(DDP).

6 Computational experiments

In this section we report on some computational experiments which were carried out to
analyze the behavior of the formulations presented in Sects. 3 and 4. All experiments were
performed on a machine running under Xubuntu x86_64 GNU/Linux, with an Intel Core i7-
4770S 3.10GHz processor, 8Gb of RAMmemory using FICO Xpress 7.9. For all executions
a time limit of 1800 seconds was imposed.

6.1 Instances

Two instance sets were generated, the first one composed of those with invariable trans-
portation costs and the second with variable transportation costs. In order to generate the
instances with invariable transportation costs, we selected a subset of the different para-
meters used in Solyali and Süral (2012) and the costs, which are all time invariant, were
generated as in the referenced paper. Fixed production costs were generated in the interval
q0 ∈ [1500, 4500], fixed transportation costs were generated in the interval q1c ∈ [5, 100],
storage cost at the production site is h0 = 0.5, storage costs at retailer cwere generated in the
interval hc ∈ [0.5, 1.0]. Production cost is p0 = 0 and transportation costs are pc = 0 for
every c. Observe that it is reasonable to assume that the costs are time invariant and besides
that, instances with this sort of cost were among the most challenging ones in Solyali and
Süral (2012). Demands were generated in the interval dct ∈ [5, 100]. With exception of the
storage costs all the parameters are integer valued. The number of retailers were generated as
NC ∈ {50, 100, 150, 200}, while the number of periods as NT ∈ {30, 45, 60}. Five instances
were generated for each possible combination (NC, NT ). Observe that the instances con-
sidered here are at least as large as the larger ones considered in Solyali and Süral (2012)
regarding the number of periods, in which instances were created with NC ∈ {50, 100, 150}
and NT ∈ {15, 30}.

In a real situation, it is not unusual that varying transportation costs may be incurred
when shipping to retailers located at different locations. Therefore, we generated a second
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set of instances with variable transportation costs in order to verify the behavior of the solver
under this circumstance. All data was generated as explained in the previous paragraph with
the exception of the transportation cost, which can assume values pc ∈ [1.5, 2.5] for each
retailer.

6.2 Tested approaches

The following approaches were considered in our computational experiments:

• ESWW: Wagner–Whitin based formulation;
• SES: strengthened echelon stock formulation;
• 2LSWW: two-level lot-sizing Wagner–Whitin based formulation;
• p2LSWW: partial two-level lot-sizing Wagner–Whitin based formulation, which will be

described next;
• MC: multicommodity formulation;
• TR: transportation formulation;
• SP: shortest path formulation;
• DDP: two-level lot-sizing dynamic programming based formulation.

The partial two-level lot-sizing Wagner–Whitin based formulation (p2LSWW) consists in
limiting the amount of inequalities to be inserted into the original formulation in a heuristic
way. Considering time invariant costs, values K 1

c , K
2
c and K 2

c are heuristically calculated for
each retailer c as shown in equations (87), (88) and (89) based on the problem’s cost structure
in order to define the maximum size of the intervals for which inequalities (54), (55) and (56)
will be inserted into the formulation.

K 1
c = max

{

5 , arg min
k∈{1...NT }

∑NC
c=1 d

c
1,NT

NT
× k × h0 ≥ f 0

}

, (87)

K 2
c = max

{

5 , arg min
k∈{1...NT }

dc1,NT

NT
× k × hc ≥ f c

}

, (88)

K 3
c = min{K 1

c , K 2
c }. (89)

6.3 Results for instances with invariable transportation costs

A summary of the results for the instances with invariable transportation costs is presented in
Tables 1 and 2 regarding, respectively, linear relaxation bounds and integer solution results.

In Table 1, the first two columns give respectively the number of retailers and the number of
time periods for each set of instances. The other columns present the linear relaxation results
for each of the following formulations: ESWW, SES, 2LSWW, p2LSWW, MC, TR, SP and
DDP. The columns show the geometric mean of the time spent (time) to solve the linear
relaxation and the arithmetic average of the linear relaxation gap (gapLP ) for the instance
group, with the gap for each instance calculated as 100× zI P−zLP

zI P
being zI P the best known

integer feasible solution and zLP the corresponding linear relaxation bound. The values x
and ∼ in columns time and gapLP , respectively, indicate that the linear relaxation could
not be solved within the 1800s time limit for any of the instances in the group. We remark
that geometric means were generally used in our tables as the values measured may vary
considerably considering different instances in a group. The exception was for the linear
relaxation gaps, as some of them were equal to zero and in this situation the arithmetic
average illustrated better what we proposed to compare. We note that the linear relaxations
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were solved using the solver’s barrier method. Preliminary results showed that such setting
did not improve the solver’s performance when dealing with the integer solutions and we
therefore kept the solver’s standard settings.

The results in Table 1 show that all formulations, with exception of ESWW and SES,
provided very good bounds for the considered instances, with means always below 0.4%.
Note that the linear relaxations could not be solved using 2LSWW for the instances with
NT = 200 and NC = 60. An important observation is that the proposed partial formulation
did not decrease the bounds obtained using 2LSWW, but allowed a significant time reduction
and additional linear programs to be solved within the time limit. MC obtained optimal linear
programming solutions in less mean time, but in certain cases the gaps were slightly worse
than those obtained by SP and DDP. It is noteworthy that both SP and DDP obtained the
same average gaps for all considered instance groups. Based on the experiments, our view
is that MC and p2LSWW offer the best compromise among the obtained linear relaxation
bounds and the time spent.

Table 2 summarizes the results regarding the integer feasible solutions. The first two
columns describe the dimensions of the instances and the other columns present, for each
formulation, the geometric mean of the time spent (time) to solve the instances to optimality,
the geometric mean of the remaining gap (gap) for the unsolved instances and the number
of instances solved to optimality (opt). The value x is present in column time if none of the
instances were solved to optimality and the value ∼ in column gap if a feasible solution
was not encountered for any of the unsolved instances. The superscripts in the values of
the gap indicate the number of instances for which a feasible solution was not encountered:
a (one instance), b (two instances), c (three instances) and d (four instances). The results
show that in general MC outperformed all the other approaches considering the number of
instances solved to optimality as it could solve all the 60 (100%) of them, and it was closely
followed by p2LSWWwhich solved 59 (98.3%). It is noteworthy that p2LSWW performed
best in certain instance groups when we analyze the mean time to solve the instances to
optimality. The two weaker formulations, ESWW and SES, could only solve 3 (5%) and
5 (8.3%) instances to optimality each. Note that probably due to its large size, TR could
solve 53 (88.3%) instances, which was not as many as MC, even though they provide the
same linear relaxation bounds. The efficiency of the two other largest formulations, SP and
DDP, decreased considerably with the increase of the instance sizes confirming what was
also observed in Solyali and Süral (2012). Note that only 42 (70%) instances were solved
using SP and 44 (73.3%) instances using DDP.

6.4 Results for instances with variable transportation costs

Table 3 summarizes the linear relaxation results for the instances with variable transportation
costs. The relative comparison of the formulations is not much different from the case with
invariable transportation costs, as it can be observed in Table 1. For this set of instances, the
mean gap did not reach 0.2% using any of the formulations 2LSWW, p2LSWW, MC, TR,
SP and DDP. Again, the linear relaxations of instances with NT = 200 and NC = 60 could
not be solved using 2LSWW within the time limit. Formulations 2LSWW and p2LSWW
offer the same linear relaxation gaps, but p2LSWW has the advantage of offering the bounds
in less mean time. The mean time to solve the linear relaxation of MC is always smaller
than that to solve the linear relaxation of TR. The gaps of formulations SP and DDP are the
same, and the time spent is usually better for DDP with the exception of some of the smaller
instance groups. Overall, SP and DDP provide better linear relaxation bounds but we remark
that p2LSWW and MC provide bounds that are almost as good in much less time.
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The integer solutions results for this set of instances are summarized in Table 4. It can be
observed that, for this set, p2LSWWoutperformed all the other approacheswhenwe consider
the number of instances solved to optimality, with a total of 59 (98.3%), followed by MC
with 58 (96.7%), TR with 54 (90%), SP with 43 (71.7%), DDP with 42 (70%), 2LSWW
with 24 (40%), SES with 5 (8.3%) and ESWW with 3(5%).

7 Final remarks

In this paper, we considered the one-warehouse multi-retailer problem and compared several
integer programming formulations for the problem. We performed a theoretical comparison
of the formulations based on the provided linear relaxation bounds. After that, computational
experimentswere carried out comparing these formulationswith respect to the provided linear
relaxation bounds and obtained integer solutions. This work complements the literature on
formulations for the OWMR described in Solyali and Süral (2012).

A theoretical study was performed comparing the linear relaxation bounds obtained by the
different formulations. An ordering of the formulations was then established according to the
strength of the obtained bounds. It is noteworthy that the multicommodity formulation can
obtain the same bounds provided by a larger transportation formulation. It remains an open
question whether the dynamic programming based formulation (DDP) strictly dominates the
shortest path formulation (SP) considering the assumption on the costs, as we were not able
to show a strict dominance of DDP over SP and this was not observed in the experimental
results. Observe that we only considered the case in which there is no initial storage and, in
this way, the situation in which initial storage is present remains an open object of study.

The computational results indicate that the multicommodity formulation and a partial
version of the two-level lot-sizing based formulation strengthened with valid inequalities
outperform all the other tested approaches. The results showed that these two formulations
obtained, usingmuch less computational time, linear relaxation bounds which were not much
weaker than those obtained by the strongest ones considering the tested instances. They were
able to solve almost all instances to optimality, a much larger number when compared with
the other approaches. These two formulations seem to be good alternatives to the larger ones
which were previously the best performing approaches, especially as the size of the instances
become larger. They appear to be promising to problems that have the one-warehouse multi-
retailer as a subproblem, for example certain production routing problems (see Adulyasak
et al. 2015).
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