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Abstract Various acceptance sampling plans have been developed for different objectives.
A repetitive group sampling (RGS) plan has been shown to be an efficient and easy-to-
implement scheme for lot sentencing. However, it does not consider the available information
frompreceding samples. As a result, itmay reduce the sampling efficiency in terms of cost and
time. In this study, a modified variables RGS plan is proposed based on the commonly used
capability index Cpk for normally distributed processes with two-sided specification limits
and to consider the sample results from preceding lots. The plan parameters for various
required quality levels and allowable risks are tabulated for practical applications, and the
advantages of the proposed plan is compared with existing variables sampling plans in terms
of operating characteristic curve and average sample size.

Keywords Acceptance sampling · Average sample size · Decision making · Operating
characteristic curve · Process capability indices

1 Introduction

Acceptance sampling is a widely used quality control tool, and it is used to determinewhether
a submitted lot should be accepted or rejected. Depending on different data types, i.e.,
attributes and variables data, two major categories of acceptance sampling plans are avail-
able. Attributes sampling plans are used for the quality characteristics that are determined
on a pass/fail basis, while variables sampling plans are applied for the quality characteris-
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tics that are measured on numerical scales. Since variables sampling plans are based on the
measurement data instead of simply labeling a product as good or bad, they can provide
more information than the attributes sampling plans. Furthermore, while maintaining the
same protection, variables sampling plans may require a smaller sample size than attributes
sampling plans. Consequently, variables sampling plans have been adopted more and more
frequently in practice these days. Nevertheless, neither traditional attributes nor variables
sampling plans can tackle the lot sentencing problem very well in today’s manufacturing
environment, especially when the fraction of defectives needs to be very low with two-sided
specification limits. To encounter this problem, scholars have developed several variables
sampling plans using process capability indices (PCIs). Some works include Pearn and Wu
(2006), Wu and Pearn (2008), Negrin et al. (2009, 2011), Wu (2012), Aslam et al. (2013a, b,
2014), Wu et al. (2012, 2015a), Liu et al. (2014) and Wu and Liu (2014).

The concept of repetitive group sampling (RGS)was firstly introduced bySherman (1965),
who developed a RGS plan for attributes data. The operation of a RGS plan is very similar to a
sequential sampling plan. The decision rule of the RGS is almost as simple as that of a single
sampling plan (SSP), and the performance of the RGS plan is always more efficient than the
SSP. Balamurali et al. (2005) and Balamurali and Jun (2006) extended the attributes RGS
plan to variables inspection for a normally distributed quality characteristic with unilateral
specification limit. The average sample number (ASN) required for the proposed variables
RGS planwas calculated based on known and unknown standard deviation. However, amajor
disadvantage of the RGS plan is that the sampling results of preceding lots are not considered
when making decision on the current lot. Such a sampling plan will reduce its efficiency in
terms of time and cost for inspection.

Wortham and Baker (1976) proposed the concept of multiple dependent state (MDS) sam-
pling for attributes inspection. TheMDS plan belongs to the group of conditional procedures,
and the decision rules are based on not only the information from the current lot but also the
information obtained from preceding lots. Balamurali and Jun (2007) extended the attributes
MDS sampling plan to the variables MDS sampling plan for the quality characteristic with
unilateral specification limit (i.e, for the larger-the-better or smaller-the-better type quality
characteristic). The variables MDS sampling plan was further investigated by Aslam et al.
(2013a) based on the process capability index Cpk by using normal approximation.

To overcome the drawbacks of the RGS plan, this research proposes a modified variables
RGS plan (called Modified-VRGS plan) by considering preceding lots information based
on the process capability index Cpk . The proposed Modified-VRGS plan is an extension of
the conventional variables RGS plan by utilizing the concept of MDS. It can also be viewed
as an extension of the variables MDS plan which considers the RGS concept. In addition,
it can be applied when the quality characteristic follows a normal distribution with two-
sided specification limits. The proposed plan overcomes the disadvantage of the conventional
variablesRGSplan and ismore efficient than the conventional variablesRGSplan. The design
of the proposed sampling plan requires the determination of three plan parameters in order
to meet the quality requirements and to provide protection to the producer and the consumer
simultaneously. Thus, a minimization model is formulated to determine the plan parameters.
The objective function is to minimize the ASN, and two constraints are set to the two-point
condition on the operating characteristic (OC) curve of the proposed plan. Besides, the OC
function, i.e. the probability of acceptance, of the proposed plan is developed based on the
exact sampling distribution of the estimated Cpk .

The organization of this paper is as follows. Section 2 briefly reviews process capability
indices. Section 3proposes amodifiedvariablesRGSplan. The determination and the analysis
of the plan parameters are presented here. A comparison of the proposed plan with several
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existing works is also performed in Sect. 4. An application example is presented in Sect. 5.
Conclusion remarks are made in the last section.

2 Process capability indices

Process capability indices (PCIs) provide numerical measures to examine whether a process
meets the capability requirement, and numerous kinds of PCIs have been developed and
applied for evaluating process performance. The index Cp was designed to measure the
magnitude of the overall process variation relative to the manufacturing tolerance. The Cpk

index was further developed by considering both the magnitude of process variation and the
process location. They are defined as (Kane 1986; Kotz and Lovelace 1998; Palmera and
Tsui 1999):

Cp = USL − LSL

6σ
, (1)

Cpk = Min

{
USL − μ

3σ
,
μ − LSL

3σ

}
= d − |μ − M |

3σ
, (2)

whereμ is the process mean and σ is the standard deviation of the quality characteristic, USL
and LSL are the upper and lower specification limits, respectively, d = (USL − LSL)/2 is
half-length of the specification interval, and M = (USL+LSL)/2 is the mid-point between
the lower and the upper specification limits.

The index Cpk has been treated as a yield-based index since it provides bounds on the
process yield, 100[2�(3Cpk) − 1]% ≤ Y ield% < 100�(3Cpk)%, for a normally dis-
tributed process (Boyles 1991), where �(·) is the cumulative distribution function (CDF)
of the standard normal distribution. Thus, a minimum Cpk value is usually specified in a
purchasing contract. The process is deemed incapable if the prescribed minimum Cpk is not
met. Montgomery (2009) suggested certain minimum capability requirements for processes
under some designated quality conditions. In particular, Cpk ≥ 1.33 for existing processes;
Cpk ≥ 1.50 for new processes; Cpk ≥ 1.50 for existing processes on safety, strength, or
critical parameter; andCpk ≥ 1.67 for newprocesses on safety, strength, or critical parameter.

The estimator of Cpk , i.e. Ĉ pk , can be calculated by replacing μ and σ with their
conventional estimators, sample average X̄ = ∑n

i=1 Xi/n and sample standard deviation

S = [∑n
i=1 (Xi − X̄)2/(n − 1)

]1/2
,which are usually obtained fromaprocess that is demon-

strably stable (under statistical control).

Ĉ pk = Min

{
USL − X̄

3S
,
X̄ − LSL

3S

}
= d − |X̄ − M |

3S
. (3)

The construction of confidence intervals for Cpk has been investigated extensively. Some
works include Franklin and Wasserman (1992), Kushler and Hurley (1992), Nagata and
Nagahata (1994), Tang et al. (1997), Hoffman (2001), Mathew et al. (2007), and Wu et al.
(2009a). Because the sampling distribution of the estimated Cpk is rather complicated, all of
the above methods are approximate or asymptotic.

Under the normality assumption, Pearn and Lin (2004) are the first to obtain an exact and
explicit form of the cumulative distribution function (CDF) of the natural estimator Ĉ pk . The
integration technique similar to that presented in Vännman (1997) is applied, and the CDF
of Ĉ pk is:
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FĈpk
(y) = 1 −

∫ b
√
n

0
G

(
(n − 1)(b

√
n − t)2

9ny2

) [
φ(t + ξ

√
n) + φ(t − ξ

√
n)

]
dt, (4)

for y > 0, where b = d/σ = 3Cpk+|ξ |, ξ = (μ−M)/σ ,G(·) is the CDF of the chi-squared
distribution with degrees of freedom n−1, χ2

n−1, and φ(·) is the probability density function
of the standard normal distribution N (0, 1).

Details about PCIs and their statistical properties were presented by Kotz and Johnson
(1993) and Kotz and Lovelace (1998). Kotz and Johnson (2002) and Wu et al. (2009b)
provided an overview of theory and practice on PCIs and discussed the recent developments
of process capability analysis. Yum and Kim (2011) provided an extensive bibliography of
papers on PCIs.

3 The modified variables repetitive group sampling plan

3.1 Concept and procedure of the sampling plan

The operating procedures of the proposed Modified-VRGS plan is depicted in Fig. 1 and
described as follows:

1. Select a random sample of size n from the submitted lot.
2. Calculate the estimator ofCpk , Ĉ pk = (d−|X̄ −M |)/3S, based on the collected sample

{X1, X2, . . . , Xn}.
3. If Ĉ pk ≥ ka (critical value for acceptance), accept the lot. If Ĉ pk ≤ kr (critical value for

rejection), reject the lot.
4. If kr < Ĉ pk < ka , consider the inspection result of the immediate precedingm lots. If the

preceding m lots were all accepted (m > 0), accept the lot. If any one of the preceding
m lots was rejected, go back to Step 1 and make the judgment again.

3.2 Probability of acceptance functions

Five probability functions for developingModified-VRGS plan based onCpk are first defined
here. The probability of directly accepting the lot after the first sampling, Pa(Cpk), is
described as follows:

Pa(Cpk) = P(Ĉ pk ≥ ka) = 1 − P(Ĉ pk < ka) = 1 − FĈpk
(ka)

=
∫ b

√
n

0
G

(
(n − 1)(b

√
n − t)2

9 · n · k2a

)
× [

φ(t + ξ
√
n) + φ(t − ξ

√
n)

]
dt. (5)

Similarly, the probability of directly rejecting the lot after the first sampling, Pr (Cpk), is:

Pr (Cpk) = P(Ĉ pk < kr ) = FĈpk
(kr )

= 1 −
∫ b

√
n

0
G

(
(n − 1)(b

√
n − t)2

9 · n · k2r

)
× [

φ(t + ξ
√
n) + φ(t − ξ

√
n)

]
dt. (6)

Furthermore, the total probability of acceptance based on the first sampling, P1(Cpk), can be
calculated by summing the probability of directly accepting the lot after the first sampling and
the probability of acceptance with the consideration of the inspection result of m preceding
lots.
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Fig. 1 Operating procedures for the proposed Modified-VRGS plan

P1(Cpk) = P(Ĉ pk ≥ ka) + P(kr < Ĉ pk < ka) · P(Ĉ pk ≥ ka)
m

= Pa(Cpk) + [
1 − Pa(Cpk) − Pr (Cpk)

] · [
Pa(Cpk)

]m
. (7)

The probability of repetitive sampling, P2(Cpk), is described as follows:

P2(Cpk) = P(kr < Ĉ pk < ka) · (1 − P(Ĉ pk ≥ ka)
m)

= [
1 − Pa(Cpk) − Pr (Cpk)

] · [
1 − (Pa(Cpk))

m]
. (8)

Thus, the probability of accepting the lot, i.e., the OC function, of the proposed Modified-
VRGS plan, πA(Cpk), can be derived as:

πA(Cpk) = P1(Cpk) + P2(Cpk)P1(Cpk) + [
P2(Cpk)

]2
P1(Cpk) + ...

= P1(Cpk)

1 − P2(Cpk)
= Pa(Cpk) + [

1 − Pa(Cpk) − Pr (Cpk)
] · [

Pa(Cpk)
]m

1 − [
1 − Pa(Cpk) − Pr (Cpk)

] · [
1 − (Pa(Cpk))m

] . (9)

It is worth to note that (i) as m approaches to infinite,
[
Pa(Cpk)

]m will approach to 0,
then P1(Cpk) = Pa(Cpk) and P2(Cpk) = 1 − Pa(Cpk) − Pr (Cpk). The OC function of
the proposed plan will reduce to the conventional variables RGS plan, i.e., πA(Cpk) =
Pa(Cpk)/[Pa(Cpk) + Pr (Cpk)]; (ii) if ka = kr , then P1(Cpk) = Pa(Cpk), P2(Cpk) = 0,
and πA(Cpk)will be equal to Pa(Cpk), which is the probability of accepting the lot using the
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variables SSP. To summarize, both the variables RGS plan and the proposedModified-VRGS
plan will reduce to the conventional variables SSP if ka = kr .

In general, both the producer and the consumer will specify their quality requirements
and allowable risks in the contract. That is, the lot acceptance probability should be at
least 1 − α if the submitted lot quality is at the acceptable quality level (AQL), and the lot
acceptance probability should be nomore thanβ if the submitted lot quality is at the rejectable
quality level (RQL). Based on the two-points condition on the OC curve, (CAQL, 1− α) and
(CRQL, β), two required equations regarding the lot acceptance probability can be expressed
as follows, where CAQL and CRQL denote the values of the AQL and RQL in terms of the
Cpk index, respectively.

πA(CAQL) = P1(CAQL)

1 − P2(CAQL)
≥ 1 − α, (10)

πA(CRQL) = P1(CRQL)

1 − P2(CRQL)
≤ β. (11)

3.3 Mathematical models for the plan parameters

The proposed Modified-VRGS plan was characterized by four plan parameters, n, m, kr and
ka . As pointed by Balamurali and Jun (2007), the value of m can be considered as a fixed
number depending on past data availability, and considering the cases of m = 1, 2, 3 may be
sufficient in practice. However, multiple solutions may still be resulted if only Eqs. (10) and
(11) are used to determine the other three parameters n, kr and ka . It is desirable to design
a sampling plan with minimum sample size required for inspection. Based on the findings
from Balamurali et al. (2005), Balamurali and Jun (2009), Wu (2012) and Wu et al. (2015a),
the problem can be solved by using the average sample number (ASN) of the sampling plan
as the objective function and the two probability of acceptance functions as the constraint
equations. The ASN is the expected number of sampled units per lot for making decisions.
That is, an optimal mathematical model is constructed to find the minimum ASN while
satisfying both the producer and the consumer’s risks. The ASN under the Modified-VRGS
plan is:

ASN(Cpk) = n + nP2(Cpk) + n
[
P2(Cpk)

]2 + · · · = n

1 − P2(Cpk)
. (12)

It can be seen that the ASN is a function of the index value, and several options are available
to set the objective function. The common option is to minimize the ASN at AQL or RQL,
or to minimize the average value of ASNs at both AQL and RQL.

For example, if the objective function is set to minimize the average value of ASNs at
the two quality levels, AQL and RQL, i.e., ASNAR = [ASN(CAQL) + ASN(CRQL)]/2, the
optimization problem below can be applied to determine the plan parameters (n, kr , ka):

MIN ASNAR = 1

2

[
n

1 − P2(CAQL)
+ n

1 − P2(CRQL)

]

s.t.

πA(CAQL) = P1(CAQL)

1 − P2(CAQL)
≥ 1 − α,

πA(CRQL) = P1(CRQL)

1 − P2(CRQL)
≤ β,

n > 1, ka > kr > 0. (13)
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Table 1 ASNR, ASNA and ASNAR values for the proposed Modified-VRGS plan under CAQL = 1.33 and
CRQL = 1.00

α β m = 1 m = 2 m = 3

ASNA ASNR ASNAR ASNA ASNR ASNAR ASNA ASNR ASNAR

0.01 0.01 74.87 79.85 77.77 81.43 81.65 82.28 86.89 83.17 86.17

0.05 50.62 70.00 60.33 53.08 70.69 61.89 56.81 71.72 64.27

0.10 40.88 63.73 52.47 41.97 64.02 53.13 44.84 64.76 54.87

0.05 0.01 67.69 56.34 63.66 75.86 58.91 69.88 81.24 60.49 74.12

0.05 42.55 45.18 44.13 46.12 46.49 46.68 49.75 47.84 49.35

0.10 32.72 38.93 35.88 34.62 39.69 37.24 37.31 40.79 39.19

0.10 0.01 63.42 47.06 57.45 71.98 49.84 64.27 76.98 51.27 68.41

0.05 38.09 35.72 37.39 42.05 37.23 40.31 45.44 38.53 42.90

0.10 28.36 29.68 29.19 30.55 30.61 30.80 33.02 31.70 32.67

Table 2 ASNR, ASNA and ASNAR values for the proposed Modified-VRGS plan under CAQL = 1.50 and
CRQL = 1.33

α β m = 1 m = 2 m = 3

ASNA ASNR ASNAR ASNA ASNR ASNAR ASNA ASNR ASNAR

0.01 0.01 371.91 437.57 404.79 405.61 446.13 426.39 435.10 453.75 445.88

0.05 255.29 391.88 325.58 268.87 395.03 333.41 289.28 399.71 345.27

0.10 208.19 361.00 288.60 215.11 362.36 292.25 231.17 365.49 300.93

0.05 0.01 329.04 295.20 316.08 371.65 308.84 347.05 400.88 317.82 369.00

0.05 208.45 240.72 224.76 227.37 247.87 238.01 247.08 255.19 251.97

0.10 161.11 209.41 185.27 171.69 213.79 192.74 186.56 219.75 203.18

0.10 0.01 304.34 239.97 278.59 349.51 255.06 312.89 377.00 263.49 334.48

0.05 183.04 183.97 184.40 203.83 192.43 199.54 222.27 199.78 213.20

0.10 136.34 153.59 145.13 148.17 159.06 153.88 161.78 165.21 163.99

If the objective function is to minimize the ASN at Cpk = CAQL or Cpk = CRQL, then Eq.
(13) can be changed to Eq. (14) or (15), respectively, in the optimization problem to solve
the plan parameters (n, kr , ka).

MIN ASNA = ASN(CAQL) = n + nP2(CAQL) + nP2(CAQL)2

+ · · · = n

1 − P2(CAQL)
(14)

MIN ASNR = ASN(CRQL) = n + nP2(CRQL) + nP2(CRQL)2

+ · · · = n

1 − P2(CRQL)
(15)

The plan parameters of the proposed plan are determined under three different objective
functions (i.e., ASNA, ASNR, and ASNAR) to illustrate and compare the performances.
Tables 1, 2, 3 and 4 display the ASN values for these three different objective functions
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Table 3 ASNR, ASNA and ASNAR values for the proposed Modified-VRGS plan under CAQL = 1.67 and
CRQL = 1.33

α β m = 1 m = 2 m = 3

ASNA ASNR ASNAR ASNA ASNR ASNAR ASNA ASNR ASNAR

0.01 0.01 108.14 118.75 113.79 117.72 121.33 120.24 125.83 123.55 125.89

0.05 73.43 104.79 89.22 77.09 105.76 91.48 82.65 107.23 94.94

0.10 59.47 95.75 78.04 61.16 96.17 79.03 65.46 97.20 81.56

0.05 0.01 97.16 82.64 91.88 109.16 86.44 100.88 117.15 88.83 107.09

0.05 61.19 66.58 64.14 66.46 68.54 67.88 71.84 70.54 71.80

0.10 47.12 57.52 52.35 49.95 58.68 54.37 53.97 60.32 57.26

0.10 0.01 90.70 68.47 82.35 103.32 72.60 92.25 110.78 74.79 98.34

0.05 54.47 52.10 53.83 60.29 54.36 58.11 65.33 56.32 61.92

0.10 40.55 43.33 42.11 43.79 44.75 44.50 47.48 46.39 47.28

Table 4 ASNR, ASNA and ASNAR values for the proposed Modified-VRGS plan under CAQL = 2.00 and
CRQL = 1.67

α β m = 1 m = 2 m = 3

ASNA ASNR ASNAR ASNA ASNR ASNAR ASNA ASNR ASNAR

0.01 0.01 163.57 184.65 174.35 178.19 188.50 184.01 190.74 191.87 192.59

0.05 111.53 163.92 138.10 117.23 165.36 141.54 125.86 167.53 146.78

0.10 90.57 150.27 121.44 93.30 150.90 122.99 100.03 152.39 126.82

0.05 0.01 146.05 126.87 138.92 164.46 132.72 152.54 176.87 136.48 162.05

0.05 92.18 102.68 97.66 100.28 105.72 103.39 108.64 108.84 109.40

0.10 71.07 88.93 80.01 75.49 90.76 83.16 81.76 93.30 87.62

0.10 0.01 135.85 104.30 123.69 155.27 110.72 138.72 166.89 114.19 148.05

0.05 81.60 79.57 81.22 90.55 83.12 87.76 98.37 86.19 93.64

0.10 60.74 66.26 63.68 65.76 68.51 67.37 71.51 71.08 71.68

under various α, β and m with different combinations of (CAQL,CRQL =(1.33, 1.00), (1.50,
1.33), (1.67, 1.50) and (2.00, 1.67), respectively.

Based on Tables 1–4, we find that ASNR is not always less than ASNA under the proposed
plan. For example, ASNA is smaller than ASNR when (CAQL,CRQL) = (1.33, 1.00) and
(α, β) = (0.01, 0.05), but ASNA is larger than ASNRwhen (CAQL,CRQL) = (1.33, 1.00)
and (α, β) = (0.05, 0.01). Since ASNAR is always between ASNA and ASNR, this study
adopts ASNAR as the objective function for the proposed plan and uses it for further analysis.

3.4 Result analysis and application

This study applies Matlab 7.0 to solve the plan parameters (n, kr , ka) and calculate ASNAR

under different circumstances. Tables 5, 6 and 7 show the results of the three plan parameters
(n, kr , ka) and the corresponding ASNAR under various producer’s risk (α), consumer’s risk
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Table 5 Plan parameters (n, kr , ka) and ASNAR for the proposed Modified-VRGS plan when m = 1

α β CAQL = 1.33 CAQL = 1.50
CRQL = 1.00 CRQL = 1.33

n kr ka ASNAR n kr ka ASNAR

0.01 0.01 56 1.0582 1.3441 77.77 281 1.3522 1.5019 404.79

0.05 40 1.0195 1.3312 60.33 207 1.3318 1.4922 325.58

0.10 33 0.9969 1.3219 52.47 176 1.3198 1.4856 288.60

0.05 0.01 46 1.0996 1.3790 63.66 219 1.3724 1.5221 316.08

0.05 30 1.0561 1.3823 44.13 144 1.3474 1.5210 224.76

0.10 24 1.0292 1.3834 35.88 115 1.3315 1.5199 185.27

0.10 0.01 41 1.1258 1.4010 57.45 191 1.3854 1.5344 278.59

0.05 26 1.0821 1.4153 37.39 119 1.3591 1.5392 184.40

0.10 20 1.0543 1.4240 29.19 90 1.3416 1.5423 145.13

α β CAQL = 1.67 CAQL = 2.00

CRQL = 1.33 CRQL = 1.67

n kr ka ASNAR n kr ka ASNAR

0.01 0.01 81 1.3853 1.6817 113.79 122 1.7194 2.0085 174.35

0.05 58 1.3452 1.6666 89.22 89 1.6802 1.9922 138.10

0.10 49 1.3217 1.6560 78.04 75 1.6572 1.9809 121.44

0.05 0.01 65 1.4275 1.7191 91.88 98 1.7598 2.0461 138.92

0.05 43 1.3814 1.7211 64.14 64 1.7136 2.0465 97.66

0.10 34 1.3525 1.7213 52.35 51 1.6845 2.0459 80.01

0.10 0.01 58 1.4543 1.7425 82.35 86 1.7856 2.0693 123.69

0.05 36 1.4073 1.7560 53.83 54 1.7379 2.0811 81.22

0.10 28 1.3770 1.7643 42.11 41 1.7067 2.0885 63.68

(β) and quality levels (CAQL,CRQL) when m = 1,m = 2 and m = 3, respectively. For
example, when m = 2, (CAQL,CRQL) = (1.67, 1.33) and (α, β) = (0.05, 0.05), we can
check Table 6 to know that a sample of size 46 should be taken from the submitted lot, and
two critical values are kr = 1.3887 and ka = 1.6718. This implies that the calculated Ĉ pk

based on the collected sample could then be compared with ka and kr for making decision on
the submitted lot. The lot should be accepted if Ĉ pk ≥ 1.6718, and rejected if Ĉ pk ≤ 1.3887.
If Ĉ pk is between 1.3887 and 1.6718, sentence the lot based on the results of the previous
two lots.

It can be found from Tables 5, 6 and 7 that when either α or β increases, both n and
ASNAR decrease. This is because the producer or the consumer’s risk endurance level
increases and it is not necessary to examine a large sample. When the difference between
CAQL and CRQL becomes smaller, both n and ASNAR will increase because more samples
are demanded to better understand the quality information and to avoid judgment errors if
acceptable and rejectable quality levels are similar. Moreover, it will require a larger sample
size to extract the quality information of the submitted lot when the required quality level is
higher.
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Table 6 Plan parameters (n, kr , ka) and ASNAR for the proposed Modified-VRGS plan when m = 2

α β CAQL = 1.33 CAQL = 1.50
CRQL = 1.00 CRQL = 1.33

n kr ka ASNAR n kr ka ASNAR

0.01 0.01 60 1.0659 1.3112 82.28 301 1.3567 1.4866 426.39

0.05 41 1.0242 1.2929 61.89 216 1.3348 1.4744 333.41

0.10 34 0.9998 1.2796 53.13 181 1.3219 1.4661 292.25

0.05 0.01 51 1.1095 1.3379 69.88 244 1.3782 1.5025 347.05

0.05 32 1.0628 1.3337 46.68 155 1.352 1.4976 238.01

0.10 25 1.0340 1.3283 37.24 121 1.3353 1.4932 192.74

0.10 0.01 47 1.1365 1.3541 64.27 218 1.3917 1.512 312.89

0.05 28 1.0892 1.3598 40.31 130 1.3641 1.5122 199.54

0.10 21 1.0594 1.3607 30.80 97 1.3459 1.5112 153.88

α β CAQL = 1.67 CAQL = 2.00

CRQL = 1.33 CRQL = 1.67

n kr ka ASNAR n kr ka ASNAR

0.01 0.01 87 1.3936 1.6488 120.24 132 1.7277 1.9774 184.01

0.05 61 1.3503 1.6282 91.48 93 1.6855 1.956 141.54

0.10 50 1.3250 1.6136 79.03 77 1.6608 1.941 122.99

0.05 0.01 73 1.4380 1.6777 100.88 109 1.7704 2.0067 152.54

0.05 46 1.3887 1.6718 67.88 69 1.7214 1.9995 103.39

0.10 35 1.3581 1.6654 54.37 53 1.6906 1.9925 83.16

0.10 0.01 66 1.4657 1.6951 92.25 98 1.7971 2.0243 138.72

0.05 39 1.4152 1.6996 58.10 58 1.7463 2.0272 87.76

0.10 29 1.3831 1.6998 44.50 43 1.7135 2.0267 67.37

4 Comparison analysis and discussion

4.1 Operating characteristic (OC) curve

TheOCcurve depicts the probability of acceptance under different quality levels, for instance,
defect rate or the value of the capability index, and it shows the discriminatory power for
a sampling plan. A sampling plan has a better discriminatory power when its OC curve
approaches the ideal OC curve. That is, the larger the slope of the OC curve is, the higher
the discriminatory power is.

In order to investigate the behavior and the performance of the proposed Modified-VRGS
plan, we examine the OC curve with several existing variables sampling plans based on the
index Cpk , including variables SSP (Pearn and Wu 2007), variables resubmitted sampling
plan (Wu et al. 2012), variables MDS plan (Wu et al. 2015b), and variables RGS plan (Wu
et al. 2015a). Figure 2 shows the OC curves of the variables SSP, the variables resubmitted
plan with r = 2, the variables MDS plan with m = 1, 2, the variables RGS plan, and the
proposed Modified-VGRS plan with m = 1, 2 under the same sample size n = 50. The
critical value k = 1.30 is used for the variables SSP and the variables resubmitted plan, and
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Table 7 Plan parameters (n, kr , ka) and ASNAR for the proposed Modified-VRGS plan when m = 3

α β CAQL = 1.33 CAQL = 1.50
CRQL = 1.00 CRQL = 1.33

n kr ka ASNAR n kr ka ASNAR

0.01 0.01 64 1.0726 1.2971 86.17 321 1.3606 1.4802 445.88

0.05 44 1.0319 1.2767 64.27 230 1.3394 1.4672 345.27

0.10 36 1.0080 1.2616 54.87 193 1.3267 1.4582 300.93

0.05 0.01 55 1.1158 1.3214 74.12 262 1.3820 1.4947 369.00

0.05 34 1.0708 1.3129 49.35 168 1.3571 1.4878 251.97

0.10 27 1.0430 1.3041 39.19 131 1.3413 1.4819 203.18

0.10 0.01 50 1.1423 1.3366 68.41 235 1.3952 1.5037 334.48

0.05 30 1.0967 1.3369 42.90 141 1.3690 1.5014 213.20

0.10 22 1.0681 1.3333 32.67 106 1.3519 1.4981 163.99

α β CAQL = 1.67 CAQL = 2.00

CRQL = 1.33 CRQL = 1.67

n kr ka ASNAR n kr ka ASNAR

0.01 0.01 92 1.4007 1.6347 125.89 140 1.7349 1.9642 192.59

0.05 65 1.3587 1.6121 94.94 99 1.6939 1.9410 146.78

0.10 53 1.3339 1.5959 81.56 82 1.6697 1.9245 126.82

0.05 0.01 78 1.4449 1.6611 107.09 117 1.7773 1.991 162.05

0.05 49 1.3975 1.6509 71.80 74 1.7304 1.9798 109.4

0.10 38 1.3681 1.6411 57.26 58 1.7011 1.9695 87.62

0.10 0.01 71 1.472 1.6775 98.34 106 1.8034 2.0075 148.05

0.05 43 1.4235 1.6765 61.92 63 1.7549 2.0053 93.64

0.10 32 1.3927 1.6722 47.28 47 1.7237 2.0003 71.68

two critical values (ka = 1.30, kr = 1.10) are used for the variables MDS plan, the variables
RGS plan and the proposed Modified-VGRS plan. It can be seen that the OC curves of the
proposed plan are closer to the ideal curve than the OC curves of above-mentioned sampling
plans. Thus, the proposed plan has a better discriminatory power for helping the producer
and the consumer in lot sentencing.

4.2 Average sample number

In addition to the OC curve analysis, this research also examines the average sample number
(ASN) required for inspection using existing variables sampling plans based on the index
Cpk , including variables SSP, resubmitted sampling plan, MDS plan, RGS plan, and the
Modified-VRGS plan proposed in this paper.

As noted before, we select ASNAR as the objective function for the proposed plan. This
study also calculates the ASN for these sampling plans under the same conditions. Note that
the ASNs for the variables SSP and MDS are just the sample size n, the ASNs under the
variables resubmitted sampling plan with r = 2, 3, the variables RGS plan and the proposed
Modified-VRGS plan with m = 1, 2, 3 are as shown in Tables 8, 9, 10 and 11. For instance,
as can be seen in Table 10, when (CAQL,CRQL) = (1.67, 1.33), (α, β) = (0.05, 0.05), the
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Fig. 2 OC curves of the variables SSP, resubmitted plan, MDS plan, RGS plan and the proposed Modified-
VGRS plan under n = 50

ASN under the variables SSP is 117, the ASNs under the variables resubmitted sampling
plan are 139.10 and 167.89 for r = 2 and 3, the ASNs under the variables MDS plan are
117, 119 and 128 for m =1, 2 and 3, the ASN under the variables RGS plan is 77.93, and
the ASNs under the Modified-VRGS plan are 64.14, 67.88 and 71.80 for m =1, 2 and 3,
respectively. It can be observed that under fixed quality requirements (CAQL,CRQL) and
(α, β), no matter m is 1, 2 or 3, the ASNs under the Modified-VRGS plan are all less than
those under all the other sampling plans considered. It implies that the proposed Modified-
VRGS plan requires smaller samples for inspection than all the other sampling plans under
the same conditions while providing the same required protection to the producer and the
consumer. The inspection cost and time can thus be reduced by applying theModified-VRGS
plan.

5 An application example

To demonstrate the practical applications of the proposed plan, an example of Printed Circuit
Boards (PCBs) taken fromWu et al. (2008) is presented. Thickness of the PCB product is the
key characteristic. For a particularmodel of PCBs, the lower and upper specification limits are
LSL = 13.5µm and USL = 28.5µm, respectively. Suppose the values of (CAQL,CRQL)

based on the index Cpk are set to (1.33, 1.00) and (α, β) risks are set to (0.05, 0.05) in the
contract. By checking Table 6, the plan parameters of the proposed plan with m = 2 can
be found to be (n, kr , ka) = (32, 1.0628, 1.3337). That implies that a sample size of 32
should be taken from the submitted lot, and two critical values for rejection and acceptance
are kr = 1.0628 and ka = 1.3337, respectively.

The thickness data of the inspected 32 samples is displayed in Table 12, and the normal
probability plot is depicted in Fig. 3. The data analysis results justify that the data is fairly
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Table 12 Thickness data of the inspected 32 samples (Unit: µm)

20.320 21.771 24.095 21.934 18.150 19.285 18.655 18.995

20.938 15.893 23.478 20.804 20.320 20.929 23.800 22.586

22.141 21.751 21.849 18.734 21.133 15.359 18.257 24.208

24.106 19.987 23.572 22.005 18.246 22.986 17.678 21.666

Fig. 3 Normal probability plot of the collected data

close to the normal distribution with p-value> 0.10 based on the Anderson–Darling test. The
sample mean and sample standard deviation are calculated as X̄ = 20.801 and S = 2.360,
which yield the estimator ofCpk , Ĉ pk = 1.0312.According to the decision rule, the submitted
lot should be rejected in this case since Ĉ pk < kr = 1.0628.

In contrast, the lot should be accepted if Ĉ pk ≥ ka = 1.3337. If 1.0628 < Ĉ pk < 1.3337,
the decision on the submitted lot must be made by considering the inspection results of the
previous two lots. If the preceding two lots were all accepted, accept the submitted lot. If any
one of the two preceding lots was rejected, take a new sample with the same size n = 32
from the submitted lot and make the judgment again.

6 Conclusions

The RGS plans are available in the literature for judging the acceptability of a lot and have
been shown to be superior to the single sampling plans. However, the previous RGS plans
do not consider the sampling results of preceding lots, and as a result, reduce their sampling
efficiency. In this research, a new plan (called Modified-VRGS plan) is developed for lot
sentencing by considering the information of the current lot as well as the sample results
from preceding lots. The proposed plan adopts the process capability index Cpk to tackle
normally distributed processes with two-sided specification limits. The performance of the
proposed plan is also compared with existing variables sampling plans based on the Cpk
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index, including the variables SSP, the variables resubmitted sampling plan, the variables
MDS plan and the variables RGS plan, in terms of operating characteristic (OC) curve
and average sample number (ASN). The results show that the OC curves of the proposed
Modified-VRGS plan are closer to the ideal OC curve and the ASNs are less than those
under all the other sampling plans considered. Therefore, the proposedModified-VRGS plan
has both the advantages of better discriminatory power and smaller sample size than those
existing sampling plans. In other words, the proposed plan can help both the producer and
the consumer to evaluate the quality of a lot using a smaller sample and providing the same
protection.

The Modified-VRGS plan proposed in this research is based on the process capability
index Cpk , which assumes that the quality characteristic is normally distributed. In practice,
however, not all product quality characteristics follow normal distributions. Thus, variables
RGS plans for non-normal distributions may be constructed in the future. Even though Cpk

is a very popular yield-based capability index, it does not consider quality loss due to the
deviation of μ from the target value T . The quality loss issue can be incorporated in the
future to develop a more comprehensive variables sampling plan.
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