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Abstract We provide a unifying framework synthesizing the dual spaces of production and
value used in DEA efficiency measurement with some well-known linear programming (LP)
problems. Specifically, we make use of the technology matrix to map intensity variables into
input–output space, and the adjoint transformation of the technology matrix to map input–
output prices into prices of intensity variables. We show how the diet problem, a classical
LP problem, is related to DEA and also use the adjoint matrix to demonstrate a procedure
for pricing efficient decision-making units. We further illustrate the relationship between
benefit-of-the-doubt aggregation and the diet problem.

Keywords DEA ·Diet problem ·Benefit-of-the-doubt · Primal ·Dual · Linear programming

1 Introduction

The idea that economic models have a primal (quantity) and a dual (price) representation
was developed by R.W. Shephard to address the data realities available to those pursuing
applied research in economics. He noted that ‘statistical studies of cost functions are generally
more accessible than corresponding empirical investigations of production functions, because
economic data are most frequently in price and monetary terms’(Shephard 1953, p. 28).
Dorfman, Samuelson and Solow elaborate on this idea in their 1958 book, p. 38:
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Fig. 1 Linear mapping in primal and dual space

It happens that mathematical linear-programming problems come in pairs; every math-
ematical linear-programming problem is intimately related to another problem called
its “dual”. This statement would be no more than an interesting mathematical curiosity
if it were not the fact that if an economic problem can be formulated as a linear-
programming problem, then there will generally be a related economic problem that
corresponds to the dual.

Linear programming (LP) and Data Envelopment Analysis (DEA)1 models also have
primal and dual formulations, which can be elucidated in the four-corner diagram in Fig. 1:2

In Fig. 1 we let �1 and �2 be two linear spaces and T a linear mapping from �1 into
�2. The dual spaces are denoted by (�1)

∗ and (�2)
∗ and the adjoint operator is T ∗ mapping

(�2)
∗ into (�1)

∗. The mapping in the primal space is:

Tλ1 � λ2, λ1 ∈ �1, λ2 ∈ �2

and its adjoint operator in the dual space is:

T ∗λ∗
2 � λ∗

1, λ∗
1 ∈ (�1)

∗, λ∗
2 ∈ (�2)

∗.

Shephard (1970, pp. 11–12) also noted ‘the dual problems in linear programming, one for
imputing input prices and another for imputing output prices, are special forms of the first
two of the three dualities introduced for determination of shadow prices, withmore restrictive
constraints for the prices imputed’.

Although in DEA the mapping �1 into �2 is widely used in applied work, only recently
have there been attempts to relate its structural formulation to other known LP modes. Färe
and Grosskopf (2002) explore the relation between the primal DEA model and Shephard’s
distance function. Färe et al. (2011) relate the diet problem to a DEA version of the profit
maximization problem. Färe et al. (2013) and Färe and Zelenyuk (2015) study the rela-
tionship between linear programming theory and DEA-based pricing of decision-making
units (DMU). Färe and Karagiannis (2014) explore the relation between benefit-of-the-doubt

1 Charnes et al. (1978).
2 This is one of our interpretations of Magill and Quinzii (1996), Figure 13.1.
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(BoD) aggregation and the diet problem. As we will show in this paper, all these problems
can be integrated into our four-corner diagram. To do this we employ the adjoint transfor-
mation of technology, a generalization of the more familiar primal and dual representations
of technology developed by Shephard (1953, 1970).

2 Main results

Denote inputs by x ∈ �N+ and outputs by y ∈ �M+ and their corresponding prices by
w ∈ �N+ and p ∈ �M+ , respectively. In addition, let the intensity vectors be z ∈ �K+ and
their corresponding prices denoted by q ∈ �K+ . By noticing that the dual space of the real
numbers is the set of real numbers, i.e., � = �∗, our four-corner diagram becomes Fig. 2.

In the finite dimension case, the adjoint operator T ∗ is just the transpose of T . Now
with T being the technology matrix, the primal mapping transforms intensity variables into
input/output vectors:

T z � (x, y)

where the DEA technology is of the form:

{(x, y) : ∑K
k=1 zk xkn � xn, n = 1, . . . , N .

∑K
k=1 zk ykm � ym, m = 1, . . . , M.

zk � 0, k = 1, . . . , K } (1)

using the input–output data for the k = 1, . . . , K DMU:s. The intensity variables are zk, k =
1, . . . , K , one for each DMU.

On the other hand, the dual mapping T ∗ transforms input and output prices into the prices
of the intensity variables. The DEA formulation of the adjoint mapping is given by

{

(q1, . . . , qk) :
M∑

m=1

pm ykm −
N∑

n=1

wnxkn � qk, k = 1, . . . , K , qk � 0

}

. (2)

Fig. 2 Adjoint transformations in primal and dual space
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With the primal technology from (1) we may introduce a number of optimization problems
including:
Cost Minimization:

min
x

wx s.t. (1)

Revenue Maximization:

max
y

py s.t. (1)

and Profit Maximization3

max
x,y

py − wx s.t. (1)

In this paper the primal problem we choose to study is the DEA formulation of cost
minimization, thus for DMU k

′
, the individual DMU under evaluation, we have

min
x,z

wx s.t.
∑K

k=1 zk xkn � xn, n = 1, . . . , N . (3)

∑K
k=1 zk ykm � yk′m, m = 1, . . . , M.

zk � 0, k = 1, . . . , K

Note that we are solving for the cost minimizing input vector, hence there is no k
′
on x on

the RHS of the input constraint.
Associated with this problem there is a dual linear programming problem for each DMU,

referred to by Färe and Grosskopf (2002) as the Shephard output pricing model, see also
Shephard (1970, p. 290):

max
p

pyk′ s.t.
M∑

m=1

pm yk′m −
N∑

n=1

wnxk′n � 0, (4)

where the solution yields p∗, which is the shadow price vector for the outputs y of the DMU
under evaluation.

The dual mapping in (2) is a model for pricing DMUs.4 For example, if input and output
prices are known then the ‘price’ of DMU k′ equals

qk′ =
M∑

m=1

pm yk′m −
N∑

n=1

wnxk′n . (5)

This approach for pricing DMUsmay be used to retrieve the virtual price of an efficient DMU
and in this sense provide useful input in determining the premium (discount) an acquiring firm
may be willing to pay for a target company being considered under mergers and acquisitions.

In Fig. 3 we have summarized the optimization problems associated with the four corners.
The optimization problems on the left-hand side of the box have the intensity variables or
their prices as choice variables and observed (data) variables as controls. In contrast, the LP
problems on the right-hand side are augmented by optimizing over quantities or their prices.
Specifically, the optimization problems at the top have quantity variables as choice variables
while those on the bottom have price variables (either observed or virtual) as choice variables.

3 In the profit maximization problem we may want to restrict the intensity variables to satisfy
∑K

k=1 zk � 1
or = 1 in order for the maximum to exist.
4 Originally developed by Färe et al. (2013).
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Fig. 3 Adjoint transformations—primal and dual technologies

Beginning with the upper left hand side in Fig. 3 we have the diet problem. We think
of the technology matrix T as being nutrient contents of the food items included in a diet
(and their associated inputs), the intensity variables z being the quantities of food items con-
sumed, q being their market prices, and the targeted data vector (xo, yo) being the nutritional
requirements (yo) along with limits (xo) on inputs (food ingredients) used to produce these
nutrients. Hence the left top corner LP minimization problem may be viewed as a compact
form of one of the earliest LP problems, namely the diet problem as formulated by Stigler
(1945). Following Dorfman et al. (1958, pp. 9–24) and its extension by Färe et al. (2011)
which allows for the outputs to be produced by inputs, we may write this as:

min
zk

K∑

k=1

qkzk (6)

s.t.
∑K

k=1 zk xkn � xk′n, n = 1, . . . , N
∑K

k=1 zk ykm � yk′m, m = 1, . . . , M

zk � 0, k = 1, . . . , K

In the diet problem we seek to find the minimum cost diet for a typical adult that satisfies
certain nutritional requirements. These reflect health standards determined by the minimum
amount of vitamins and other nutrients (e.g., carbohydrates, protein, minerals, dietary fat)
that an adult requires during a particular period of time. The nutritional component of food
items, i.e., the elements of the T matrix, give the constant amount of each nutritional element
contained in every unit of any given food item independent of the other food items that may
be consumed simultaneously. Then solving the above problem will result in the least cost
combination of food quantities that satisfy a number of nutritional requirements for given
price and nutritive values of each food item included in the diet.5

5 Färe et al. (2011) have shown by means of formulating a Langrangian–Kuhn–Tucker problem that the diet
problem can be considered to be dual to the DEA profit maximization problem in the sense that the intensity
variables in the profit maximization model are shadow prices in the diet problem.
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Fig. 4 The four LP problems

The LP dual of the original diet problem (3) is written for observation k′ as

maxp,w
∑M

m=1 pm yk′m − ∑N
n=1 wnxk′n (7)

s.t.
∑M

m=1 pm ykm − ∑N
n=1 wnxkn � qk, k = 1, . . . , K

pm � 0,m = 1, . . . , M

wn � 0, n = 1, . . . , N

which gives the maximum value of nutrient requirements subject to the condition that the
imputed marginal value of each food item is less that or equal to its market price.

Färe and Karagiannis (2014) have shown that the dual formulation of the diet problem (7)
is equivalent to the primal formulation of the benefit-of-the-doubt (BoD) model as long as
food prices are set equal to one, i.e., qk = 1, k = 1, . . . , K and the aggregation weights in
the BoD model are equal to input and output prices. This implies that for DMU k′

maxski
∑M

m=1 sm yk′m − ∑N
n=1 snxk′n (8)

s.t.
∑M

m=1 sm yk′m − ∑N
n=1 snxk′n � 1, k = 1, . . . , K

sn, sm � 0, n = 1, . . . , N , m = 1, . . . , M

where sm, sn refer to aggregationweights. In theBoD framework, (x, y) should be interpreted
as sub-indicators to be aggregated into a composite indicator.6 By solving the above model
we obtain a set of unit-specific shares assigning less (more) weight to to those sub-indicators
for which the assessed DMU has relatively weak (strong) performance compared to other
units in the sample and which are used to construct the composite indicator.

Färe and Karagiannis (2014) verify that the diet problem is equivalent to the dual formu-
lation of the BoD as long as food prices are equal to one and the intensity variables are equal
to zk . From this one can verify that the BoD is equivalent to the input-oriented DEA model
when there is a single constant input that takes the value of one for all DMUs (see Lovell and
Pastor 1999; Liu et al. 2011).

This completes the picture of how the four LP programs are related to each other and how
each one of them corresponds under certain circumstances to a well-known LP problem,
which is summarized in Fig. 4.

6 The importance of the BoD model in constructing composite performance indicators is emphasized by the
OECD (2008).
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3 Conclusion

Via the means of a four-corner schematic representation we have provided a unifying
framework that compares and contrasts duality familiar from linear programming to that
of production theory. We used the technology matrix to map intensity variables into the
input–output space, and the adjoint transformation, a linear programming type of mapping
of observed inputs and outputs of DMUs into price space, as the dual approach to the quantity
space. Specifically, we used the technology matrix transformation to show how the diet prob-
lem, a classical LP problem, may be related to DEA cost minimization for given input prices.
And we also used the adjoint matrix to demonstrate a procedure for obtaining valuation or
pricing of DMUs. We have further shown that the diet problem and the benefit-of-the-doubt
aggregation are linear programming duals. Finally, we have shown how the LP dual to the
cost minimization problem may be viewed as the revenue maximization problem in the dual
(price) space where the DMUs maximize revenue by choosing the output prices for given
input and output quantities.
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