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Abstract Everyday, electricity generation companies submit a generation schedule to the
grid operator for the coming day; computing an optimal schedule is called the unit-
commitment problem. Generation companies can also occasionally submit changes to the
schedule, that can be seen as intra-daily incomplete recourse actions. In this paper, we propose
a two-stage formulation of unit-commitment, wherein both the first and second stage prob-
lems are full unit-commitment problems. We present a primal-dual decomposition approach
to tackle large-scale instances of these two-stage problems. The algorithm makes extensive
use of warm-started bundle algorithms, and requires no specific knowledge of the underlying
technical constraints. We provide an analysis of the theoretical properties of the algorithm,
as well as computational experiments showing the interest of the approach for real-life large-
scale unit-commitment instances.

Keywords Two-stage integer programming · Stochastic unit-commitment · Price
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1 Introduction

In energy management, a key problem known as “unit-commitment” deals with finding a
minimal cost production schedule that satisfies the operational constraints of the production
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units and that meets customer load as closely as possible. (see the recent review Tahanan
et al. 2015). Since operational constraints involve delays (start-up delays, etc.), the com-
puted production schedule is often determined quite ahead of real-time. In electrical systems
wherein renewable generation has overall high generation capacity, uncertainty is strongly
present and has a key impact on both “feasibility” and “optimality” of the executed produc-
tion schedule. In practice, spinning reserves and intra-daily changes to the schedule allow the
operator to partially account for uncertainty. Highly binding operational constraints might
give rise to difficult situations, wherein the quest for “feasibility” induces a heavy cost.
As such, computing a schedule having seen at least part of the uncertainty might turn out
to be less costly eventually. Ideally, two-stage unit-commitment problems would consider
uncertainty on customer load, on renewable generation, on inflows for the hydro reservoirs
and on unit availability. In this paper, we consider here the first two sources of uncertainty.
The third one could also be integrated in our approach, following, e.g., van Ackooij et al.
(2014).

Stochastic unit-commitment models are less common in the literature than determin-
istic ones, and none of them could capture the situation of this paper. Many existing
approaches (including Philpott et al. 2000; Takriti et al. 2000; Takriti et al. 1996; Nowak
and Römisch 2000; Wu et al. 2007) use scenario trees where uncertainty in each node is
known when the decision is taken. The robust unit-commitment models (Zhao and Zeng
2012; Bertsimas et al. 2013) decouple commitment decisions (starting/stopping status of
each unit) from dispatch decisions (power output), which are taken only when uncertainty
is known. In these approaches, it is unclear what schedule (including power output) has
to be sent to the grid operator—which is our practical motivation. The two-stage model
of Zheng et al. (2013) allows to adapt some commitment decisions and the resulting
stochastic unit-commitment problems are amenable to mixed-integer linear programming
solvers by using a technique of Sherali and Fraticelli (2002). However the problems tack-
led (with only five thermal units) is an order of magnitude smaller that the problems we
target.

In this paper, we formalize the situation as two-stage models, wherein both the first and
second stage are full unit-commitment problems. We see the occasional changes of schedule
as intra-daily recourse actions, incomplete because of technical constraints on generation.We
allow a rich modelling of these operation constraints (possibly, non-linear, non-convex, with
discrete variables) that lead to large-scale mixed-integer problems, out of reach for direct
approaches and even for existing decomposition methods. We propose a tractable primal-
dual decomposition approach for these large-scale unit-commitment problems, attacking
both stages by duality. Our algorithm uses the same ingredients (deterministic subproblems,
cutting planemodels, bundlemethods, primal recovery heuristics) as in the deterministic case
(see e.g.,Dubost et al. 2005; Zhuang and Galiana 1988; Feltenmark and Kiwiel 2000). We
pay a special attention to hot-starting which is a critical issue in view of tackling large-scale
problems.

Here is the outline of this paper. First, Sect. 2 introduces unit-commitment problems in
the deterministic and the stochastic cases: notation and assumptions are presented. The state-
of-the art is sketched. Section3 presents the decomposition algorithm, relaxing coupling
constraints in both the first and second stages. The method is put into perspective in Sect. 4,
where the convexification effect, the interpretation of stopping tests, and the convergence
properties are analyzed. In the final section, we present numerical illustrations on real-life
unit-commitment instances.
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2 Stochastic unit-commitment: notation, assumptions, and state of the art

2.1 A structural viewpoint on deterministic unit-commitment: notation and
presentation

Unit-commitment problems are already challenging in a deterministic setting: the units are
coupled through constraints such as the offer-demand equilibrium constraint, and are subject
to many technical constraints, specific to the their type (thermal, hydraulic, contracts). We
consider here m units indexed by i = 1, . . . ,m. We denote the decision variables (including
production) of unit i by xi ∈ R

ni , its production cost by fi (xi ) and its specific produc-
tion constraints by xi ∈ Xi . The decision variable is thus x = (x1, . . . , xm) ∈ R

n where∑m
i=1 ni = n. Units are linked through the offer-demand equilibrium constraints, that state

that deviation between production and customer load has to remain small. These constraints
have the typical form

sd ≤ D − Ax ≤ su, (1)

where sd , su ∈ R
T are operator chosen bounds, T is the number of time steps in the considered

time horizon, D ∈ R
T is the customer load, and A the T ×n matrix summing up the decision

vector x = (x1, . . . , xm) ∈ R
n . An abstract formulation of deterministic unit-commitment

has then the following form

minx = (x1,...,xm )

m∑

i=1
fi (xi ),

s.t. xi ∈ Xi ⊆ R
ni , i = 1, . . . ,m

sd ≤ D − Ax ≤ su .

Using aggregated objects f (x) = ∑m
i=1 fi (xi ),

X1 :=
m∏

i=1

Xi and X2 :=
{
x ∈ R

n : sd ≤ D − Ax ≤ su
}

we can write the above unit-commitment problem in a short manner as:

minx∈Rn f (x)

s.t. x ∈ X1 ∩ X2. (2)

Practical formulations of (2) often lead to mixed-integer problems. Since there now exist
strong commercial solvers, this has become the major approach for solving unit-commitment
(e.g., Carrión and Arroyo 2006; Morales-España et al. 2013a, b).

However the success of this direct approach strongly hinges on the the modelling detail
that we decide to integrate in the subproblems. The sets Xi can indeed require a large number
of modelling variables together with nonlinear terms in the objective and constraints. For
example, hydraulic “units” are typically entire hydro valleys operating independently. Key
constraints are bilateral bounds on volume in each reservoir, flow constraints, and technical
constraints on turbining/pumping operation. Moreover, the value of water is typically com-
puted by a mid-term planning tool. Uncertainty on inflows can also be taken into account, for
instance by using joint probabilistic constraints as in van Ackooij et al. (2014). In quite a sim-
ilar way, thermal units are subject to many technical constraints on power variations, starts,
ramping rates, minimum up/down times. Most of these constraints imply non-convexities
and typical modelling involves binary variables. Therefore, optimizing a single unit with
respect to a price signal can already be quite challenging, see, e.g., Finardi and Silva (2006)
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for hydro valley units and Frangioni and Gentile (2006), Langrene et al. (2011) for thermal
units.

In large-scale systems, or in systems requiring substantialmodelling detail, decomposition
approaches for (2) appear as the only viable solution. The unit-commitment instances for the
French system for example are both large scale and require substantial modelling detail. In
order to tackle such problems, the coupling constraints are often dualized, using Lagrangian
techniques (seeDubost et al. 2005; Frangioni et al. 2011 and references therein). An important
feature of this Lagrangian decomposition approach is that it provides marginal prices that
are useful for the operator of the system. Though this approach leads to non-feasible primary
solutions, it also gives good starting points for primal recovering heuristics (see Wang et al.
1995; Beltran andHeredia 2002; Dubost et al. 2005; Frangioni et al. 2008; Sagastizábal 2012;
Zhuang and Galiana 1988).

2.2 Recourse in unit-commitment, assumptions

A solution of problem (2) defines a production schedule x (commitment decisions and power
output), sent to the grid-operator before being activated and before observing uncertainty.
In real time, a new production schedule, redefining both commitment decisions and power
output, can be sent to the grid-operator at specific moments in time. This implies that the
recourse problem is exactly of the same structure as (2) and has the same complexity, but
with a smaller time horizon.

More precisely, we consider an abstract random process ξ ∈ R
k affecting uncer-

tainty on customer load and renewable generation. Observing this process at time step
τ ∈ {1, . . . , T } results in “observing” the net customer load D(ξ) ∈ R

T . This load consists of
D(ξ)1, . . . , D(ξ)τ , the actually observed net customer load of the previous time t = 1, . . . , τ
and D(ξ)τ+1, . . . , D(ξ)T , the current best forecast of net customer load after τ .

We introduce the appropriate modification of X2 involving the change in D denoted

X2(ξ) :=
{
y ∈ R

n : sd ≤ D(ξ) − Ay ≤ su
}

,

and the recourse cost function c : Rn × R
k → R ∪ {+∞} as:

c(x, ξ) :=
⎧
⎨

⎩

miny∈Rn f (y)
s.t. y ∈ X1 ∩ X2(ξ)

Px = Py,
, (3)

where P is a � × n matrix having a single non-zero element for each line and column. The
equation Px = Py models the fact that the power output of each unit prior to τ is fixed
and that the recourse decision y can only modify power output after τ . The segment of y
corresponding to decisions taken prior to time τ can be seen as duplicated according to the
scenarios. The constraint Px = Py can thus be seen as an non-anticipativity constraint (see,
e.g.,Carøe and Schultz 1999) since it enforces that the decisions are equal on all scenarios.
Note that we make a slight abuse of notation in (3): we use the total cost f (y) instead of the
costs restricted to time after τ ; this will simplify the notation in our developments.

To simplify presentation, we consider in this paper that the process ξ has a discrete
distribution: its realizations (called scenarios) are labelled

Ξ := {ξ1, . . . ξS} with associated probabilities p1, . . . , pS . (4)
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We refer to Feng et al. (2015) for a recent work on load scenario forecasting. The expected
recourse cost function is then naturally defined as

v : Rn → R ∪ {+∞} v(x) := E (c(x, ξ)) =
S∑

j=1

p j c(x, ξ j ).

This leads to the following formulation of the two-stage unit-commitment problem, which
is the problem we focus on in this paper

minx∈Rn f (x) + v(x)

s.t. x ∈ X1 ∩ X2. (5)

The constraints of the problem (5) are the same as the initial unit-commitment problem (2).As
explained in the previous section, X1 can contain many binary variables, implicit constraints,
joint probabilistic constraints. In this paper, we do not suppose to know X1 explicitly; we
just make the following assumptions on our problem (5):

– Practical assumption 1: we can solve (approximatively) the (sub)problems defined as
minimizing the sum of fi and a linear term over Xi :

min
xi∈Xi

fi (xi ) + bT
i xi .

– Practical assumption 2: Lagrangian based primal recovery heuristics (e.g., Feltenmark
and Kiwiel 2000; Takriti and Birge 2000; Borghetti et al. 2003) are readily available to
build a primal feasible solution out of primal iterates and dual information.

– Theoretical assumptionon X1: each Xi ⊂ R
ni is compact. The compactness of X1 implies

that its convex hull conv(X1) is compact as well [by Hiriart-Urruty and Lemaréchal
(1996a, III.1.4.3)]. Thus the sets X1 ∩ X2 and conv(X1) ∩ X2, and conv(X1 ∩ X2), that
will appear in our analysis, are also compact.

– Theoretical assumption on f : each fi : Rni → R is a closed convex function on R
ni . In

view of the first practical assumption above, fi should be simple, as piece-wise linear
or quadratic. We also assume the fi are bounded from below; without loss of generality,
we consider fi ≥ 0.

– Consistency assumption: observe that (5) has implicit constraints coming from v, whose
domain is

dom(v) := {x : v(x) < +∞} = {
x : for all ξ ∈ Ξ, ∃ y ∈ X2(ξ) such that Px = Py

}
.

Our final assumption is that dom(v) is nonempty, so that there exists a solution to (5).

2.3 Limitations of existing decomposition approaches

Two-stage unit-commitment problems are very difficult in a large-scale setting. In fact, com-
puting c(x, ξ) for a fixed (x, ξ) is a full unit-commitment problem, which is already difficult
when the set X1 is complex andm large. Solving our problem (5) therefore requires a decom-
position approach, that can be either primal (Benders decomposition) or dual (Lagrangian
decomposition). Let us sketch these approaches and the existingmethods proposed for related
stochastic unit-commitment problems.

In a primal approach to (5), the recourse cost function at given x would involve modifi-
cations of X1 with initial condition x and constraints related to time steps after τ . Making
appropriate changes to handle modified constraint sets might involve significant additional
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modelling, that we want to avoid. Note that, for specific two-stage models Takriti et al. (2000)
proposes a Benders decomposition approach plugging the two-stage cost function into the
first stage. This primal approach considers a simple form for the second-stage problem (which
is fuel requirement problem).

A dual approach to (5), by duplicating variables along scenarios and dualizing the non-
anticipativity conditions, would get rid of x , making unclear how to restore feasibility
(i.e., x ∈ X1 and Px = Py). The strategy of Carøe and Schultz (1999), that embeds
the Lagrangian scheme within a branch and bound method, is not possible in our setting,
where the deterministic model is already too large to fit in such a scheme. A dual decom-
position is considered in Takriti et al. (1996) for a specific stochastic unit-commitment
problem. The commitment decisions are the only binary variables in X1 and a progres-
sive hedging algorithm (Rockafellar and Roger 1991) is used to average these out. The sets
X1 are still rather simple and one can easily fix the obtained schedule to create a X1-feasible
solution. This would not be possible when X1 is defined by many binary variables (e.g.,
some realistic thermal sub-problems might require up to 100 binary variables per time step).
The recent work Cheung et al. (2015) also presents a dedicated progressive hedging algo-
rithm.

Another Lagrangian-based decomposition is proposed by Carpentier et al. (1996) where
uncertainty is discretized on a scenario-tree, and an augmented Lagrangian dual is used
to relax the coupling constraints of X2(ξ). The subproblems are then stochastic 1-unit
optimization problems, requiring important modifications of X1 and special resolution
approaches, which we want to avoid here. Similar approaches (Dentcheva and Römisch
1998; Nowak 2000; Nowak and Römisch 2000; Gröwe-Kuska et al. 2002 ) can be viewed
as geographical decomposition, following the terminology of Dentcheva and Römisch
(2004). These methods all lead to stochastic subproblems requiring special treatments
(by dynamic programming, for example as in Nowak and Römisch 2000). Finally, in
Nürnberg and Römisch (2003), integer variables remain present in the second stage after
decomposition of uncertain system wide constraints by stochastic Lagrange multipli-
ers.

To sum up, all the existing primal or dual approaches

– either involve significant simplifications of the second stage,
– or make unclear how to recover feasible first stage solutions x ∈ X1,
– or make significant changes to the set of technical constraints X1.

None of the existing decomposition approaches could tackle our stochastic unit-commitment
problem (5) in our targeted applications. In the next section, we propose a primal-dual
decomposition combining good aspects of both primal and dual approaches.

3 Primal-dual decomposition approach to two-stage unit-commitment

This section presents our decomposition algorithm for solving the large-scale stochastic unit-
commitment problem (5). Our approach is primal-dual as it uses relaxation for both stages:
the second stage dual algorithm constructs linearizations of the objective function in a way
that we can store information for later use (Sect. 3.1), and the first stage dual algorithm
produces lower bounds on the optimal value (Sect. 3.2). We introduce notation and recall
basic properties in the first two sections, then we present our algorithm in Sect. 3.3.
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3.1 Dual approach to the 2nd stage: linearizations of the objective

We apply here the standard Lagrangian relaxation mechanism (see e.g.Lemaréchal 2001) to
the second stage problems (3) to build a cutting planes model of the recourse function v.
For a given (x, ξ) ∈ R

n × R
k , we relax the linking constraints Px = Py and the coupling

constraints in X2(ξ). For any variable (λ1, λ2, λ3) in the dual space Λ := R
� × R

T+ × R
T+,

the dual function has the following structure:

θx,ξ (λ1, λ2, λ3) = λT
1 Px + λT

2 (sd − D(ξ)) + λT
3 (D(ξ) − su) + θ̄ (λ1, λ2, λ3), (6)

where the function θ̄ , independent from x and ξ , is defined by

θ̄ (λ1, λ2, λ3) := min
y∈X1

f (y) − λT
1 Py + (λ2 − λ3)

TAy. (7)

The dual function θx,ξ is concave by construction and computing a value and a subgradient
amounts to computing θ̄ (λ1, λ2, λ3) and g ∈ ∂θ̄(λ1, λ2, λ3). The interest of the Lagrangian
approach resides in the fact that this computation decomposes over the production units:

θ̄ (λ1, λ2, λ3) =
m∑

i=1

min
yi∈Xi

fi (yi ) + yT
i (AT(λ2 − λ3) − PTλ1)i .

Bundle algorithms [see e.g.Hiriart-Urruty and Lemaréchal (1996b, Chap.XV)] are the meth-
ods of choice for maximizing the dual function. We emphasize that all the information on
θ̄ computed during maximizing θx,ξ can be stored and used to warmstart the maximization
of θx ′,ξ ′ for another (x ′, ξ ′). This will be of importance for the numerical efficiency of the
method.

It is well-known that maximizing the dual function provides information on the pri-
mal value function c. Specifically, by weak duality, we have for (x, ξ) and any (λ1, λ2, λ3) ∈
Λ,

c(x, ξ) ≥ λT
1 Px + λT

2 (sd − D(ξ)) + λT
3 (D(ξ) − su) + θ̄ (λ1, λ2, λ3).

For a fixed (x̄, ξ), this yields

c(x, ξ) ≥ λT
1 P(x − x̄) + λT

1 Px̄ + λ2(x̄, ξ j )
T(sd − D(ξ))

+ λ3(x̄, ξ j )
T(D(ξ) − su) + θ̄ (λ1, λ2, λ3)

≥ λT
1 P(x − x̄) + θx̄,ξ (λ1, λ2, λ3).

We thus have a linearization at x̄ for themapping c(·, ξ) and, obviously, the best linearizations
are those given by the optimal dual solutions for (x̄, ξ).

By integration over all the scenarios, we directly get a linearization of the recourse function
v. Repeating this for several points x1, . . . , xk−1 allows us to define a cutting-plane model
of v

v̌k(x) := max
i=1,...,k−1

{
(ḡi )T(x − xi ) + v̄i

}
≤ v(x), (8)

with appropriately aggregated ḡi and v̄i . More specifically, by (4), we have

ḡi := PT

⎛

⎝
S∑

j=1

p j λ1(x
i , ξ j )

⎞

⎠ and v̄i :=
S∑

j=1

p jθxi ,ξ j

(
λ1(x

i , ξ j ), λ2(x
i , ξ j ), λ3(x

i , ξ j )
)

(9)
for the dual variables

(
λ1(xi , ξ j ), λ2(xi , ξ j ), λ3(xi , ξ j )

)
. Note that we aggregate lin-

earizations as above to simplify presentation. As usual in stochastic programming (see

123



594 Ann Oper Res (2016) 238:587–613

e.g.Ruszczyński 2003), the cuts could also be combined in other ways; among them multi-
cuts of Birge and Louveaux (1988, 1997) or the partially aggregating cuts of Xiong and
Jirutitijaroen (2011). Our algorithm is compatible with any such versions; the effect of multi-
cuts is illustrated in Sect. 5.2.

3.2 Dual approach to the first stage problem: lower bound for our problem

We use now the cutting plane model (8) to get a lower bound for our problem (5). For a fixed
k, we consider the following approximated first stage optimization problem, wherein v is
replaced by v̌k

{
min f (x) + v̌k(x),

x ∈ X1 ∩ X2 written as

⎧
⎨

⎩

min(x,ν) f (x) + ν,

s.t. (ḡi )T(x − xi ) + v̄i ≤ ν, i = 1, . . . , k − 1
x ∈ X1 ∩ X2.

(10)

We dualize all the coupling constraints: those in X2 and those provided by v̌k . Gathering
the linearizations in Gk := (ḡi )i=1,...,k−1 ∈ R

n×(k−1) and bk := (v̄i )i=1,...,k−1 ∈ R
k , the

concave dual function of (10) writes

Θk(μ, ν1, ν2) = μTbk + νT
1 (sd − D) + νT

2 (D − su)

+
m∑

i=1

min
xi∈Xi

fi (xi ) + xT
i

(
Gkμ + AT(ν1 − ν2)

)

i
(11)

for any dual variables (μ, ν1, ν2) ∈ R
k−1+ × R

T+ × R
T+ with

∑k
k=1 μk = 1. By weak duality

and the fact that v̌k(x) ≤ v(x), we have that Θk(μ, ν1, ν2) is a lower bound on the optimal
value of (5). Note that the lower bound thus comes out as the addition of two gaps: the duality
gap between (10) and its dual on top of the approximation gap coming from replacing v by
v̌k . We need to control these two gaps in the algorithm.

3.3 Description of the algorithm

The material of the previous sections allows us to design the following decomposition
approach for the two-stage unit-commitment problem (5).

Step 0 (Initialization): Choose the stopping tolerance δtol > 0 and a feasibility detection
target θfeas > 0 (strictly greater than the optimal value). Set parameters for the first and
second stage bundle algorithms. Choose (ν01 , ν

0
2 ) ∈ R

T+ × R
T+, and set k = 1.

Step 1 (First stage): At iteration k, use a bundle method to maximize Θk in (11) starting
at the current dual variables (μk−1, νk−1

1 , νk−1
2 ). Run this algorithm until convergence

or just for a few steps; when it is stopped, it returns new dual variables (μk, νk1 , ν
k
2 ) such

that

Θk(μ
k−1, νk−1

1 , νk−1
2 ) ≤ Θk(μ

k, νk1 , ν
k
2 ) ≤ optimal value of (5).

Step 2 (Lagrangian heuristics): Use any heuristic for recovering xk ∈ X1 ∩ X2 a primal
feasible solution of (10). Define the observed duality gap by Δk

G := f (xk) + v̌k(xk) −
Θk(μ

k
1, ν

k
1 , ν

k
2 ).

Step 3 (Second stage, model enrichment): For each couple (xk, ξ)with ξ ∈ Ξ , maximize
θxk ,ξ using a hot-started bundle algorithm, stopped if θxk ,ξ (λ

k
1, λ

k
2, λ

k
3) ≥ θfeas. Once all
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second stage problems are processed, add a linearization to the cutting plane model to
create v̌k+1. Define the approximation error Δk

A := v̌k+1(xk) − v̌k(xk).
Step 4 (Stopping Test): If v̌k+1(xk) ≤ θfeas, check if Δk

A < δtol holds, in which case,
move to the next step. If not, increment k to k + 1 and return to Step 1.
Final step (Optional post-treatment): Try to improve xk by using some (costly) heuristic
approaches.

This algorithm has the same components as decomposition algorithms for deterministic unit-
commitment, namely cutting plane models, bundle methods and primal recovery heuristics
(see e.g., the section on Lagrangian decomposition in Tahanan et al. 2015 and references
therein). Let us discuss some points.

3.3.1 First stage problem and Lagrangian heuristics

The dual bundle algorithm of Steps 1 provides good lower bounds together with information
(primal-dual iterates defining the so-called pseudo-schedule via the optimality conditions)
useful for the primal heuristics of Step 2 constructing near optimal solutions of (10), see
Feltenmark and Kiwiel (2000), Takriti and Birge (2000), Borghetti et al. (2003). Contrary to
the rest of the algorithm, some of these heuristics may use explicit knowledge of X1. When
the problem is large-scale, the duality gap Δk

G obtained by these heuristics can be lower
than 0.5% (see e.g., Frangioni et al. 2011). Notice that, by definition of Δk

G , we can write
for any x ∈ X1 ∩ X2

f (x) + v̌k(x) ≥ Θk(μ
k, νk1 , ν

k
2 ) = f (xk) + v̌k(x

k) − Δk
G . (12)

This shows that, for any k, the iterate xk is a Δk
G -solution of the k-th approximation prob-

lem (10).

3.3.2 Model enrichment

In Step 3, we enrich the model (8) by adding the linearization given by (9) obtained by
solving the S dual second stage problems. As the linearization might not be tight, we call
it a “suboptimality cut”. In fact, these suboptimality cuts play a double role of being both
optimality and feasibility cuts simultaneously. This will be illustrated in the next section and
further studied in Sect. 4.1.

Recall that θ̄ does not depend on (xk, ξ j ), so that we can keep the known linearizations of
θ̄ from one point to another, and from one scenario to another, in such a way that solving the
S concave problems by bundle methods is not expensive. This will be illustrated numerically
in Sect. 5.2.

After adding a row to Gk and an element to bk , we increase the size of μk by
adding one zero variable. Note that this does not impact the best bounds, since we have
Θk+1((μ

k, 0), νk1 , ν
k
2 ) = Θk(μ

k, νk1 , ν
k
2 ). In practice, we also expand the subgradients stored

in the current memory of the bundle method used to maximize Θk . We can then warmstart
the maximization of Θk+1 with this new bundle information.

3.3.3 Stopping criteria

When hitting Step 5, the algorithm stops looping over k considering the current model
v̌k as sufficiently rich. The test of Step 5 is then a pragmatic rule to stop the algorithm,
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testing that the model of the recourse function cannot be improved much around the current
iterate. Obviously, expecting xk to be the optimal solution of (10) is excessive, in view of
the nonconvexities of the problem. The stopping test still has an intrinsic meaning for a
convexified version of our problem. This is studied in Sect. 4.

3.3.4 Optional post-treatment

The heuristics of Step 2 are quick procedures that might not be entirely satisfactory. We
describe them in Appendix 2. At the end of the algorithm, we might want to employ a more
lengthy procedure to improve the solution. For instance we could employ an augmented
Lagrangian based heuristic (e.g., Batut and Renaud 1992; Yan et al. 1995). Notice that this
aims at decreasing Δk

G but at the risk of increasing Δk
A. Therefore we quantify the changes

to decide to accept the newly generated solution or retain the one that triggered the stopping
test. To do so, we run one last additional model enrichment step and compare the sum of
gaps ΔG + ΔA.

3.4 Illustration on toy-problem

We illustrate here the behaviour of our algorithm on a toy example. A complete numerical
study on large-scale unit-commitment instances will be presented in Sect. 5. The toy problem
will also be used as an example in Sect. 4.3.

3.4.1 Description of the problem

The toy generation park has two production units (i = 1, 2) and two periods (t = 1, 2 and
τ = 1). The first unit has a production y1 ∈ {0, 3} with cost 5y1 and the second y2 ∈ [0, 1]
with cost 10y2. For each period, we want a total production matching a load D = 2 with
bounds sd = −1 and su = 1. Moreover, the first unit has the constraint that the production
is constant over the two periods. Thus we have for this example

X1 = {
(0, x12 , 0, x

2
2 ), (3, x

1
2 , 3, x

2
2 ) : (x12 , x

2
2 ) ∈ [0, 1]2}

X2 = {
(x11 , x

2
1 , x

1
2 , x

2
2 ) : −1 ≤ D − xt1 − xt2 ≤ 1 for t = 1, 2

}
.

Observe that there are only two feasible solutions as X1 ∩ X2 = {(0, 1, 0, 1), (3, 0, 3, 0)}.
For the second stage, we generate a 100 load scenarios for D(ξ) uniformly in [1, 2). Since it
does not satisfy the constraint 1 ≤ D(ξ) − yt1 + yt2, the solution (3, 0, 3, 0) not feasible for
the second-stage problems. Therefore the optimal solution of this simple instance of (5) is
(0, 1, 0, 1).

3.4.2 Run of the algorithm

Werun the algorithmon this example for illustrating its behaviour. Convergence to the optimal
solution is obtained in three iterations. At the first iteration, the first stage generates the non-
feasible schedule (1, 0, 1, 0) and the primal recovery heuristic finds (3, 0, 3, 0), which is
indeed a feasible solution as seen from the first stage. The second stage detects infeasibility
of this solution and a suboptimal cut is added. During the second iteration, the bundle method
generates (0, 1, 0, 1), which is also the retained primal iterate. The corresponding cut is
added to the model. The third (and last) first stage iteration produces (0, 1, 0, 1) as candidate
solution, which automatically triggers to the stopping criteria.
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4 Putting the method into perspective

In this section, we analyze the theoretical properties of the algorithm: its convexification
effect (in Sect. 4.1) and its convergence (in Sect. 4.2). We use standard techniques of convex
analysis, and refer frequently to Hiriart-Urruty and Lemaréchal (1996a), but we will end up
with subtle properties. In particular, we will see in Sect. 4.3 that our dual approach does not
convexify at best the recourse function when the objective function is not linear.

4.1 Convexification effect of the algorithm

We study here the role of a convexified recourse function which sheds light on the behaviour
of the algorithm. Our analysis features the convex envelope of the sum of f and the indicator
function of X1, denoted f ∗∗

X1 . Such “restricted biconjuguates” are a standard tool, tracing
back to Falk (1969), studied intensively in Lemaréchal and Renaud (2001), and already used
in Dentcheva and Römisch (2004) in the context of stochastic optimization.

We introduce the convexified recourse cost function c̄ : Rn × R
k → R ∪ {+∞} as the

optimal value of the following (convex) problem with f ∗∗
X1 as the objective function and

conv X1 replacing X1 in the constraints

c̄(x, ξ) :=
⎧
⎨

⎩

inf y∈Rn f ∗∗
X1 (y)

s.t. y ∈ conv (X1) ∩ X2(ξ)

Px = Py.
(13)

In the general convex case, the role of c̄(·, ξ) is key in our approach, so we formalize in the
next proposition its main properties.

Proposition 1 (Convex recourse cost) For a couple (x, ξ) ∈ R
n ×R

k , c̄(x, ξ) is the optimal
value of the dual problem

c̄(x, ξ) = sup
(λ1,λ2,λ3)∈Λ

θx,ξ (λ1, λ2, λ3) ∈ R ∪ {+∞}. (14)

Moreover, for any dual variables (λ1, λ2, λ3) ∈ Λ, we have

c(x, ξ) ≥ c̄(x, ξ) ≥ λT
1 Px + λT

2 (sd − D(ξ)) + λT
3 (D(ξ) − su) + θ̄ (λ1, λ2, λ3). (15)

The function c̄(·, ξ) is closed and convex with respect to x, and if there exists a
(λ1(x, ξ), λ2(x, ξ), λ3(x, ξ)) attaining the sup in (14), we have PTλ1(x, ξ) ∈ ∂ c̄(x, ξ).

Proof By definition of c̄, it follows from Lemaréchal and Renaud (2001, Theorem 2.11/2.12)
that θx,ξ defined in (7) is also the dual function of the problem (13). Now the compactness of
X1 allows us to apply a inf/sup theorem as Rockafellar (1970, Cor.37.3.2) to the Lagrangian
function associated with (13) to show that there is no duality gap, i.e., the equality (14). The
equality also implies (15), by noting that c̄(x, ξ) ≤ c(x, ξ) (as it can been seen from their
respective definitions (3) and (13), and the fact that f ∗∗

X1 ≤ f + iX1 ). Expressed as a sup in
(14), the convexity and closedness of c̄(·, ξ) with respect to x is clear from Hiriart-Urruty
and Lemaréchal (1996a, IV.2.1.2). To get the value of the subgradient at a fixed (x, ξ), we
develop (15) taken with z and (λ1(x, ξ), λ2(x, ξ), λ3(x, ξ))

c̄(z, ξ) ≥ λ1(x, ξ)TP(z − x) + λ1(x, ξ)TPx + (λ3(x, ξ) − λ2(x, ξ))TD(ξ)

+ θ̄ (λ1(x, ξ), λ2(x, ξ), λ3(x, ξ))

≥ λ1(x, ξ)TP(z − x) + c̄(x, ξ),

which ends the proof. ��
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This result has two important consequences for our developments. As a first consequence,
we directly get that the “convexified” expected recourse function defined by

v̄ : Rn → R ∪ {+∞}, v̄(x) := E(c̄(x, ξ)) (≤ v(x)).

is (indeed) convex and that we have a subgradient PT
E (λ1(x, ξ)) ∈ ∂v̄(x) at x ∈ dom(v̄).

This yields that the cutting planes model v̌k of (8)–(9) is not only an inexact cutting plane
model for v: it is more precisely an (exact) cutting planes model for v̄ as

v̌k(x) = max
i=1,...,k−1

{
(gi )T(x − xi ) + v̄i

}
≤ v̄(x) ≤ v(x), (16)

and moreover when xi ∈ dom(v̄), then v̄i = v̄(xi ). Thus, in Step 3 of the algorithm, a
linearization of v̄ is computed, and our algorithm sees in fact only v̄ (and not v). This means
that our decomposition method, though using only objects defined from data of our initial
problem (5), solves implicitly

minx∈Rn f (x) + v̄(x)

s.t. x ∈ X1 ∩ X2.

This will be detailed further in Sect. 4.2. It is nevertheless important to note that v̄ is just a
convex surrogate of v, but not its convex hull, as shown in Sect. 4.3.

Before moving to these two points, we emphasize the second important consequence of
Proposition 1, about the implicit constraint in (17). When the iterate xi does not belong to the
domain of v̄, i.e., there exists a scenario ξ� such that xi /∈ dom(c(·, ξ�)), then Proposition 1
gives that

sup
(λ1,λ2,λ3)∈Λ

θxi ,ξ�
(λ1, λ2, λ3) = +∞. (17)

Let us now argument that the fact that θxi ,ξ�
tends to +∞ when xi does not belong to the

domain of v̄ implies that the (sub)optimality cuts in (16) act like feasibility cuts for dom(v̄).

Proposition 2 ((Sub)optimality cuts act like feasibility cuts) Assume that we know a bound
Δ > 0 on the duality gap

Δk
G ≤ Δ for all k ≥ 1,

and a bound M > 0 on the objective function

max
x∈X1∩X2

f (x) + v(x) ≤ M.

If xi /∈ dom(v̄), then the (sub)optimality cut (9) allows the algorithm to cut off the point xi

(i.e., xk �= xi for all k ≥ i ), provided that θfeas is large enough, more precisely

θfeas ≥ (M + Δ)/min{p1, . . . , pS}. (18)

Proof Let xi ∈ X1 ∩ X2 and ξ� ∈ Ξ be such that xi /∈ dom(c(·, ξ�)). We have (17) and then
the bundle algorithm maximizing θx,ξ in (6) will stop with the test θxi ,ξ�

(λi1, λ
i
2, λ

i
3) ≥ θfeas.

Let now k > i ; we write

f (xi ) + v̌k(xi ) ≥ v̄i

= ∑
j p jθxi ,ξ j (λ

i
1, λ

i
2, λ

i
3)

≥ p�θxi ,ξ�
(λi1, λ

i
2, λ

i
3)

≥ min{p1, . . . , pS}θxi ,ξ�
(λi1, λ

i
2, λ

i
3)

> M + Δ.

[by definition of v̌k and since f ≥ 0]
[by (9), the definition of v̄i ]

[since θxi ,ξ j ≥ 0]
[by definition of pmin]

[by (18)]
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By definition of M , this shows that xi cannot be an Δ-solution of the approximate problem
(10) at iteration k. This implies that xk cannot be xi , otherwise it would contradict (12). ��
In practice, we have a reasonable idea of M and Δ. Note finally that they could be defined
dynamically: in such a situation one would define

θfeas ≥ ( f (x̂ i ) + v̌(x̂ i ) + Δ)/pmin,

where x̂ i is akin to the current best feasible point. As a consequence of such a setting, points
that lack interest (such that θxi ,ξ�

(λi1, λ
i
2, λ

i
3) ≥ θfeas), can no longer be distinguished clearly

from points xi /∈ dom(v̄). This updating rule is similar to the one of the on-demand accuracy
bundle of Oliveira and Sagastizábal (2014).

4.2 Convergence analysis

This section provides a convergence analysis of the algorithm. As previously explained,
the algorithm uses dual approaches for both first and second stages that cannot distinguish
between v and its convex counterpart v̄. This allow us to establish guarantees only for the
convexified problem (17). The first result completes (12) about the quality of xk at each
iteration.

Proposition 3 (Approximate solution) If xk ∈ dom(v̄), then the approximation error defined
in the algorithm satisfies

Δk
A = v̄(xk) − v̌k(x

k). (19)

Consequently, xk is a (Δk
A + Δk

G)-solution of the convexified problem (17).

Proof Observe that the expression of v̌k in (8) gives that v̌k+1(xk) = max{v̌k(xk), v̄k}, which
in turn gives

Δk
A = v̌k+1(x

k) − v̌k(x
k) = max{0, v̄k − v̌k(x

k)}.
When xk ∈ dom(v̄), we have v̄k = v̄(xk) ≥ v̌k(xk), so that (19) holds. Finally, we deduce
from (12) and (19) that for x ∈ X1 ∩ X2,

f (x) + v̄(x) ≥ f (x) + v̌k(x) ≥ f (xk) + v̌k(x
k) − Δk

G

≥ f (xk) + v̄(xk) − Δk
G − Δk

A.

The above inequality means that xk is optimal up to Δk
G + Δk

A for problem (17). ��
This gives a better understanding of our stopping test and the following optional improvement
step. Roughly speaking, the stopping criteria means that the cutting-plane model is nearly
optimal. However it does not give a controllable approximate solution because of the gap
error Δk

G in the above lemma. The gap error is obtained by running heuristics, and, though
these heuristics perform well in practice, they have no theoretical guarantee. The optional
post-treatment step aims at improving the quality of the solution by decreasing Δk

G .
The second result of this section establishes the convergence of the algorithm, under a

technical assumption. The analysis follows usual rationale of standard cutting-plane methods
in a convex setting [see e.g., Hiriart-Urruty andLemaréchal (1996b,XII.4.2) andRuszczyński
(2003, Theorem 7)].

Theorem 1 (Asymptotic convergence) Assume that the algorithm generates a sequence,
which after finitely many iterations, is all contained in a compact set C lying in the relative
interior of dom(v̄). Then, the algorithm terminates after finitely many iterations, and the final
iterate xfinal is a δtol + Δfinal

G -optimal solution for (17).
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Proof For all x ∈ C , there exist a εx > 0 such that the ball of center x and radius εx is
included in the relative interior of dom(v̄). Extracting a finite number of balls recovering
the compact set C , we can strengthen the assumption as: there exists a ε > 0 such that the
compact set

Cε = {x + b : x ∈ C, ‖b‖ ≤ ε}
lies in the relative interior of dom(v̄). Togetherwith the convexity of v̄ (consequence of Propo-
sition 1), this gives us that v̄ is Lipschitz-continuous on Cε (Hiriart-Urruty and Lemaréchal
(1996b, IV.3.1.2)); let us denote by L > 0 the Lipschitz constant.

By assumption, there exists an index K ≥ 0 such that xk ∈ C ⊆ intdom(v̄) for all k ≥ K .
For sake of a contradiction, assume that the method does not terminate, which means that
Δk

A > δtol for all k > K . Since xk ∈ dom(v̄), (19) yields

δtol < v̄(xk) − v̌k(x
k).

Let us use the model v̌k explicitly, by noting that for all K ≤ i < k

v̄(xi ) + (ḡi )T(xk − xi ) ≤ v̌k(x
k)

which yields, by the Cauchy–Schwarz inequality,

δtol < v̄(xk) − v̄(xi ) + ‖ḡi‖‖xk − xi‖. (20)

Now note that the subgradient inequality gives in particular that

v̄(xi + εḡi/‖ḡi‖) ≥ v̄(xi ) + ε‖ḡi‖,
which, by Lipschitz-continuity on the set Cε , implies that ‖gi‖ ≤ L . Finally, using the
Lipschitz-continuity of v̄ again, we get from (20)

‖xk − xi‖ > δtol/2L

which contradicts the fact that we can extract a converging subsequence from (xk) belonging
to the compact set C . Thus, the algorithm terminates, and the final approximation of comes
from Proposition 3. ��

Arguably the convergence result is limited since it relies on an ultimately relative recourse like
assumption. Looking closely to the proof, we see that the key implication of this assumption
is that there exists a bound on the subgradients: ‖ḡi‖ ≤ L for all i . Such an assumption
is standard in the analysis of cutting-plane method in convex case. For example, it appears
explicitly in Ruszczyński (2003, Assumption 6). It also holds in the analysis of generalized
Benders decomposition Geoffrion (1972, Theorems 2.4,2.5,Lemma 2.1).

4.3 On the convex envelope of the recourse function

As explained in the previous sections, the algorithm has a convexification effect featuring v̄,
which is a “convex surrogate” of v. We show here how v̄ relates to the convex envelope of v.
Fix ξ ∈ Ξ and introduce c̃ : Rn × R

k → R ∪ {+∞} defined by

c̃(x, ξ) :=
⎧
⎨

⎩

miny∈Rn f ∗∗
X1 (y)

s.t. y ∈ conv
(
X1 ∩ X2(ξ)

)

Px = Py,
,
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as well as its expectation ṽ : R
n → R ∪ {+∞} defined by ṽ(x) := E (̃c(x, ξ)). These

functions also provide convex surrogates of the recourse functions, as established by the next
proposition.

Proposition 4 (Convexified functions) For x ∈ R
n and ξ ∈ Ξ , we have c(x, ξ) ≥ c̃(x, ξ) ≥

c̄(x, ξ), and
v(x) ≥ ṽ(x) ≥ v̄(x).

Moreover, c̃(·, ξ) and ṽ are closed and convex. When X1 is convex, we have in fact c̃(·, ξ) =
c̄(·, ξ) and ṽ = v̄.

Proof The two inequalities come directly by the inclusions of the sets

X1 ∩ X2(ξ) ⊂ conv
(
X1 ∩ X2(ξ)

) ⊂ conv(X1) ∩ X2(ξ) (21)

and the fact that f ∗∗
X1 ≤ f on X1. Let us argue that c̃(·, ξ) is a closed convex function, then the

result for ṽ comes by integration. Write c̃ as a “lower-bound function” (see e.gHiriart-Urruty
and Lemaréchal (1996a, IV)):

c̃(x, ξ) = min{r : (x, r) ∈ C}
with C = {(x, r) ∈ R

n+1 : ∃y ∈ conv(X1 ∩ X2(ξ)) such that Px = Py and f ∗∗
X1 (y) ≤ r}.

Together with the properties of X2(ξ) and f ∗∗
X1 , compactness of X1 (and consequently of

conv(X1 ∩ X2(ξ))) yields that C is a closed convex set. As the lower-bound function of a
closed convex set, c̃ is a closed convex function (by Hiriart-Urruty and Lemaréchal (1996a,
IV.1.3.1)). Finally, in the casewhen X1 is convex, the inclusions of (21) are actually equalities,
and then the functions are equal by definition. ��
The above lemma implies that the (closed) convex envelope of v is greater or equal to ṽ. In
fact equality holds in the linear case.

Proposition 5 Assume that f is linear, then the map ṽ is the closed convex envelope of v.

Proof We just have to show that, for an fixed ξ ∈ Ξ the map x �→ c̃(x, ξ) is the closed
convex envelope of x �→ c(x, ξ). For convenience of notation, we drop the dependency on
ξ in the proof. We start with noticing that c can be rewritten with the help of Dentcheva and
Römisch (2004, Lem.1) as

c̃(x, ξ) =
⎧
⎨

⎩

miny∈Rn f (y)
s.t. y ∈ conv

(
X1 ∩ X2(ξ)

)

Px = Py,
,

because f is linear and X1∩X2(ξ) compact. Let us shownow that c̃ is equal to the biconjugate
c∗∗ = conv c (see Hiriart-Urruty and Lemaréchal (1996b, X.1.3.6)); the proof consists in
establishing the equality between the convex conjugates of the two functions −c∗ = −(̃c)∗ .
We start with computing −c∗: for λ ∈ R

n

−c∗(λ) = min
x∈Rn

c(x) − λTx = min
x∈Rn

min
{y∈X1∩X2,Px=Py}

f (y) − λTx

= min
y∈X1∩X2

(
f (y) − σ{x :Px=Py}(λ)

)

where σ{x :Px=Py} is the support function of the affine space (in x) defined by the equation
Px = Py. Thus we get that −c∗(λ) is −∞ unless λ lies in the image of PT, and that, in this
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case,

−c∗(PTμ) = min
y∈X1∩X2

f (y) − μTPy.

Since f is affine, the above minimum can be taken on the convex hull of the constraints:

− c∗(PTμ) = min
y∈conv(X1∩X2)

f (y) − μTPy. (22)

Observe that the right-hand-side is also −(̃c)∗(PTμ), since its expression can be derived in
the very same way as we get (22). Thus we have −c∗ = −(̃c)∗, and conjugating a second
time gives c∗∗ = (̃c)∗∗ = c̃ using the fact that c̃ is closed and convex (by Proposition 4). ��
In the general case though, the two functions ṽ and v̄ are different: they do not have the same
domain and also differ on the intersection of their domains. To see this, let us come back to
the toy example of Sect. 3.4 with only one load scenario D(ξ) = 2

v(x) =

⎧
⎪⎪⎨

⎪⎪⎩

min(y11 ,y21 ,y12 ,y22 )∈R4 5(y11 + y21 ) + 10(y12 + y22 )

s.t. (y11 , y
2
1 ) ∈ {0, 3}2, (y12 , y22 ) ∈ [0, 1]2

−1 ≤ 2 − yt1 − yt2 ≤ 1 for t = 1, 2
y11 = y21 , y

1
1 = x1, y12 = x2.

(23)

Explicit expressions of v, ṽ and v̄ can be worked out by elementary considerations (skipped
here): we have

v(x) =
⎧
⎨

⎩

20 if x = (0, 1)
30 if x = (3, 0)

+∞ elsewhere

and its convexified counterparts are

ṽ(x) =
{
20 + 10x1/3 if x = (x1, 1 − x1/3)

+∞ elsewhere

and, for x ∈ X = {x ∈ [0, 3] × [0, 1] : 1 ≤ x1 + x2 ≤ 3},

v̄(x) = max{10x2 + 10, 10(x2 + x1)} =
⎧
⎨

⎩

10x2 + 10 if x ∈ X and x1 ≤ 1
10(x2 + x1) if x ∈ X and x1 > 1

+∞ elsewhere

As illustrated in Fig. 1, we see that ṽ is strictly above v̄. In particular, when restricted to
the open segment {(x1, 1 − x1/3), x1 ∈ (0, 3)}, we have ṽ(x) = 20 + 10x1/3 > v̄(x) =
max{20 − 10x1/3, 10 + 20x1/3}.

5 Numerical Experiments

5.1 Experimental setting

5.1.1 Data set description

We consider a data set coming from the French unit-commitment problems of EDF’s gen-
eration assets with 136 thermal units and 22 hydro valleys (m = 158) on a time horizon
of two days discretized by half-hour (T = 96). Subproblems are modeled following clas-
sical operational formulations (seee.g.,Tahanan et al. 2015): for thermal units, we set up a
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Fig. 1 Convexification of v for the toy example

mixed-integer linear problem similar to the one of Frangioni et al. (2011), and for hydro units,
we have a linear problem as in van Ackooij et al. (2014), Merlin et al. (1981). Details on
the formulations of subproblems used in the numerical experiments are given in Appendix.
Overall, we end up with a deterministic problem with 47,450 continuous variables, 26,112
binary variables and 812,906 constraints.

5.1.2 Load uncertaincy

We generate the uncertain loads as an average load on top of which we add a causal time
series model (see, e.g., Bruhns et al. 2005). More precisely, we consider the Gaussian random
variable D(ξ) = D̄ + ζ, where D̄ is an observed load and ζ is an AR(3) model with
coefficients ϕ := (0.9, 0.6,−0.51) and Gaussian innovations. Writing the AR(3) process in
its causal time series representation (see e.g., Shumway and Stoffer 2005), the covariance
matrix of D(ξ) is ΣD = (CDS)(S(CD))T, where S is a diagonal matrix with element

Sii = f
D̄i

1
T

∑T
j=1 D̄ j

(24)

and CD is the nominal covariance matrix with elements C ji = ∑ j−i+1
k=1 ϕD

k defined from

ϕD
k =

⎧
⎨

⎩

ϕ3 if k = 1, ϕ3ϕ
D
1 + ϕ2 if k = 2,

ϕ3ϕ
D
2 + ϕ2ϕ

D
1 + ϕ1 if k = 3,

3∑

k=1
ϕ4−kϕ

D
j−k otherwise.

5.1.3 Stochastic unit-commitment instances

In (24), the parameter f is a factor reflecting the load dispersion. By setting this parameter to
three different values, we create three stochastic unit-commitment: a low-dispersion instance
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Fig. 2 Some generated load scenarios with three level of dispersion. a Low dispersion load scenarios, b
medium dispersion load scenarios, c high dispersion load scenarios

(with f = 1.1), a medium-dispersion instance (with f = 2), and a high-dispersion instance
(with f = 3). Figure 2 plots several load scenarios for each level of dispersion. With 50
generated scenarios, each data set gives a global optimization problem (5) with 1,209,975
continuous variables, 665,856 binary variables and 20,729,103 constraints, which is out of
reach for mixed-integer linear solvers.

5.1.4 Algorithm

On the three problems, we run the algorithm of Sect. 3.3, with the following setting. We set
the stopping threshold to δtol = 1%.We also set to 300 the size of the limitedmemory of the
second stage bundle [more precisely, this is the size of the storage of the bundle information
on θ̄ of (7)]. We observed that this choice offers a good trade-off for the bundle algorithm
between the number of iterations and the cost of its quadratic subprograms. Finally, for
the Step 3 of the algorithm, we use the four following Lagrangian heuristics (described in
Appendix):

– CTI: the commitment based heuristic Borghetti et al. (2003) with time independent
priority list,

– CTD: the same as above but with a time dependent list,
– RH: the recombining heuristic of Takriti and Birge (2000),
– allH: taking the best of the three above heuristics.

5.2 Numerical results

5.2.1 Results with 50 scenarios

Table 1 presents the computational results on the three stochastic unit-commitment described
in the previous section (with S = 50 scenarios and with respectively low, medium, and high
dispersion of the stochastic load). Let us point out three features in these figures. First we
observe that the final gaps are rather small, often lower that 1%, and quite comparable to
those observed when solving deterministic unit-commitment problems. Second, the primal
recovery heuristics give different results but without significant changes in the number of
calls or in the final gaps. Notice that the result for the hybrid heuristic combining the three
others gives the same results as the CTI for the instances with small and large dispersion.
More precisely, the heuristic providing the best results is always CTI, except for a single
iteration when processing the medium instance. Third, we emphasize that the number of
oracle calls remains within reasonable limits. For comparison, using up to 300 oracles calls
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Table 1 Numerical results of the algorithm using the four different heuristics

Instance Heuristic
used in Step3

Nb. Iter Oracle calls Gaps (%) f (xfinal)

1st stage 2nd stage Δfinal
G Δfinal

A

Low CTD 8 361 1741 1.48 0.66 5.645×107

CTI 8 417 1496 0.27 0.54 5.541×107

RH 6 267 1043 0.63 0.87 5.583×107

allH 8 417 1496 0.27 0.54 5.541×107

Medium CTD 8 404 2441 1.59 0.73 5.648×107

CTI 9 445 2238 0.31 0.91 5.559×107

RH 11 458 2607 1.58 0.40 5.608×107

allH 14 776 3501 0.60 0.72 5.552×107

High CTD 11 516 3817 1.66 0.71 5.648×107

CTI 6 293 1553 0.19 0.71 5.547×107

RH 8 317 2374 0.67 0.62 5.584×107

allH 6 293 1553 0.19 0.71 5.547×107

for solving deterministic unit-commitment problems is common [e.g., Dubost et al. (2005,
Table 3.1)]. In our case we have provided a good initial guess for the dual signals and the
bundle method converged in 72 iterations.

5.2.2 Effect of hot-starting

Our algorithm solving two-stage unit-commitment problems shows similar results and similar
order of numerical complexity as a bundle algorithm solving deterministic unit-commitment
problems. Recall though that our algorithm solves (S + 1) full unit-commitment problems
at each iteration. The main reason for this is the efficiency of the hot-starting procedure for
the model enrichment step.

Let us illustrate further this efficiency by showing on Fig. 3a, b the number of iterations
of the second-stage for one run of the algorithm on the first instance. We observe that a
change of iterates implies that early scenarios require several iterations, but that this effect
quickly diminishes and only few additional iterations are needed for other scenarios. The
overall computational effort remains rather constant as seen on Fig. 3b: around only 5 bundle
iterations are needed in order to process a single scenario. The whole set of 50 scenarios can
therefore be processed within approximately 250 bundle iterations.We recall that performing
10 iterations of the algorithm, while using 50 scenarios for representing uncertainty gives a
global problem size equivalent to solving 510 full large scale unit-commitment problems.

5.2.3 Larger instances with more scenarios

Wenowprovide somemore resultswith an increased number of scenarios S ∈ {50, 100, 250}.
Let us focus on the high-dispersion instance and the CTI heuristic. Table 2 shows that the
average number of oracle calls per iteration and scenario decreases as the number of scenarios
increases. It is remarkable that the total number of oracle calls stays reasonable. Notice that
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Fig. 3 Required Iterations for each model enrichment step. a Iterations per scenario (with CTI), b Average
number of iterations

Table 2 Larger instances with
more scenarios: decrease of
oracle calls per scenario and
iteration

Number of
scenarios

Nb. iter Oracle calls Average
oracle call

1st stage 2nd stage

50 4 167 1009 5.88

100 8 360 3461 4.77

250 16 694 14,205 3.73

we helped the bundle method by increasing the size of the memory of the bundle from 300
to 500 for this experiment. This explains the difference between the first line of Table 2 with
the tenth line of Table 1.

5.2.4 Effect on the generation planning

We illustrate the typical effect of our two-stage approach on the final generation plannings,
compared to the ones computed by a deterministic model. We see on Fig. 4a–c below that
generation is transferred from inflexible but cheap production sources to more expensive
but flexible sources. This includes significant changes for several hydro valleys as shown in
Fig. 4c. However most hydro valleys retain a similar shaped production profile as illustrated
in Fig. 4d.

5.2.5 A variant of the algorithm with multi-cuts

Recall that we use a cutting-plane model for v aggregating the cuts for each scenario in
(9). Another option would be to set up a cutting-plane model for each scenario. In this
case, the resulting model for v would be tighter, so the convergence possibly faster. On
the other hand, the size of the dual multipliers μ for problem (10) would be multiplied by
S scenarios, and therefore the first-stage dual problems are in larger dimension. In a final
experiment (with S = 50 scenarios), we investigate the effect of using a multi-cut variant
of our algorithm. We take a tolerance δtol = 0.25%, smaller than before, to have more
iterations and then better distinguish the effect of multi-cuts. Table 3 presents the results.
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Fig. 4 Comparison of generation schedules given by our two-stage formulation and the deterministic one. a
Inflexible plant, b flexible plant, c hydro valley 1, d hydro valley 2

Table 3 Numerical results of the
algorithm versus its multi-cuts
version : ratio of the number of
iterations increase (iteration
increase), the difference of oracle
calls per stage normalized by the
total number of iterations for the
first stage (1st stage cost), and the
same difference for the second
stage (2nd stage cost)

Instance Heuristic Iteration
increase (%)

1st stage
cost (%)

2nd stage
cost (%)

Low CTI 30.0 3.66 1.95

CTD 33.3 −19.80 −5.11

RH 25.0 2.97 −1.96

allH −52.5 −9.42 −2.42

Medium CTI 44.4 0.36 6.13

CTD 330.0 4.44 −2.13

RH −38.5 0.82 1.45

allH 44.4 0.36 6.13

High CTI 52.6 −49.37 −12.61

CTD −22.2 −27.27 −6.14

RH 12.5 −1.44 0.60

allH 89.5 −50.61 −12.32

Average 45.72 −12.11 −2.20
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The column related to the iteration ratio shows that occasionally the number of iterations
increases by 30% when using the multi-cut version, but the opposite phenomena appears as
well. We thus observe that using a multi-cut approach is not always beneficial. The columns
related to the first and second stage cost report the ratio of the total number of oracle calls
per stage normalized by the total number of iterations. On average the second stage cost
is roughly identical, whereas the first stage cost of the multi-cut version is around 12%
less than the mono-cut version. Thus, the increased size of the dual multipliers does not
seem to be an issue. Note that the seemingly very poor performance of the multi-cut version
on the medium instance with the CTD heuristic is due to a very sudden jump in precision
in the mono-cut version. This leads to early termination, whereas in the multi-cut version
progression towards the stopping criteria is far more gradual. Note that Table 3 seems to
indicate that the increased precision of the multi-cut model is somehow offset by the primal
recovery heuristics, even though they perform similarly well in both situations. The fact that
disaggregating cutting plane methods does not always lead to a decrease of the number of
iterations was also observed in deterministic unit-commitment, in e.g., van Ackooij et al.
(2012).

6 Conclusion

In this paper, we have proposed a decomposition algorithm for solving two-stage prob-
lems, where both first and second stages are full unit-commitment problems. The algorithm
makes no specific assumptions on the set of technical constraints for the units and only
uses tools already well in place for deterministic unit-commitment. The working horses of
the approach are several hot-started bundle methods with a small overall computational
burden. We have analyzed the convergence of the algorithm and studied its convexi-
fying effect. We have shown its efficiency on real life unit-commitment instances, for
which a remarkably low number of iterations and oracle calls are needed to reach con-
vergence.

There is room for improvement in the algorithm and its current implementation. It would
be interesting to investigate using standard regularization techniques, in particular first stage
bundle-like regularizations and second stage augmented Lagrangian regularizations. This
would nevertheless add a layer of complexity on the presentation, the theoretical study, and
the implementation of the algorithm. This is beyond the scope of this paper, and we differ
it to future research. Other points of improvement of the implementation would include the
preconditionning of the second-stage bundle Bacaud et al. (2001) and the use of available
uncontrolled bundle information Malick et al. (2015).
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Appendix 1: Description of the unit-commitment model

This appendix provides more information about the models of subproblems used in the
numerical experiments of Sect. 5.
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Hydro valley subproblems

The hydro valley subproblems deal with optimizing the power production of turbines and
pumps for a given price signal. The turbines and pumps connect various reservoirs together.
For a given topology, one readily establishes the flow equations that deal with updating the
reservoirs levels through time. These reservoir levels have to remain between a lower and
upper bound for all T time steps. Turbines and pumps are moreover subject to natural bounds
on production levels. The most challenging feature to take into account is the turbining effi-
ciency function that associates with each turbined quantity (m3/h) and water head (reservoir
level in uphill reservoir, in m3) the amount of produced power (MW). This function can be
highly non-linear, non-concave and may even contain forbidden zones of production, see
e.g., Finardi and Silva (2006), Borghetti et al. (2013).

A common assumption in the French system (see, e.g., Merlin et al. 1981) is that the
water-head effect for large reservoirs can be neglected as the volumetric difference that can
be achieved during the T time steps is quite small. For smaller reservoirs the effect caused
on the amount of produced power would be quite small. Moreover following the set of
assumptions made in Merlin et al. (1981), the power efficiency function becomes concave
and is approximated with an a priori piecewise linearization. This makes the hydro valley
subproblem a linear program. More details can be found in van Ackooij et al. (2014).

Thermal subproblems

As the thermal subproblems are concerned, we set up a usual model, similar to the one
of Frangioni et al. (2011), that incorporates, minimum generation levels, minimal up and
down times, start up costs, fixed generation costs and ramping rates. We provide here a
short description for convenience. To simplify notation, we do not include a reference to the
specific unit the problem belongs to,

The decision variables are p ∈ R
T+ providing the amount of generated power in MW ,

u ∈ {0, 1}T the on/off status of the unit for each time step and z ∈ {0, 1}T an auxiliary variable
indicating an effective start of the unit. Problem data describing cost are c ∈ R

T+ in e/MWh,
a proportional cost of production, c f ∈ R

T+ in e/h, a fixed production cost and cs ∈ R
T+

in e, a start up cost. Bounds on production levels expressed in MW , when producing are
given by pmin ∈ R

T+ and pmax ∈ R
T+. Ramping rate related data is g+, g− > 0 expressed in

MW/h and correspond to the ramping up gradient and ramping down gradient respectively.
The numbers s+, s− > 0 express similar quantities but for starting and stopping ramping
rates. Finally τ+, τ− expressed in a number of time steps correspond to the minimum up
and down times respectively. We make the assumption that when a unit is online for exactly
τ+ time steps the minimum up constraint is satisfied [while Frangioni et al. (2011) assume
this for τ+ + 1 time steps]. The optimization problem can then be stated as follows, where
λ ∈ R

T is a Lagrangian price multiplier (e/MWh):

minp,u,z∈RT+×{0,1}2T (c − λ)T p�t + cT
f u�t + cT

s z

s.t. pmin(t)u(t) ≤ p(t) ≤ pmax(t)u(t), for t = 1, . . . , T

p(t) ≤ p(t − 1) + u(t − 1)g+�t + (1 − u(t − 1))s+�t, for t = 1, . . . , T

p(t − 1) ≤ p(t) + u(t)g−�t + (1 − u(t))s−�t, for t = 1, . . . , T

u(t) ≥ u(r) − u(r − 1), for t = t0 + 1, . . . , T, r = t − τ+ + 1, . . . , t − 1

u(t) ≤ 1 − u(r − 1) + u(r), for t = t0 + 1, . . . , T, r = t − τ− + 1, . . . , t − 1

u(t) − u(t − 1) ≤ z(t), for t = 1, . . . , T .
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Here�t corresponds to the size of each time step expressed in hours, p(0) to the initial power
output and t0 is defined according the amount of time τ0 (in time steps) the unit has spend
producing or is offline. More specifically,

t0 =
{
max {0, τ+ − τ0} if p(0) > 0
max {0, τ− − τ0} otherwise

Obviously u(0) = 1 in the first case and u(0) = 0 in the second.

Appendix 2: Lagrangian heuristics

As in decomposition approaches for deterministic unit-commitment, heuristics play an impor-
tant role in our algorithm—more precisely in Step 2. In our numerical experiments, we use
three heuristics inspired from Borghetti et al. (2003) and Takriti and Birge (2000). This
section describes them briefly.

Three Lagrangian heuristics

The three heuristic use information returned by the bundle algorithm maximizing (11) used
in Step 1. More precisely, denoting by p is the number of iterations of this algorithm and x j a
primal iterate obtained at iteration j ∈ {1, . . . , p}, the heuristics use the following quantities:
1. the dual simplicial multipliers α of the quadratic program solved at the last iteration of

the bundle method;
2. the so-called pseudo schedule x̂ is defined as

∑p
j=1 α j x j , see Daniildis and Lemaréchal

(2005), Dubost et al. (2005);
3. the pseudo costs (ĉ1, . . . , ĉm) defined as ĉi = ∑p

j=1 α j c
j
i where c ji the pure production

cost of subproblem i at iteration j ;
4. the pseudo commitment decisions defined as û j

i = ∑p
j=1 α j u

j
i , where u

j
i ∈ {0, 1}T are

the commitment decisions of each thermal plant for each iteration j = 1, . . . , p.

Another common ingredient is the resolution of an economic dispatch problem: for a fixed
set of commitment decisions, we let a continuous optimization problem adjust production
levels in order to generate a solution in X2.

We begin by remarking that the pseudo-schedule is a technically feasible solution as hydro
valleys are concerned (since these sub-problems have convex feasible sets, see the previous
section). Also the pseudo-schedule is directly related to offer-demand equilibrium constraints
through bundle stopping criteria.We therefore keep the pseudo-schedule as hydro-valleys are
concerned and remove their generation from the load D in order to form D̃. The production
parc is such that the obtained net load is always strictly positive. The heuristics are therefore
mostly concerned with thermal plants. For convenience of notation we will still use m to
index the number of thermal plants.

Commitment based heuristic

This heuristic is inspired from Borghetti et al. (2003). We begin with an initial guess for the
commitment decisions called ũ, for instance one of the commitment decisions encountered
during the optimization of problem (11). We now build a priority list in two different ways.
The first is time-independent and related to sorting the pseudo costs divided by total generated
pseudo power in increasing order. A lower value indicates a unit with higher priority (best
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cost to power ratio). The second is a time-dependent priority list in which we divide the
pseudo-commitment decisions by the above pseudo cost over pseudo power ratio. A higher
value indicates a unit more likely to be started.

Starting from our initial commitment guess ũ we first begin by computing the generation
envelope, i.e., the minimum andmaximum power the plants can generate over the whole time
horizon at these commitment decisions. We nowmove from the first time step to the last one,
if D̃ is in the generation envelope, nothingmore needs to be done. If generation is insufficient,
we check if we can start the highest priority unit (if not done so already), we continue in this
manner until generation covers load. If generation is in excess, we try to decommit the lowest
priority unit (if not already off) and continue in this manner until the minimum generation is
below load. The hence generated commitment decision is post-processed with an economic
dispatch in order to finely adjust generation to actual load. We also post-process any of the
generated commitment decisions u j , j = 1, . . . , p in order to retain the best one.

Recombining heuristic

This method inspired from Takriti and Birge (2000) recombines the earlier obtained primal
iterates in order to find a feasible solution. For additional flexibility we add a slack variable,
and therefore solve the following mixed-integer problem:

minz∈{0,1}mp,s∈RT+

p∑

j=1

m∑

i=1

c ji z
j
i +

T∑

t=1

cimbt st

s.t.
p∑

j=1

z ji = 1, i = 1, . . . ,m and D̃ −
m∑

i=1

Ai
p∑

j=1

z ji x
j
i − s ≤ su,

where cimb is a large imbalance related cost. The resulting optimal solution builds an initial
commitment decision ũ, which is post-processed as explained previously. In order to keep
the mixed-integer program small, we use the dual variables α and insert only elements of
iteration j if α j is sufficiently large, (e.g., α j > 10−3).
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