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some of the original extensions or variants of clauses learning. In theory, current SAT solvers
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1 Introduction

The SAT problem, i.e., the problem of checking whether a Boolean formula in conjunctive
normal form (CNF) is satisfiable or not, is central to many domains in computer science
and artificial intelligence including constraint satisfaction problems (CSP), automated plan-
ning, non-monotonic reasoning, VLSI correctness checking, etc. Today, SAT has gained a
considerable audience with the advent of a new generation of solvers able to solve large
instances encoding real-world problems, and the demonstration that these solvers represent
important low-level building blocks for many important fields, e.g., SAT modulo theory,
Theorem proving, Model checking, Quantified boolean formulas, Maximum Satisfiability,
Pseudo boolean, etc. These solvers, often called modern SAT solvers (Moskewicz et al. 2001;
Eén and Sorensson 2003), are based on the classical DPLL procedure (Davis et al. 1962)
enhanced with: (1) an efficient implementation of unit propagation through incremental and
lazy data structures, (2) restart policies (Gomes et al. 1998; Kautz et al. 2002), (3) activity-
based variable selection heuristics (VSIDS-like) (Moskewicz et al. 2001), and (4) clause
learning (Marques Silva and Sakallah 1996; Moskewicz et al. 2001). Clause learning is now
recognized as one of the most important component of Modern SAT solvers. The main idea
is that when a current branch of the search tree leads to a conflict, clause learning aims to
derive a clause that succinctly expresses the causes of the conflict. Such learned clause is
then used to prune the search space. Clause learning also known in the literature as conflict
driven clause learning (CDCL) refers now to the most known and used First UIP learn-
ing scheme, first integrated in the SAT solver Grasp (Marques Silva and Sakallah 1996)
and efficiently implemented in zChaff Moskewicz et al. (2001). Most of the SAT solvers,
integrate this strong learning scheme. Theoretically, by integrating clause learning to DPLL-
like procedures Davis et al. (1962), the obtained SAT solver formulated as a proof system
is as powerful as general resolution (Pipatsrisawat and Darwiche 2009; Pipatsrisawat and
Darwiche 2010).

This paper deals with learning from conflict, one of the most important component of
modern SAT solvers. It surveys most of the works that led to the current well known First
UIP learning scheme integrated in all the state-of-the-art SAT solvers. We also present some
original extensions and variants of this classical learning scheme. To get a complete picture
about SAT solvers, we additionally overview the other components mentioned above.

Our goal in this survey paper is to popularize this important paradigm to the operation
research community, while hoping its possible integration to enhance the efficiency of branch
and bound based algorithm. SAT have strong connection with operation research. Indeed, it
is directly related to O—1 integer linear programming or pseudo boolean constraints. A linear
transformation for encoding as Boolean formulas in conjunctive normal form, 0/1 linear
inequalities with integral coefficients was given by Warners (1998), while a clause can be seen
as a simple 0/1 linear inequality. Consequently, a CNF formula can be formulated as a system
of 0/1 linear inequalities and vice versa. On the solving side, branch and bound and DPLL-
like procedure both develop a search tree based on the separation principle. Interestingly
enough, the well known resolution principle and cutting plane rule are heavily related.

The paper is an updated version of Hamadi et al. (2012). It is organized as follows. After
some preliminary definitions and notations, relationships between SAT and integer linear
programming are discussed in Sect. 3. In Sect. 4, a comprehensive overview of related Al
learning based approaches are briefly discussed. A survey of clauses learning based tech-
niques are described in Sect. 5. The other components of modern SAT solvers are described
before concluding.
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2 Preliminary definitions and notations

A Boolean formula F in Conjunctive Normal Form (CNF) is a conjunction of clauses, where
a clause is a disjunction of literals. A literal is a positive (x) or negated (—x) propositional
variable. The two literals x and —x are called complementary. We denote by [ the comple-
mentary literal of /. More precisely, if / = x then [ is —x and if [ = —x then [ is x. For
a set of literals L, L is defined as {{ | [ € L}. Let us recall that any Boolean formula can
be translated to CNF using linear Tseitin encoding (Tseitin 1968). A unit clause is a clause
containing only one literal (called unit literal), while a binary clause contains exactly two
literals. An empty clause, denoted _L, is interpreted as false (unsatisfiable), whereas an empty
CNF formula, denoted T, is interpreted as true (satisfiable).

The set of variables occurring in F is denoted V£. A set of literals is complete if it contains
one literal for each variable in Vi, and fundamental if it does not contain complementary
literals. An interpretation p of aBoolean formula F is a function which associates a value p (x)
tosome of the variables x € V. piscompleteifitassigns avaluetoevery x € Vr,and partial
otherwise. An interpretation is alternatively represented by a complete and fundamental set
of literals. A model of a formula F is an interpretation p that satisfies the formula; denoted
pEF

The following notations will be heavily used throughout the paper:

— nlx, ci, cj] denotes the resolvent between a clause ¢; containing the literal x and c; a
clause containing the opposite literal —x. In other words n[x, ¢;, ¢;] = ¢; U c;\{x, =x}.
A resolvent is called fautological when it contains complementary literals.

— F|x denotes the formula obtained from F by assigning x the truth-value true. Formally
Flx ={clce F, {x,mx}Nc=0}U{c\{—x} | c € F,-x € c} (that is: the clauses
containing x are therefore satisfied and removed; and those containing —x are simplified).
This notation is extended to interpretations: given an interpretation p = {xq, ..., x,},
we define Fl, = (... (Flx)lx) - - lxy)-

— F* denotes the formula F closed under unit propagation, defined recursively as follows:
(1) 7* = F if F does not contain any unit clause, (2) F* = L if F contains two unit-
clauses {x} and {—x}, (3) otherwise, F* = (F|,)* where x is the literal appearing in a
unit clause of F.

— =4 denotes deduction by unit propagation: F [, x means that a literal x is deduced
by unit propagation from F, i.e. x € F*. We write F |=,L if the formula is proved
inconsistent by unit propagation. In particular, note that if we have a clause ¢ such that
F AT 4L, then c is a consequence of F. We say that c is deduced by unit propagation.

— Let ¢ and ¢, be two clauses of a formula F. We say that ¢; (respectively ¢,) subsume
(respectively is subsumed) ¢ (respectively by cy) iff ¢c; € ¢». If ¢; subsume c7, then
c1 = ¢ (the converse is not true). Also F and F — ¢, are equivalent with respect to
satisfiability.

Let us now introduce some notations and terminology on SAT solvers based on the
Davis Logemann Loveland procedure, commonly called DPLL (Davis et al. 1962). DPLL
is a backtrack search procedure; at each node the assigned literals (decision literal and the
propagated ones) are labeled with the same decision level starting from 1 and increased at
each branching. The current decision level is the highest decision level in the assignment
stack. After backtracking, some variables are unassigned, and the current decision level is
decreased accordingly. At level i, the current partial assignment p can be represented as a
sequence of decision-propagation of the form ((x,i), x,’;l , x,iz, ey x,’;nk ) where the first literal

x,i corresponds to the decision literal x; assigned at level k£ and each x,ij forl < j < nyg
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represents propagated (unit) literals at level k. Such a partial interpretation (sequence of
decisions-propagations) associated to a given node of the search tree is called partial ordered
interpretation.

Let x € p, we denote by /(x) the assignment level of x, d(p, i) = x if x is the decision
literal assigned at level i. For a given level i, we define p’ as the projection of p to literals
assigned at a level < i.

3 SAT and integer programming formulation

In this section, we briefly recall some connections between SAT and integer programming.
Our goal is to convince the reader about the proximity of these two research domains and that
cross-fertilization even if it has been widely investigated in the past remains an important
and interesting research issue.

Let us identify Boolean values false and true with integers 0 and 1. Any CNF formula
can be reformulated as a system of 0/1 linear inequalities. The following example illustrates
such reformulation.

Example 1 Let F be a CNF formula made of the two clauses ¢; = (x; V x2 V —x3) and
¢y = (x1 V —x2). F can be reformulated as a system Sz of 0/1 linear inequalities:

xt+x2+U—=x3)>1 (s¢)
x1+0—-x)>1 (8¢,)
X1, x2,x3 € {0, 1}

F is satisfiable if and only if S have a feasible solution as determined by integer program-
ming.

3.1 Branch-and-bound and DPLL

The most popular solution approach for linear 0/1 programming is branch and bound. Itis very
similar to the DPLL procedure, which also generates an enumeration tree by branching search.
They differ mainly in that branch-and-bound solves the linear relaxation of the satisfiability
problem (obtained by replacing the condition x; € {0, 1} with ranges 0 < x; < 1) at each
node of the enumeration tree whereas DPLL applies unit-propagation. There are several
enhancements of this basic algorithm including branch-and-cut algorithm by Hooker and
Fedjiki (1990) that uses cutting planes at several nodes of the branch-and-bound tree. For a
survey on mathematical programming approaches for solving the satisfiability problem, see
Chandru and Hooker (1999) and Hooker (2000).

3.2 Resolution and cutting planes

As mentioned previously, a modern SAT solver formulated as a proof system is equivalent
to general resolution (Pipatsrisawat and Darwiche 2009). Resolution (Quine 1955; Robinson
1965) is a well known satisfiability procedure, that recursively applies the resolution rule
(see Sect. 2) on two selected clauses containing two complementary literals and adding the
obtained resolvents to the formula. This simple technique is complete for refutation. If the
CNF formula is unsatisfiable, the resolution procedure is able to generate an empty clause
in a finite but exponential number of steps in general. Applying subsumption at each step
of the resolution procedure leads to a complete approach for satisfiability checking. In spite
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of its exponential worst case time and spatial complexity, resolution plays an important role
in current SAT solvers. As we can see later, conflict driven clause learning is based on a
restricted form of resolution.

In integer programming, resolution corresponds to cutting planes (Hooker and Fedjiki
1990). A cutting plane is an inequality verified by all the 0/1 solutions of the problem.
As we can see in the following example, a cutting plane can be generated by taking a
nonnegative linear combination of the inequalities in the linear relaxation, including the
bounds 0 < x; < 1, and to round up any fractions that result in the coefficient or right hand
side. Such a cut is called a rank one cut.

Example 2 Let us take again the formula F given in the Example 1 and its corresponding
set of inequalities Sr.

xi+  xt (1—x3) =1 (%)
xi+ (1 —x2) =1 (%)

(1 —x3) =0 (%)
X1+ (1-x3) >3

We recall that applying the resolution rule on the clauses c¢; and ¢; leads to the resolvent
nlx2, c1, c2] = (x1 Vv —x3). This resolvent corresponds to the rank one cutting plane x; +
1—-x3) > % which is equivalent to x; + (1 — x3) > 1 obtained by rounding up the right
hand side. This resolvent is generated by combining the linear inequalities s, , s¢, with the
bound (1 — x3) > 0 where the two sides of each inequality is multiplied by %

Further connexion between resolution and cutting planes can be found in Hooker and
Fedjiki (1990) and Hooker (1989).

4 An historical overview of learning based approaches

Learning from conflicts appeared first in the context of constraint satisfaction problem
solving (Stallman and Sussman 1977; Gasching 1979). Such approaches usually refer to
non-chronological backtracking and nogood recording. A backtrack-style procedure per-
forms a depth-first search, successively instantiating variables of the constraint network to
values in order to build a solution, and backtracks when necessary, in order to escape from a
conflict. In general, the current branch of the search tree might contain many irrelevant vari-
ables between the level of conflict and its real cause. Chronological backtracking may lead the
solver to trashing by rediscovering the same conflict over and over again in different settings
of irrelevant variables. One has to decide how far to backtrack and potentially, what to learn
from the conflict. In 1977, Stallman and Sussman (1977) proposed a rule-based system for
computer-aided circuit analysis. The system threads deduced facts with justifications which
mention the antecedent facts and the rule used. To reduce the search space, these justifications
are exploited by the system during the conflict analysis to reduce the search space. This leads
to an effective control of combinatorial search which is called dependency-directed back-
tracking. This method is used in truth maintenance systems (Doyle 1979; McAllester 1980),
and has been improved or simplified in the context of logic programming and constraint
satisfaction problems by various researchers (Bruynooghe 1981; Dechter 1986, 1990).

As the learnt clauses database is of exponential size, several strategies have been proposed
to reduce such spatial complexity. Most of them try to avoid such major drawback by either
introducing limited and (1) relevant based learning scheme or by achieving only (2) non-
chronological backtracking (without nogood recording) referred as intelligent backtracking.
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For example, relevance-bounded learning (Bayardo and Miranker 1996) and conflict directed
backjumping (CBJ) (Prosser 1993) belong respectively to the first and the second category.
We can also cite other approaches that reduce space complexity by introducing bounds on
the size of the constraints recorded (Dechter 1990; Frost and Dechter 1994), and those that
record constraints of arbitrary size, but delete nogoods which become irrelevant to the current
portion of the search space (Ginsberg 1993).

The efficiency of clause learning currently integrated in all the state-of-the-art SAT solvers
is made possible thanks to strong learning schemes, lazy data structures and constraint data-
base management strategies. Among these chronologically ordered contributions, we can
cite the important works by Marques Silva and Sakallah (1996), Bayardo and Schrag (1997),
Zhang (1997), Moskewicz et al. (2001) and Zhang et al. (2001).

5 Classical clause learning: a formal description

Clause learning plays a critical role in the success of modern complete SAT solvers. The main
idea is that when a current branch leads to a conflict, clause learning aims to derive a clause
that succinctly expresses the causes of conflict. Such learned clause is then used to prune the
search space. Clause learning also known in the literature as conflict driven clause learning
(CDCL) refers now to the most known and used First UIP learning scheme, first integrated
in the SAT solver Grasp (Marques Silva and Sakallah 1996) and efficiently implemented
in zChaff Moskewicz et al. (2001). Most of the SAT solvers, usually called modern SAT
solvers, integrate this strong learning scheme. Theoretically, by integrating clause learning
to DPLL-like procedures (Davis et al. 1962), the obtained SAT solver formulated as a proof
system s as powerful as general resolution (Pipatsrisawat and Darwiche 2009). Several works
have been conducted in order to improve this simple learning scheme. Such improvements,
include the minimization process introduced by Sorensson and Biere (2009) and Hamadi et al.
(2009a) to reduce the size of the learnt clauses, the extended learning schemes proposed in
Audemard et al. (2008a) and other clauses learning variants (Pipatsrisawat and Darwiche
2008; Sabharwal et al. 2012; Hamadi et al. 2009a; Jabbour 2009).

Prior to the formal description of the above classical clause learning scheme, we first
formalize the graph-based framework used to learn conflict clauses.

An implication graph (Marques Silva and Sakallah 1996) is a representation which cap-
tures the variable assignments p (interpretation) made during the search, both by branching
and by propagation. This representation is a convenient way to analyse conflicts. In classical
SAT solvers, whenever a literal y is propagated, we keep a reference to the clause at the origin
of the propagation of y, which we denote imp(y). The clause %(y) is in this case of the
form (x1 Vv -- -V x, Vy) where every literal x; is false under the current partial interpretation
(p(x;) = false,Vi € 1..n), while p(y) = true. When a literal y is not obtained by propa-
gﬁti)on but comes from a decision, imp(y) is undefined, which we denote for convenience
imp(y) = L.

—_> _ —

When imp(y) #L, we denote by exp(y) the set {x | x € imp(y) \ {y}}, called set of
explanations of y. In other words if imp(y) = (x; V- - - V x, V ), then the explanations are
the literals x; with which imp(y) becomes the unit clause (y). Note that for all i we have
1(x;) < I(y), i.e., all the explanations of the deduction come from a level at most as high.
When i?[))(y) is undefined we define exp(y) as the empty set. In an implication graph, the
set of predecessors of a node corresponds to the set of explanations of the corresponding
literal:
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x2(2) x3(2) x4(3)
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(3965 N oo o x140)
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Fig. 1 Implication Graph g} =W,&)

Definition 1 (Implication Graph) Let F be a CNF formula, p a partial ordered interpretation,
and let exp denotes the set of explanations for the unit propagated literals in p. The implication
graph associated to F, p and exp is g}”’”” ) — (N, €) where:

— N = p, i.e. there is exactly one node for every literal, decision or implied,;
- &={x.y)|xep,yep, xecexpy))

. .. (p,exp) . o - .
For simplicity reason, we denote G~ simply as G~ in the rest of this paper.
Example 3 g;, shown in Fig. 1 is an implication graph for the formula F and the partial
assignment p given below : F 2 {cy, ..., c10}
(c1) =x2 V —x5 V X6 (€2) =x5 V x7
(c3) —xg V —x7 V X3 (c4) —x3 V —xg V X9
(c5) =x1 V —xg V x10 (c6) =x4 V —xg V Xy
(€7) =x4 V mxg V oxpo VX2 (€8) 7x10 V X13
(c9) —x11 V 7x12 V X14 (c10) =x13 V 7x14

p={{(—x] .3 ...x3 . () ...) ... ((xD)...)}. The current decision level is 5.

5.1 Generating asserting clauses

In this section, we formally describe the classical learning schemes used in modern SAT
solvers. In the following definitions, we consider F a CNF formula, p a partial assignment
such that (F|,)* = L and Q;_- = (N, &) the associated implication graph. Assume that the
current decision level is m. As a conflict is reached, then 3x € st. {x, =x} C N and[(x) = m
or/(—x) = m. Conflict analysis is based on applying resolution from the top to the bottom of
the implication graph using the different clauses of the form (exp(y) Vv y) implicitly encoded
at each node y € A. We call this process an asserting clause derivation. Let us now formally
define the concept of asserting clause, asserting clause derivation and unique implication
point.

Definition 2 (Asserting clause) A conflict clause ¢ of the form (« V x) is called an asserting
clause iff p(c) = false,l(x) = mand Vy € «, [(y) < I(x). x is called asserting literal, which
we denote in short A(c).

We define jump(c) = max{l(—y) |y € a}.
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Definition 3 (Asserting clause derivation) An asserting clause derivation i (o) is a sequence
of clauses (01, 02, . .. ox) satisfying the following conditions :

—> —> . .
1. o1 = nlx,imp(x), imp(—x)], where {x, —x} is the conflict.
—>
2. oj, fori € 2..k, is built by selecting a literal y € o;_1 for which imp(y) is defined. We
then have y € o;_1 and y € imp(y): the two clauses resolve. The clause o; is defined as

nly, oi—1, imp(y];
3. oy is, moreover an asserting clause.

Note that every o; is a resolvent of the formula F: by induction, o1 is the resolvent between
two clauses that directly belong to F; for every i > 1, 0; is a resolvent between ;1 (which,
by induction hypothesis, is a resolvent) and a clause of F. Every o; is therefore also an
implicate of F, thatis: F |= o;.

Another important remark is that in modern SAT solvers, the literals y used in the condition
2 of Definition 3 are restricted to those of the current decision level.

Definition 4 (Elementary asserting clause derivation) An asserting clause derivation 7 (o)
= (01, 02, ...0%) is called elementary iff 3i < k s.t. w(o;) C w(oy) is also an asserting
clause derivation.

Using the Definitions 3 and 4, we can now define the concepts of Unique Implication
Point (UIP) and First UIP Marques-Silva and Sakallah (1999):

Definition 5 (Unique Implication Point (UIP in short)) A node x € N is a UIP iff there
exists an asserting clause derivation (o1, 02, ...,0%) st. X € o and [(x) is equal to the
current decision level, m. (Note that oy, being assertive, has exactly one such x.)

Definition 6 (First Unique Implication Point) A node x € N is a First UIP iff it is obtained
from an elementary asserting clause derivation; i.e. 37 (ox) = (o1, 02, . . ., 0x) an elementary
asserting clause derivation st. X € o and I(x) = m.

Definition 7 (Last Unique Implication Point) The last UIP is defined as the literal d(p, m),
i.e. the decision literal assigned at the conflict level m.

To illustrate the previous definitions, let us consider again the Example 3.

The traversal of the graph Q;_- allows us to generate two asserting clauses corresponding
to the two possible UIPs (see Fig. 1). Let us illustrate the conflict resolution proof leading
to the first asserting clause A corresponding to the first UIP (see cut 1 in Fig. 1, first green
line).

— o1 = nlx1a, co, cio] = (=) V =g, V 7xgy)

— 02 = nlxi3, 01, 5] = (2xjy V =) Vo)

— 03 = 1nlxs,02,c7] = (—-xi \Y —-xg \% ﬁxfo \Y —-xfl)

— 06 = Ay = n[xg, 05,c4] = (—-x]1 \% —|x32 \% —|x2 \% —-xg)

As we can see, og gives us a first asserting clause (that we’ll also name Ap) because all of
its literals are assigned before the current level except one (xg) which is assigned a the current
level 5; 7 (A1) = (o1, 02,03, ...,06 = Aq) is an elementary asserting clause derivation (the
intermediate clauses of 7 (A;) contain more than one literal of the current decision level 5),
and xg is a first UIP.

If we continue such a process, we obtain an additional asserting clause Ay = (—-xll vV
—-x% \Y —w% \Y —lxg \Y —-x55), corresponding to a second UIP xg; which is the last UIP since it
corresponds to the decision literal (see cut 2 in Fig. 1, second green line).
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Property 1 (Asserting clause and backjumping) Let m(c = (« V x)) an asserting clause
derivation, and i = jump(c). We can safely backjump to level i and consider the partial
assignment p' U {x}

Proof Asa C p' the clause ¢ is such that (F Ac) lpi Ex x, which implies that (F Ac) i | x.
Furthermore ¢ is aresolvent so F and F Ac are equivalent wrt. satisfiability; therefore 7| ;i =
x. This means that at level i the assignment of x to false leads to a conflict. Consequently, at
level i, the literal x must be assigned to true.

Property 2 Let m(c = («a V x)) an asserting clause derivation, and i = jump(c). Then x
can be deduced by unit propagation at level i, i.e. (F AX)|,i ExL.

Proof The assignment of all literals y € o to false leads exactly to the same conflict by unit
propagation (conflict side of the implication graph).

The above property shows that the asserting literal can be deduced by refutation at level
i. This mean that if we apply some lookahead local processing at that level, we could derive
it before actually reaching the conflict. The main difficulty, however, lies in how to select
efficiently the literals to process by unit propagation. An attempt to answer this question
can be found for example in the approaches proposed by Dubois et al. (1996) and Li and
Anbulagan (1997).

Grasp Marques Silva and Sakallah (1996) and zChaff Moskewicz et al. (2001) use the First
UIP learning scheme, the first cut encountered by a bottom up traversal of the implication
graph. Other learning schemes have been proposed by other authors. The decision scheme
proposed by Zhang et al. (2001), achieve a complete traversal of the implication graph until
reaching the sources of the graph, leading to an asserting clause containing only the negation
of decisions literals. Relsat (Bayardo and Schrag 1997) uses the last UIP learning scheme
(see Definition 7), the asserting clause have exactly one literal from the current decision
level corresponding to the negation of the last decision literal. Zhang et al. (2001) present a
comparison of all these and other learning schemes and conclude that First UIP is the best
in practice.

An important property that any asserting clause satisfies is the 1-empowering property
introduced in Pipatsrisawat and Darwiche (2010). A clause ¢ implied by F' is I-empowering
if it allows unit propagation to derive a new implication that would be impossible to derive
without c. Let us consider an example from Pipatsrisawat and Darwiche (2010). Let F =
(avbvceyAavby—c)AN@Vv—-bvc)A@V—bVv—c)A(—cVvd)A(cVe). The clause
(a v b) is 1-empowering with respect to F because F A —b [, a. The literal a is called an
empowering literal of ¢ with respect to F. Contrary, (d V e), which is implied by F, is not
1-empowering (i.e., is absorbed), because F' A —d =4 e and F A —e |=, d. Let us give a
formal definition of this important property.

Definition 8 (/-empowerment Pipatsrisawat and Darwiche (2010)) Let (« Vv I) be a clause
where / is a literal and « is a sub-clause (a disjunction of literals). The clause is 1-empowering
with respect to F via [ iff

1. F = (x Vv I): the clause is implied by F.
2. F A a [y L the literal [ cannot be derived from F A & using unit propagation.

Any asserting clause is 1-empowering with respect to the formula (original formula aug-
mented with the previous learnt clauses) at the time of its derivation with its asserting literal
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as an empowering literal. This property plays an important role on the power of clause
learning.

In Audemard et al. (2008a, b), the authors prove that the asserting clause learned using the
first UIP scheme is optimal with respect to both the backjumping level and to the number of
different levels it contains. Let us describe these important properties that explain why the
first UIP usually considered in modern SAT solvers is more powerful than the other UIPs.

Given a clause ¢ we denote by /evels(c) the measure defined as the set of different levels
present in the clause c, i.e. levels(c) = {l(x) | x € c}. This measure was first introduced in
Audemard et al. (2008b).

Property 3 (Optimality w.r.t. Levels) In an asserting clause derivation 7 (oy) = (o1, .. ., 0k)
we have for all i < k, levels(o;) C levels(oi4+1).

Proof Each o;4 is obtained from o; by selecting a literal x € o; that is not a decision, and
replacing this literal by its set of explanations exp(x). These explanations always contain
at least another literal y such that /(y) = I(x), and eventually other literals z with (1)
[(z) € levels(o;) or (2) I(z) ¢ levels(o;). In the first case, the substitution of x in o; by
exp(x) leads to o1 with levels(oi4+1) 2 levels(o;).

Property 4 (Optimality wrt. backjumping level (Audemard et al. 2008a,b)) Let 7 (¢ = (o, x))
be an elementary asserting clause derivation and in which x is the first UIP. The back-jumping
level of ¢ is optimal: any asserting clause derivation 7w (¢’) is such that jump(c’) > jump(c).

Proof 1t can be shown that all asserting clauses containing the first UIP have the same
backjump level (there could be several such clauses, in general, under our definitions, and
their sets of levels may be incomparable). Let 7w (0}) = (o1, ..., 0, = ¢’) be an asserting
clause derivation. Let i be the index of the first asserting clause in this proof. Because o;
is an asserting clause we have jump(c) = jump(o;) and because of Property 3 we have
jump(o;) < jump(oy) = jump(c’).

The first UIP is the only UIP with these two optimality guarantees: one can construct
examples on which the asserting clauses containing any other UIP have a strictly higher
backjump level. Note that these optimality results have been proved for the first time in
Audemard et al. (2008b).

5.2 Extended clauses learning

These optimality results motivated the extension of the implication graph proposed in Aude-
mard et al. (2008a). The extended graph is obtained by considering additional arcs, called
inverse arcs, derived from the satisfied clauses of the formula, which are usually ignored by
conflict analysis. Traditionally, when a unit literal y is produced at a given level, the reasons
(e.g. x1, x2) of such deduction is recorded. Such an implication is obtained from the clause
(—x1 VvV —x2 V y) of the original formula. Let us note that x; and x, are assigned at levels
smaller or equal to the assignment level of y. Suppose that the clause (x; vV —y) belong to
the formula. This mean that x; = true is also deduced from the assignment y = true. In
this case, an “arc” was revealed for free that could as well be used to extend the graph. The
extension proposed in Audemard et al. (2008a) encode this new reason (called inverse arcs)
because x| assigned at level i is implied by a literal y assigned at greater or equal level. This
extension allows the derivation of better asserting clauses in term of size and backjumping
level.
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Fig. 2 Implication graph with inverse arcs : gs;, =W &N

To explain the idea behind the proposed extension, let us consider, again, the formula 7
given in the Example 3. We consider the same partial interpretation and we define a new
formula F as follow : 7' D {c1, ..., ci10} U {c11, c12, c13} where c11 = (—xg V x1), c1p =
(—xg V x3) and c13 = (—x9 V x4)

The three added clauses are satisfied under the partial interpretation p. ¢y is satisfied by
x1 assigned at level 1, ¢y is satisfied by x3 at level 2, and ¢35 is satisfied by x4 at level 3. This
is shown in the extended implication graph (see Fig. 2) by the blue arcs. Let us now illustrate
the usefulness of the proposed extension. Let us consider again the the asserting clause A
corresponding to the classical first UIP scheme. The following strong asserting clause can
be derived.

- o] =nlx1, A, enl = (—x3 V —xg Vv xg)

— o} = nlx3, 0/, cr2l = (=x] V —xJ)

— 0} = nlxs, 0}, c13] = (=x3 V —xJ)

— 04 =nlx9, 05, c4] = (—x3 V —x3)

— A} = nlx3, 04, ci2] = (—=x3)
In this case we backtrack to the level 0 and we assign —xg to true. Indeed F/' &= —xg.

As we can see A} subsumes Aj. If we continue the process we also obtain an other strong

asserting clause A%, = (—oc% \Y, —-xg) which subsume A». This example illustrates how inverse
arcs can be used to derive strong asserting clauses i.e. with small sizes and high buckjumping

levels.
If we take a look to the clauses used in the classical implication graph gj; (Fig. 2) all

have the following properties: (1) Vx € N the clause ¢ = (exp(x) V x) is satisfied by only
one literal i.e. p(x) = true and Yy € exp(x), we have p(y) = true and (2) Vy € exp(x),
I(—y) < I(x). Now in the extended implication graph (Fig. 2) the added clauses satisfy
property (1) and, in addition, a property (3) Iy € exp(x) st. [(—y) > [(x).

Let us now explain briefly how the extra arcs can be computed. Usually unit propagation
does not keep track of implications from the satisfiable sub-formula. In this extension the
new implications (deductions) are considered. For instance in the previous example, when
we deduce xg at level 5, we “rediscover” the deduction x4 (which was a choice (a decision
literal) at level 3). Similarly, for xg deduced at level 5, we “rediscover” the deductions x3
(made at level 2) and x| (made at level 1).

This proposal keeps track of these re-discoveries. Note something unusual: even a decision
literal (choice point) can now have incoming arcs. This is the case for x4 for instance.
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Itis important to note that the proposed extension can leads to implications graphs that are not
acyclic. In Audemard et al. (2008a), a new concept of joint inverse arc to extend the classical
conflict resolution is proposed. The extended learning scheme, exploit classical learning
to generate the first asserting clause, then inverse arcs are used to eliminate the literals with
higher levels. Some additional conditions are used to avoid cycles in the extended implication
graph. For more details, on the practical integration to SAT solvers, we refer the reader to
Audemard et al. (2008a).

5.3 Learning Bi-asserting clauses

Another Clause learning scheme is also proposed by Pipatsrisawat and Darwiche (2008).
The authors exploit a new class of conflict clauses, called bi-asserting clauses, which is a
relaxation of asserting clauses. It is defined as conflict clause with two literals from the current
decision level.

Definition 9 [Bi-Asserting clause (Pipatsrisawat and Darwiche 2008)] A clause ¢ = (« Vv
x V y) is called a Bi-Asserting clause if p(c) = false, [(«) < m and [(y) = [(x) = m.

In Pipatsrisawat and Darwiche (2008), the authors propose an efficient way to derive
empowering bi-asserting clauses, but only with respect to the clauses used in its derivation.
Indeed, the 1-empowerment property is checked on the fly, by simply checking if the reso-
lution derivation of such clause involves a merging resolution (Andrews 1968). A resolution
between two clauses (a V «) and (—a Vv B) is a merging resolution if @ N B # (.

This new class of bi-asserting clauses tends to be much shorter and have smaller assertion
levels than asserting clauses for the same conflict. The exploitation of such kind of clauses
is particularly suitable for solving unsatisfiable SAT instances.

Recently Jabbour et al. (2013), proposed another interesting approach to derive a new
class of bi-asserting clauses. These clauses are obtained by traversing the implication graph
separately from x and —x. These new kinds of bi-asserting clauses are much shorter and tend
to induce more implications than the classical bi-asserting clauses.

Let us, illustrate these new kind of bi-asserting clauses using a simple example. Let F
be a CNF formula, p a partial assignment. Assume that we have an implication graph Qg_-
associated to F and p. For simplicity reason, Fig. 3 depicts the implication graph restricted
to the sub-graph induced by the nodes between the conflict and the first UIP.

Assume that the conflict level is 5.
By traversing the implication graph separately from x14 and —x14 until the first UIP x,
we derive the new bi-asserting clauses 7, 72, 73, 774 as follows:
— o1 = nlx10, €13, €9] = 7X15 V 7xX11 V g V X4
— 71 = nlxi1, 01, €10l = 7x15 V g Voxig
— 02 =1lxs, ¢7, 3] = 7x17 V x5 V 7 Vg
- my =n[xs, 02, c4] = 7x17 V X2 V Xy
— 03 = nlx12, 14, c11] = 7X13 V g V gy
- w3 =nlx13, 03, c12] = —~x15 V g V x4
— 04 = 1nlxe, ¢, c5] = 7x3 V 7x7 V X9
— 4 = n[x7, 04, c6] = 7x16 V TX3 V X9

The new bi-asserting clauses 7, 72, 3, 74 form a set of connected clauses. More precisely,
the clause 7, is connected with 71 by the variable xg, 771 is connected with 73 by the variable
x14 and 73 is connected with 4 by the variable xg. As we can observe the set of bi-asserting
clauses form a chain of connected clauses. It is important to note that the classical bi-asserting
clauses that can be obtained from the implication graph of Fig. 3 are:
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x16(2)

x17(2)

x15(3) x15(3)

— 7 = —x15 V —xg vV o,

- my = —x15 V X7 V X Vo,

— T3 = 7X15 V X6 V TXg VX3,

— Ty = XI5 V x17 VX Vox Vooxg.

Letus note that by classical clause learning (First UIP scheme), one can derive the asserting
clause (—x15 V —x17 V —x16 V —x1). The back-jumping level is 3.

In Fig. 4, we show that the original implications graph (Fig. 3) can be rewritten more
compactly. Let us now consider that the new bi-asserting clauses 1, 72, 73 and 774 are added
to the learnt clauses database and assume that at level 3 the literal x; is assigned to true. It
is easy to see that all the literals xg, x14, —x9, —x3 and —x; (see Fig. 4) together with the
literals x4, x5, x10, x11 are implied by unit propagation. These last unit propagated literals
are implied thanks to the original clauses of the formula c3, c4, c9 and cj9. However, if we
consider the original implication graph (Fig. 3), we derive by unit propagation the same set
of literals except —x9, —x3 and —x7.

Suppose now that all the classical bi-asserting clauses 7|, 773, 74 and 7 are added to the
learnt clauses database, assigning x> to true at level 3 leads to the same set of implications
by unit propagation. However, if we decide to assign x4 to true at level 3, using the new
bi-asserting clauses we derive —x9, —x3 and —x| while with the classical bi-asserting clauses
no literal is implied by unit propagation. Another important difference that can be made is
that the derivation of all possible classical bi-asserting clauses is quadratic in the worst case,
while the new bi-asserting clauses can be derived in linear time (see the Fig. 4). Consequently,
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Fig. 4 New and compact implication graph obtained from Q_’;_- = (N, &) using the new bi-asserting clauses

searching for all classical bi-asserting clauses takes more time than for the new proposed bi-
asserting clauses. Moreover, the new bi-asserting clauses are much shorter than classical
ones.

From this illustrative example, we see that adding the new bi-asserting clauses to the
clauses database allows to derive more implications than with classical bi-asserting clauses.
We can observe that the proposed bi-asserting clauses establish a link between the asserting
literal and the conflicting literals x4 and —x14. In Jabbour et al. (2013), the authors present
formally such separate conflict analysis to derive bi-asserting clauses. From the experiments
presented by the authors, integrating such clauses in SAT solvers, improve their performance
particularly on crafted instances.

5.4 Learning back-clauses

As mentioned previously, First Unique Implication Point (First UIP) is the traditional learning
scheme. Obviously, an implications graph might contains several unique implication points
from the first to the last UIP corresponding to the asserting clause involving the last decision
literal of the current branch. We argued in the previous section that the first UIP is better
than others with respect to both the buckjumping level and to the number of different levels
involved in the clause. However, deriving other clauses connecting all these implications
points, will enable unit propagation to make all inferences that all traditional asserting clauses
based on all the UIPs. In Sabharwal et al. (2012), the authors proposed a learning scheme
that record these kind of clauses, called back-clauses. The idea of learning back-clauses
during search is first introduced in Marques Silva and Sakallah (1996). In Sabharwal et al.
(2012), it is also shown that adding back-clauses is stronger than adding all asserting clauses
corresponding to all UIPs.

Let us illustrate this notion using the example depicted in Fig. 1 admitting only two UIPs.
From the example we can derive two asserting clauses, A = (—-x} \Y —-x% \Y —-xi \Y —ocg ) and
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Ay = (—x 11 \ —-x% \Y ﬂxg \Y —-x;: \Y —-xg ) corresponding to the first and last UIPs respectively. A
back-clause, can be derived by resolution starting from the first UIP node (xg), leading to the
clause B = (—-x% \% —-xg \% xg ). We observe that the back-clause B contains two literals from
the current conflict level, it can be seen as a non conflicting bi-asserting clause, satisfied by the
current partial interpretation (p(xg) = true). Let us now, explain why recording such back-
clauses, can leads to more propagation at the buckjumping level 3 (jump (A1) = 3). Suppose
that, after such conflict, we record both the classical asserting clause A; corresponding to
the first UIP and the back-clause B. At the backjumping level 3, the asserting literal —xg is
implied, thanks to the asserting clause A;. By adding the back-clause B, the literal —xs is
propagated. This last literal can not be deduced by unit propagation even if we record all the
asserting clauses A1 and A;. Consequently, connecting the different asserting clauses using
back clauses, allows further propagations.

5.5 Learning for dynamic subsumption

Usually, clauses learning is used to analyse the reason of the conflict. We now describe,
an original approach introduced in Hamadi et al. (2009a) that exploit clause learning to
dynamically subsume some clauses of the formula. The approach exploits the intermediate
steps or resolvents generated during the classical conflict analysis to subsume some of the
clauses used in the underlying resolution derivation of the asserting clause.

Let us, illustrate some of the main features of this approach using the Example 3 and the
implication graph g; (Fig. 1). The asserting clause derivation leading to the asserting clause
A is described as follows:
7T(A1) = ((71, 02,03,...,07 = Al)

— o1 = nlx14, 09, c10] = (=x7; V 7, V 7x73)
- 02 = nlx13, 01, cg] = (—x7y V =X V —xp,)
- 03 = nlx12, 02, ¢7] = (=07 V X3 V =Xy V)
- 03 = nlx11, 02, ¢7] = (07 V xg V mxy V)

— 04 = nlx10, 02, ¢7] = (=x3 V =x3 V —x})) C ¢7 (subsumption)

1 2
— 07 = Ay = nlxg, 05, c4] = (—x] V—xF vV —xi vV =xg)

As we can see the asserting clause derivation (A1) includes the resolvent o4 = (—x4 V
—x9 V —x19) which subsumes the clause ¢7 = (—x4 V —x9 V —x10 V x12). Consequently, the
literal x7 is eliminated from the clause c¢7. In general, the resolvent o4 can subsume other
clauses from the implication graph that include the literals —x4, —x9 and —x1o.

Let us now give the formal presentation of of this dynamic subsumption approach.

Definition 10 (F-subsumption modulo UP) Let ¢ € F. c is F-subsumed modulo unit prop-
agation iff 3¢’ C ¢ such that 7|5 =" L

Given two clauses ¢ and ¢, from F such that ¢; subsumes c;, then ¢, is F-subsumed
modulo UP.

Subsuming clauses during search might be time consuming. To reduce the computational
cost, the authors restrict the subsumption checks to the intermediate resolvents o; and to

—
the clauses of the form imp(y) used to derive them (clauses encoded in the implication
graph).
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Definition 11 Let F be a formula and (o) = (o] ...0k) an asserting clause derivation.
— —

For each 0; € 7, we define Cy; = {imp(y) € F|3j <ist.o; =nly,imp(y),o;_1]} as the

set of clauses of F used for the derivation of o;.

Property 5 Let F be a formula and 7 (o) = (01,02, ...,0;,...,0%) an asserting clause
derivation. If o; subsumes a clause ¢ of Cy, then ¢ € Cy;,.

Proof As oi+1 = nly, i?/))(y), o;] where =y € o}, we have 0; ¢ %(y). The next reso-
lution steps can not involve clauses containing the literal —y. Otherwise, the literal y in the
implication graph will admit more than one possible explanation, which is not possible by
definition of the implication graph. Consequently, o; can not subsume clauses from Cy, —Cy; .

Property 6 Let F be a formula and 7 an asserting clause derivation. If o; € 7 subsumes a
clause ¢ of Cy, then c is Cy,;-subsumed modulo UP.

Proof As o; € m is derived from C,, by resolution, then Cy; = o;. By definition of an
asserting clause derivation and implication graphs, we also have C,, =" 0; (see Sect. 5). As
o; subsumes ¢ (o; C ¢), then Cy; E* c.

The Property 6 shows that if a clause ¢ encoded in the implication graph is subsumed
by o}, such subsumption can be captured by subsumption modulo UP, while the Property 5
mention that subsumption checks of o; can be restricted to clauses from C,,. Consequently,
a possible general dynamic subsumption approach can be stated as follows: Let 7 (ox) =
(o1, ...,0,...,0;) be an asserting resolution derivation. For each resolvent o; € (o),
we apply subsumption checks between o; and all the clauses in Cy;, .

In the following, we show that we can reduce further the number of clauses to be checked
for subsumption by considering only a subset of Cy,. Obviously, as o; is a resolvent of an
asserting clause derivation (0% ), then there exists two paths from the conflict nodes x and
—x respectively, to one or more nodes of the implication graph associated to the literals of
o; assigned at the conflict level. Consequently, we derive the following property:

Property 7 Let m be an asserting clause derivation, o; € 7 and ¢ € C,,. If 0; subsumes c,
then there exists two paths from the conflict nodes x and —x respectively, to one or more
nodes of the implication graph associated to the literals of ¢ assigned at the conflict level.

Proof The proof of the property is immediate since o; C c. As this property is true for o;
which is derived by resolution from the two clauses involving x and —x. Then it is also, true
for its supersets (c).

For a given o;, the Property 7 leads us to another restriction of the set of clauses to be checked
for subsumption. Indeed, we only need to consider the set of clauses P, linked (by paths)
to the two conflicting literals x and —x.

We illustrate this characterization using the Example 3 (see also Fig. 1). Let w(oy) =
(o1, ..., 06) where og = (—x1V—xaV—xgV—xg). Wehave Coy = {c4, cs5, c6, €7, €8, €9, 10}
and Py, = {ca, c5, ¢7, cg}. Indeed, from the nodes associated to the clause c¢ we only have
one path to the node x14. Consequently, the clause cg might be discarded from the set of
clauses to be checked for subsumption. Similarly, the clause cg and cjo are only linked to
one node of the set {x14, —x14}. Then cg and ¢ are not considered for subsumption tests.

Property 8 Given an asserting clause derivation 7 (o) = (071, . . ., o). The time complexity
of our general dynamic subsumption approach is in O(|Cy, 12).
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Proof From the definition of C,;, we have |[Cy,| = i + 1. In the worst case, we need to
consider i + 1 subsumption checks. Then for all o; with 1 < i < k, we have to check
leiik(i +1)= W As k = |Cy, |, then the worst case complexity is in O (|Cy, 12).

The worst case complexity is quadratic even if we consider Py, C Co.

To design an efficient dynamic simplification technique, one need to balance the run
time cost and the quality of the simplification. In Hamadi et al. (2009a), a restriction of the
general dynamic subsumption scheme, called dynamic subsumption on the fly, which applies
subsumption only between the current resolvent o; and the last clause from the implication
graph used for its derivation. More precisely, suppose o; = [y, ¢, o;_1], subsumption checks
are only performed between o; and c. The following property gives a sufficient condition
under which y can be removed form ¢

Property 9 Let  be an asserting clause derivation, o; € 7 such that o; = n[y, ¢, oi—1]. If
oi—1 — {y¥} C c, then c is subsumed by o;.

Proof Letc = (—yVva)ando;j_; = (y vV B). Theno; = (o Vv B). Asoj—_1 — {y} C ¢, then
B C «. So, 0; = o which subsumes (—y V «) = c.

Considering modern SAT solvers that include conflict analysis, the integration of this
dynamic subsumption approach is done with negligible additional cost. Indeed, by using a
simple counter during the conflict analysis procedure, one can verity the sufficient condition
given in the Property 9 in constant time. Indeed, at each step of the asserting clause derivation,
the next resolvent o; is generated from a clause ¢ and a resolvent o;_1. In the classical
implementation of conflict analysis, one can check in constant time if a given literal is
present in the current resolvent. Consequently, during the visit of the clause ¢, we only need
to compute the number n of literals of ¢ that belong to o;_1. If n > |o;_1| — 1 then c is
subsumed by o; = nl[y, ¢, ;1]

5.6 Learning from success

In Jabbour (2009), Said Jabbour showed that new explanations for implied (unit propagated)
literals can be generated even if a partial assignment does not lead to a conflict. Let us explain
this issue, using an example.

Example 4 Let F' the new formula obtained from F (see Example 3) by removing the clause
c10 and adding the clause c;; = (—x2 VxgVx14). The implication graph gj;, is the a sub-graph
of g} (see Fig. 1) induced by the set of nodes A\ {—x14, x13}. Clearly, the partial assignment
p does not lead to a conflict at the decision level 5. We can remark, that the clause ¢ is not
recorded in the implication graph g;, as it contains two literals xg and x4 assigned to true.
Moreover, the literal x4 is assigned by unit propagation at level 5 due to the clause c9 and
p. Let us now illustrate how one can deduce a new reason (clause) asserting that x14 can be
assigned at level less than 5. A traversal of the implication graph starting from the node x4,
leads to the clause : A = (—|x1] \ —-x% \Y, —-xg \% —-xg \% xf4).

The clause A contains only two literals —xg and x14 from the current decision level 5 and
all its literals are assigned false except x14 which is assigned to true. Now, if we apply one
additional resolution step between A and c¢;; = (—x2 V xg V x14) € F/, we obtain a new
asserting clause A’ = (—-x} \ —-x% \Y —-x% \Y —wf \Y xf4) . This last clause expresses that the
literal x14 assigned at level 5 can be assigned at level 3. Indeed, as 7' = A’ and the literals
—x1, —xp, —x3 and —x4 are assigned false at levels less than 3, we deduce that the literal x4
assigned at level 5 can be assigned by unit propagation at level 3 thanks to the new reason
A
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In Jabbour (2009), this idea is used to reorder the current partial assignment thanks to the
new derived better reasons for unit propagated literals. These reasons allows to assign such
literals at previous levels.

6 Modern SAT solvers

In this section we first give a brief description of the other components of modern SAT solvers
not covered in the previous sections. Then we present the CDCL-based SAT algorithm. This
will give to the reader the whole picture about modern SAT solvers including the learning
component. For a more detailed description, the reader can see Sais (2008) and Biere et al.
(2009).

Modern SAT solvers are especially efficient with structured SAT instances coming from
industrial applications. On application domains, Gomes et al. (2000) have identified a heavy
tailed phenomenon, i.e., different variable orderings often lead to dramatic differences in
solving time. This explains the introduction of restart policies in modern SAT solvers,
which attempt to discover a good variable ordering. Variable State Independent Decay-
ing Sum (VSIDS) and other variants of activity-based heuristics, on the other hand, were
introduced to avoid thrashing and to focus the search on the most constrained parts of the
formula. Restarts and VSIDS play complementary roles since they implement the two prin-
ciples of respectively, diversification and intensification. Conflict driven clause learning
(CDCL) is the third component, leading to non-chronological backtracking. The activ-
ity of the variables are updated during the learning process, allowing VSIDS to always
select the most active variable as the new decision point. As the number of learned clauses
might be exponential in the worst case, several deletion strategies are proposed to keep a
learnt clauses database of manageable size. On the other hand, to allow solving large SAT
instance, the introduction of lazy data-structure, called watched literals is crucial for the
efficiency of modern SAT solvers. Reducing the size of the input formula in a preprocess-
ing step is another important component, usually integrated in all the state-of-the-art SAT
solvers.

6.1 Restarts strategies

Restarts policy were introduced for the first time as early as 1994 in Crawford and Baker
(1994). When a solver restarts, the current partial interpretation is left and the search starts
again at the root of the search tree, while maintaining several informations cumulated from the
previous runs (e.g. learned clauses, variables activities). Restarts are presented by Gomes et al.
(1998) to eliminate the heavy tailed phenomena observed on many families of SAT instances.
Indeed, this observed phenomena demonstrates that on many instances different variables
ordering might lead to dramatic performance variation of a given SAT solver. Restarts aim
to eliminate the long runs by increasing the probability to fall on the best variables ordering.
In modern SAT solvers, restarts dive the search to the most actives variables and aims to
compact the assignment stack and to improve the order of assumptions.

Different restart policies have been previously presented. Most of them are static, and
the cutoff value follows different evolution schemes (e.g. arithmetic, geometric, Luby ). To
ensure the completeness of the SAT solver, in all these restarts policies, the cutoff value in
terms of the number of conflicts increases over the time. The performance of these different
policies clearly depends on the considered SAT instances. More generally, rapid restarts [e.g.
Luby et al. (1993)] perform well on industrial instances, however on hard SAT instances

@ Springer



Ann Oper Res (2016) 240:13-37 31

slow restarts is more suitable. Generally, it is hard to say in advance which policy should be
used on which problem class (Huang 2007). More recently, several dynamic and adaptive
restarts policies are proposed, the cutoff value is computed during search using observed
informations on the running behavior of the solver (Biere 2008; Pipatsrisawat and Darwiche
2009; Hamadi et al. 2009b).

6.2 Activity based heuristics

Branching heuristics aim to select the next variable to assign at each node of the search tree.
Such variable selection strategy induces an assignment ordering which is known to be crucial
for the efficiency of SAT solvers. Many heuristics have been proposed in the literature, most of
them are based on syntactical arguments such as the number of occurrences of the variables,
the size of the clauses, etc. One of the most popular strategies, is the dynamic largest individual
sum (DLIS) heuristic (Marques-silva 1999), that choose the variable and the assignment that
directly satisfy the largest number of clauses. Other sophisticated heuristic functions have
been proposed, one can cite the Jeroslow and Wang (1990) heuristic and many other variants
which select the variable occurring most frequently in short clauses. All these heuristics
need to maintain such arguments during search, which can be very costly on large SAT
instances.

Recently, the Chaff SAT solver proposed the use of the variable state independent decaying
sum (VSIDS) heuristic (Moskewicz et al. 2001). An activity is associated to each variable.
Each time a variable occurs in a recorded learnt conflict clause, its activity is increased.
Additionally, to give more importance to the variables involved in the most recent learnt
clauses, the activity of all the variables are multiplied by a constant less than 1. MiniSAT
uses similar ideas (Een and Sorensson 2005). However, the activity update is not limited
to the variables occurring in the final learnt conflict clause, but considers all the variables
occurring in any clause used in the conflict analysis.

Activity based heuristics take their origin from the principle used in the break-out local
search method (Morris 1993), where the score of falsified clauses is increased during the
search and used to escape from local minima. Brisoux et al. (1999), proposed an extension
of the clause-weighting scheme to DPLL-like techniques. Every time a conflict is reached,
the score of the falsified clauses is increased. The next variable is chosen according to
its occurrence in most falsified clauses. The MiniSAT heuristic (Een and Sorensson 2005)
updates the activity of the variables encountered between the conflict side and the first UIP,
while in Brisoux et al. (1999), only the variables of the two last clauses at the origin of the
contradiction are updated. VSIDS and MiniSAT heuristics are cheap to maintain and they
are shown to be very effective on a variety of problems.

6.3 Lazy data structures—watched literals

The two watched literals scheme introduced in Zchaf Moskewicz et al. (2001), now inte-
grated in most SAT solvers allows efficient unit propagation. This lazy data structure is an
improvement of the one introduced earlier by Zhang (1997) in the solver Sato. The idea
behind two watched literals, is to maintain an invariant for each active clause by marking or
“watching” two special literals not assigned the value false. A clause containing such two
watched literals cannot be involved in unit propagation. Such invariant is maintained with
a very small overhead, while no update is needed in case of backtracking. This leads to a
substantial saving of computation time. For more details on how such invariant is maintained
see Moskewicz et al. (2001) and Een and Sérensson (2005).

@ Springer



32 Ann Oper Res (2016) 240:13-37

6.4 Learnt database deletion strategies

Conflict driven clause learning is recognized as a powerful technique both in theory and
practice. However, the set of clauses that can be derived from conflicts is of exponential
size in the worst case. In practice, the number of such clauses can sometimes be greater
than the number of clauses of the original formula. Several strategies have been designed
to cope with this combinatorial explosion problem. To maintain a relevant learnt clauses
database of polynomial size - and consequently a unit propagation of reasonable cost - all
these strategies dynamically reduce the learnt database by deleting clauses considered to be
irrelevant to the next search steps. The most popular strategy considers a learnt clause as
irrelevant if its activity or its involvement in conflict analysis is marginal. Several clauses
deletion strategies have been integrated in different SAT solvers (Marques-Silva and Sakallah
1999; Moskewicz et al. 2001; Eén and Sorensson 2003). In most cases, these strategies prefer
to keep a learnt clauses database, with smaller, recent and active clauses. In Audemard et al.
(2011), a new dynamic management policy of the learnt clauses database is introduced. It is
based on a dynamic freezing and activation principle of the learnt clauses. At a given search
state, it activates the most promising learnt clauses while freezing irrelevant ones. In this
way, previously learned clauses can be discarded for the current step, but may be activated
again in future steps of the search process. This policy tries to exploit pieces of information
gathered from the past to deduce the relevance of a given clause for the remaining search
steps.

In Guo et al. (2014), we proposed two new measures to predict the quality of learned
clauses. The first one is based on the backtracking level (BTL), while the second is based
on a notion of distance, defined as the difference between the maximum and minimum
assignment levels of the literals involved in the learned clause.

More recently, Jabbour et al. (2014) revisited size-bounded learning strategies proposed
more than fifteenth years ago (Bayardo and Schrag 1997; Bayardo and Miranker 1996;
Marques Silva and Sakallah 1996) and show that these strategies remains a competitive with
the state-of-the-art ones. They also demonstrate that adding randomization to size bounded
learning is a nice way to achieve controlled diversification. It allows to favor short clauses,
while maintaining a small fraction of large clauses necessary for deriving resolution proofs
on some SAT instances.

Finally, size-bounded clause sharing strategies are also considered in several portfolio
and divide and conquer based parallel SAT solvers (e.g. Hamadi et al. 2009b; Hamadi and
Wintersteiger 2013; Hamadi et al. 2008, 2011).

6.5 Preprocessing

Many preprocessing techniques have been proposed over the years. In this section, we partic-
ularly limit our presentation to the most popular and useful ones. Among them, SatElite
(Eén and Biere 2005) is clearly the most efficient and used preprocessing technique. Once
again, it is based on variable elimination through the resolution rule. SatElite is an
extension of NIVER (non increase variable elimination by resolution) originally proposed
in Subbarayan and Pradhan (2004). The extension includes variable elimination by substitu-
tion using boolean functions, subsumption and self-subsuming resolution. As mentioned by
Subbarayan and Pradhan (2004), on industrial instances, resolution leads to the generation of
many tautological resolvents. This can be explained by the fact that many clauses represent
Boolean functions encoded through a common set of variables. This property of the encod-
ings might also be at the origin of many redundant or subsumed clauses at different steps
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of the search process. The utility of (SatElite) on industrial problems has been proved,
and therefore one can wonder if the application of the resolution rule could be performed not
only as a pre-processing stage but systematically during the search process. Unfortunately,
dynamically maintaining a formula closed under subsumption might be time consuming. An
attempt has been made recently in this direction by Zhang (2005). Another original technique
called learning for dynamic subsumption is proposed in Hamadi et al. (2009a). At each con-
flict, it exploits clause learning to subsume clauses of the original formula and of the learnt
clauses database. Designing strong preprocessing techniques able to greatly reduce the size
of the formula remains an important research issue [see for example recent works by Heule
et al. (2010, 2011), and Piette et al. (2008)].

Algorithm 1: CDCL-based SAT solver

Input: CNF formula F
Output: A model of F or unsat if F is unsatisfiable
2D <« 0 /* decision literals */
3 A <0 /* learnt clauses database */
4 while (true) do
5| S« FAAAND;
6 | if (§* = L) then
7 if ((D = ()) then return unsat;
8
9

o < learningFromConflict(S) ;
m < assertion level of «;

10 D «~ D",

11 A=ANa;

12 | else

13 if (timeToReduce()) then
14 ‘ A < reduceLearnt DB();
15

16 if (timeToRestart()) then
17 D <« ¢

18 S« FANAAND;

19 £ <—decide();
20 if (¢ = null) then

21 | return D;
22 D« DA
23

24

6.6 CDCL-based SAT algorithm

Let us now give a general formulation of a CDCL-based SAT solver (Algorithm 1) (Pipatsri-
sawat and Darwiche 2009). As we can see the algorithm starts with an empty set of decision
literals and an empty learnt clauses database (lines 1 and 2). At each iteration, the current
formula S is closed under unit propagation (line 5). In case of conflict (lines 6-10), if the
set of decisions literals is empty (line 6), the formula is answered unsatisfiable, otherwise a
new asserting clause is derived by learning from conflict (line 7). In this last case, the algo-
rithm backtracks to the assertion level m (line 9) and adds the asserting clause to the learnt
clauses database (line 10). If no conflict occurs (lines 12-21), the algorithm either reduces
the learnt database (lines 12—13) and/or restarts the search process (lines 15—17) using reduc-
tion and restarts policies respectively. Then a new decision literal is selected according to
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VSIDS heuristics and polarity functions (Een and Sorensson 2005; Pipatsrisawat and Dar-
wiche 2007). The chosen literal is then added to the set of decisions with its associated level
(line 21). If all the variables are assigned (line 19-20) a model is found and the formula is
answered satisfiable.

Modern SAT solvers are based on the general scheme depicted in Algorithm 1. Several
variants of this basic scheme are designed and implemented. For more details about these
solvers and their performances, see the annual SAT competition or SAT race evaluation
(http://www.satcompetition.org/).

7 General conclusion

In this survey, we presented learning from conflict, one of the most powerful reasoning
technique in propositional satisfiability. Learning from conflict is a general concept used to
explain failures or conflicts encountered during search. This explanation, derived by conflict
analysis, and generally expressed as a new constraint, is usually used to dynamically avoid
future occurrences of similar situations. After a brief discussion of most of the related works
in SAT and other domains, we formally described clause learning currently integrated in
most of the state-of-the-art modern SAT solvers. To give a more comprehensive view, other
important components of SAT solvers such as restarts, activity based heuristics, learnt clauses
database deletion strategies, lazy data structures and preprocessing are also sketched. Finally
a general SAT algorithm is given to illustrate the interaction between all these strong and
powerful components.

The proximity between propositional satisfiability and 0/1 linear programming, suggests
that cross-fertilization remains an important issue that will benefits to both domains. We hope
that this survey will give to the operation research community a comprehensive vision about
clause learning and satisfiability solving.

References

Andrews, P. B. (1968). Resolution with merging. Journal of the ACM, 15(3), 367-381.

Audemard, G., Bordeaux, L., Hamadi, Y., Jabbour, S., & Sais, L. (2008). A generalized framework for con-
flict analysis. In Proceedings of the eleventh international conference on theory and applications of
satisfiability testing (SAT’2008), (pp. 21-27).

Audemard, G., Bordeaux, L., Hamadi, Y., Jabbour, S., & Sais, L. (2008). A generalized framework for conflict
analysis. Technical report MSR-TR-2008-34, Microsoft research.

Audemard, G., Lagniez, J., Mazure, B., & Sais, L. (2011). On freezing and reactivating learnt clauses. In
Proceedings of the 14th international conference on theory and applications of satisfiability testing
(SAT’2011), (pp. 188-200).

Bayardo, R. J., & Miranker, D. P. (1996). A complexity analysis of space-bounded learning algorithms for
the constraint satisfaction problem. In Proceedings of the thirteenth national conference on artificial
intelligence (AAAI’96), (pp. 298-304).

Bayardo, R.J., Jr., & Schrag, R. C. (1997) Using CSP look-back techniques to solve real-world SAT instances.
In Proceedings of the fourteenth national conference on artificial intelligence (AAAI-97), (pp. 203-208).

Biere, A., Biere, A., Heule, M., van Maaren, H., & Walsh, T. (2009). Handbook of satisfiability: Volume 185
Frontiers in artificial intelligence and applications. Amsterdam: I0S Press.

Biere, A. (2008). Adaptive restart strategies for conflict driven sat solvers. In Proceedings of the 11th interna-
tional conference on theory and applications of satisfiability testing (SAT’08), (pp. 28-33).

Brisoux, L., Gregoire, E., & Sais, L. (1999). Improving backtrack search for SAT by means of redundancy.
In Proceedings of the international syposium on methodologies for intelligent systems (ISMIS’99), (pp.
301-309).

@ Springer


http://www.satcompetition.org/

Ann Oper Res (2016) 240:13-37 35

Bruynooghe, M. (1981). Solving combinatorial search problems by intelligent backtracking. Information
Processing Letters, 12(1), 36-39.

Chandru, V., & Hooker, J. (1999). Optimization methods for logical inference. Hoboken: Wiley.

Crawford, J. M., & Baker, A. B. (1994). Experimental results on the application of satisfiability algorithms
to scheduling problems. In Proceedings of the twelth national conference on artificial intelligence
(AAAI’94), (pp. 1092-1097).

Davis, M., Logemann, G., & Loveland, D. W. (1962). A machine program for theorem-proving. Communica-
tions of the ACM, 5(7), 394-397.

Dechter, R. (1986). Learning while searching in constraint-satisfaction-problems. In Proceedings of the fifth
national conference on artificial intelligence (AAAI-86), (pp. 178-185).

Dechter, R. (1990). Enhancement schemes for constraint processing: Backjumping, learning, and cutset decom-
position. Artificial Intelligence, 41(3), 273-312.

Doyle, J. (1979). A truth maintenance system. Artificial Intelligence, 12(3), 231-272.

Dubois, O., André, P., Yassine Boufkhad, Y., & Carlier, Y. (1996). Second DIMACS implementation challenge:
Cliques, coloring and satisfiability, In DIMACS series in discrete mathematics and theoretical computer
science, chapter SAT versus UNSAT (Vol. 26, pp. 415-436). American Mathematical Society.

Een, N., & Sorensson, N. (2005). Minisat—a sat solver with conflict-clause minimization. In Proceedings of
the eighth international conference on theory and applications of satisfiability testing (SAT’05).

Eén, N., & Biere, A. (2005). Effective preprocessing in sat through variable and clause elimination. In Proceed-
ings of the eighth international conference on theory and applications of satisfiability testing (SAT’05),
(pp. 61-75).

Eén, N., & Sorensson, N. (2003). An extensible sat-solver. In Proceedings of the sixth international conference
on theory and applications of satisfiability testing (SAT’03), (pp. 502-518).

Frost, D., & Dechter, R. (1994). Dead-end driven learning. In Proceedings of the twelth national conference
on artificial intelligence (AAAI-94), (pp. 294-300).

Gasching, J. (1979).Performance measurement and analysis of certain search Algorithms. PhD thesis, Depart-
ment of Computer science, Carnegie Mellon University.

Ginsberg, M. L. (1993). Dynamic backtracking. Journal of Artificial Intelligence Research (JAIR), 1,25-46.

Gomes, Carla P., Selman, Bart, Crato, Nuno, & Kautz, Henry A. (2000). Heavy-tailed phenomena in satisfia-
bility and constraint satisfaction problems. Journal of Automated Reasoning, 24(1/2), 67-100.

Gomes, C. P, Selman, B., & Kautz, H. A. (1998). Boosting combinatorial search through randomization. In
Proceedings of the fifteenth national conference on artificial intelligence (AAAI-98), (pp. 431-437).

Guo, L., Jabbour, S., Lonlac, J., & Sais, L. (2014). Diversification by clauses deletion strategies in portfolio
parallel SAT solving. In Proceedings of the 26th IEEE international conference on tools with artificial
intelligence (ICTAI’2014), Limassol, Cyprus, November 10—12, 2014, (pp. 701-708).

Hamadi, Y., Jabbour, S., Piette, C., & Sais, L. (2011). Deterministic parallel DPLL. Journal on Satisfiability,
Boolean Modeling and Computation—JSAT, 7(4), 127-132.

Hamadi, Y., Jabbour, S., & Sais, L. (2008). ManySAT: Solver description. Technical report MSR-TR-2008-83,
Microsoft research.

Hamadi, Y., Jabbour, S., & Sais, L. (2009a). Learning for dynamic subsumption. In Proceedings of the 21st
IEEE international conference on tools with artificial intelligence (ICTAI’09), (pp. 328-335).

Hamadi, Y., Jabbour, S., & Sais, L. (2009b). ManySAT: A parallel SAT solver. Journal on Satisfiability,
Boolean Modeling and Computation—JSAT, 6, 245-262.

Hamadi, Y., Jabbour, S., & Sais, L. (2012). Learning from conflicts in propositional satisfiability. A Quarterly
Journal of Operations Research—4OR, 10(1), 15-32.

Hamadi, Y., & Wintersteiger, C. M. (2013). Seven challenges in parallel SAT solving. Al Magazine, 34(2),
99-106.

Heule, M., Jérvisalo, M., & Biere, A. (2010). Clause elimination procedures for cnf formulas. In Proceedings
of the 17th international conference on logic for programming, artificial intelligence, and reasoning
(LPAR’10), (pp. 357-371).

Heule, M., Jarvisalo, M., & Biere, A. (2011). Efficient cnf simplification based on binary implication graphs.
In Proceedings of the 14th international conference on theory and applications of satisfiability testing
(SAT’11), (pp. 201-215).

Hooker, J. (2000). Logic-based methods for optimization: Combining optimization and constraint satisfaction.
Hoboken: Wiley.

Hooker, J. N. (1989). Input proofs and rank one cutting planes. INFORMS Journal on Computing, 1(3),
137-145.

Hooker, J. N., & Fedjiki, C. (1990). Branch-and-cut solution of inference problems in propositional logic.
Annals of Mathematics and Artificial Intelligence, 1, 123—139.

@ Springer



36 Ann Oper Res (2016) 240:13-37

Huang, J. (2007). The effect of restarts on the efficiency of clause learning. In Proceedings of the 20th
international joint conference on artificial intelligence (IJCAI'07), (pp. 2318-2323).

Jabbour, S. (2009). Learning for dynamic assignments reordering. In 2/st IEEE international conference on
tools with artificial intelligence (ICTAI’2009), Newark, New Jersey, USA, 2—4 November 2009, (pp.
336-343).

Jabbour, S., Lonlac, J., & Sais, L. (2013). Adding new bi-asserting clauses for faster search in modern sat
solvers. In A. M. Frisch and P. Gregory (Eds.), Proceedings of the tenth symposium of abstraction,
reformulation, and approximation (SARA’2013). AAAL

Jabbour, S., Lonlac, J., Sais, L., & Salhi, Y. (2014). Revisiting the learned clauses database reduction strategies.
CoRR, arXiv:1402.1956

Jeroslow, R. G., & Wang, J. (1990). Solving propositional satisfiability problems. Annals of Mathematics and
Artificial Intelligence, 1, 167-187.

Kautz, H. A, Horvitz, E., Ruan, Y., Gomes, C. P, & Selman, B. (2002). Dynamic restart policies. In Proceedings
of the eighteenth national conference on artificial intelligence (AAAI-02), (pp. 674—681).

Li, C.M., & Anbulagan, A. (1997). Heuristics based on unit propagation for satisfiability problems. In Proceed-
ings of the fifteenth international joint conference on artificial intelligence (IJCAI'97), (pp. 366-371).

Luby, M., Sinclair, A., & Zuckerman, D. (1993). Optimal speedup of las vegas algorithms. Information
Processing Letters, 47, 173—-180.

Marques-Silva, J. (1999). The impact of branching heuristics in propositional satisfiability algorithms. In
Proceedings of the 9th Portuguese conference on artificial intelligence (EPIA’99), (pp. 62-74).

Marques-Silva, J. P., & Sakallah, K. A. (1999). Grasp: A search algorithm for propositional satisfiability. IEEE
Transactions on Computers, 48(5), 506-521.

McAllester, D. A. (1980). An outlook on truth maintenance. Al Memo 551, MIT Al Laboratory.

Morris, P. (1993). The breakout method for escaping from local minima. In Proceedings of the eleventh national
conference on artificial intelligence (AAAI’93), (pp. 40-45).

Moskewicz, M. W., Madigan, C. F,, Zhao, Y., Zhang, L., & Malik, S. (2001). Chaff: Engineering an efficient
sat solver. In Proceedings of the 38th design automation conference (DAC’01), (pp. 530-535).

Piette, C., Hamadi, Y., & Sais, L. (2008). Vivifying propositional clausal formulae. In Proceedings of the 18th
European conference on artificial intelligence (ECAI’08), (pp. 525-529).

Pipatsrisawat, K., & Darwiche, A. (2007). A lightweight component caching scheme for satisfiability solvers.
In Proceedings of the 10th international conference on theory and applications of satisfiability testing
(SAT’07), (pp. 294-299).

Pipatsrisawat, K., & Darwiche, A. (2008). A new clause learning scheme for efficient unsatisfiability proofs. In
Proceedings of the twenty-third AAAI conference on artificial intelligence (AAAI'0S), (pp. 1481-1484).

Pipatsrisawat, K, & Darwiche, A. (2009). On the power of clause-learning sat solvers with restarts. In Pro-
ceedings of the fifteenth international conference on principles and practice of constraint programming
(CP’09), (pp. 654-668).

Pipatsrisawat, K., & Darwiche, A. (2009). Width-based restart policies for clause-learning satisfiability solvers.
In Proceedings of the 12th international conference on theory and applications of satisfiability testing
(SAT’09), (pp. 341-355).

Pipatsrisawat, K., & Darwiche, A. (2010). On modern clause-learning satisfiability solvers. Journal of Auto-
mated Reasoning, 44(3), 277-301.

Prosser, P. (1993). Hybrid algorithms for the constraint satisfaction problem. Computational Intelligence, 9,
268-299.

Quine, W. V. (1955). A way to simplify truth functions. The American Mathematical Monthly, 62(9), 627-631.

Robinson, J. A. (1965). A machine-oriented logic based on the resolution principle. Journal of The ACM, 12,
23-41.

Sabharwal, A., Samulowitz, H., & Sellmann, M. (2012). Learning back-clauses in sat. In Alessandro, C.,
& Roberto S. (Eds.), Proceedings of the 15th international confernce on theory and applications of
satisfiability testing (SAT’12), volume 7317 of lecture notes in computer science, (pp. 498-499). Berlin
Heidelberg: Springer.

Sais, L. (2008). Probleme SAT: Progres et Défis. Probleme SAT: Progres et Défis, London.

Silva, J. M., & Sakallah, K. A. (1996). Grasp—a new search algorithm for satisfiability. In Proceedings of
international conference on computer aided design (ICCAD’96), (pp. 220-227).

Sorensson, N., & Biere, A. (2009). Minimizing learned clauses. In Proceedings of the 12th international
conference on theory and applications of satisfiability testing (SAT’09), (pp. 237-243).

Stallman, R. M., & Sussman, G. J. (1977). Forward reasoning and dependency-directed backtracking in a
system for computer-aided circuit analysis. Artificial Intelligence, 9(2), 135-196.

@ Springer


http://arxiv.org/abs/1402.1956

Ann Oper Res (2016) 240:13-37 37

Subbarayan, S., & Pradhan, D. K. (2004). Niver: Non increasing variable elimination resolution for preprocess-
ing sat instances. In Proceedings of the seventh international conference on theory and applications of
satisfiability testing (SAT’04).

The international sat competition and sat race web site. http://www.satcompetition.org/.

Tseitin, G. S. (1968). On the complexity of derivations in the propositional calculus. In H.A.O. Slesenko (Ed.),
Structures in constructives mathematics and mathematical logic, Part 11, (pp. 115-125).

Warners, J. P. (1998). A linear-time transformation of linear inequalities into conjunctive normal form. Infor-
mation Processing Letters, 68(2), 63—69.

Zhang, H. (1997). SATO: An efficient propositional prover. In W. McCune (Ed.), Proceedings of the 14th
international conference on automated deduction (CADE’97), LNAI, (Vol. 1249, pp. 272-275). Berlin:
Springer.

Zhang, L. (2005). On subsumption removal and on-the-fly CNF simplification. In Proceedings of the eighth
international conference on theory and applications of satisfiability testing (SAT’05), (pp. 482-489).

Zhang, L., Madigan, C. F., & Moskewicz, M. H. (2001). Efficient conflict driven learning in a boolean sat-
isfiability solver. In Proceedings of the IEEE/ACM international conference on computer aided design
(ICCAD’01), (pp. 279-285).

@ Springer


http://www.satcompetition.org/

	What we can learn from conflicts in propositional satisfiability
	Abstract
	1 Introduction
	2 Preliminary definitions and notations
	3 SAT and integer programming formulation
	3.1 Branch-and-bound and DPLL
	3.2 Resolution and cutting planes

	4  An historical overview of learning based approaches
	5 Classical clause learning: a formal description
	5.1 Generating asserting clauses
	5.2 Extended clauses learning
	5.3 Learning Bi-asserting clauses
	5.4 Learning back-clauses
	5.5 Learning for dynamic subsumption
	5.6 Learning from success

	6 Modern SAT solvers
	6.1 Restarts strategies
	6.2 Activity based heuristics
	6.3 Lazy data structures---watched literals
	6.4 Learnt database deletion strategies
	6.5 Preprocessing
	6.6 CDCL-based SAT algorithm

	7 General conclusion
	References




