
Ann Oper Res (2016) 240:271–299
DOI 10.1007/s10479-015-2013-3

SI: 4OR SURVEYS

Merit functions: a bridge between optimization and
equilibria

Massimo Pappalardo1 · Giandomenico Mastroeni1 ·
Mauro Passacantando1

Published online: 16 September 2015
© Springer Science+Business Media New York 2015

Abstract In the last decades, many problems involving equilibria, arising from engineer-
ing, physics and economics, have been formulated as variational mathematical models. In
turn, these models can be reformulated as optimization problems through merit functions.
This paper aims at reviewing the literature about merit functions for variational inequalities,
quasi-variational inequalities and abstract equilibrium problems. Smoothness and convexity
properties of merit functions and solution methods based on them will be presented.

Keywords Merit functions · Gap functions · Variational inequalities · Equilibrium
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1 Introduction

Optimization is a widespread mathematical technique in many engineering and economic
applications. However, in many real-world problems, an objective function to be optimized
is missing and the concept of equilibrium becomes crucial. Roughly speaking, if optimiza-
tion takes care of the system utility function, the equilibrium takes into account the mutual
interaction between users. In recent years, the interest in equilibrium problems has widely
grown. The main applications are concerned with traffic over telecommunication networks
or over public roads, oligopolistic and spatial price markets, financial markets, risk manage-
ment, climate competition, migration problems, power allocation in radio systems, internet
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advertising, cloud computing (see, e.g., Altman andWynter 2004; Ardagna et al. 2011, 2013;
Bigi et al. 2009; Bigi and Passacantando 2012; Dafermos 1980; Drouet et al. 2008; Ferris
and Pang 1997; Forgó et al. 2005; Konnov 2007, 2008a, b; Liu and Nagurney 2007; Miller
and Ruszczyński 2008; Mordukhovich et al. 2007; Nagurney 1993, 2010; Patriksson 1994;
Pang et al. 2010; Scutari et al. 2010; Wardrop 1952; Zhao and Nagurney 2008 and references
therein).

All these problems have been formulated in the literature through variationalmathematical
models as complementarity problems, variational inequalities, quasi-variational inequalities,
and Nash equilibrium problems among others. Variational inequalities (VIs) are one of the
most known variational models. They were introduced by Hartman and Stampacchia (1966)
as a tool for studying partial differential equations in infinite dimensional spaces arising from
mechanics (free-obstacle problem, friction problem, etc.). Later, their applications to contact
problems in mechanical structures provided a vaste source of finite dimensional problems.

A finite-dimensional VI is defined as follows:

find x∗ ∈ C such that 〈F(x∗), y − x∗〉 ≥ 0, for all y ∈ C, (VI)

where F : Rn → R
n , C is a closed and convex subset of Rn and 〈·, ·〉 is the scalar product

in R
n .

Several kinds of numerical methods to solve VIs have been proposed (see, e.g., Facchinei
and Pang 2003; Harker and Pang 1990 and references therein). One popular approach is based
on the reformulation of (VI) as an optimization problem through suitable merit functions.

A function p : Rn → R is called merit function for (VI) if there exists a set Ω ⊆ R
n such

that:

– p is nonnegative on Ω ,
– x∗ is a solution to (VI) if and only if x∗ ∈ Ω and p(x∗) = 0.

If the set Ω coincides with the feasible set C of (VI), a merit function is also known in the
literature as a gap function. Hence, if (VI) has at least a solution, then it is equivalent to the
optimization problem

min
x∈Ω

p(x).

Therefore,merit functions are the key concept to build a bridge betweenVIs and optimization.
In this paperwe aim at reviewing the state of the art concerning themerit function approach

for VIs and two interesting generalization of VIs: quasi-variational inequalities and abstract
equilibrium problems. This is an updated version of the previous review from Pappalardo
et al. (2014).

The rest of the paper is organized as follows: Sect. 2 is devoted to the preliminary con-
cepts that will be used in the paper. Section 3 deals with both constrained and unconstrained
optimization reformulations of (VI). In particular, we will describe continuity and differen-
tiability properties of merit functions, conditions under which merit functions are convex or
their stationary points solve (VI) and error bound results, i.e., how the distance between an
arbitrary point x and the solution set of (VI) can be estimated in terms of the merit function
value at x . Furthermore, ad-hoc descent methods for minimizing merit functions will be
shown. Sections 4 and 5 are devoted to the results about merit functions for quasi-variational
inequalities and abstract equilibrium problems, respectively. Examples of applications of the
presentedmodels are provided in Sects. 3, 4 and 5. Some concluding remarks and suggestions
for future research are collected in Sect. 6. We hope that this paper may stimulate further
interest in merit functions and may be the basis to obtain new results.
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2 Preliminaries

In this section, we show two classic particular cases of (VI), andwe recall themain definitions
and preliminary results that will be used throughout the paper. We make the blanket assump-
tions that the feasible set C of (VI) is closed and convex and the operator F is continuous on
C .

Optimality conditions As first particular case, let us consider the problem of finding a
local minimum x∗ of a differentiable function ψ : Rn → R over the set C . The classic first
order necessary optimality condition states that the directional derivative of ψ at x∗ in any
feasible direction is nonnegative, i.e.

〈∇ψ(x∗), y − x∗〉 ≥ 0, ∀ y ∈ C.

This condition is a particular case of (VI) where F(x) = ∇ψ(x).
Complementarity problems Another example of (VI) is provided by a complementarity

problem described as follows: given a closed convex coneC ⊆ R
n and a mapping F : Rn →

R
n , the complementarity problem asks to determine a point x∗ ∈ C such that

〈F(x∗), x∗〉 = 0 and F(x∗) ∈ C∗,

where C∗ denotes the dual cone of C , i.e.

C∗ := {d ∈ R
n : 〈d, y〉 ≥ 0 for all y ∈ C}.

Solving the complementarity problem amounts to solving (VI). In fact, if x∗ solves the
complementarity problem, then for any y ∈ C we have

〈F(x∗), y − x∗〉 = 〈F(x∗), y〉 ≥ 0,

hence x∗ solves (VI); vice versa, if x∗ solves (VI), then setting y = 0 and y = 2x∗ (which
belong to C because C is a cone) we obtain 〈F(x∗), x∗〉 = 0 and hence F(x∗) ∈ C∗, that is
x∗ is a solution to the complementarity problem. Note that if we define

p(x) := 〈F(x), x〉, Ω := {x ∈ C : F(x) ∈ C∗}, (1)

then p(x) ≥ 0 for any x ∈ Ω and x∗ solves the complementarity problem if and only if
x∗ ∈ Ω and p(x∗) = 0, i.e., p is a merit function for the complementarity problem.

Monotonicity definitionsMonotonicity is a key assumption to establish existence of solu-
tions, convergence results for algorithms and to provide error bounds for (VI). We now recall
the main monotonicity properties that will be exploited in the paper. F is said monotone on
C if

〈F(x) − F(y), x − y〉 ≥ 0, ∀ x, y ∈ C;
the corresponding concept of strict monotonicity is analogously defined just requiring strict
inequality to hold for any x, y ∈ C with x �= y; F is said strongly monotone on C with
modulus μ if

〈F(x) − F(y), x − y〉 ≥ μ‖x − y‖2, ∀ x, y ∈ C,

for some μ > 0; F is said pseudomonotone on C if for any x, y ∈ C one has

〈F(y), x − y〉 ≥ 0 
⇒ 〈F(x), x − y〉 ≥ 0.

In the particular case where F(x) = ∇ψ(x), monotonicity and strong monotonicity of F
on C are equivalent to convexity and strong convexity of ψ on C , respectively.
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Existence results We now recall two basic results concerning the existence of a solution
to (VI). For the sake of simplicity, we will not consider the sharpest possible assumptions.
The solution set of (VI) is nonempty if either the feasible set C is bounded (Hartman and
Stampacchia 1966) or the following coercivity condition holds: there exists a point y ∈ C
such that

lim‖x‖→∞,x∈C〈F(x), y − x〉 = −∞. (2)

In particular, condition (2) holds if F is strongly monotone on C . Moreover, the strong
monotonicity of F ensures that (VI) has a unique solution.

Fixed point problem reformulation If we denote by πC the Euclidean projection operator
on C , i.e.,

πC (x) := argmin
y∈C ‖y − x‖,

then it is well-known that (VI) is equivalent to finding a fixed point of the operator x �→
πC (x − F(x)) (see, e.g., Facchinei and Pang 2003).

Complementarity problem reformulation Assuming

C := {x ∈ R
n : gi (x) ≤ 0, i = 1, . . . ,m}, (3)

where the functions gi are differentiable and convex for all i = 1, . . . ,m, it is possible to
derive the Karush–Kuhn–Tucker (KKT) conditions for (VI). In fact, x∗ is a solution to (VI)
if and only if it is a global minimum of the following convex optimization problem:

min
y∈C 〈F(x∗), y〉.

Under some constraint qualification, the following KKT conditions

⎧
⎪⎪⎨

⎪⎪⎩

F(x∗) +
m∑

i=1
λ∗
i ∇gi (x∗) = 0,

λ∗
i gi (x

∗) = 0, i = 1, . . . ,m,

λ∗
i ≥ 0, gi (x∗) ≤ 0, i = 1, . . . ,m,

(4)

are necessary and sufficient for optimality and, in turn, for the existence of solutions to (VI).
It is well-known that KKT system (4) is equivalent to a complementarity problem.

3 Merit functions for variational inequalities

In this section, we summarize several approaches in order to express (VI) as a constrained
or unconstrained optimization problem by means of different merit functions.

A first merit function can be defined by exploiting the fixed point reformulation stated in
Sect. 2. In fact, the function x �→ ‖x − πC (x − F(x))‖ is a gap function for (VI) (see Eaves
1971).

A further merit function for (VI) can be obtained by means of the complementarity refor-
mulation (4), which in turn can be associated with the merit function (1). Further examples
of merit functions associated with a complementarity problem can be found in Fischer and
Jiang (2000).

123



Ann Oper Res (2016) 240:271–299 275

3.1 Constrained optimization reformulations

This section is devoted to gap functions for (VI).

3.1.1 Auslender gap function

A first example of gap function was given in Auslender (1976), where the following function
was introduced:

p(x) := sup
y∈C

〈F(x), x − y〉. (5)

It is trivial to prove that p is a gap function for (VI). Since the supremum in (5) can be infinite
or not attained in a unique point, this function is in general neither finite, nor differentiable,
nor convex. However, when C is bounded and F is continuously differentiable, it is finite
and admits directional derivatives p′(x; d) at any point x ∈ C in any direction d . Moreover,
if F is monotone, any stationary point x∗ of p on C , i.e.

p′(x∗; y − x∗) ≥ 0, ∀ y ∈ C,

is a solution to (VI). In the particular case of monotone affine VIs, i.e., if F(x) = Ax + b
where A is a positive semidefinite matrix, p also turns out to be convex (Marcotte 1985). If F
is strongly monotone with modulus μ and x∗ is the unique solution to (VI), then p provides
the following error bound:

‖x − x∗‖ ≤ √
p(x)/μ, ∀ x ∈ C.

A descent method based on the function p has been proposed in Marcotte and Dussault
(1989) in the case where C is a bounded polyhedron. At each iteration, the descent direction
is obtained by minimizing a linearization of a further gap function. If F is monotone, then
the algorithm is globally convergent1 to a solution to (VI). Moreover, the convergence is
quadratic2 if F is strongly monotone and the termination is achieved in a finite number of
iterations if F is affine. Under a so-called “geometric stability condition”, it is shown that p
also provides an error bound for (VI).

3.1.2 Regularized gap functions

Many efforts of the research have been directed to the study of differentiable gap functions
in order to simplify the computational aspects of the problem. Important results in this sense
have been obtained in Fukushima (1992), Larsson and Patriksson (1994), Wu et al. (1993),
Zhu and Marcotte (1994).

First, Auchmuty (1989) proposed a scheme in order to define a general class of gap
functions:

pA(x) := sup
y∈C

[〈F(x), x − y〉 + f (x) − f (y) − 〈∇ f (x), x − y〉] , (6)

1 The convergence is said global if it does not depend on the choice of the starting point.
2 A sequence {xk } is said to be convergent to x̄ with rate of convergence equal to r if

lim sup
k→+∞

‖xk+1 − x̄‖
‖xk − x̄‖r = γ ∈ (0, +∞).

If r = 1 and γ ∈ (0, 1), then the convergence is said to be linear, if r > 1, then the convergence is said to be
superlinear, and, in particular, if r = 2, the convergence is said to be quadratic.
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where f : Rn → R is convex and continuously differentiable. It was proved that if (x∗, y∗)
is a saddle point of the function

L(x, y) := 〈F(x), x − y〉 + f (x) − f (y) − 〈∇ f (x), x − y〉
on C × C , i.e.,

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗), ∀ (x, y) ∈ C × C,

then x∗ is a solution to (VI) and pA is a gap function. We observe that if f is strongly convex
on C and F is differentiable, then the function pA is finite and differentiable.

Later, Fukushima (1992) introduced a gap function which is a special case of (6), setting
f (x) = 〈x, Mx〉/2, where M is a symmetric and positive definite matrix . It is defined by

pF (x) := max
y∈C

[

〈F(x), x − y〉 − 1

2
〈x − y, M (x − y)〉

]

. (7)

Note that the maximum in (7) is always attained in a unique point y(x) since the objective
function is strongly concave with respect to the variable y, hence pF is always finite. If F is
continuously differentiable, then also pF is so (Danskin 1966) and

∇ pF (x) = F(x) − [(∇F(x))T − M](y(x) − x).

Moreover, if x∗ is a stationary point of pF on C , i.e.

〈∇ pF (x∗), y − x∗〉 ≥ 0, ∀ y ∈ C,

and the Jacobian matrix ∇F(x∗) is positive definite, then x∗ is a solution to (VI). In the
special case of strongly monotone affine VIs, i.e., F(x) = Ax + b with A positive definite,
pF turns out to be convex (strongly convex) provided that the matrix A+ AT −M is positive
semidefinite (positive definite) (see Larsson and Patriksson 1994).

A descent algorithm for minimizing pF has been proposed in Fukushima (1992): given
any starting point x0 ∈ C , the sequence {xk} is generated by the iterations

xk+1 = xk + tkd
k, (8)

where the search direction dk = y(xk) − xk and the stepsize tk ∈ (0, 1] is such that

pF (xk + tkd
k) = min

t∈(0,1] p
F (xk + tdk). (9)

Under the assumptions that C is bounded, F is continuously differentiable on C and ∇F(x)
is positive definite for all x ∈ C , the sequence {xk} belongs to C and converges to the
unique solution to (VI). This algorithm converges also employing an inexact line search rule,
provided that F is strongly monotone on C and ∇F is Lipschitz continuous on C .

A variant of the above method which does not require the strong monotonicity of F has
been proposed in Zhu and Marcotte (1993), setting the matrix M = α I , where I is the
identity matrix and α > 0. In fact, the monotonicity of F paired with the boundedness of
C guarantees that at any point x ∈ C the vector y(x) − x , which depends on the matrix M
and hence depends on α, is a descent direction for pF , provided that α is small enough. The
method performs a line search at the current iterate xk if y(xk) − xk is a descent direction
for pF ; otherwise the value of α is decreased. The method is globally convergent if C is
bounded and F is continuously differentiable and monotone on C . This algorithm has been
extended to nonsmooth VIs in Panicucci et al. (2009).
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Marcotte and Dussault (1987) and Taji et al. (1993) propose a modified Newton method:
at each iteration it finds the solution to the linearized (VI) at x , i.e.,

find z(x) ∈ C s.t. 〈F(x) + ∇F(x)[z(x) − x], y − z(x)〉 ≥ 0, ∀ y ∈ C. (10)

In the hypothesis of strong monotonicity of F , problem (10) admits a unique solution z(x)
such that d = z(x) − x is a descent direction for the gap functions pA and pF : the function
pA has been considered in Marcotte and Dussault (1987), while pF in Taji et al. (1993). By
employing a line search strategy, the method is shown to be quadratically convergent under
suitable additional assumptions.

When the feasible set C , defined as in (3), is not a polyhedron, the evaluation of the
regularized gap function pF at a given point x could be computationally expensive. In order to
overcome this drawback, the following gap function has been proposed in Taji and Fukushima
(1996):

pT F (x) := max
y∈T (x)

[

〈F(x), x − y〉 − 1

2
〈x − y, M(x − y)〉

]

, (11)

where
T (x) := {y ∈ R

n : gi (x) + 〈∇gi (x), y − x〉 ≤ 0, i = 1, . . . ,m} (12)

is an outer polyhedral approximation of C at x . If F is continuously differentiable, gi ’s are
continuously differentiable and a constraint qualification holds, then pT F is directionally
differentiable. Furthermore, if ∇F is positive definite and gi ’s are twice continuously differ-
entiable, then any stationary point of pT F on C is a solution to (VI). A successive quadratic
programming algorithm based on the minimization of an exact penalty function associated
with pT F has been proposed in Taji and Fukushima (1996).

A generalization of the gap function introduced by Fukushima has been proposed in Wu
et al. (1993), Zhu and Marcotte (1994) by replacing in (7) the regularizing term 〈x − y,
M(x − y)〉/2 with a general bifunction G : Rn × R

n → R such that:

G(x, y) ≥ 0 for all (x, y) ∈ R
n × R

n,

G is continuously differentiable,
G(x, ·) is strongly convex on C for all x ∈ C,

G(x, x) = ∇yG(x, x) = 0 for all x ∈ C.

(13)

For any α > 0, the function

pα(x) := max
y∈C [〈F(x), x − y〉 − α G(x, y)] (14)

turns out to be a gap function, which is continuously differentiable, if F is so, with

∇ pα(x) = F(x) − (∇F(x))T (yα(x) − x) − α∇xG(x, yα(x)), (15)

where yα(x) is the unique solution to problem (14). Note that when F is only locally Lipschitz
continuous, the function pα is also locally Lipschitz and its Clarke generalized gradient
satisfies a formula similar to (15) (see Ng and Tan 2007b). Moreover, if x∗ is a stationary
point of pα on C and ∇F(x∗) is positive definite, then x∗ solves (VI). A further important
feature of pα is that, under the assumption that F is strongly monotone and ∇yG(x, ·) is
Lipschitz continuous onC , for every x ∈ C , it provides an error bound (see Zhu andMarcotte
1994), i.e., there exists M > 0 such that

‖x − x∗‖ ≤ M
√
pα(x), ∀ x ∈ C, (16)
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where x∗ is the unique solution to (VI). In particular, (16) implies the boundedness of the
sublevel sets of pα , which is of crucial importance in the convergence of the minimization
algorithms.

The descent methods developed in Fukushima (1992) have been generalized to a more
general framework exploiting several classes of gap functions defined by (14) (see Zhu and
Marcotte 1994). Given a continuous mapping Γ : C×C → R

n , such that Γ (x, ·) is strongly
monotone on C for any x ∈ C , the following auxiliary variational inequality is considered
at a given point x ∈ C : find y∗ ∈ C such that

〈Γ (x, y∗) − Γ (x, x) + F(x), y − y∗〉 ≥ 0, ∀ y ∈ C. (AVI(x))

Having denoted by w(x) the unique solution to (AVI(x)), one can prove that the mapping
w : C → C is continuous and x∗ is a solution to (VI) if and only if x∗ = w(x∗). In view
of this result the following iterative method is proposed. Given xk ∈ C , compute w(xk): if
w(xk) = xk , then xk is a solution to (VI), otherwise find xk+1 performing an Armijo3 inexact
line search for the gap function pα along the direction dk := w(xk) − xk .

Each combination of G and Γ generates a different descent algorithm, which is globally
convergent to the unique solution to (VI) under the assumption of continuous differentiability
and strong monotonicity of F and suitable additional assumptions on G and Γ (Zhu and
Marcotte 1994). Note that the algorithm (8)–(9) previously described is recovered by setting
Γ (x, y) = M(y − x).

The analysis of the convergence properties of the descentmethods based on the regularized
gap functions pF and pα in the case where the operator F is nondifferentiable has been
considered in Ng and Tan (2007a) and Tan (2007).

3.1.3 Minty (dual) gap functions

The Minty (or dual) variational inequality was introduced in Minty (1967) and consists in
finding x∗ ∈ C such that

〈F(y), y − x∗〉 ≥ 0, ∀ y ∈ C. (MVI)

Its relevance to applications was pointed out in Giannessi (1998), Pappalardo and Passacan-
tando (2002, 2004). In particular,Minty states the equivalence between (VI) and (MVI) when
F is pseudomonotone on C (Minty 1967).

In parallel with the Auslender gap function, it can be shown that

pM (x) := sup
y∈C

〈F(y), x − y〉 (17)

is a gap function for (MVI) and hence it is a gap function for (VI) provided that F is
pseudomonotone on C .

The most important feature of this function, known in the literature asMinty (or dual) gap
function, is its convexity. However, it is in general nondifferentiable; subdifferentiability and
related properties have been analysed in Marcotte and Dussault (1987), Marcotte and Zhu
(1999), Nguyen and Dupuis (1984), Yamashita and Fukushima (1997), Zhang et al. (2003).

3 The Armijo inexact line search along the direction dk consists in finding the smallest non negative integer
m such that

pα(xk + βmdk ) ≤ pα(xk ) − σ βm‖dk‖2,
where β, σ ∈ (0, 1) are parameters, and then setting xk+1 := xk + βmdk .
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Furthermore, it can be difficult to evaluate pM since the optimization problem in (17) is
generally not convex.

A cutting plane method for minimizing pM has been proposed in Nguyen and Dupuis
(1984): at each iteration it solves a linear programming problem, provided that C is a poly-
hedron, and it converges to a solution to (VI) if F is strictly monotone. Later, this method has
been combined with the Tikhonov regularization technique in order to deal with monotone
VIs (Bigi and Panicucci 2010).

Following the scheme described before for (VI), it is possible to regularize the function
pM exploiting a bifunction G which satisfies conditions (13). In fact, the function

pMG (x) := sup
y∈C

[〈F(y), x − y〉 − G(x, y)] (18)

is a gap function for (MVI) (see Mastroeni 1999). Moreover, if the optimization problem
in (18) has a unique solution y(x), then pMG is continuously differentiable and its gradient is
given by

∇ pMG (x) = F(y(x)) − ∇xG(x, y(x)).

In parallelwith the analysis developed for (VI), a descentmethod for the function pMG has been
proposed inMastroeni (1999). Given any starting point x0 ∈ C , any sequence {xk} generated
by an exact line search algorithm with descent direction given by y(x) − x converges to the
unique solution to (VI), provided that C is compact, F is continuously differentiable, ∇F is
positive definite on C and

∇xG(x, y) + ∇yG(x, y) = 0, ∀ x, y ∈ C.

Observe that the latter condition is fulfilled, for instance, by

G(x, y) = 1

2
〈x − y, M(x − y)〉.

This algorithm has been extended in Mastroeni (2005) employing an inexact line search
rule and replacing the assumption that ∇F(x) is positive definite for x ∈ C with the strong
monotonicity of F on C .

A different regularization of the gap function pM has been proposed in Yamashita and
Fukushima (1997), where the following function is considered:

pMβ (x) := sup
y∈C

[〈F(y), x − y〉 + β‖x − y‖2], (19)

where β is a positive parameter. This function is convex and lower semicontinuous as the
original pM . It is continuously differentiable provided that F is so and the supremum in (19)
is attained in a unique point. Moreover, if F is strongly monotone on C with modulus μ, and
β ∈ (0, μ], it is a gap function for (VI) and provides an error bound, i.e.,

‖x − x∗‖ ≤
√

pMβ (x)/β, ∀ x ∈ C, (20)

where x∗ is the unique solution to (VI).

3.1.4 Gap functions based on conjugate duality

Given a convex function f : Rn → R and a concave function g : Rn → R, we recall that

f ∗(y) := sup
x∈Rn

[〈y, x〉 − f (x)], g∗(y) := inf
x∈Rn

[〈y, x〉 − g(x)]
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are the Fenchel conjugate, in convex and concave sense respectively, of f and g (see, e.g.,
Rockafellar 1970). Moreover, the Fenchel dual of the problem

inf
x∈Rn

[ f (x) − g(x)]
is defined as

sup
y∈Rn

[g∗(y) − f ∗(y)].

Note that the Fenchel dual of the constrained problem

inf
x∈C f (x)

can be obtained defining g(x) = −δC (x), where δC is the indicator4 function of the set C ,
so that

inf
x∈C f (x) = inf

x∈Rn
[ f (x) − (−δC (x))],

and the associated Fenchel dual turns out to be

sup
y∈Rn

[− f ∗(y) + inf
x∈C〈y, x〉].

When the feasible set C is explicitly defined by convex constraints as in (3), the value of the
Auslender gap function p at a given point x coincides (see Altangerel et al. 2007; Larsson and
Patriksson 1994) with the opposite of the optimal value of the Fenchel dual of the problem

inf
y∈C〈F(x), y − x〉. (P(x))

Moreover, the opposite of the optimal value of the so called Lagrangian dual and the
Fenchel–Lagrange dual associated with P(x) leads to define a further gap function that
coincides with

pL(x) := inf
λ≥0

sup
y∈Rn

[〈F(x), x − y〉 − 〈λ, g(y)〉], (21)

which has been proposed in Giannessi (1995).
Similarly, considering the opposite of the optimal values of the Lagrange and of the

Fenchel dual associated with the problem

inf
y∈C〈F(y), y − x〉,

which is equivalent to the one which appears in the right-hand side of (17), the following
gap functions for (MVI) are defined (Altangerel et al. 2007):

pML (x) := inf
λ≥0

sup
y∈Rn

[〈F(y), x − y〉 − 〈λ, g(y)〉] , (22)

pMF (x) := inf
p∈Rn

{

sup
y∈Rn

[〈F(y), x − y〉 + 〈p, y〉] + δ∗
C (−p)

}

, (23)

where δ∗
C (x) = supy∈C 〈x, y〉 is the support function to the set C .

The proposed gap functions are all convex if F is an affine monotone map.

4 δC is defined as follows: δC (x) = 0 if x ∈ C and δC (x) = +∞ otherwise.
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3.2 Unconstrained optimization reformulations

In this section, we reviewmerit functionswhich allow to reformulate (VI) as an unconstrained
optimization problem.

3.2.1 D-gap functions

The difference of two regularized gap functions

pαβ(x) := pα(x) − pβ(x), (24)

where pα and pβ are defined by (14) with 0 < α < β, is called D-gap function (where D
stands for “difference”). This function is nonnegative on thewhole spaceRn and pαβ(x∗) = 0
if and only if x∗ is a solution to (VI) (Yamashita et al. 1997). Therefore, solving (VI) is
equivalent to finding the optimal solutions of the problem

min
x∈Rn

pαβ(x). (25)

When (VI) is a nonlinear complementarity problem, the D-gap function with β = 1/α and
α ∈ (0, 1) coincides with the implicit Lagrangian proposed and studied in Mangasarian and
Solodov (1993), Peng (1997) and Peng and Yuan (1997).

Clearly, the D-gap function inherits the differentiability properties of pα and pβ , i.e., if
F is differentiable, the function pαβ is also differentiable and

∇ pαβ(x) = (∇F(x))T [yβ(x) − yα(x)] + β∇xG(x, yβ(x)) − α∇xG(x, yα(x)), (26)

where yα(x) and yβ(x) are the solutions of the optimization problem (14) with α and β

respectively. When the mapping F is locally Lipschitz continuous, the D-gap function is
also locally Lipschitz and the Clarke generalized gradient of pαβ satisfies a formula similar
to (26) (see Ng and Tan 2007a).

The D-gap function is not convex in general and the stationary points of (25) may not be
global minima. However, if x∗ is a stationary point, i.e., ∇ pαβ(x∗) = 0, and the Jacobian
matrix ∇F(x∗) is positive definite, then x∗ is a solution to (VI) (see Yamashita et al. 1997).
Notice that the positive definiteness of∇F(x∗) can not be replaced by the strict monotonicity
assumption on F [see the counterexample in Yamashita et al. (1997)]. When the feasible set
C is a box, it is sufficient to assume that∇F(x∗) is a P-matrix (i.e. its principal minors are all
positive) to obtain the same conclusion (Kanzow and Fukushima 1998b). In the special case
of strongly monotone affine VIs, the D-gap function is convex (strongly convex) provided
that the parameters α and β are chosen so that the matrix

A + AT − α I − β−1AT A (27)

is positive semidefinite (positive definite) (Peng and Fukushima 1999).
Since the D-gap functions allow to reformulate (VI) as an unconstrained problem, the

boundedness of their level sets is an important issue in order to develop minimization algo-
rithms for solving problem (25). The level sets of the D-gap function, denoted by

L(c) := {x ∈ R
n : pαβ(x) ≤ c},

are bounded for all c ≥ 0 if either C is bounded (Kanzow and Fukushima 1998b) or F is
strongly monotone (Peng and Fukushima 1999; Qu et al. 2003). Recently, it has been proved
in Li and Ng (2009) that the strong monotonicity assumption on F can be replaced by a
coercivity condition stronger than (2).
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If F is strongly monotone on R
n and either F is Lipschitz continuous on R

n or C is
bounded, then

√
pαβ provides an error bound for (VI), i.e. there exists a constant M > 0

such that

‖x − x∗‖ ≤ M
√

pαβ(x), ∀ x ∈ R
n,

(see Yamashita et al. 1997). Notice that when C is unbounded, the strong monotonicity on
F , without the Lipschitz continuity assumption, is not sufficient to guarantee the same result
[see the counterexample in Huang and Ng (2005)]. However, when F is strongly monotone,
(VI) has a unique solution and hence it is possible to reformulate the problem by replacing
the set C by its intersection with a sphere large enough to contain the solution. In the special
case whereC is a box, the strongmonotonicity of F can be replaced by the assumption that F
is a uniform P-function (Kanzow and Fukushima 1998b). Recently, new global error bounds
have been proposed in Li et al. (2010).

On the other hand, the strong monotonicity on F only guarantees a local error bound on
the level sets of the D-gap function (Qu et al. 2003), that is for any c ≥ 0 there exists M > 0
such that

‖x − x∗‖ ≤ M
√

pαβ(x), ∀ x ∈ L(c).

Recently, this result has been extended to locally ξ -monotone and coercive mappings (Li
et al. 2010) and to general nonmonotone mappings (Li and Ng 2009).

There are several solution methods for VIs based on the minimization of D-gap functions.
A descent method with Armijo-type line search has been proposed in Yamashita et al. (1997):
at each iteration it exploits the search direction d = r(x) + ρ s(x), where r(x) = yα(x) −
yβ(x), s(x) = α∇xG(x, yα(x))−β∇xG(x, yβ(x)) andρ > 0 is a sufficiently small constant.
This method converges to the solution to (VI) if F is strongly monotone on R

n and either F
is Lipschitz continuous on R

n or C is bounded. Another descent method was developed in
Solodov and Tseng (2000) for solving monotone VIs with bounded feasible set. It is similar
to the method proposed in Zhu and Marcotte (1993) based on the Fukushima’s regularized
gap function: at each iteration it uses d = yα(x) − yβ(x) as search direction along with a
suitable update of the parameters α and β. A descent method for solving nonmonotone VIs,
which is based on the minimization of the function

√
pαβ , has been presented recently in Li

and Ng (2009).
A hybrid Newton method has been proposed in Peng and Fukushima (1999): at each

iteration, it finds the solution z(x) to the linearized VI (10) at x and it uses the direction
d = z(x)− x whenever it provides a sufficient decrease in the D-gap function pαβ ; otherwise
the direction d = −∇ pαβ(x) is used. Then, an inexact line search is performed to get the next
iterate. The generated sequence converges superlinearly to the unique solution x∗ to (VI) if F
is continuously differentiable and strongly monotone on R

n . Furthermore, the convergence
is quadratic if ∇F is Lipschitz continuous around x∗. A variant of this method has been
proposed in Peng et al. (1999) for box constrained VIs.

In Kanzow and Fukushima (1998b) a nonsmooth Gauss–Newton type method for solving
box constrained VIs has been presented. At each iteration, it solves a linear system of equa-
tions involving the generalized Hessian of the D-gap function and uses this vector as search
direction if a descent condition is satisfied; otherwise the direction d = −∇ pαβ(x) is used.
Then an inexact line search is performed. The algorithm is globally and superlinearly con-
vergent under suitable assumptions. A similar Gauss–Newton strategy has also been adopted
in a trust region method for minimizing the D-gap function (Sun et al. 1997).
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Another Newton type method for the solution of box constrained VIs is based on the
reformulation of (VI) as a system of nonsmooth and nonlinear equations involving the natural
residual. This method, based on the minimization of the D-gap function, is globally and
superlinearly convergent (Kanzow and Fukushima 1998a).

3.2.2 Merit functions via the Moreau–Yosida regularization

Another approach to get unconstrained optimization reformulations of (VI) is based on the
Moreau–Yosida regularization of some gap functions (Yamashita and Fukushima 1997).

The function

pMY
αλ (x) := inf

z∈C

{

sup
y∈C

[〈F(z), z − y〉 − α ‖y − z‖2]+ λ ‖z − x‖2
}

, (28)

with α ≥ 0 and λ > 0, is derived from the Moreau–Yosida regularization of the regularized
gap function pF , with M = α I . It is nonnegative on the whole space Rn and pMY

αλ (x∗) = 0
if and only if x∗ solves (VI).

Notice that this merit function may not be easy to evaluate in practice unless (VI) has a
certain special structure [e.g., F is affine andC is a polyhedron (seeYamashita andFukushima
1997)]. However, it enjoys some nice theoretical properties that other merit functions do not
have. For instance, if the infimum in (28) is uniquely attained in zαλ(x) for each x ∈ R

n ,
then pMY

αλ is differentiable on R
n and

∇ pMY
αλ (x) = 2λ [x − zαλ(x)],

even if F is not differentiable.
In general, the function pMY

αλ is not convex. However, if the gap function p is convex, then
pMY
0λ is differentiable and convex on R

n for any λ > 0; while if the regularized gap function

pF , with M = α I , is convex then pMY
αλ is differentiable and convex on R

n for any λ > 0.
The function pMY

αλ provides also a global error bound under the strong monotonicity of F
(without assuming Lipschitz continuity as is the case for the D-gap functions). In fact, if F
is strongly monotone on C with modulus μ, α ∈ [0, μ) and λ > 0, then

1

2
min{μ − α, λ}‖x − x∗‖2 ≤ pMY

αλ (x) ≤ λ ‖x − x∗‖2, ∀ x ∈ R
n,

i.e., the growth rate of pMY
αλ is in the order of the squared distance from the unique solution

x∗ to (VI).
When F satisfies suitable monotonicity assumptions, further merit functions for (VI) can

be obtained by the Moreau–Yosida regularization of Minty gap functions. The function

pMβλ(x) := inf
z∈C

{

sup
y∈C

[〈F(y), z − y〉 + β ‖y − z‖2]+ λ ‖z − x‖2
}

, (29)

with β ≥ 0 and λ > 0, is the Moreau–Yosida regularization of the Minty gap function
pM (when β = 0) and the regularized Minty gap function pMβ (when β > 0). If F is

pseudomonotone on C , then pM0λ turns out to be a merit function for (VI) for any λ > 0,
because it is nonnegative on R

n and pM0λ(x
∗) = 0 if and only if x∗ solves (VI). Furthermore,

if F is strongly monotone with modulus μ, then the same happens for pMβλ provided that
β ∈ [0, μ].
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Note that also pMβλ may not be easy to evaluate in practice, but some nice theoretical
properties hold. In fact, it is differentiable and convex on R

n for any β ≥ 0 and λ > 0,
without making any additional assumption on F . Moreover, if F is strongly monotone on C
with modulus μ, β ∈ (0, μ] and λ > 0, then the quadratic growth rate of pMβλ is ensured,
i.e.,

1

2
min{β, λ}‖x − x∗‖2 ≤ pMβλ(x) ≤ λ ‖x − x∗‖2, ∀ x ∈ R

n,

where x∗ is the unique solution to (VI).

3.3 An application to traffic network equilibrium problems

A traffic network consists of a set of nodes N, a set of arcs A ⊆ N × N and a set of
origin/destination pairs W ⊆ N × N. For each O/D pair w, a traffic demand dw has to be
distributed among the paths connecting w. We denote Pw the set of all paths connecting w,
xp the flow on path p and x = (xp)p∈Pw,w∈W the vector of all path flows. The set of feasible
path flows is given by

X =
⎧
⎨

⎩
x ≥ 0:

∑

p∈Pw

xp = dw, ∀ w ∈ W

⎫
⎬

⎭
.

The flow fa on each arc a is the sum of all flows on paths to which the arc belongs, hence the
arc flow vector f = ( fa)a∈A can be written as f = � x , where � is the arc-path incidence
matrix:

�a,p =
{
1 if a ∈ p,

0 otherwise.

For each arc a, there is a nonnegative cost function ta( f ), which represents the travel time
associated with arc a and depends on the arc flow vector f . The corresponding path cost
function is assumed to be additive, i.e., the travel time Tp(x) on path p is the sum of the
travel times of the arcs belonging to p:

Tp(x) =
∑

a∈p

ta(� x).

According to the Wardrop equilibrium principle (Wardrop 1952), a path flow x∗ ∈ X is
called a network equilibrium if it is positive only on minimum cost paths, i.e., the following
implication

x∗
p > 0 
⇒ Tp(x

∗) = min
q∈Pw

Tq(x
∗)

holds for any O/D pair w ∈ W and path p ∈ Pw.
It is well-known (Dafermos 1980) that the problem of finding network equilibria is equiv-

alent to solving the following variational inequality:

find x∗ ∈ X such that 〈T (x∗), y − x∗〉 ≥ 0, for all y ∈ X. (30)

Next example shows how the merit function approach for VIs can be applied to network
equilibria.
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Fig. 1 Traffic network in
Example 1

Example 1 Consider the network in Fig. 1 with two O/D pairs: w1 = (1, 4) with demand
d1 = 4 and w2 = (1, 5) with d2 = 6. Each O/D pair is connected by two paths: Pw1 =
{(1, 2), (2, 4); (1, 3), (3, 4)} and Pw2 = {(1, 2), (2, 5); (1, 3), (3, 5)}. We denote the flow
on paths as x1, . . . , x4, respectively. Hence the set of feasible path flows is given by

X = {x ∈ R
4+ : x1 + x2 = 4, x3 + x4 = 6}.

Assume that the arc cost functions are defined as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

t12 := f12 + 1 = x1 + x3 + 1,

t13 := 3 f13 + 2 = 3 (x2 + x4) + 2,

t24 := 2 f24 + f34 + 1 = 2 x1 + x2 + 1,

t25 := 2 f25 + f35 + 3 = 2 x3 + x4 + 3,

t34 := f34 + 2 = x2 + 2,

t35 := 4 f35 + 1 = 4 x4 + 1,

thus the corresponding path costs are
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T1 = t12 + t24 = 3 x1 + x2 + x3 + 2,

T2 = t13 + t34 = 4 x2 + 3 x4 + 4,

T3 = t12 + t25 = x1 + 3 x3 + x4 + 4,

T4 = t13 + t35 = 3 x2 + 7 x4 + 3,

i.e., the operator of VI (30) is T (x) = A x + b, with

A =

⎛

⎜
⎜
⎜
⎝

3 1 1 0

0 4 0 3

1 0 3 1

0 3 0 7

⎞

⎟
⎟
⎟
⎠

, b =

⎛

⎜
⎜
⎝

2
4
4
3

⎞

⎟
⎟
⎠ .

Note that the matrix A is positive definite, thus the mapping T is strongly monotone and
there exists a unique solution of VI (30), i.e., a unique network equilibrium.

We now consider the Fukushima’s regularized gap function (7) with M = I , i.e.,

pF (x) = max
y∈X

[

〈T (x), x − y〉 − 1

2
‖x − y‖2

]

.

This function is continuously differentiable and strongly convex since the matrix A+ AT − I
is positive definite. In Fig. 2 we show the graph of pF defined on the 2-dimensional space
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Fig. 2 The regularized gap function pF with M = I in Example 1

Table 1 Numerical results of the
descent algorithm (8)–(9) applied
to Example 1

Iteration x1 x2 x3 x4 pF (x)

0 4.000000 0 6.000000 0 1.5000 e+02

1 2.679622 1.320378 4.019434 1.980566 8.8840 e−03

2 2.631471 1.368529 4.052452 1.947548 1.5178 e−06

3 2.631587 1.368413 4.052626 1.947374 2.5929 e−10

4 2.631579 1.368421 4.052632 1.947368 2.8747 e−14

(x1, x3), with x1 ∈ [0, 4] and x3 ∈ [0, 6] (the demand constraints allow to express variables
x2 and x4 as function of x1 and x3, respectively).

The descent algorithm (8)–(9) applied to pF can be exploited to compute the network equi-
librium. Table 1 reports the first four iterations of the algorithm (implemented in MATLAB)
starting from the feasible flow (4, 0, 6, 0).

Note that the path costs corresponding to the equilibrium solution

x∗ = (2.6316, 1.3684, 4.0526, 1.9474)

are

T (x∗) = (15.3158, 15.3158, 20.7368, 20.7368),

i.e., the two paths connecting each O/D pair have the same cost. Furthermore, the Lagrange
multipliers λ∗ associated with x∗ in the KKT conditions (4) coincide with the equilibrium
costs, i.e., λ∗ = (15.3158, 20.7368).

Figure 3 shows the graph of the D-gap function pαβ , with α = 1, β = 2 and G(x, y) =
‖x− y‖2/2, defined on the space (x1, x3). Note that this function is always nonnegative (even
in unfeasible points) and its global minimum is x∗.
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Fig. 3 The D-gap function pαβ with α = 1, β = 2 and G(x, y) = ‖x − y‖2/2 in Example 1

4 Merit functions for quasi-variational inequalities

In this section we consider the merit function approach for quasi-variational inequalities
(QVIs), i.e., VIs in which the feasible region depends on the variable x . Given a vector-
valued mapping F : Rn → R

n and a set-valued mapping C : Rn ⇒ R
n , such that C(x) are

closed and convex sets for any x ∈ R
n , the QVI is defined as follows:

find x∗ ∈ C(x∗) such that 〈F(x∗), y − x∗〉 ≥ 0, for all y ∈ C(x∗). (QVI)

When all the sets C(x) coincide with the same set C , (QVI) collapses to (VI). The set of
fixed points of the mapping C , i.e.

X := {x ∈ R
n : x ∈ C(x)},

is the feasible region of (QVI). In the following we suppose that sets C(x) are defined by
constraints, i.e.,

C(x) := {y ∈ R
n : gi (x, y) ≤ 0, i = 1, . . . ,m},

where the functions gi : Rn ×R
n → R are assumed to be continuous and gi (x, ·) convex for

any fixed x ∈ R
n . Furthermore, in order to guarantee the convexity of the set X , we assume

that the functions x �→ gi (x, x) are convex for all i = 1, . . . ,m.
QVIs were introduced in Bensoussan et al. (1973) and Bensoussan and Lions (1973)

and subsequently exploited to model several finite and infinite-dimensional problems (see
Baiocchi and Capelo 1984; Chan and Pang 1982; Facchinei et al. 2014, 2013 and references
therein).

Somemerit functions have been proposed in the literature extending to QVIs similar ideas
developed for VIs. Similarly to VIs, the reformulation of (QVI) as a fixed point problem leads
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to define a merit function. In fact, it follows from the definition that x solves (QVI) if and
only if x = πC(x)(x − F(x)), thus ‖x − πC(x)(x − F(x))‖ is a merit function for (QVI).
Another approach is based on reformulating (QVI), under suitable constraint qualifications,
as a complementarity problem via the following KKT conditions:

⎧
⎪⎪⎨

⎪⎪⎩

F(x) +
m∑

i=1
λi∇ygi (x, x) = 0,

λi gi (x, x) = 0, i = 1, . . . ,m,

λi ≥ 0, gi (x, x) ≤ 0, i = 1, . . . ,m.

Recently, a solution method based on these conditions has been proposed in Facchinei et al.
(2014).

A straightforward extensionof the gap function (5) toQVIs is defined as follows (Giannessi
1995):

p(x) := sup
y∈C(x)

〈F(x), x − y〉. (31)

This function is nonnegative on the set X and x∗ solves (QVI) if and only if x∗ ∈ X
and p(x∗) = 0. However, the gap function p is nondifferentiable and it may occur that
p(x) = +∞ for some point in X .

The regularized gap function (7) has been extended to QVIs in Fukushima (2007) and is
defined by

pα(x) := max
y∈C(x)

[
〈F(x), x − y〉 − α

2
‖x − y‖2

]
. (32)

This function is a gap function, it is finite and themaximum in (32) is attained in a unique point
yα(x), provided that the set C(x) is nonempty. Actually, it is possible to define pα replacing
the regularization termα‖x−y‖2/2 and the setC(x)withmore general expressions satisfying
suitable conditions (Fukushima 2007; Taji 2008).

In contrast to VIs, this function is nondifferentiable even if F is so [see examples in Harms
et al. (2014b)]. If F and gi are continuously differentiable and a constraint qualification holds,
then pα is directionally differentiable everywhere and its directional derivative at x along
direction d is given by

p′
α(x; d) = min

λ∈Λα(x)
〈F(x) − [(∇F(x))T − α I ][yα(x) − x] −

m∑

i=1

λi∇x gi (x, yα(x)), d〉,

where Λα(x) is the set of Lagrange multipliers associated with yα(x), i.e.,

Λα(x) = {λ ∈ R
m+ : F(x) + α[yα(x) − x] +∑m

i=1 λi∇ygi (x, yα(x)) = 0,
λi gi (x, yα(x)) = 0, i = 1, . . . ,m},

(see Fukushima 2007). Furthermore, pα turns out to be continuously differentiable in the
special case of QVI with ‘moving sets’, i.e., whenC(x) = Q+c(x), where Q is a closed and
convex set and c : Rn → R

n , provided that mappings F and c are continuously differentiable
(Dietrich 2001). Recently, this latter result has been extended to QVIs with generalized
moving sets (Harms et al. 2014b).

Similarly to VIs, the regularized gap function pα is nonconvex in general. In Taji (2008)
it is proved that, whenever pα is directionally differentiable, a stationary point x∗ of pα on
X , i.e.,

p′
α(x∗; y − x∗) ≥ 0, ∀ y ∈ X,
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is a solution to (QVI) provided that the matrix ∇F(x∗) is positive definite and

λi 〈∇x gi (x
∗, yα(x∗)), yα(x∗) − x∗〉 ≥ 0, for all i = 1, . . . ,m and λ ∈ Λα(x).

Notice that in Taji (2008) the key assumption yα(x∗) ∈ X is not explicitly stated in the
statement, but it is exploited in the proof and must be therefore considered as hypothesis.

An unconstrained minimization reformulation of (QVI) can be obtained via the D-gap
functions, i.e., the difference of two regularized gap functions. In fact, given 0 < α < β, the
function

pαβ(x) := pα(x) − pβ(x)

is nonnegative on R
n and pαβ(x∗) = 0 if and only if x∗ solves (QVI). The directional

differentiability of pαβ directly follows from that of pα and pβ . Recently, extending an idea
of Dietrich (see Dietrich 1999), another unconstrained optimization reformulation has been
obtained in Harms et al. (2014a) by making use of Toland’s and Singer’s duality theory.

The functions
√
pα and

√
pαβ provide error bound results for (QVI) provided that F is

strongly monotone and Lipschitz continuous on R
n and an additional technical assumption

on the Euclidean projection on the sets C(x) is fulfilled (Gupta and Mehra 2012). Another
error bound result based on the function

√
pα has been proved in Aussel et al. (2011).

4.1 Application to generalized Nash equilibrium problems

Let us consider a noncooperative gamewith N players, in which each player i controls a set of
variables xi ∈ R

ni . The vector of all players strategies is denoted by x = (x1, . . . , xN ) ∈ R
n ,

with n = n1 + . . . , nN ; the vector x is also denoted by x = (xi , x−i ), where x−i denotes the
strategy vector of all the players different from player i . Each player i has a cost function
θi : Rn → R, which possibly depends on all players strategies x , and a feasible set Xi (x−i ) ⊆
R
ni , possibly depending on the rival players’ strategies x−i .
A generalized Nash equilibrium (GNE) of the game is a vector

x∗ = (x∗
1 , . . . , x

∗
N ) ∈ X1(x

∗−1) × · · · × XN (x∗−N )

such that, for any i = 1, . . . , N , x∗
i is an optimal solution of the following optimization

problem:

min
xi

θi (xi , x
∗−i ) subject to xi ∈ Xi (x

∗−i ).

In other words, x∗ is a GNE if no player can improve its own cost function by unilaterally
changing its strategy.

It is well-known (see, e.g., Facchinei and Kanzow 2010) that under the following assump-
tions:

– θi is continuously differentiable for any i = 1, . . . , N ,
– θi (·, x−i ) is convex for any x−i and i = 1, . . . , N ,
– the feasible sets Xi (x−i ) are closed and convex for all x ∈ R

n and i = 1, . . . , N ,

the problem of finding GNE is equivalent to solving the QVI with operator

F(x) = (∇x1θ1(x), . . . , ∇xN θN (x))

and set-valued mapping

C(x) = X1(x−1) × . . . XN (x−N ).
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Example 2 (Cavazzuti et al. 2002) Consider a two-person noncooperative game, in which
player i selects the coordinate xi ∈ R subject to a individual constraint xi ≤ 0 and a shared
constraint x1 + x2 ≤ −1. The aim of player i is to minimize the (squared) distance between
(x1, x2) and his favourite goal Pi ∈ R

2, with P1 = (1, 0) and P2 = (0, 1). Thus the
optimization problems of the two players are defined as follows:

Player 1:

⎧
⎪⎨

⎪⎩

min
x1

(x1 − 1)2 + x22
x1 ≤ 0
x1 + x2 ≤ −1

Player 2:

⎧
⎪⎨

⎪⎩

min
x2

x21 + (x2 − 1)2

x2 ≤ 0
x1 + x2 ≤ −1

The set of GNE of the game coincides with the solution set of the QVI given by F(x) =
(2 x1 − 2, 2 x2 − 2) and

C(x) = (−∞,min{0,−1 − x2}] × (−∞,min{0,−1 − x1}].
The feasible region of the QVI, i.e. the set of fixed point of the set-valued mapping C , is

X = {x ∈ R
2 : x1 ≤ 0, x2 ≤ 0, x1 + x2 ≤ −1}.

It is easy to check that the solution set of the QVI is the segment connecting (−1, 0) and
(0,−1).

The value of the gap function (31) can be explicitly computed:

p(x) = sup
y∈C(x)

〈F(x), x − y〉
= sup

y∈C(x)
[2 (x1 − 1) (x1 − y1) + 2 (x2 − 1) (x2 − y2)]

= 2 x1 (x1 − 1) + 2 x2 (x2 − 1) + sup
y1≤min{0,−1−x2}

2 (1 − x1) y1

+ sup
y2≤min{0,−1−x1}

2 (1 − x2) y2

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 x1 (x1 − 1) + 2 x2 (x2 − 1)+
+2 (1 − x1) min{0,−1 − x2}+
+2 (1 − x2) min{0,−1 − x1}, if x1 ≤ 1 and x2 ≤ 1,

+∞, otherwise.

This function is equal to zero on the solution set, but is not finite everywhere on R
2 and it is

not differentiable on the half-lines {−1} × (−∞, 1] and (−∞, 1] × {−1}.
Figures 4 and 5 show the graphs of the regularized gap function pα , with α = 5, and the

D-gap function pαβ , with α = 5 and β = 10, respectively. Note that both functions are finite
on R2 and equal to zero in the solution set; pα is negative in points not belonging to X , while
pαβ is nonnegative on the whole space R2.

5 Merit functions for abstract equilibrium problems

The abstract equilibrium problem is a general mathematical model which includes optimiza-
tion, multi-objective optimization, variational inequalities, fixed point and complementarity
problems, Nash equilibria in noncooperative games and inverse optimization as special cases
(see Bigi et al. 2013; Blum and Oettli 1994). It is defined as follows:

find x∗ ∈ C such that f (x∗, y) ≥ 0, for all y ∈ C, (EP)
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Fig. 4 The regularized gap function pα with α = 5 in Example 2

Fig. 5 The D-gap function pαβ with α = 5 and β = 10 in Example 2

where C is a closed and convex subset of Rn and f : Rn ×R
n → R is a bifunction such that

f (x, ·) is convex and satisfies f (x, x) = 0 for all x ∈ C . Setting f (x, y) = 〈F(x), y − x〉
we obtain (VI).

In the last decade, several merit functions for (EP) have been introduced in the literature.
These functions often extend to (EP) those originally conceived for VIs. For instance, a direct
extension of the gap function (5) from VIs to (EP) is defined as follows (Mastroeni 2003):

p(x) := sup
y∈C

[− f (x, y)] .
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This function is nonnegative on C and x∗ solves (EP) if and only if x∗ ∈ C and p(x∗) = 0.
However, p has the same disadvantages of function (5), i.e., it is in general neither finite, nor
differentiable nor convex. For these reasons, the regularized gap function has been proposed
(Mastroeni 2003):

pα(x) := max
y∈C

[
− f (x, y) − α

2
‖x − y‖2

]
. (33)

It allows to reformulate (EP) as the problem of minimizing pα on C , it is continuously
differentiable, if the bifunction f is so, and

∇pα(x) = −∇x f (x, yα(x)) − α[x − yα(x)],
where yα(x) is the unique maximizer of problem (33). Note that the regularization term
‖y − x‖2 can be replaced by a more general bifunction G satisfying condition (13) (see
Mastroeni 2003). Similarly to VIs, the regularized gap function is nonconvex in general.
However, if x∗ is a stationary point of pα on C , i.e.,

〈∇pα(x∗), y − x∗〉 ≥ 0, ∀ y ∈ C,

and f is strictly ∇-monotone on C , i.e.,

〈∇x f (x, y) + ∇y f (x, y), y − x〉 > 0, ∀ x, y ∈ C with x �= y,

then x∗ is a solution to (EP). The strict ∇-monotonicity of f plays a role similar to those of
positive definiteness of ∇F for VIs. In fact, it guarantees, in addition to the above “station-
arity” property, that yα(x) − x is a descent direction for pα at any non-stationary point x .
Solution methods based on the minimization of pα along this direction have been developed
in Chadli et al. (2004) and Mastroeni (2003). An inexact version of these methods has been
proposed in Di Lorenzo et al. (2014).

A descent method which does not require the strict ∇-monotonicity of f has been intro-
duced in Bigi et al. (2009). It is similar to that developed in Zhu and Marcotte (1993) for
VIs: at any iteration it performs a line search if yα(x) − x is a descent direction for pα at x ,
otherwise the value of α is reduced. Convergence is guaranteed provided that C is bounded
and f is c-monotone on C , i.e.,

f (x, y) + 〈∇x f (x, y), y − x〉 ≥ 0, ∀ x, y ∈ C. (34)

The latter condition is neither stronger norweaker than strict∇-monotonicity and it is satisfied
if f (·, y) is concave for all y ∈ C (see Bigi et al. 2009; Bigi and Passacantando 2015b).

Similarly to VIs, function
√
pα provides error bound results under suitable monotonicity

assumptions on f (see Chadli et al. 2004; Konnov and Pinyagina 2003b; Mastroeni 2003).
Since the evaluation of the regularized gap functionpα could be computationally expensive

if C is defined as in (3) by nonlinear constraints, a variant of function pα can be exploited
as in the case of VIs. In Bigi and Passacantando (2012) the following function has been
introduced:

pBPα (x) := max
y∈T (x)

[
− f (x, y) − α

2
‖x − y‖2

]
,

where T (x) is the outer polyhedral approximation of C at x defined as in (12). This function
turns out to be a locally Lipschitz gap function for (EP). Furthermore, if gi ’s are continuously
differentiable and a constraint qualification holds, then pBPα is directionally differentiable.
Solution methods for (EP) exploiting this merit function have been proposed in Bigi and
Passacantando (2012, 2015a).
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D-gap functions have been extended from VIs to (EP) as well. Indeed, the difference of
two regularized gap functions

pαβ(x) := pα(x) − pβ(x), (35)

with 0 < α < β, is nonnegative on R
n and pαβ(x∗) = 0 if and only if x∗ solves (EP).

Thus, the global minima of pαβ on R
n coincide with the solutions to (EP) (see Konnov and

Pinyagina 2003a; Zhang and Han 2009). The D-gap function inherits the differentiability
properties of pα and pβ but in general is not convex. Stationary points of pαβ coincide with
the solutions to (EP) if the mappings ∇x f (x, ·) + ∇y f (x, ·) are strictly monotone on R

n for
any x ∈ R

n (Zhang and Han 2009). Similarly to VIs, function
√
pαβ provides error bound

results under suitable monotonicity assumptions on f (Cherugondi 2013; Zhang and Wu
2009).

Several solution methods for (EP) are based on D-gap functions. Descent methods
exploiting the direction d = r(x) + ρs(x), where r(x) = yα(x) − yβ(x), s(x) =
α[x − yα(x)] − β[x − yβ(x)] and ρ > 0 is small enough, have been introduced in Cheru-
gondi (2013) and Konnov and Pinyagina (2003a). A descent method, which is similar to that
proposed in Solodov and Tseng (2000) for VIs, is based on direction d = yα(x) − yβ(x)
and suitable updates of parameters α and β (Bigi and Passacantando 2015). Another descent
method relies on the same direction d = yα(x)−x which is exploited by the solutionmethods
for pα (Zhang and Wu 2009).

The regularized Minty gap function (19) has been extended to (EP) in Quoc and Muu
(2012) and it has been used to develop an iterative method for solving strongly monotone
equilibrium problems, while gap functions based on conjugate duality have been extended
to (EP) in Altangerel et al. (2006).

5.1 Application to a class of Nash–Cournot equilibrium problems

We now describe a problem of production competition over a network between several firms
which produce the same commodity. We consider a modification of the oligopolistic model
originally proposed in Marcotte (1987). Given a transportation network (N,A), where N is
the set of nodes and A the set of arcs, the firms and the markets are located at some subsets
of nodes I and J , respectively. Each firm i ∈ I chooses the quantity xij to supply to each

market j ∈ J and the quantities via to be sent on each arc a ∈ A. These variables are subject
to flow-conservation constraints, i.e., for any i ∈ I and k ∈ N we have

(E vi )k =

⎧
⎪⎪⎨

⎪⎪⎩

−
∑

j∈J

xij if k = i,

0 if k /∈ J,
xik if k ∈ J,

(36)

where E is the node-arc incidence matrix of the network and vi = (via)a∈A. Moreover, qi

denotes the maximum quantity that firm i may produce, i.e.,
∑

j∈J

xij ≤ qi . (37)

The goal of the firm i is to maximize its profit given by

∑

j∈J

xij p j

(
∑

�∈I
x�
j

)

−
∑

a∈A
sa via − πi

⎛

⎝
∑

j∈J

xij

⎞

⎠ , (38)
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Fig. 6 Transportation network in
Example 3

where p j : R+ → R+ is the inverse demand function for market j , that is p j (z) denotes the
unitary price at which the market j requires a total quantity z, sa is the unitary transportation
cost on arc a and πi : R+ → R+ is the production cost function of firm i . Note that the first
term of (38) depends on the quantities x�

j chosen by all the firms � ∈ I .
We say that an equilibrium state is reached when the flows and the quantities produced by

the firms are such that no firm would increase its profit by changing its own choices while the
other firms keep their own. This equilibrium definition coincides with the concept of Nash
equilibrium in a noncooperative game where firms are the players and (38) are their payoff
functions. Setting x = (xij )i∈I, j∈J , v = (vi )i∈I and analogously y and w, Nash equilibria of
this game are the solutions of the abstract equilibrium problem (EP), where the bifunction f
is the Nikaidô–Isoda function associated with the game (Nikaidô and Isoda 1955), that is:

f ((x, v), (y, w)) =
∑

i∈I

⎡

⎣
∑

j∈J

xij p j

(
∑

�∈I
x�
j

)

−
∑

j∈J

yij p j

⎛

⎝yij +
∑

�∈I,��=i

x�
j

⎞

⎠

+
∑

a∈A
sa (wi

a − via) + πi

⎛

⎝
∑

j∈J

yij

⎞

⎠− πi

⎛

⎝
∑

j∈J

xij

⎞

⎠

⎤

⎦

and the feasible set C is defined by constraints (36) and (37).

Example 3 Let us consider the transportation network in Fig. 6, where I = {1, 2}, J = {6, 7}
and the number associated with each arc a denotes the unitary transportation cost sa .

We assume that the production bounds are q1 = 70 and q2 = 40; that both markets have
the same inverse demand function:

p j (z) = p(z) := ρ1/τ (z + σ)−1/τ , j ∈ J,

with ρ = 5000, τ = 1.1 and σ = 0.01 (see, e.g., Murphy et al. 1982), and that the production
cost functions have the form

πi (z) := γi z + (1 + δi )
−1K−δi

i z1+δi , i ∈ I,

where parameters γi , δi and Ki are reported in Table 2.
Since the functions p and πi are convex and differentiable, the function z �→ z p(z)

is concave and the bifunction f (·, (y, w)) is concave for any (y, w). Therefore, condi-
tion (34) is fulfilled and the convergence of the modified descent algorithm proposed in
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Table 2 Parameters of cost
functions πi in Example 3

i γi δi Ki

1 10 5/6 5

2 6 1 5

Table 3 Numerical results of the
modified descent algorithm
proposed in Bigi et al. (2009)
applied to Example 3

Iteration x16 x17 x26 x27 pα(x)

0 0.0000 0.0000 0.0000 0.0000 1.0553e+04

1 11.5969 10.1858 11.3801 13.1382 1.1763e+03

2 29.5006 27.9329 19.5714 20.4286 8.7228e+00

3 32.6601 29.7497 18.8909 21.1091 8.6960e−02

4 32.5906 29.8771 18.6625 21.3375 2.5378e−03

5 32.5766 29.8855 18.6660 21.3340 1.5252e−03

6 32.5660 29.8917 18.6692 21.3308 9.1849e−04

7 32.5605 29.8950 18.6712 21.3288 6.5303e−04

8 32.5560 29.8977 18.6730 21.3270 4.6451e−04

9 32.5534 29.8992 18.6742 21.3258 3.6820e−04

10 32.5511 29.9006 18.6753 21.3247 2.9189e−04

Bigi et al. (2009) is guaranteed. We implemented this algorithm in MATLAB exploiting the
built-in function fmincon from the Optimization Toolbox to evaluate the regularized gap
function pα and to compute the search direction yα(x) − x . Table 3 reports the quantities
supplied by each firm to each market in the first 10 iterations of the algorithm starting from
a zero total production.

6 Concluding remarks

Merit functions have been introduced for a number of variational mathematical models. In
this paper, we focused on three of the most important ones: variational inequalities, quasi-
variational inequalities and abstract equilibrium problems. Among other relevant models we
recall set-valued variational inequalities, vector variational inequalities and generalized Nash
equilibrium problems.

Themerit function approachhas been extensively developed forVIs in the last twodecades,
while it is still at a quite early stage formore general problems.We believe that this is partially
due to the complexity of these problems, but above all because many real-world applications
of these problems have arisen recently. Therefore, there are still many challenging open
problems regarding merit functions which are worthy of being investigated.

Merit functions forQVIs need to be further investigated: for instance, the general condition
underwhich the stationary points of the regularized gap function are solutions to (QVI) should
be deepened for different classes of problems according to the set-valued mapping defining
the feasible region. Furthermore, to the best of our knowledge, no ad-hoc descent method
based on merit functions has been developed so far.
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Regarding abstract equilibrium problems, the convergence of descent methods is usually
based on differentiability assumptions. We think that some efforts should be devoted to
develop algorithms for nonsmooth problems, which include nonsmooth Nash equilibrium
problems as special cases. Moreover, it would be interesting to extend the Moreau–Yosida
regularization to merit functions for abstract equilibrium problems. Finally, we believe that
newmerit functions could be developedwithout assuming the convexity of f (x, ·): this might
allow to extend the merit function approach to nonconvex Nash equilibrium problems.
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