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Abstract In this paper, we consider two-tiered city logistics systems accounting for both
the inbound and outbound traffic, that have not been taken into account in models and algo-
rithms for vehicle routing research. The problem under study, called the Multi-trip Pickup
and Delivery Problem with Time Windows and Synchronization, has two sets of intertwined
decisions: the routing decisions which determine the sequence of customers visited by each
vehicle route, the scheduling decisions which plan movements of vehicles between facili-
ties within time synchronization restrictions. We propose a tabu search algorithm integrating
multiple neighborhoods targeted to the decision sets of the problem. To assess the proposed
algorithm, tests have been conducted on the first benchmark instances of the problem which
have up to 72 facilities and 7200 customer demands. As no previous results are available in
the literature for the problem, we also evaluate the performance of the method through com-
parisons with published results on two simplified problems: theMulti-zone multi-trip vehicle
routing problem with separate delivery and collection, and the Vehicle routing problem with
backhauls. The proposed algorithm is competitive with existing exact and meta-heuristic
methods for these two problems.
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1 Introduction

We introduce a new problem class, the Multi-trip Pickup and Delivery Problem with Time
Windows and Synchronization (MT-PDTWS), which generalizes a number of Pickup and
Delivery with Backhauls (P&DB) problem settings (Savelsbergh and Solomon 1995; Parragh
et al. 2008a, b; Berbeglia et al. 2007, 2010; Toth and Vigo 2002).

In the MT-PDTWS setting, a homogeneous fleet of vehicles operates multi-tour routes
out of a single garage to deliver and pick up loads to and at customers, respectively. To-be-
delivered loads are customer specific, are available at particular terminals within specified
hard timewindows, andmust be deliveredwithin the timewindow of the respective customer.
The same or different customers have loads that must be picked up, within the customer
time windows, and brought to a terminal, within one of its periods of activity, belonging
to the subset of terminals associated to the particular customer. A vehicle must complete
a terminal-to-customer delivery sequence before starting a pickup sequence or moving to
a terminal for another delivery phase. Waiting at terminals may be strictly limited (in both
time and space) and, thus, synchronization of vehicle arrivals and terminal operating time
windows is an important characteristic of the problem setting. The original characteristics
of the MT-PDTWS, setting it apart from and generalizing most P&DB problems, therefore
are (1) multi-commodity demand defined as specific, time-dependent origin-to-destination
loads to be delivered or picked up; (2) the synchronization of activities at terminals; and (3)
multi-tour routes.

TheMT-PDTWS arises in logistics and production planning. Our initial motivation comes
from planning the operations of two-tiered City Logistics systems (Crainic et al. 2009). In
such systems, inbound loads are sorted and consolidated at first-tier facilities (called external
zones) located on the outskirts of the city, moved to second-tier facilities (the satellites),
located close to or within the City Logistics-controlled area (the CL-area), by vehicles of
various modes. In the second tier, a fleet of vehicles of size and motorization appropriate for
the CL-area performs multi-tour routes to pickup outbound demands within the CL-area and
bring them to satellites. Once there, planned appropriate pairs of first-tier and second-tier
vehicles transfer inbound and outbound loads to each other according to a cross-docking
strategy, without intermediate storage. The first-tier vehicles then bring the outbound loads
to external zones, while the second-tier vehicles deliver the inbound loads to designated
customers situated within the CL-area. This integration of inbound and outbound operations
is aimed to help reduce the number of empty vehicle movements of all vehicle fleets and the
freight traffic in the CL-area. As satellites are used as cross-dock transshipment facilities, the
synchronization of the operations of first-tier and second-tier vehicles at satellites becomes
one of the most constraining aspects of the problem.

To our best knowledge, the MT-PDTWS has not been addressed in the literature before.
Crainic et al. (2012) discussed the issue of combining different types of routing activities
within the City Logistics planning context, but no problem definition was provided, nor
any modelling or algorithmic contribution. Our goal is to formally introduce and define the
MT-PDTWS, provide a mathematical formulation and propose an efficient meta-heuristic
(generalizing the method proposed by Nguyen et al. 2013, for the Time-dependent Multi-
zone Multitrip Vehicle Routing Problem with Time Windows).

We make the following contributions: (1) we formally define and present the first formu-
lation for the MT-PDTWS; (2) we propose an efficient tabu search meta-heuristic to address
the problem; (3) we introduce a new set of benchmark instances with up to 72 facilities and
7200 customers; (4) we analyze the performance of the proposed method, including through
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comparisons with methods proposed for related P&DB problems, and study the impact of
two main problem characteristics, namely combining pick up and delivery operations, and
synchronization.

The remainder of the paper is organized as follows. Section 2 contains a detailed problem
description and high-level model; to make the presentation more concise, the mathematical
formulation is provided in Appendix of Supplementary material. Section 3 reviews the lit-
erature. The proposed methodology is described in Sect. 4. Computational results are then
reported and analyzed in Sect. 5, while conclusions and futureworks are considered in Sect. 6.

2 Problem description

The system is composed of a garage, g, where the fleet of vehicles of homogeneous capacity Q
is based, a number of facilities where customer-specific loads are available during particular
(hard) time windows and to where loads picked up at customers may be brought during one
of their time windows, and customers waiting for their loads to be delivered or picked up, or
both, during their time windows. The route planning is to be performed for a certain schedule
length, T , each route visiting one or several facilities (hence the “multi-tour” characterization)
during their respective timewindows to bring in or take away time-dependent customer loads.

Wemodel the time-dependency characterizing demand and operations in theMT-PDTWS
through time windows, the well-known representation device for vehicle routing problems.
We first model facilities, which become available to receive vehicles for loading and unload-
ing operations at particular time periods only. A particular set of loads destined to specific
customers may be available at each such time period, and must be taken away and distrib-
uted. Then, as a given facility may be available at several periods during the schedule length
considered, with a different set of loads at each occurrence, we define supply points as par-
ticular combinations of facilities and availability time periods (definition similar to that of
Nguyen et al. 2013). Each supply point s ∈ S has a no-wait, hard opening time window
[t (s) − η, t (s)], specifying the earliest and latest times a vehicle may be at s, respectively.
Hence, the vehicle must not arrive at s sooner than (t (s) − η) and no later than t (s). To
model various possibilities of handling the former case, waiting stations (e.g., a parking lots)
w ∈ W are provided where the vehicle may wait before moving to s. Otherwise, if there is
no waiting station available, the vehicle goes to the garage to finish its route.

The second time-dependencyphenomenon concerns customers,whichmay receive several
loads from different supply points and, thus, during different time windows. The same or
different customers may also have loads to be picked up and transported to one of a given
subset of supply points. We model this time dependency by identifying each particular load
as a customer demand, characterized by the routing activity and the customer involved,
the supply point where it is available or the set of supply points that may take it in, and
the particular customer time window. We thus define a set of delivery-customer demands,
each d ∈ CD being characterized by the supply point where it is available, the customer it
must be delivered to, and the time window when the delivery must be performed. We also
define a set of pickup-customer demands, each p ∈ CP being characterized by the customer
shipping it and the time window within which the pickup must be performed, as well as the
set of admissible supply points Sp ∈ S to which the load may be delivered, the choice of
a particular one being part of the decisions characterizing the MT-PDTWS. Then, for each
customer demand i ∈ {CP ∪ CD}, we set (i, qi , δ(i), [ei , li ]) to stand for the quantity qi of
demand to be delivered or picked up at the customer demand i within the hard time window
[ei , li ] with a service time δ(i).
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Fig. 1 Activities at supply points

Each supply point s may thus service a group of either pickup-customer demands CP
s ⊆

CP , or delivery-customer demands CD
s ⊆ CD , or both. The loads collected from pickup-

customer demands in CP
s are brought to s during its time windows. Similarly, the freight to

be delivered to delivery-customer demands in CD
s have to be loaded at s during the same

time window. Let ϕ(s) and ϕ′(s) be the times required, respectively, to load and unload a
vehicle at s. Figure 1 represents the possible loading and unloading activities of a vehicle at
a supply point s. Striped and empty disks stand for pickup and delivery-customer demands,
respectively, dashed lines indicating empty moves.

Figures 1a and 1b depict instances of the “unload only” operation in which, after arriving
at the supply point with the collected freight from pickup-customer demands, the vehicle
unloads all freight, then it leaves the supply point empty for its next tour or the garage to
end its activity. The two instances differ in the level of synchronization only. From the last
serviced customer demand, the vehicle goes directly to the supply point s, Fig. 1a, if it can
arrive at s within the time window [t (s)− η, t (s)]. Otherwise, when the direct move gets the
vehicle to s sooner than t (s)−η, the vehicle goes to a waiting station, Fig. 1b, and waits there
in order to get to s within its time window. Figure 1c represents the “load only” case when
the vehicle arrives empty at s and loads freight. Figures 1d and 1e depict instances of unload
& load operations in which, after unloading all the freight collected from pickup-customer
demands, the vehicle loads freight and leaves to deliver it to designated delivery-customer
demands.

Let a pickup or delivery leg be a route that links one or several pickup or delivery-customer
demands, respectively, and a supply point. We then define two types of pickup and delivery
legs, together with their feasibility rules:

• Direct-pickup leg A route run by a vehicle that services one pickup-customer demand or
a sequence of pickup-customer demands and then travels directly to the supply point to
unload all freight (Fig. 1a); A pickup leg assigned is feasible if the vehicle with a total
load not exceeding Q arrives at s within its time window [t (s) − η, t (s)] after servicing
a subset of pickup-customer demands in CP

s within their time windows;
• Indirect-pickup leg Similar to the case of the direct-pickup leg, except that, after servicing

the last pickup-customer demand, the vehicle has to go to a waiting station and wait there
due to the synchronization requirement at the supply point (Fig. 1b);

• Single-delivery leg A route run by a vehicle that arrives empty at a supply point s,
loads freight and delivers it to one delivery-customer demand or a sequence of delivery-
customer demands in CD

s (Fig. 1c); A single-delivery leg is feasible if the vehicle arrives
empty at s at time t ′ ∈ [t (s) − η, t (s)] to load freight not exceeding Q, and leaves s at
time t ′ + ϕ(s) to perform the delivery to the corresponding subset of customer demands
in CD

s within their time windows.
• Coordinated-delivery leg A route combining a single-delivery leg and either a direct-

pickup (Fig. 1d) or an indirect-pickup leg (Fig. 1e) at a supply point s; A coordinated-
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Fig. 2 A four-leg work assignment illustration

delivery leg is feasible if the vehicle arrives at s at time t ′ ∈ [t (s)−η, t (s)] to unload all the
collected freight, then starts to load delivery demands not exceeding Q at time t ′ +ϕ′(s),
and leaves s at time t (s) + ϕ′(s) + ϕ(s) to perform the delivery for the corresponding
subset of customer demands in CD

s within their time windows.

A sequence of legs, starting and ending at the garage and performed by a single vehicle, is
called a work assignment. Vehicles operate according to the Pseudo-Backhaul strategy of
Crainic et al. (2012), inwhich anydelivery or pickup legmust be completed before another one
may start. Figure 2 illustrates a four-leg work assignment, where s1, s2, s3 are supply points,
g andw1 are the garage andwaiting station, respectively, and several pickup and delivery cus-
tomer demand sets are given by CP

s1 = {p1, p2, p3, p4, p5}, CD
s1 = {d1, d2, d3, d4, d5}, CP

s2 =
{p6, p7, p8, p9, p10}, CD

s2 = {d6, d7, d8, d9, d10, d11}, CP
s3 = {p11, p12, p13, p14, p15}, and

CD
s3 = {d12, d13, d14, d15}. Dashed lines stand for the empty travel. The vehicle operat-

ing this work assignment performs a sequence of four legs {r1, r2, r3, r4}, where r1 =
{s1, d1, d3, d4} is a single-delivery leg, r2 = {p6, p8, p9, w1, s2} is an indirect-pickup leg,
r3 = {s2, d6, d9, d8, d7} is a coordinated-delivery leg, and r4 = {p11, p13, p12, s3} is a direct-
pickup leg. The vehicle first moves empty out of the garage g to supply point s1 and starts
loading delivery demands. After loading for a time ϕ(s1), it leaves s1 to service delivery-
customer demands d1, d3, d4 in CD

s1 , then moves empty to pickup customer zone CP
s2 for

collecting freight at pickup-customer demands p6, p8, p9. For synchronization reasons, the
vehicle goes from customer demand p9 to the waiting station w1 and waits there in order to
arrive at s2 within its opening time window. Once at s2 (at some arrival time t), it performs
unloading from t for a duration ϕ′(s2), and then loads from time t + ϕ′(s2) for a time ϕ(s2),
after which it leaves s2 to service delivery-customer demands d6, d9, d8, d7 in CD

s2 . After ser-
vicing the last delivery-customer demand d7, it moves empty to pickup customer zone CP

s3 .
There, after loading freight at pickup-customer demands p11, p13, p12, the vehicle moves
to supply point s3 within its opening time window. Once at s3, this vehicle starts unloading
freight for a duration of ϕ′(s3). At the end, the vehicle moves back empty to g to complete
its work assignment.

Let F stand for fixed cost for operating a vehicle work assignment. The set of available
vehicles is denoted by K. Let also ci j to stand for the cost (money, time, distance, etc.)
associated with each pair of sites (supply points, waiting stations, and customer demands) i
and j making up the set of nodes of the complete space-time network describing the problem
(i, j ∈ {g ∪ CD ∪ CP ∪ S ∪ W}).

The MT-PDTWS can then be seen as the problem of (1) assigning pickup-customer
demands to supply points, and (2) selecting a set of work assignments (pickup and delivery
legs) each to be performed by one vehicle. The objective is to minimize the total cost, which
is comprised of the routing cost of operating the work assignments and the fixed cost of using
the vehicles, while the following conditions are satisfied:
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1. Every vehicle starts and ends its leg sequence at the garage g;
2. Each pickup-customer demand p is assigned to exactly one supply point s ∈ Sp;
3. Every vehicle required to service customer demands in CP

s ∪ CD
s must reach its supply

point s ∈ S within its no-wait, hard opening time window (it may wait at a waiting
station, eventually). Assume the arrival time at s is t ; Once at s:

• If the vehicle is not empty, the freight it contains, picked up from customer demands
in CP

s , is first unloaded, this operation starting at time t and continuing for a duration
of ϕ′(s); Once empty, the vehicle may either:

– (1) load goods for a duration of ϕ(s) and then leave s to deliver to customer
demands in CD

s , or
– (2) move empty either to another pickup customer zone to collect goods, or

directly to another supply point for loading goods, or
– (3) go to the garage g to complete the work assignment;

• Otherwise, the vehicle starts to load goods for customer demands in CD
s at time t

and continues loading for a duration of ϕ(s), after which it leaves s to deliver the
goods. After performing a tour within the delivery customer zone CD

s , the vehicle
may continue its movement as either the situations (2) or (3) described above;

4. Every customer demand is visited by exactly one vehicle (it belongs to exactly one leg)
with a total load not exceeding Q, and each customer demand i ∈ {CD ∪ CP } is serviced
within its hard time window [ei , li ], i.e., the vehicle may arrive before ei and wait to
begin service, but must not arrive later than li .

The full mathematical formulation is provided in Appendix of Supplementary material.

3 Literature review

The MT-PDTWS we introduce in this paper is a new variant in the vehicle routing problem
class generalizing both a number of pickup and delivery problem settings and the routing
problems typically studied in the City Logistics literature.

Relative to City Logistics routing, the MT-PDTWS extends the Time-dependent Multi-
zoneMulti-trip Vehicle Routing problemwith TimeWindows (TMZT-VRPTW) by consider-
ing an additional type of customer demands. TheTMZT-VRPTWaddresses only the demands
for delivery within the CL-controlled area, which corresponds to only delivery-customer
demands in our setting, while the MT-PDTWS considers both delivery and pickup-customer
demands. Crainic et al. (2009) introduced theTMZT-VRPTWand proposed a decomposition-
based heuristic approach to address it. The general idea is to solve each customer-zone routing
out of each supply point subproblem independently, and then put the created vehicle tours
together into multi-tour routes by solving a minimum cost network flow problem. Yet, as
routing decisions affect the supply point assignment decisions and vice-versa, these two
decision levels are intertwined and should not be solved separately. Nguyen et al. (2013)
later investigated an alternative approach that addresses these two decisions simultaneously
within a tabu search framework. The proposed method yields solutions with higher quality
up to 4.42% in term of total cost, requiring not only less vehicles, but also less usage of
waiting stations, when compared to the previous approach.

There has been extensive research on the pickup and delivery problem variants as illus-
trated in the surveys andbook cited in the Introduction.Basedon the difference in the sequence
of customer service, Parragh et al. (2008a, b) divided them into two subclasses: the first refers
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to transportation of goods from the depot to delivery (linehaul) customers and from pickup
(backhaul) customers to the depot, while the second refers to those problems where goods
are transported between pickup and delivery locations. As we follow the Pseudo-Backhaul
strategy in which any delivery or pickup phase must be completed before another one may
be started, the MT-PDTWS belongs to the first subclass.

One distinguishes between single-demand problem settings where linehaul and backhaul
customers are disjoint, and the combined setting where the same customer has both a pickup
and a delivery demand. In the former case, one finds problems in which linehaul customers
of a given trip have to be serviced before backhaul customers of the same trip, called Vehicle
Routing problem with Backhauls (VRPB; Osman and Wassan 2002; Brandão 2006), and
problems inwhich linehaul and backhaul customersmay be visited in any order calledVehicle
Routing problem with Mixed linehauls and Backhauls (VRPMB; Dethloff 2002; Ropke and
Pisinger 2006). In the combined case, each customermay be visited either exactly once (Nagy
and Salhi 2005; Dell’Amico et al. 2006) or twice, once for delivery and once for pickup (Salhi
and Nagy 1999; Gribkovskaia et al. 2001). Problems in this case are called Vehicle Routing
problem with Simultaneous Delivery and Pickup.

The VRPB can be considered as a subproblem of the MT-PDTWS. More precisely,
the VRPB addresses a single-tour routing of, first, delivery-customer demands out of the
supply point s and, second, pickup-customer demands assigned to supply point s′, where
t (s) < t (s′). Time synchronization restrictions at supply points and waiting stations are not
considered. Two variants, with and without time windows at customers, are considered in the
VRPB literature. The number of studies dealing with the time-window variant is relatively
smaller than those without time windows.

The Vehicle Routing Problem with Cross-Docking (VRPCD) partially shares the require-
ment of synchronizing vehicle operations with our problem. The VRPCD generally involves
transporting products from a set of suppliers to their corresponding customers via a cross-
dock. Products from the suppliers are picked up by a fleet of vehicles, consolidated at the
cross-dock facility (i.e., sorted into groups according to their destinations), and immediately
delivered to customers by the same set of vehicles, without delay or storage. A supplier
and its customers are not necessarily served by the same vehicle. At the cross-dock facil-
ity, the unloading of a vehicle must be completed before reloading starts. Constraints might
be imposed on the simultaneous vehicle arrival at the facility (Lee et al. 2006; Liao et al.
2010), or the arrival dependency among vehicles is determined by the consolidation decisions
(Wen et al. 2008). Similarly to our problem, each vehicle thus operates pickup and delivery
phases separately.

There are also significant differences between the VRPCD and theMT-PDTWS, however,
and onemight see the former as a very particular special case of the later. Thus, in theVRPCD,
each vehicle performs a single-tour route composed of a sequence of two trips, first pickup
and then delivery, using the cross-dock facility as intermediate storage. There are no such
limitations in the MT-PDTWS, neither on the number of legs (trips), nor on their sequencing
(note than the Pseudo-Backhaul rule permits sequencing several legs of the same type). This
results in a multiple synchronization requirements for each MT-PDTWS work assignment
(route).

Bettinelli et al. (2015) recently studied the Multi-zone multi-trip vehicle routing problem
with time windows and separate delivery and collection (MZMT-VRPTW-DC). Similar to
the MT-PDTWS, this problem involves scheduling a homogeneous fleet of vehicles to pick
up or deliver loads at or to customers associated to a given set of supply points where vehicles
synchronize operations. There are also differences between the two problem settings, how-
ever, notably, each pickup-customer demand is pre-assigned to a supply point, the departure
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times from supply points are fixed independently of the operation performed therein, vehicles
arriving early at customers may wait paying a penalty cost proportional to the waiting time,
and vehicles are allowed to stop at waiting stations at any time (including between customer
visits). The MZMT-VRPTW-DCminimizes the sum of the vehicle fixed cost and the routing
operating cost combining travel and waiting-penalty costs. The authors proposed a branch-
and-cut-and-price algorithm to solve the problem. Experiments on a large set of instances
with up to ten supply points and two hundred customers showed the algorithm to be very
efficient for relatively small instances (all but two instances were solved to optimality within
the time limit of one hour, tight lower bounds, slightly more than 1% being obtained for the
largest instances).

4 Solution method

We propose a tabu search (TS) meta-heuristic for theMT-PDTWS, inspired by and extending
themethod ofNguyen et al. (2013) introduced for theTMZT-VRPTW.The newdevelopments
address challenging characteristics of the problem at hand, namely the combined pickup and
delivery operations, and the goal of scheduling service to pickup-customer demands. New
neighborhoods are introduced to address these issues.

Section 4.1 introduces the general structure of the meta-heuristic. The search space is
defined in Sect. 4.2, while Sect. 4.3 describes the construction of the initial solution. Themain
features of the tabu search algorithm are then given: the neighborhood structures (Sect. 4.4),
the neighborhoods selection strategy (Sect. 4.6), the tabu status mechanism (Sect. 4.7), the
diversification mechanism (Sect. 4.8), and the post-optimization procedure (Sect. 4.9).

4.1 General structure

The tabu search meta-heuristic exploits several neighborhoods operating on legs and routes,
the neighborhood selection at each iteration being governed by a dynamically-adjusted
neighborhood-selection parameter, r (Sect. 4.6). An elite set of solutions guides the long
term behavior of the search, while a post-optimization procedure polishes the final best solu-
tion. The overall structure of the proposed tabu search algorithm for theMT-PDTWS is given
in Algorithm 1.

An initial feasible solution z is generated using a greedy method seeking to fully utilize
vehicles and minimize the total cost. One neighborhood is selected probabilistically at each
iteration based on the current value of r , then the selected neighborhood is explored, and the
best move is chosen (lines 7-8). This move must not be tabu, unless it improves the current
best TS solution zbest (aspiration criterion). The algorithm adds the new solution to an elite
set E if it improves on zbest . It also remembers the value of the parameter r when this new best
solution was found (lines 9–13), and finally updates the elite set E by removing a solution
based on its value and the difference between solutions (Sect. 4.8).

Initially, the search freely explores the solution space by assigning the same selection
probability to each neighborhood. Whenever the best TS solution zbest is not improved for
I TcN S TS iterations (line 15), the Control procedure (which updates the neighborhood-
selection parameter) is called to reduce the probability of selecting leg neighborhoods (line
25). As a consequence, routing neighborhoods are selected proportionally more often, giving
moves involving customers more opportunity to optimize routes. The search is re-initialized
from the current best TS solution zbest after the execution of theControl procedure (line 26).
Moreover, after CcNS consecutive executions of this procedure without improvement of the
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Algorithm 1 Tabu search
1: Generate an initial feasible solution z
2: zbest ← z
3: Elite set E ← �
4: Initialize the neighborhood selection parameter r ← 1
5: STOP ← 0
6: repeat
7: A neighborhood is selected based on the value of r
8: Find the best solution z′ in the selected neighborhood of z
9: if z′ is better than zbest then
10: zbest ← z′
11: rbest ← r
12: Add (zbest , rbest ) to the elite set E ; update E
13: end if
14: z ← z′
15: if zbest not improved for I TcN S iterations then
16: if zbest not improved after CcNS consecutive executions of Control procedure then
17: if E = � then
18: STOP ← 1
19: else
20: Select randomly (z, r z) (and remove it) from the elite set E
21: Diversify the current solution z
22: Set r ← r z and reset tabu lists
23: end if
24: else
25: Apply Control procedure to update the value of r
26: z ← zbest
27: end if
28: end if
29: until STOP
30: zbest ← Post-optimization(zbest )
31: return zbest

current best TS solution zbest , a solution z is selected randomly and removed from the elite
set (line 20), and a Diversification mechanism is applied to perturb z (line 21). The value of
r is reset to the value it had when the corresponding elite solution was found, and all tabu
lists are reset to the empty state (line 22). The search then proceeds from the new (perturbed)
solution z. The search is stopped when the elite set E is empty. Finally, a post-optimization
procedure is performed to potentially improve the current best solution zbest (line 30).

4.2 Search space

We allow the search to explore unfeasible solutions with respect to vehicle capacity and the
time windows of customer demands and supply points, unfeasible solutions being penalized
proportionally to the violations of these restrictions. More precisely, let c(z) denote the total
traveling cost for a solution z, and let q(z), wc(z) and ws(z) denote the associated total
violation of vehicle load, customer-demand time windows, and supply-point time windows,
respectively. The total vehicle-load violation is computed on a leg basis with respect to
the value Q, whereas the total violation of time windows of customer demands is set to∑

i∈z max{(ai − li ), 0}, and the total violation of time windows of supply points is equal to∑
s∈z max{(t (s) − η − as), (as − t (s)), 0}, where ai and as are the arrival time at customer

demand i and supply point s, respectively.
Solutions are then evaluated according to the weighted fitness function f (z) = c(z) +

αQq(z)+αCwc(z)+αSws(z)+F ∗m, wherem is the number of vehicles used in the current
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solution, while αQ, αC , αS are penalty parameters adjusted dynamically during the search.
The updating scheme is based on the idea of Cordeau et al. (2001). At each iteration, the
value of αQ, αC and αS are modified by a factor 1+β > 1. If the current solution is feasible
with respect to load constraints, the value of αQ is divided by 1+β; otherwise it is multiplied
by 1 + β. The same rule applies to αC and αS with respect to time window constraints of
customers and supply points, respectively. We set αQ = αC = αS = 1 and β = 0.3 in the
experimentation reported on in Sect. 5.

4.3 Initial solution

To obtain an initial solution, the supply points are sorted and indexed in increasing order of
their opening times, i.e., if t (s1) ≤ t (s2), then s1 < s2 and vice-versa. Next, each pickup-
customer demand is assigned to one supply point, building each feasible work assignment
sequentially.

There are several ways to assign pickup-customer demands to supply points. For example,
each pickup-customer demand can be assigned to its closest supply point. Another waywould
have each supply point s service a predefined number of its closest pickup-customer demands.
However, these simple strategies do not take into account that significant variations in delivery
loads may exist among supply points. Such strategies may create imbalances in pickup and
delivery demands at some supply points, reducing the possibility of unload& load operations
at those supply points and, thus, increasing the number of empty movements.

Our approach aims to avoid this pitfall and generate an initial solution with a small total
traveling cost and balanced unloading and loading operations at supply points. Considering
both the distance from pickup-customer demands to supply points and the capacity of the
latter to receive such demands, we proceed as follows:

1. Compute the total delivery demands assigned to each supply point. Let Ks denote this
number for supply point s ∈ S;

2. Bound the total volume vehicles can pickup and unload at supply point s to Ks ;
3. Randomly select a pickup-customer demand p until all are assigned, and

• Assign p to the nearest supply point in Sp;
• When the assignment violates the maximum capacity of the nearest supply point in

Sp , the pickup-customer demand p is randomly allocated to the supply point in Sp

whose residual capacity is large enough to accommodate it.

Once the assignment of pickup-customer demands to supply points is completed, initial
work assignments are built sequentially until all customer demands are serviced (assigned to
a work assignment). For each work assignment:

1. Determine the initial supply point of the first leg as the supply point s with earliest opening
time and unserviced customer demands;

2. Create one or a sequence of legs between supply point s and either another supply point
s′ or the garage g using the following greedy algorithm:

(a) Identify the set of supply points S′ = {s′ ∈ S|s′ with unserviced customer demands
and t (s′) > t (s)};

(b) If S′ = ∅, the leg ends at the garage g and stop ← true;
(c) Otherwise (S′ 
= ∅), for each pair (s, s′)

• Build the list of candidate customers: unrouted pickup-customer demands of
s first, then unrouted delivery-customer demands of s and, finally, unrouted
pickup-customer demands of s′;
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Fig. 3 A generation of a sequence of legs between two supply points

• Insert each candidate into the leg by applying the heuristic I1 of Solomon (1987)
until the vehicle is full;

(d) Select the feasible leg with the smallest average cost per unit demand among all those
generated between all pairs of s and s′, and assign it to the current work assignment;

3. If the leg (or sequence of) ends at a supply point s′, set s ← s′ and return to (2) to build
the next leg(s);

4. Otherwise, i.e., the leg ends at the garage, stop (the current work assignment is com-
pleted).

The average cost per unit demand is defined as the ratio of the total traveling time over the
total demand carried by the vehicle between s and s′, where the total demand for empty legs
(no customers between s and s′) is set to 1.

Figure 3 illustrates this procedure through a number of different possibilities when routing
customer demands between two supply points s and s′. If there are unrouted pickup-customer
demands of s, the greedy algorithm assigns them to the current work assignment, first gener-
ating the pickup leg {p2, p5, p3, s}. Between supply point s and s′, the algorithm may then
generate (1) A sequence of a delivery leg {s, d1, d2, d4} and a pickup leg {p7, p10, s′}; (2) A
pickup leg: {p9, p11, p12, s′}; (3) A delivery leg: {s, d3, d5, d7}; (4) An empty leg connect-
ing s and s′. Which one is actually generated depends on the departure time at supply point
s, the time windows and the distance between unserviced delivery- and pickup-customer
demands of the supply points s and s′, respectively.

4.4 Neighborhoods

A solution to the MT-PDTWS is a set of work assignments, each work assignment consisting
of a sequence of legs with each leg corresponding to a sequence of customer demands. The
neighborhood set of a current MT-PDTWS solution z is thus made up of all the solutions
z′ that can be obtained by perturbing in some way z. We use two types of perturbations,
one that changes the sequence of customer demands within one or several legs and a second
that changes the sequence of legs within one or several work assignments. Our neighbor-
hood strategies use one or a combination of such perturbations in order to generate neighbor
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solutions. Each type of perturbation corresponds to working on a particular type of decision
variable. We therefore group our neighborhood strategies into routing neighborhoods when
they primarily change the sequence of customer demands in at least one leg, and leg neigh-
borhoods when they primarily change the sequence of legs in at least one work assignment.

Note that, similar considerations were applied in Nguyen et al. (2013) to define neighbor-
hoods for theTMZT-VRPTWthatworked either on routing or scheduling decisions. Themain
difference and challenge for the MT-PDTWS is the presence of pickup-customer demands
that not only need servicing but also require the determination of the delivery destination,
that is, the assignment to a particular supply point. This translates into the definition of two
types of leg sequences composed of either pickup- or delivery-customer demands, rather
than a unique type for the TMZT-VRPTW, and work assignments made of variously inter-
leaved legs of these two types. This also translates into new decision variables, determining
the assignment of pick-customer demands to supply points, and more complex scheduling
decisions. New neighborhoods are thus defined to address this challenge and handle these
decisions for the MT-PDTWS.

4.4.1 Routing neighborhoods

Routing neighborhoods for the MT-PDTWS execute different intra- and inter-route (work
assignment) moves commonly used in the VRP literature, Relocation, Exchange and 2-opt,
attempting to improve the routing of the vehicle(s) servicing customer demands. Remember
that eachMT-PDTWS leg services either pickup- or delivery-customer demands but not both.
As a result, when routing neighborhoods execute inter-route moves, the modified legs must
continue to be of the same type, either pickup or delivery legs.

The definition of the delivery-customer demands specifies their assignment to particular
supply points, which is similar to the case of the TMZT-VRPTW. Consequently, the cor-
responding neighborhoods are also similar, addressing two delivery-customer demands that
belong to the same supply point (and, thus, to the same leg or different successive legs):

• Relocation moveOne of the two customer demands is taken from its current position and
inserted after the other one;

• Exchange move Two customer demands are swapped;
• 2-opt move For two customer demands in the

Same leg The edges emanating from them are removed, two edges are added, one of
which connects these two customer demands and the other connects their successor
customer demands;
Different legs The remaining customer sequences of these legs are swapped preserv-
ing the order of customer demands.

The situation is more complex for pickup-customer demand moves, the routing neighbor-
hoods for pickup-customer demands differing substantially from the routing neighborhoods
for delivery-customer demands. Indeed, while the latter involve legs that belong to the
same supply point, this is not true for the former, as such pickup-customer demands may
be reassigned to different supply points. We therefore define routing neighborhoods for
pickup-customer demands that simultaneously modify the sequence of customer demands
(the routing) and reassign them to supply points. The reassignment is achieved by allowing
moves to be performed on legs that belong to different supply points.

The feasibility criterion for such a move, i.e., that reassigns a pickup-customer demand
p from supply point si to supply point s j , is that the latter belongs to the list of admissible
supply points for p (s j ∈ Sp).
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Table 1 List of pickup-customer
demands and admissible supply
points for Fig. 4

p Sp

p1 {s2, s4}
p2 {s2, s3, s4}
p3 {s1, s2, s4}
p4 {s2, s4}
p5 {s4}
p6 {s4, s5}
p7 {s2, s4}
p8 {s1, s2, s4}

Fig. 4 An example of 2-opt routing neighborhood for pickup-customer demands. a Work assignment Wu
before 2-opt, b Work assignment Wu after 2-opt

Three routing neighborhoods are thus considered for pairs of pickup-customer demands
satisfying the feasibility criterion for supply-point reassignment:

• Relocation move One pickup-customer demand is shifted from its current position to
another position, in the same or a different leg, which may be assigned to the same
supply point or not;

• Exchange move The two pickup-customer demands are exchanged; They may belong to
the same leg or, if the condition for supply-point reassignment allows it, to two distinct
legs sharing one common supply point or not;

• 2-opt move For two pickup-customer demands in the

Same leg The edges emanating from them are removed, two edges are added, one
of which connects these two pickup-customer demands, and the other connects their
successor pickup-customer demands;
Different legs, same supply point (thus in different work assignments) The remaining
segments of these legs are swapped preserving the order of customer demands;
Different legs, distinct supply points The remaining customer sequences of these legs
are swapped preserving the order of customer demands.

Let us illustrate the condition for supply-point reassignment through a simple example.
Consider Table 1 displaying the sets Sp of admissible supply points (Column 2) for pickup-
customer demands p ∈ CP (Column 1) for the work assignment Wu shown in Fig. 4a.
Consider the two pickup-customer demands p1 and p6 in Wu belonging to different supply
points, s2 and s4, respectively. The 2-opt move of p1 and p6 applied on Wu requires the
supply-point reassignments of {p2, p3, p4} to s4 and of {p7, p8} to s2. Pickup-customer
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demands p7 and p8 can be reassigned to supply point s2 as s2 ∈ {Sp7 ∩ Sp8}. Similarity,
p2, p3, p4 can be reassigned to s4 as s4 ∈ {Sp2 ∩ Sp3 ∩ Sp4}. The condition for supply-
point reassignment is satisfied, therefore this 2-opt move is accepted. Figure 4b illustrates
Wu after the move. On the other hand, the 2-opt move of p1 and p5 requires the supply-
point reassignments of {p2, p3, p4} to s4 and of {p6, p7, p8} to s2. However, s2 /∈ Sp6 ,
so p6 can not be reassigned to supply point s2. Due to the unfeasibility of the supply-point
reassignment, this 2-opt move is not accepted.

All feasible neighbors are evaluated (Sect. 4.5) in the selected neighborhood (Sect. 4.6),
and the best one is implemented.

4.4.2 Leg neighborhoods

Leg neighborhoods change the leg sequencing of work assignments and are described here
in terms of supply-point moves. Indeed, eachMT-PDTWS leg is assigned to the supply point
where the vehicle either returns the collected freight or loads new freight (or both). Leg-
neighborhood transformations can therefore be seen as the repositioning of supply points,
together with the legs and customer demands associated with them, between work assign-
ments. Two neighborhoods, Relocate and Exchange, are defined under the leg neighborhood
category.

Relocate supply pointmoves remove a supply point, and the customer demands it services,
from its current work assignment and inserts it into another work assignment. Exploration
is performed for each work assignment Wu , each supply point si ∈ Wu , and each work
assignment Wv 
= Wu , two cases being possible depending on whether the supply point to
be reassigned belongs already to the target work assignment or not.

When si /∈ Wv , for each two successive supply points s j , s j+1 ∈ Wv , such that s j < si <

s j+1, one moves si fromwork assignmentWu toWv locating it between s j and s j+1. Figure 5
illustrates the case, where the relocation of supply point si also moved the associated pickup
{pi , p j } and delivery {dm, dn} legs.

Once a supply point is relocated to a new work assignment, one may also perform the
reassignment of pickup-customer demands to other supply points to maximize the unload &
load operations at supply points and thus reduce emptymovements.More precisely,whenever
a pickup (or a single-delivery) leg assigned to si is relocated between s j and s j+1, and the
vehicle only loads at s j+1 (or only unloads at s j ), one verifies the reassignment of the pickup-
customer demands in the leg of si (or s j ) to supply point s j+1 (or si ). If the reassignment is
feasible, the customer demands in the leg of si are relocated between s j and s j+1 to create
a new unload & load operation at supply point s j+1 (or si ) on the work assignment Wv .
Otherwise, the leg assigned to si is just simply relocated between s j and s j+1 as before.
Figure 6 illustrates these possibilities when moving si on Wu , and its pickup leg {pi , p j },

Fig. 5 Relocate a supply point with its pickup and delivery legs. a Work assignments before Relocate, b Work
assignment after Relocate
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Fig. 6 Relocate a supply point and, eventually reassign a pickup leg. a Work assignments before Relocate, b
Work assignments after Relocate pickup leg reassigned and supply point dropped, c Work assignments after
Relocate pickup leg not reasigned

between s j and s j+1 on Wv . As the leg assigned to s j+1 of Wv is a single delivery leg, one
verifies whether reassigning pi and p j to supply point s j+1 is feasible; In the affirmative,
i.e., s j+1 ∈ {Spi ∩ Sp j }, the reassignment is applied, and the movement yields the work
assignment Wv shown in Fig. 6b. Notice that, an unload & load activity was created at s j+1

and that supply point si has been dropped from both work assignments. Figure 6c illustrates
the case when this reassignment is not feasible.

When si ∈ Wv , three cases are possible according to the current activity at the supply
point si of the vehicle operating the work assignment Wu :

• Case 1 - Unload only. Relocates the pickup leg ri assigned to si in work assignment Wu .
Three cases are possible according to the vehicle operation at supply point si inWv prior
the relocation:

– Case 1.1 - Unload only. Let r j be the pickup leg assigned to si in Wv ; The move
proceeds by concatenating the two pickup legs ri and r j . Appending ri to r j and r j
to ri are both considered (Fig. 7).

– Case 1.2 - Load only. Let r j be the single-delivery leg assigned to si in Wv . The
move proceeds by locating pickup leg ri right before single-delivery leg r j creating
an unload & load operation at si (Fig. 8).

– Case 1.3 - Unload & load. Let r j be the pickup leg and r ′
j the coordinate-delivery leg

assigned to si inWv , then move si from work assignmentWu toWv by concatenating
the two pickup legs ri and r j . Both cases of appending ri to r j and r j to ri are
considered as in Case 1.1.

• Case 2 - Load only. Relocates the single-delivery leg ri assigned to si within work
assignment Wu . The three cases of vehicle operation at supply point si within work
assignment Wv described above (Case 1) are also considered here. An unload & load
operation is created inCase 2.1, while concatenation of delivery legs is attempted inCases
2.2 and 2.3 (the concatenation of delivery legs ri and r j , already assigned to si in Wv , is
also examined in two cases: one appending ri to r j and the other appending r j to ri ).

• Case 3 - Unload & load. Relocates both the pickup leg ri and the coordinate delivery leg
r ′
i assigned to the same supply point si in Wu . Three cases of vehicle operation at supply
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Fig. 7 Relocate a supply point: concatenation of two pickup legs. a Work assignments before Relocate, b
Work assignments after Relocate, case: append (r j , si ) to (ri , si ), c Work assignments after Relocate, case:
append (ri , si ) to (r j , si )

Fig. 8 Relocate a supply point: creation of an unload & load operation. a Work assignments before Relocate,
b Work assignments after Relocate

point si in Wv are considered as in the previous cases. All possibilities of concatenation
of delivery and pickup legs assigned to the same supply point si in both work assignments
Wu and Wv are also examined.

Exchange supply point. The neighborhood exchanges supply points, and their associated
legs and customer demands, between work assignments Wu and Wv . For supply points si ∈
Wu and s j ∈ Wv :

• When si−1 < s j < si+1

– If s j−1 < si < s j+1 then, swap si and s j (swap both pickup- and delivery-customer
demands if any);

– If s j−1 = si < s j+1 then, first swap si and s j ; Then, if there were pickup-customer
demands assigned to si in both Wu and Wv , and because s j−1 = si , concatenate
pickup-customer demands in Wv as described in Case 1.1 above; Also concatenate
delivery-customer demands in both work assignments, if possible;

– if s j−1 < si = s j+1: same as item above.

• Otherwise, either si−1 = s j or s j = si+1. Then, swap supply points si and s j and
modify Wv and, possibly, Wu . Three cases are possible for Wv : 1) s j−1 < si < s j+1; 2)
s j−1 = si < s j+1; and 3) s j−1 < si = s j+1, and the treatment is the same as above.
ForWu , when there were pickup (delivery)-customer demands assigned to s j in bothWu
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and Wv , and because si−1 = s j (or s j = si+1), concatenate pickup (delivery)-customer
demands in Wu as described in Case 1.1 above.

The reassignment of pickup-customer demands to new supply points is performed as in
the relocate supply point neighborhood, whenever it could create an unload& load operation.
Only feasible reassignments are accepted, i.e., only if the new supply points belong to the
list of permissible supply points of the pickup-customer demands.

4.5 Move evaluation

Moving legs or customer demands may change the transport cost and the number of vehicles,
as well as the level of constraint violations of load and time windows (customer demands and
supply points) restrictions. Consequently, the move value is defined as a sum of five terms
� f = �c + F ∗ �m + �q + �wc + �ws representing the differences between the current
and neighboring solutions in transport cost, fixed cost of using vehicles, and the violation of
load, time windows at customer demands and supply points.

4.6 Neighborhood selection strategy

The proposed tabu search algorithm explores the search space of the MT-PDTWS using at
each iteration one of the eight neighborhoods just described. The selection of the neighbor-
hood is probabilistic, and controlled by the neighborhood-selection parameter r (see Nguyen
et al. 2013, for a similar mechanism). We assign to routing and leg neighborhoods the selec-
tion probabilities r/(2 + 6r) and 1/(2 + 6r), respectively.

Leg and routing neighborhoods are given the same selection probability at the beginning
of the search (by setting r = 1). This allows the tabu search algorithm to freely explore
the search space. Because the number of supply points is much smaller than the number
of customer demands in most MT-PDTWS instances, the algorithm should perform more
customer than leg moves to ensure adequate optimization of routes. Consequently, after the
initial phase, the probability of selecting leg neighborhoods is gradually lowered, relative to
the probability of selecting routing neighborhoods, by dynamically modifying the value of
r .

It is theControl procedure that varies the value of r during the execution of the tabu search
to monotonically reduce (increase) the probability of selecting leg (routing) neighborhoods
after each I TcN S iterationswithout improvement of the best solution. A linear scheme rk+1 =
rk + �r is used, where �r is a user-defined parameter, while rk+1 and rk are values of r at
iteration k + 1 and k, respectively.

4.7 Tabu lists and tabu duration

Five tabu lists are included in the meta-heuristic, one list for each type of leg and routing
move (tabu lists do not distinguish between delivery- and pickup-customer demands, but the
length of the tabu tenure does). The solution elements receiving a tabu status following a leg
move are

• Relocation move: the position of supply point si just inserted into work assignment Wv

cannot be changed by another relocate supply point move while it is tabu;
• Exchange move: supply points si and s j just swapped cannot be swapped again while

they are tabu;

while for routing moves
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• Relocation move: the position of customer demand i just inserted after customer demand
j cannot be changed by the same type of move while it is tabu;

• Exchange move: customer demands i and j just swapped cannot be swapped again while
they are tabu;

• 2-opt move: a 2-opt move applied to customer demands i and j cannot be applied again
to the same customer demands while tabu.

A tabu status is assigned to an element for θ iterations, where θ is randomly selected from
a uniform interval. Any move declared tabu cannot be performed unless it would yield a
solution improving the current best solution. Generally, the tabu status of a move should stay
so for a number of iterations proportional to the number of possible moves. Consequently,
we define different intervals for selecting the duration of the tabu tenure for leg and routing
moves.

There are O(m′ ∗ |S|) possible leg moves. Consequently, the interval of the tabu list size
for leg moves is set to [m′*|S|/a1,m′*|S|/a2], where m′ is the number of vehicles used in
the initial solution, a1 and a2 are user-defined parameters where a1 > a2.

There are different tabu tenure intervals for routingmoves depending onwhether delivery-
or pickup-customer demands are considered.As delivery-customer demands are pre-assigned
to a particular supply point, moves involving delivery-customer demands may only occur
within the same customer zone. Consequently, the tabu tenure interval for delivery-customer
demand routing moves depends on the supply point s and its associated delivery-customer
demands |CD

s |, and is calculated as [a3log10(|CD
s |), a4log10(|CD

s |)], where a3 and a4 are
user defined parameters, and a3 < a4. The number of iterations during which such a move
remains tabu is increased only when the algorithm deals with delivery-customer demands in
the corresponding zone.

In contrast, pickup-customer-demand-to-supply point assignments are not known in
advance, rather, each pickup-customer demand has a list of available supply points that
can service it. The routing moves we defined are thus modifying not only the position of
the pickup-customer demands within work assignments, but also their assignments to supply
points. Consequently, routing moves for pickup-customer demands are not restricted to a sin-
gle supply point (as for delivery-customer demands above), but rather to a number of shared
supply points. Hence, the tabu tenure interval for pickup-customer demand routing moves
is proportional to the total number of pickup-customer demands (|CP |), and is calculated as
[a5log10(|CP |), a6log10(|CP |)], where a5 and a6 are user defined parameters, a5 < a6.

4.8 Diversification strategy

The diversification strategy, based on an elite set and a frequencymemory, directs the search to
potentially unexplored promising regions when the search begins to stagnate. In a nutshell,
diversification aims to capitalize on the best attributes obtained so far by selecting a new
working solution from the elite set and perturbing it based on long-term trends.

In more details, we use the elite set as a diversified pool of high-quality solutions found
during the tabu search. The elite set starts empty and is limited in size. The quality and
diversity of the elite set is controlled by the insertion of new best solutions produced by the
tabu search and the elimination of existing solutions in the elite set. The elimination is based
on the Hamming distance �(z1, z2) measuring not only the number of customer demand
positions that differ between solutions z1 and z2 (as for the TMZT-VRPTW), but also the
differences between supply-point assignments of pickup-customer demands. This distance
is computed according to Equation (1), where T(cond) is a valuation function that returns
1 if the condition cond is true, 0, otherwise; Nz[i] is the next location (a customer demand,
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the garage, or a supply point) visited by the vehicle after servicing customer demand i in
solution z; and Sz[i] is the supply point assigned to pickup-customer demand i in solution z.

�(z1, z2) =
∑

i∈{CP∪CD}
T(Nz1 [i] 
= Nz2 [i]) +

∑

i∈CP

T(Sz1 [i] 
= Sz2 [i]) (1)

The elimination of a solution from the elite set is considered each time a new best solution
zbest is inserted. There are two cases. If the elite set is not yet full, we delete only when there
exists a solution very similar to the new zbest , i.e., we delete the solution z with the smallest
�(z, zbest ) ≤ 0.05(|CD| + 2|CP |+ |S|). When the elite set is full, zbest replaces the solution
z that is the most similar to it, i.e., the one with the smallest �(z, zbest ).

The long-term frequency memory keeps a history of the arcs most frequently added to the
current solution, aswell as of the supply-point assignments of pickup-customer demandsmost
frequently used. Let ti j be the number of times arc (i, j) has been added to the solution during
the search process. The frequency of arc (i, j) is then defined as ρi j = ti j/T , where T is the
total number of iterations executed so far. Similarly, let t ′ps be the number of times pickup-
customer demand p has been assigned to supply point s during the search. The frequency of
the supply-point assignment of customer demand p to s is defined as χps = t ′ps/T .

Diversification then proceeds to perturb the search that starts from the solution taken from
the elite set by removing arcs with high frequency, inserting arcs with low frequency and
promoting never-seen supply-point assignments. Thus, the evaluation of neighbor solutions is
biased to penalize the arcs most frequently added to the current solution and the supply-point
assignment most frequently used. The corresponding two penalties, g1(z̄) and g2(z̄), which
are added to the fitness evaluation f (z̄) (Sect. 4.2) of a neighbor z̄ of the current solution z
are given by equations 2 and 3, respectively,

g1(z̄) = C̄

⎛

⎝
∑

(i, j)∈Aa

ρi j +
∑

(i ′, j ′)∈Ar

(1 − ρi ′ j ′)

⎞

⎠ (2)

g2(z̄) = C̄
∑

p∈CP

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∑

s∈Sp
Sz(p)=Sz̄(p)=s

χps +
∑

s∈Sp
Sz(p)
=s
Sz̄(p)=s

χps +
∑

s∈Sp
Sz(p)=s
Sz̄(p)
=s

(1 − χps)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (3)

where C̄ is the average cost of all arcs in the problem, and Aa and Ar are the sets of arcs that
are added to and removed from the solution z in themove to z̄, respectively. The diversification
mechanism is executed I Tdiv iterations.

4.9 Post optimization

The best solution obtained during the tabu search is enhanced by applying a local-search
Supply-point-improvement procedure followed by a Leg-improvement procedure. The pur-
pose of these two procedures is to improve the routing and the supply-point assignments of
the solution.

The Supply-point-improvement procedure proceeds by assigning a new supply point to
each pickup-customer demand, keeping those that actually improve the solution. Pickup-
customer demands are handled in random order. Then, for each pickup-customer demand p
and each of its unassigned supply point s ∈ Sp (if any), p is removed from its current leg
(i.e., current assigned supply point) and the cheapest fitness insertion is performed to insert
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p into each pickup leg assigned to s. The best feasible improvement is executed (if any). The
procedure then proceeds to the next unassigned supply point or, if all have been tried out, to
the next pickup-customer demand.

Leg-improvement consists in applying a number of well-known local-search route
improvement techniques. Two are intra-route operators, the 2-opt of Lin (1965) and the Or-
opt of Or (1976). The others are inter-route operators, the λ-interchange of Osman (1993),
and the CROSS-exchange of Taillard et al. (1997). For the λ-interchange, we only consider
the cases where λ = 1 and λ = 2 corresponding to the (1,0), (1,1), (2,0), (2,1), and (2,2)-
interchange operators. A delivery-customer demand is re-allocated only to legs with the
same initial supply point. This procedure is therefore executed for each delivery customer
zone separately. For pickup-customer demands, the procedure is executed for all pairs of
pickup-customer demands satisfying the supply-point assignment.

The Leg-improvement procedure starts by applying in randomorder the five λ-interchange
and CROSS-exchange inter-route operators. Each neighborhood is searched on all possible
pairs of legs (in random order) and stopped on the first feasible improvement. The solution
is then modified and the process is repeated until no further improvement can be found. The
search is then continued by locally improving each leg of each vehicle in turn. The intra-
route 2-opt and Or-opt neighborhoods are sequentially and repeatedly applied until no more
improvement is found.

5 Experiments

The goal of the numerical experiments is threefold: (1) to study the impact of a number
of major parameters and search strategies on the performance of the proposed algorithm in
order to identify the best design (Sect. 5.2); (2) to evaluate the performance of the method
through comparisons with published results for the MZMT-VRPTW-DC and the VRPB with
and without time windows (Sect. 5.4); and (3) to analyze the impact on solution behavior
and quality of sharing the same fleet of vehicles and synchronization schemes (Sects. 5.5 and
5.6, respectively).

The tabu search algorithm is implemented in C++. Experiments were run on a 2.8 GHz
Intel Xeon 4-core processor with 16GB of RAM. We initiate this part of the paper with the
description of the instances used for the experiments.

5.1 Test data generation

We generatedMT-PDTWS test instances by adding pickup-customer demands to the TMZT-
VRPTW instances of Crainic et al. (2009).

The quantity of pickupdemand injected into an instancewas determinedby the ratio BH =
| ∑p∈CP qp/

∑
i∈{CP∪CD} qi | of the total pickup demand over the total demand (delivery and

pickup). Based on the general observation that the volume of goods moving out of the city
is relatively lower compared to the volume of goods moving in, we set the values of BH
at {0.1, 0.3, 0.5}. For the sake of simplification, we have also used BH as the ratio of the
number of pickup-customer demands over the total number of customer demands.

The attributes of each pickup-customer demand p for a given problem instance were
generated as follows:

• Coordinates [X p, Yp]: uniformly distributed in the same interval used to generate the
coordinates of the delivery-customer demands in the corresponding TMZT-VRPTW;
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• Volume of demand qp: randomly generated in the same interval as for delivery-customer
demands, i.e., [5, 25], with respect to the value of BH ;

• Service time δ(p): set to 20 as for TMZT-VRPTW;
• Number of supply points admissible for the pickup-customer demand p: selected ran-

domly in the range [1, MSP ], where MSP = maxp∈CP

∥
∥Sp

∥
∥. Let x denote this number.

Then, the list of permissible supply points for p was determined by randomly selecting
s1, s2, ..., sx supply points, sorted in increasing order of opening times;

• Time window [ep, l p]: ep and l p chosen randomly in the intervals [Ep - 300, Ep] and
[L p - 300, L p], respectively (to ensure feasibility), where Ep = t (s1) − δ(p) − �cp,s1

and L p = t (sx ) − δ(p) − �cp,sx 
.
All other attributes are the same as in the TMZT-VRPTW instances.We thus generated six

sets of 15 instances each, for a total of 90 problem instances. The six sets are calledA1,A2,B1,
B2, C1, and C2. Each set is further divided into three groups of 5 instances, each group being
defined by one of the three different values of BH = {0.1, 0.3, 0.5}. Table 2 summarizes the
parameters of all the MT-PDTWS instances. First and last columns give the instance name
for the MT-PDTWS and for the original TMZT-VRPTW data, respectively. The next five
columns display the numbers of supply points and waiting stations, respectively, the BH
value, and the numbers of delivery and pickup customer demands. The X and Y coordinates
of the square where supply points, waiting stations, and customers are uniformly distributed
are shown in the next column, followed by the value of MSP .

The opening times of supply points were generated randomly in the [1000, 15,400] range,
while the limited allowable waiting time at supply points was set to η = 100. The vehicle-
loading and vehicle-unloading times at supply points were set to 30, for all supply points.
The fixed cost and the capacity of each vehicle were set to 500 and 100, respectively, for all
instance sets.

5.2 Algorithm design and calibration

We aim for a general algorithmic structure avoiding instance-related parameter settings.
We therefore defined settings as function of the problem size for the main parameters of
the proposed algorithm, the tabu tenures, the neighborhood selection probabilities, and the
diversification.

5.2.1 Tabu tenure calibration

The intervals for the tabu list tenures for leg, delivery, and pickup routing moves
were defined in Sect. 4.7 as [m′*|S|/a1,m′*|S|/a2], [a3log10(|CD

s |), a4log10(|CD
s |)], and

[a5log10(|CP |), a6log10(|CP |)], respectively. Using a large interval for routing moves, [10,
20], we tested different values for a1 in the integer interval [7, 10] and for a2 in the integer
interval [4, 6]. We observed that too large an interval is not productive as low values cannot
prevent cycling, while high ones overly restrict the search path. We have therefore set a1 and
a2 to 7 and 5, respectively.

A similar process was used to explore different values for a3, a4, a5, a6 in the integer
intervals [4, 6], [7, 9], [6, 8] and [10, 12], respectively, using delivery and pickup routing tabu
as defined above.We used a larger value of tabu tenure for routingmoves on pickup-customer
demands as they are not restricted to one customer zone as those on delivery-customer
demands. We found that the most appropriate values for a3, a4, a5 and a6 are 6, 8, 7 and 10,
respectively.
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Table 3 Performance
comparison between (e1, e2)
combinations

e1 e2

1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%)

1 1.25 1.04 0.43 0.34 0.32 0.28 0.28

2 1.14 0.98 0.21 0.23 0.26 0.31 0.31

3 1.12 0.73 0.09 0.06 0 0.08 0.17

4 0.97 0.71 0.14 0.08 0.04 0.18 0.21

5 1.05 0.68 0.12 0.07 0.05 0.17 0.28

5.2.2 Calibration of the neighborhood selection probabilities

The neighborhood selection probabilities are adjusted based on the evolution of two parame-
ters, I TcN S , the number of consecutive iterations without improvement of the best solution,
triggering the execution of the Control procedure that modifies the probabilities, and �r , the
amplitude of the adjustment of the neighborhood-selection parameter r .

Intuitively, the value of I TcN S should be large enough to give each customer and supply
point in each leg the possibility to be involved in a move. We therefore define it as a function
of the problem size, I TcN S = e1 ∗ (m′ ∗ |S| + n), where m′ is the number of vehicles used
in the initial solution, |S| and n are the numbers of supply points and customer demands,
respectively, and e1 is a user defined parameter. Similarly, �r should gradually guide the
algorithm towards a more frequent use of routing neighborhoods. We thus define it propor-
tional to the ratio of the number of customer demands relative to the number of supply points,
i.e., �r = e2 log10(n/|S|), where e2 is a user defined parameter.

Searching for a good combination of values for e1 and e2 concerns balancing the search
between exploration and exploitation. Thus, e.g., the higher the value of I TcN S , the more
chances customers and supply points are to be moved between routes, thus favoring explo-
ration. On the other hand, however, too high a I TcN S value may waste time in useless moves.
We have experimented with different combinations of the e1 and e2 parameters, varying e1 in
the integer interval [1,5] and e2 in the integer interval [1, 7], as shown in Table 3. Three runs,
with one million iterations for each, were performed for each combination of values (e1, e2),
and the best solution out of the three was collected. We then selected the “best” combination,
that is, the one giving the best solutions on average over all instances. Computational results
are summed up in Table 3 displaying the average gaps between the values of the best solutions
obtained by each combination and the selected best combination.

Table 3 indicates that (3,5) is the most appropriate combination for (e1, e2), giving best
solutions on average. We have also observed that executing the algorithm with r greater
than 60 log10(n/|S|) yields an average improvement of the best solution of <0.1%, while
requiring about 41% more time. Based on these results, we used (e1, e2) = (3, 5) and rmax

= 60 log10(n/|S|), the maximum value of r , in the remaining experiments.

5.2.3 Diversification and the elite set

We now turn to the parameters characterizing the diversification procedure and the elite set
utilization, and examine their impact on the performance of the algorithm. Four variants of
the algorithm were studied corresponding to the different ways to set up an elite solution
as the new working solution and the inclusion, or not, of the diversification phase. The first
two variants simply select an elite solution z at random and re-start the algorithm from it.

123



922 Ann Oper Res (2017) 253:899–934

Table 4 Performance comparison between diversification settings

Elite set size Without diversification With diversification

1st variant 2nd variant 3rd variant 4th variant

r = rz r = rz/2 r = rz r = rz/2

GAP (%) Time GAP (%) Time GAP (%) Time GAP (%) Time

0 0 50 – – – – – –

1 −0.37 66 −0.36 92 −1.02 88 −1.05 103

5 −0.64 95 −0.69 117 −1.54 157 −1.48 194

10 −0.78 121 −0.74 139 −1.55 223 −1.50 260

The Diversification mechanism described in Sect. 4.8 is applied in the last two variants to
diversify from the elite solution z.

The initialization of the r parameter following the selection of z is common to the four
variants. We have studied two alternatives where r was set to either the full or half the value
at which z was found, respectively (i.e. r = r z or r = r z/2). The size of the elite set is
relevant for the Diversification mechanism only. Three values were tested, 1, 5, and 10.

Similar to previous experiments, we have used formulas dependent on the problem dimen-
sions for I Tdiv and CcNS , which determine for how long exploration can proceed. Thus, the
number of diversification phases is set to I Tdiv = m′ ∗ |S| + n, where m′ is the number
of vehicles used in the initial solution, and |S| and n are the numbers of supply points and
customer demands, respectively.

We have also set the number of consecutive executions of the Control procedure without
improvement of the best solution to CcNS = min(3 log10(n/|S|), (rmax − r)/�r ), which
keeps the value ofCcNS sufficiently high during the course of the algorithm, even thoughCon-
trol procedure is started with different values of r (remember that rmax = 60 log10(n/|S|)).
Intuitively, in the beginning, r is small and CcNS takes the value 3 log10(n/|S|), while when
r becomes large enough, CcNS takes the value (rmax − r)/�r .

Table 4 displays the performance comparison between the four variants with the three
different values for the elite set size. For each variant and size of the elite set, the table shows
the average gaps to the value of the best solutions obtained by it from those obtained without
using the elite set and diversification, together with the corresponding average computation
time in minutes over 10 runs.

As expected, results indicate that guidance using elite solutions contributes significantly to
improve the performance of the algorithm. Without using the elite set, the algorithm requires
the lowest computation effort but produces worst solutions compared to all the variants using
the elite set. Comparing the two variants corresponding to the two values at which r is reset,
one observes that the solution quality is not very sensitive to this value, but the computing
effort is increasing when the value of r is lower (r = r z/2).

One observes that the third and fourth variants are significantly better in terms of finding
high quality solutions. This indicates that the long-term memory and the diversification
mechanism added to the algorithm are important features for high performance. Moreover,
setting the size of the elite set to 5 achieves a better balance between solution quality and
computation time, compared to a larger size of 10. Indeed, doubling the size of the elite set
improves only slightly the solution quality, 0.01%, but requires 42%more time.We therefore
set the size of the elite set to 5 and reset r = r z .
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5.3 Tabu Search performance

Table 5 displays the results obtained by the proposed tabu search meta-heuristic over 10 runs
for each group of instances. It gives the average (Avg 10 column) and best (Best 10 column)
objective value, the number of vehicles (Number Vehicles column), the percentage of times
vehicles move directly to supply points without using waiting stations (DM (%) column),
and the percentage of times vehicles perform unload & load operations once they arrive at
supply points (PD (%) column). Average computation times in minutes are displayed in the
Time column.

The experimental results in Table 5 show that, overall, 4874 vehicles are used in the
90 problem instances, servicing a total of 39,790 legs. Hence, on average, each vehicle
services 8 legs. Table 5 also shows that the percentage of times vehicles perform unload
& load operations increases proportionally to the percentage of pickup-customer demands
(i.e., the value of BH). On average, in almost 50% of the cases, vehicles perform both
unloading and loading once they arrive at supply points. The number of unload & load
operations at supply points not only reduces the number of empty moves but also reduces
the traveling cost. Moreover, experiments show that the traveling cost and the number of
vehicles in the initial solutions are 32.45 and20.76%greater than those of the best solutions on
average, respectively, illustrating the significant solution-improvement effect of the proposed
algorithm. The Appendix in Supplementary material provides detailed results.

Table 5 Performance of Tabu Search on all instances

Instance set BH Avg 10 Best 10 Number
vehicles

DM (%) PD (%) Time (min)

A1 0.1 19,873.29 19,758.67 21.8 10.45 21.89 20

0.3 21,007.60 20,854.25 22 27.44 60.93 34

0.5 23,455.87 23,245.62 22.2 51.29 87.1 58

A2 0.1 16,884.05 16,756.85 16.4 14.77 21.52 12

0.3 18,462.56 18,295.76 16.4 31.75 56.75 19

0.5 21,150.77 20,981.06 17.2 45.28 88.05 33

B1 0.1 66,979.79 66,763.80 46.8 19.33 15.01 66

0.3 75,587.05 75,398.22 47.8 31.3 46.73 139

0.5 99,155.77 99,025.96 54.8 38.31 80.39 231

B2 0.1 59,828.68 59,717.48 36.4 19.06 16.53 42

0.3 72,098.73 71,945.56 40 23.64 46.76 97

0.5 94,024.35 93,838.52 46 32.63 78.41 198

C1 0.1 153,335.20 153,106.40 90.4 17.65 13.84 172

0.3 200,072.40 199,848.80 99.4 21.78 46.01 310

0.5 292,032.84 291,836.60 119.8 30.91 82.58 705

C2 0.1 141,018.12 140,803.04 76.2 18.26 15.65 112

0.3 195,573.18 195,206.00 94.4 24.59 41.92 213

0.5 278,354.82 278,058.20 106.8 26.45 77.77 348

Average 102,716.39 102,524.49 54.16 26.94 49.88 156.06
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Table 6 Performance comparison for the MZMT-VRPTW-DC

Data |S| Cust/ Customer GAP to lower bound (%) CNV/CTD

set zone demands BCP TS BCP TS

D1 5 5 50 0 0.51 38/20304.68 38/20504.54

D2 5 7 70 0 1.00 64/23791.44 63/24855.07

D3 5 9 90 0.6 1.95 43/21194.93 43/21746.44

D4 5 6 60 0 0.96 43/22979.74 42/23901.18

D5 10 6 120 0 2.57 64/45367.54 59/49880.16

D6 15 6 180 0 3.29 72/61900.42 69/66589.68

Average 8 7 95 0.1 1.71 252/133638.33 245/140887.39

5.4 Comparison with results in the literature

The MT-PDTWS is considered for the first time in the literature and there are no previous
results to compare to. Therefore, in order to provide an assessment of the performance of
the proposed algorithm, we run it on instances of the MZMT-VRPTW-DC and the VRPB,
and compared the results of the proposed tabu search algorithm to results available in the
literature for these two problems.

5.4.1 Comparison with the MZMT-VRPTW-DC

The comparison with the branch-and-cut-and-price algorithm proposed by Bettinelli et al.
(2015) for the MZMT-VRPTW-DC required slightly modifying both problem settings to
merge them into a single one the two algorithms could address in a relatively straightforward
manner. Two modifications were made to the MZMT-VRPTW-DC problem setting: 1) vehi-
cles are not allowed to stop at waiting stations whenmoving between two customer demands,
i.e., vehicle must go directly from one customer demand to another; and 2) vehicles cannot
wait at supply points. The modifications to the MT-PDTWS were: 1) each pick-up customer
demand is pre-assigned to a supply point; 2) the departure time from each supply point s is
fixed to t (s); and 3) the waiting time is included into the objective function.

Both algorithms were then applied to the 60 instances proposed in Bettinelli et al. (2015)
and grouped into six subsets (D1 to D6) of 10 instances each. The best solutions obtained
over 10 runs of the tabu search algorithm are used for the performance comparisons displayed
in Table 6. Columns 2 to 4 describe the data sets (identified in the first column): the number
of supply points, the number of pickup or delivery customer-demands per supply point, and
the total number of customer demands, respectively. The rest of the table consists of two
major columns, each divided into two sub-columns, one for the Branch-and-Cut-and-Price
(Bettinelli et al. 2015) and the other for the tabu search algorithm proposed in this paper.
The column GAP to lower bound (%) displays the average gaps between the best solutions
obtained and the lower bounds identified by Bettinelli et al. (2015), while column CNV/CTD
displays the cumulative number of vehicles (CNV) and the cumulative total distance (CTD)
for the best solutions obtained of each instance set.

All instances, except 3 instances of D3, were solved to optimality by the Branch-and-Cut-
and-Price. The optimality gaps for the three unsolved instances (D3-02, D3-06 and D3-10),
were 1.47, 0.97, and 3.56%, respectively, yielding an average gap of 0.6% for the 10 instances
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of the set D3. The tabu search algorithm yielded solutions with an average optimality gap
of 1.71%, which supports the high-performance claim. As expected, the difference grows
with the problem dimensions, but stays within very reasonable margins. It is revealing to
try explore where the difference comes from. This may be inferred from by examining the
performances in terms of number of vehicles and total distance. The results displayed in the
last column clearly indicate that the tabu search targets more the former while the Branch-
and-Cut-and-Price aims to minimize the latter. On average for instances of sets D5 and D6
(with 10 and 15 supply points, respectively), the tabu search produces solutions with 5.88%
lower number of vehicles for, but requiring 8.57% higher operating cost. Such a behavior is
compatible with the objective of City Logistics systems, which was the initial motivation of
our work.

5.4.2 Comparison with the VRPB

Wecompared the performance of the proposed tabu search algorithmwith existing algorithms
in the literature for the VRPB, with and without time windows. Recall that in the VRPB
vehicles perform a single tour delivering first, and picking up on the “return” path to the depot.
There are no multi-tours, no synchronization (no waiting stations), and no need to determine
the assignment of pickup-customer demands to supply points. We therefore discarded all
parameters and algorithmic components related to these characteristics, runing the tabu search
using the routing neighborhoods only.

The Vehicle Routing problem with Backhauls and Time windows (VRPBTW) considers
time windows at customers and limits on the duration of routes. Experiments were carried
out on the 15 VRPBTW 100-customer instances proposed by Gélinas et al. (1995), broadly
used in the literature. The results of the proposed tabu search meta-heuristic are compared to
GDDS95, the branch-and-bound method based on column generation proposed by Gélinas
et al. (1995), which found optimal solutions to 6 test problems; PDG96, the heuristic proposed
by Potvin et al. (1996), which first uses a genetic algorithm to identify an ordering of cus-
tomers that produces good routes, and then greedily builds routes by inserting customers into
routes based on this ordering; TPS96, the construction followed by improvement heuristic
(λ-interchange and 2-opt*) of Thangiah et al. (1996); RDH02, the ant system approach (with
only global pheromone updating) of Reimann et al. (2002); ZC05, the two-phase heuristic
of Zhong and Cole (2005), which first clusters customers, and then improves routes (2-opt,
1-move, 1-exchange) within a guided local search framework; RU06, the ant colony opti-
mization of Reimann and Ulrich (2006); RP06, the large neighborhood search of Ropke and
Pisinger (2006); and VCGP14, the unified hybrid genetic algorithm proposed by Vidal et al.
(2014) for a very broad set of vehicle routing problem settings.

Table 7 displays the results of the comparison for each of the 15 instances and each
competing algorithm, in terms of the number of vehicles and the total travel distance of the
best reported solutions. The 15 instances are divided into five groups, R101, R102, R103,
R104, and R105, with three different percentages of backhaul customers (%BH) in each
group. In the bottom group of rows, CNV and CTD, indicate the cumulative number of
vehicles and the cumulative total distance over the 15 instances, respectively. The last three
rows provide average measures over all instances: the original computation time, the scaled
computational time, using the Dongarra (2014) factors and our machine (Xeon 2.8 GHz) as
the baseline, and the type of processor used by each algorithm. Times are in CPU minutes.

Most algorithms in the literature (except Gélinas et al. 1995) aim to first reduce the number
of vehicles, while there are no vehicle fixed costs in the VRPBTW instances. On the other
hand, the MT-PDTWS formulation minimizes the generalized cost of the system, vehicle
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Table 8 Performance with
different values of vehicle fixed
cost on the VRPBTW instances

Fixed cost of vehicle CNV CTD GAP (%)

0 263 23,395.32 0

F̄ 261 23,965.28 2.44

1.1 *F̄ 261 23,978.43 2.49

1.2 *F̄ 261 23,974.53 2.48

1.3 *F̄ 261 23,983.16 2.51

2 *F̄ 261 23,996.17 2.57

10 *F̄ 260 24,233.06 3.58

100 *F̄ 260 24,256.24 3.67

1000 *F̄ 260 24,275.62 3.76

fixed usage costs plus routing cost, and the tabu search we propose does not aim to enforce
one dimension over the other. Applying the tabu search to the VRPBTW instances therefore
corresponds to minimizing the routing cost only, without taking into account the number of
vehicles. The proposed meta-heuristic proves to be very competitive with respect to the total
distance, outperforming five meta-heuristics and being very close to the best ones (with an
average gap of 1.00%, a maximal gap of 2.81% and a minimal gap of −0.34%). We run
a second series of tests to better understand the role of the vehicle fixed cost on reducing
the number of vehicles. We set the vehicle fixed cost to a multiple of the average arc cost
F̄ , and repeatedly solved the VRPBTW instances increasing this multiplying factor. Table 8
displays the results for each value of the vehicle fixed cost: the number of vehicles (CNV)
and cumulative total distance (CTD) over the 15 instances, as well as the increase (in %) in
the total distance with respect to the case without fixed costs. The results show that increasing
the fixed cost on the use of vehicles, decreases the number of vehicles used and increases
the total distance traveled. This corresponds to what is generally observed in VRP solutions,
as is the observation that increasing the fixed cost yields decreasing returns passed a certain
threshold (equal to 10 ∗ F̄ for these problem instances). The proposed tabu search yields
now solutions that are very close (<0.58% of average gap) to those of the best methods
in the literature for the VRPBTW (Ropke and Pisinger 2006; Vidal et al. 2014), which is
remarkable for a solution method not designed for the particular problem setting.

The next round of experiments focused on the Vehicle Routing problem with Backhauls
(VRPB), which is obtained by removing from the VRPBTW the constraints on time windows
at customers and the route duration. The performance of our tabu search is evaluated through
comparisonswith results of other tabu search algorithms on two sets of instances in theVRPB
literature. The first set of 62 instances was proposed in Goetschalckx and Jacobs-Blecha
(1989). The instances range in size between 25 and 150 customers with backhauls ranging
between 20 and 50%. The second set of 33 instances was proposed by Toth and Vigo (1997),
with the number of customers ranging between 21 and 100, and backhauls percentages of
20, 34 or 50%. Two ways of computing the Euclidean distances between pairs of customers
are used in the VRPB literature, namely real-valued and integer-valued, respectively. The
former was used for the three tabu search algorithms with which we compare our method,
and is therefore, used for our tabu search method as well.

Table 9 sums up the comparisons with respect to the average of the best solutions for
the two sets of instances. The first two columns give the references and the processors used
for each study. Then, in groups of four columns for each instance set, the table displays
the average of the best solutions obtained by each method (Columns Cost), the gaps to the
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average of the best known solutions (Column GAP to BKS (%)), as well as the original and
the scaled (to equal Xeon 2.8GHZ Dongarra 2014) CPU times in minutes. One observes that
the proposed tabu search performs well, outperforming all three other tabu search algorithms
on Goetschalckx and Jacobs-Blecha (1989) instances (with an average gap of 0.05% and a
maximal gap of 0.1%), and two out of three methods on Toth and Vigo (1997) instances, and
being not far from Brandão (2006) (with a gap of −0.47%). This is, again, remarkable for a
solution method not designed for the particular problem setting.

5.5 Combining linehauls and backhauls

Combining linehaul and backhaul-customer demands on each vehicle is expected to reduce
the total number of vehicles and the total travel cost with respect to the case where linehauls
and backhauls are serviced by separate vehicles. Table 10 compares the best solutions for
these alternatives for all instances over 10 runs. The LH-BH columns report results for the
combined service case: average number of vehicles (Column #Vehicles), travel cost (Travel
cost), and total cost (Total cost). TheLH+BHcolumns refer to the summing the solutions to the
problems with only linehaul- and only backhaul-customer demands, respectively. Each entry
under this heading gives the gap with respect to the corresponding LH-BH measure (average
number of vehicles, and average travel and total cost). As expected, the results indicate
that assigning linehauls and backhauls to separate fleets leads to significant increases in all

Table 10 Comparison of separate and combined linehaul and backhaul solutions in the number of vehicles,
traveling cost, and total cost

Problem set BH LH−BH LH+BH

#Vehicles Travel cost Total cost GAP (%)

A1 0.1 21.8 8,858.67 19,758.67 12.84 9.08 11.16

0.3 22 9,854.25 20,854.25 45.45 26.25 36.38

0.5 22.2 12,145.62 23,245.62 89.19 38.06 62.48

A2 0.1 16.4 8,556.85 16,756.85 13.41 10.14 11.74

0.3 16.4 10,095.76 18,295.76 35.37 21.91 27.94

0.5 17.2 12,381.06 20,981.06 69.77 34.57 49.00

B1 0.1 46.8 43,363.80 66,763.80 8.55 11.52 10.48

0.3 47.8 51,498.22 75,398.22 35.98 29.50 31.55

0.5 54.8 71,625.96 99,025.96 48.18 33.71 37.71

B2 0.1 36.4 41,517.48 59,717.48 10.99 10.65 10.76

0.3 40 51,945.56 71,945.56 38.00 28.73 31.31

0.5 46 70,838.52 93,838.52 57.39 29.76 36.53

C1 0.1 90.4 107,906.40 153,106.40 0.22 14.68 10.41

0.3 99.4 150,148.80 199,848.80 24.55 28.87 27.79

0.5 119.8 231,936.60 291,836.60 39.07 26.11 28.77

C2 0.1 76.2 102,703.04 140,803.04 0.79 22.56 16.67

0.3 94.4 148006.00 195,206.00 10.59 31.48 26.43

0.5 106.8 224,658.20 278,058.20 35.39 29.00 30.23

Average 54.16 75,446.71 102,524.49 31.98 24.25 27.63
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performance measures. This increase becomes increasingly significant whenmore backhauls
need service.

5.6 Synchronization at supply points

We model supply points as combinations of a satellite and a time period availability. The
vehicles must thus arrive at supply points during these predefined periods to unload or load
freight. We analyze in this section the impact on solution quality of this synchronization
requirement on operations.

The time period availability at each supply point s was characterized in all previous
experiments by a single time window [es, ls] used for both unloading and loading operations.
In order to analyze the impact of the availability requirements without modifying the time
windows at customer demands, we introduce two time windows at each supply point, one
for unloading and one for loading, but keep the availability time periods of the supply points
unchanged. More precisely, we define [eus , l

u
s ] and [els, l

l
s], specifying the earliest and latest

times at which a vehicle has to be available at s for unloading collected demands and loading
delivery demands, respectively, where lus + ϕ′(s) ≤ lls, e

u
s = es and lls = ls . Activities of a

vehicle at s may then be described as follows:

• Unload only. The vehicle arrives with pickup demands at time t within its unloading time
window [eus , l

u
s ], i.e., the vehicle must not arrive at s sooner than eus nor later than lus ; it

takes ϕ′(s) for unloading and leaves s empty at time t + ϕ′(s);
• Load only. The vehicle arrives empty at time t within its loading time window [els, l

l
s],

i.e., the vehicle must not arrive at s sooner than els nor later than lls ; it takes ϕ(s) for
loading the delivery demands, with a total load not exceeding the vehicle’s capacity Q,
and leaves s at time t + ϕ(s) to perform the delivery to a subset of delivery customers in
CD
s ;

• Unload and load. The vehicle arrives with pickup demands at time t within its unloading
time window [eus , l

u
s ] and takes ϕ′(s) to unload; when t + ϕ′(s) < els , the vehicle has

to wait at the supply point until els to start loading freight; otherwise it starts loading at
t + ϕ′(s); it takes ϕ(s) to loading, then the vehicle leaves s to deliver the loaded freight
to a subset of customers in CD

s .

Operations at a supply point s are then guided by the length of each time window, noted
lenu and lenl for unloading and loading, respectively, and the separation time Di f between
the end of the unloading timewindow lus and the beginning of the loading timewindow els (see
Fig. 9; Di f = 0 when the two time windows split equally the total activity time). Recalling
that the activity time is 100 in the case of the single time window, we set lenu = lenl , and
run three experiments with values (20, 60), (30, 40) and (40, 20) for (lenu = lenl , Di f ).

The experiment was run on all instances and Table 11 sums up the impact on solution
quality of splitting the operation times at supply points, for each of the three cases compared

Fig. 9 Illustration of two time windows at a supply point s
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Table 11 Impact of synchronization at supply points on solution quality

One time window Two time windows

(20,60) (30,40) (40,20)

#Vehicles (%) 0 1.03 0.79 0.52

Travel cost (%) 0 2.17 0.82 0.74

Total cost (%) 0 1.94 0.88 0.75

PD (%) 49.88 45.40 46.98 48.31

DM (%) 26.94 22.45 23.95 24.01

to the base case of a single time window and no separation of operations. The table displays
the increase, in %, in the number of vehicles, travel cost, and total cost. It also gives the
percentage of times the vehicles perform unload & load operations at supply points (PD(%)
row) and the percentage of times vehicles move directly to a supply point without using
waiting stations (DM(%) row).

Results clearly indicate that solutions with two time windows are worse than those with
a single time window with respect to all performance measures. Allowing to mix operations
at supply points results, in particular, in vehicles moving directly to supply points more
frequently and undertaking more unload & load operations (26.94 and 49.88% respectively,
for the single time window case). Such operations may result in more complex operations
management at supply points, but increases efficiency and decreases the presence of vehicles
within the system. This could be very beneficial in many cases, City Logistics in particular.

6 Conclusions

We introduced the Multi-trip Pickup and Delivery Problem with Time Windows and Syn-
chronization, MT-PDTWS, a new class of vehicle routing problems variant in which each
vehicle performsmultiple sequences of delivery and pickup operations through supply points
within hard time synchronization restrictions. The MT-PDTWS generalizes several classes
of pickup and delivery with backhauls problem settings, as well as a number of problems
defined within City Logistics applications. We proposed a first model formulation and a tabu
search meta-heuristic integrating multiple neighborhoods for the MT-PDTWS.

The computational study was performed on a new set of instances with up to 72 supply
points and 7200 customer demands. By restricting the model, the tabu search meta-heuristic
was also compared to exact and meta-heuristic methods for the pickup and delivery with
backhauls problemswith andwithout timewindows. Test instances present in the literature for
the latter problems were used for this evaluation. Our experiments showed that the proposed
meta-heuristic performs very well, being competitive with the other methods within their
particular settings, and efficiently addressing all the new instances.

The tabu search meta-heuristic provided the tools to evaluate a number of problem char-
acteristics, in particular the value of servicing pickup and delivery customers with the same
vehicle and routes, as well as strategies in setting up the service time windows at supply
points. The experiments revealed that integration of customer types within a single service
is beneficial, as is the integration of the two types of operations within the activity period of
supply points.
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