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Abstract Prior research (Banker and Chang in Eur J Oper Res 175: 1311–1320, 2006) has
found that super-efficiency based procedures are effective in identifying outliers, but not
in ranking efficient units. In this paper, we investigate why the procedures failed to rank
efficient units satisfactorily and examine the performance of super-efficiency procedures in
different “regions” of production set. We find that the unsatisfactory results mainly originate
from the “left corners” of DMUs, those units with relatively smaller values. We further
examine the effect of different noise levels on outlier detection using the BG procedure
(Banker and Gifford in A relative efficiency model for the evaluation of public health nurse
productivity. Mimeo, Carnegie Mellon University, Pittsburgh, 1988). Our results show that
the BG procedure is more effective when the noise level is high. We conduct extensive
simulation experiments by considering different production functions (Cobb–Douglas and
Polynomial), different DEA formulations (BCC and CCR) and different returns-to-scale
(CRS and NIRS) assumptions. Our simulation results confirm that the findings in Banker
and Chang (2006) are robust under different DEA formulations, production functions and
returns to scale assumptions.
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1 Introduction

In the DEA literature, the super-efficiency procedure has been proposed to rank efficient
decisionmakingunits (DMUs) byAndersen andPetersen (1993,AP thereafter) and to identify
outliers (Banker and Gifford 1988; Banker et al. 1989). Under the super-efficiency DEA
formulation, the efficiency scores may be different and do not have to equal one for those
efficient DMUs. Thus the AP procedure can be suggested to discriminate those efficient
units. Nevertheless there lacks evidence on whether the super-efficiency model is effective
to differentiate those efficient units despite its popularity in DEA applications. Banker and
Chang (2006) find that the AP procedure does not rank efficient units satisfactorily in their
simulation study but they do not elaborate on why the AP procedure is ineffective in ranking
efficient units. This paper attempts to shed light on this problembyexamining the performance
of super-efficiency procedures in different “regions” of the production set, i.e. for DMUswith
different levels of input/output values.We find that the unsatisfactory results mainly originate
from the “left corners” of DMUs, those units with relatively smaller values.

In the case of outlier detection, Banker and Gifford (1988) suggest using super-efficiency
scores to screen out those observations whose super-efficiency scores exceed a pre-specified
screen level (see Banker et al. 1989, pp. 279–280).1 After removing those outliers, a con-
ventional DEA model (e.g. the BCC model) is estimated with the remaining observations.
We refer to this approach as the BG procedure hereafter. Banker and Chang (2006) show
that the BG procedure is effective in identifying outliers in the presence of noise data. This
finding is consistent with our results based on extensive simulation experiments. We further
investigate the effect of different noise levels on outlier detection using the BG procedure.
We find that the BG procedure is generally more effective when the noise level is high.

It is important to note that the simulation study in Banker and Chang (2006) only considers
a Cobb–Douglas production function and a super-efficiency procedure for the BCC model.
It remains to be seen if their findings are consistent across different production functions,
different DEA formulations and different returns-to–scale settings. Our experiments extend
Banker and Chang (2006) in three dimensions: (1) we incorporate different production func-
tions based on a polynomial function that displays different characteristics (Banker et al. 2004,
Banker and Chang 1996); (2) we examine the performance of super-efficiency procedures
under both BCC and CCR formulations; and (3) we consider different returns-to-scale (CRS
and NIRS) assumptions. Our simulation results show that the findings in Banker and Chang
(2006) are robust to different DEA formulations, production functions and returns-to-sscale
assumptions.

The remainder of this paper is organized as follows. We first describe the super-efficiency
model in DEA in Sect. 2. Section 3 details the data generating process and the simulation
setup for testing the performance of the AP procedure on ranking efficient units. Section 4
describes the data generating process and simulation results to evaluate the performance of
the super-efficiency model in outlier identification. Section 5 concludes with a summary of
our principal results.

2 Super-efficiency models

We consider three specific super-efficiency models: super BCC, super CCR, and super NIRS
models.

1 Subsequently, Wilson (1995) also suggested exactly the same use of the super-efficiency model for identi-
fying outliers.
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2.1 Super BCC

We refer to the approach of using the super-efficiency procedure on the BCC formulation
as the super BCC model. Let Yj = 0 and Xj = 0, j = 1, . . .N, be the output and input
vectors for N observations, with at least one element of each vector being strictly positive.

The output-oriented super-efficiency measure ψ̂
SE
k for an observation (Xk, Yk), k ∈ {1. . .N}

is the reciprocal of the super-inefficiency measure θ̂ SI
k obtained by solving the following

linear program:

θ̂ SI
k = Max θk (1)

subject to

N∑

j=1
j�=k

λjYj − θkYk ≥ 0 (1a)

N∑

j=1
j�=k

λjXj ≤ Xk (1b)

N∑

j=1
j�=k

λj = 1 (1c)

θk,λj ≥ 0 (1d)

Note that the above super-efficiency model excludes the observation “k” under evaluation
in the reference set for the constraints in (1a), (1b) and (1c), as opposed to the conventional

BCC model. Thus the reference observation (
N∑
j=1
j�=k

λjXj,
N∑
j=1
j�=k

λjYj) in the evaluation of the

super-efficiency of observation k is constructed only from observations other than k itself.
Nevertheless this does not guarantee a convex combination can be created from the remaining
observations to envelop observation k. Banker and Gifford (1988) proved that while there
always exists a feasible solution to the super-efficiency model for the CCR specification,
there may not be a feasible solution to the super-efficiency model for the BCC specification
for certain extreme observations.2

To avoid the computational problem associated with infeasible programs for the BCC
super-efficiency model, we solve the following modified model:

Maxηk − 2λk (2)

2 While the super-efficiency model is specified in (1) for the BCC model, similar models can be specified
corresponding to other DEA specifications. The CCR (Charnes et al. 1978) super-efficiency specification is the
same linear program as in (1) except that the constraint in (1c) is deleted. The NDRS (non-decreasing returns
to scale) specification is the same linear program as in (1) except that the constraint in (1c) is a less-than-
or-equal-to (=) constraint instead of an equality (=) constraint. The NIRS (non-increasing returns to scale)
specification is the same linear program as in (1) except that the constraint in (1c) is a greater-than-or-equal-to
(=) constraint instead of an equality (=) constraint.
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subject to

N∑

j=1

λjYj − ηkYk ≥ 0 (2a)

N∑

j=1

λjXj ≤ Xk (2b)

N∑

j=1

λj = 1 (2c)

ηk,λj ≥ 0 (2d)

Because of the large negative weight on λk in the objective function in (2), an observation
k will not serve as a reference point for its own evaluation (i.e. λ∗

k = 1) unless the cor-
responding problem in (1) is infeasible. Therefore, the super-efficiency of observation k is

ψ̂
SE
k = 1/η∗

k ifλ
∗
k = 0 in an optimal solution to (2), and is marked as infeasible if λ∗

k = 1.3

Observe that an observation k would be rated as inefficient by the conventional BCC model
(that allows an observation to be in the reference set for itself, rather than excluding it as in

program (1)), if and only if the super-efficiency estimate ψ̂
SE
k < 1, and that the observation

would have been rated as efficient by the conventional BCC model if and only if ψ̂
SE
k ≥ 1

(Banker and Gifford 1988).

2.2 Super CCR and super NIRS

Similar to the above Super BCC model, the Super CCR model excludes a unit “k” from the
reference set in evaluating the super-efficiency of a certain observation. However in the Super
CCR model, Eq. (2c) is omitted because of the constant returns to scale assumption in the
CCR formulation.

The Super NIRS model assumes a non-increasing returns to scale, that is,
N∑
j=1

λ j ≥ 1.

The only difference between the Super NIRS formulation and the Super BCC formulation is

that the former replaces Eq. (2c) in the latter with
N∑
j=1

λ j ≥ 1.

3 Ranking efficient units in different “regions”

As mentioned earlier, Andersen and Petersen (AP) suggested the use of the super-efficiency
model for ranking efficient units. This section aims to evaluate the performance of the AP
procedure in ranking efficient units and more importantly to shed light on when the AP
procedure is effective or ineffective.We conduct 500 simulation experiments described below.

3.1 Data generating process

Weconsidered three factors: sample size, production technology, and inefficiency distribution
in generating the data for the simulation experiments reported in this section.

3 Observe that there always exists an optimal solution to (2) with either λ∗
k = 0 or λ∗

k = 1.
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3.1.1 Sample size

For each experiment, we considered a sample of size N, where N can take any integer value
between 51 and 150 with equal probability.

3.1.2 Production technology

We considered two different production technologies. The first consists of a single output
and two inputs specified in terms of its efficient production function z = f(x1, x2), where z
represents the maximum output that can be produced from the levels x1 and x2 of the two
inputs. Specifically, we used the following “shifted”4 Cobb–Douglas production function:

z = (x1 − α1)
β1(x2 − α2)

β2 (3)

where α1 = α2 = 5, the inputs x1 and x2 generated randomly from independent uniform
probability distributions over the interval [10, 20], and the coefficients β1 and β2 generated
randomly from independent uniform probability distributions over the interval [0.4, 0.5].
Since the sum of β1 and β2 is less than one, the production function in (3) satisfies the
BCC model’s maintained assumption of a concave production function, while the shifts
α1, α2 > 0 allow both increasing and decreasing returns to scale to prevail. The function
shows increasing returns over the interval [10, A] and decreasing returns over the interval [A,
20], where A = 5/(1− βi ), for the input xi in a section of the production function obtained
by fixing the level of the other input x3−i,, i = 1, 2.

The second production technologywe consider here followsBanker andNatarajan (2004).
It is a polynomial function in the form of

y = β0 + β1x + β2x
2 + β3x

3 (4)

The input variable x is generated from the uniform distribution over the interval [1,4]. The
coefficients β0, β1, β2, β3 determine the properties of the production of technology and we
use the following values: β0 = −37, β1 = 48, β2 = −12, β3 = 1. Note that these choices
guarantee that the production function is a monotonically increasing and concave function
when x ∈ [1, 4].

3.1.3 Inefficiency distribution

We generated the logarithm of the inefficiency, uk = ln θk for each observation k ∈ {1, . . .N}
from a half-normal distribution

∣∣N(0, σ2u)
∣∣, where the parameter σ2u itself is drawn from a

uniform distribution on the interval [0, 0.1989]. The range of values for the distribution of σ2u
is chosen such that mean efficiency given by E(ψ) = E(e−u) = exp(−σu

√
2/π) is between

0.7 and 1.0.

3.1.4 Simulated observations for Cobb–Douglas production function

For each experiment, we first randomly generated a value for N between 51 and 150, values
for β1 and β2 between 0.4 and 0.5, and a value for σ2u between 0 and 0.1989. Next, we
simulated N observations of the two inputs x1 and x2 between 10 and 20. These values

4 We chose the shifted Cobb–Douglas because it provides a parsimonious parametric form that exhibits both
increasing and decreasing returns to scale for αi > 0.
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(x1k, x2k), k = 1, …N, were then substituted into the efficient production function specified
in Eq. (3) to obtain the corresponding values zk = f(x1k, x2k) for the efficient output quantity.
Then, we randomly generated the logarithm of “true” inefficiency values uk = lnθk for each
observation k ∈ {1, . . .N} from the half-normal distribution

∣∣N(0, σ2u)
∣∣. Finally, we obtained

the values for “observed” output quantities yk and the “true” efficiency values ψk as:

yk = f(xk)/exp(uk) (5)

ψk = 1/exp(uk). (6)

Thus, each observation k comprises its “observed” output and inputs values (yk; x1k, x2k)
and each sample consists of N such observations.

3.1.5 Simulated observations for the polynomial production Function

Similarly, for each experiment we first randomly generated a value for N between 51 and
150 and a value for σ2u between 0 and 0.1989. Next, we simulated N observations of the input
x between a and 4. These values xk, k = 1, . . .N, were then substituted into the efficient
production function specified in Eq. (4) to obtain the corresponding values zk = f(xk) for
the efficient output quantity. Then, we randomly generated the logarithm of “true” ineffi-
ciency values uk = θk for each observation k ∈ {1, . . .N} from the half-normal distribution∣∣N(0, σ2u)

∣∣. Finally, we obtained the values for “observed” output quantities yk:

yk = f(x1k, x2k) − uk (7)

Thus, each observation k comprises its “observed” output and inputs values (yk; xk) and
each sample consists of N such observations.

3.2 Regions

We hypothesize that efficiency rankings derived from super-efficiency procedures are more
sensitive to those units on the corners than those in the middle. To test this hypothesis, we
separate the DMUs into three regions based on the values of inputs/outputs: 15% to the left
as region 1, 70% in the middle as region 2 and 15% to the right as region 3.

Superficially, we divide the DMUs generated from the Cobb–Douglas production function
(see Eq. 5) based on the value of yk. Those 15% DMUs with the smallest yk are assigned to
region 1; the 15% with the highest yk are assigned to region 3; and the rest middle 70% are
assigned to region 2. This roughly corresponds to the regions having yk = 5, 5 < yk = 8
and 8 < yk for region 1, 2 and 3 respectively.

For the polynomial function, we separate the three regions according to yk specified in
Eq. (7) in a similar manner—15% DMUs with the smallest yk are assigned to region 1, 15%
with the highest yk are assigned to region 3, and the rest middle 70% are assigned to region 2.
This roughly corresponds to the three regions of yk = 11.2, 11.2 < yk = 25.2 and 25.2 < yk
respectively.

3.3 Simulation results

In each experiment, we run six linear programs in order to estimate the efficiencies for the
six models considered in this paper: BCC, CCR, NIRS, the Super-BCC, Super CCR and
Super-NIRS, for each of the k=1,…N observations in the sample.

In Table 1, we report the means of Pearson correlation between the true efficiency value
ψk and the estimated efficiency ψ̂k . It is evident from Panel A and B of Table 1 that AP
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Table 1 Means of pearson correlation coefficients between the true and estimated efficiencies

Super-BCC Super-CCR Super-NIRS

Panel A: correlation based on all observations that have BCC/CCR/NIRS efficiency = 1

Cobb–Douglas −0.434 0.134 −0.454

Polynomial −0.222 0.180 −0.202

BCC CCR NIRS Super-BCC Super-CCR Super-NIRS

Panel B: correlation based on all observations

Cobb–Douglas 0.935 0.912 0.934 0.637 0.911 0.626

Polynomial 0.659 0.177 0.662 0.388 0.177 0.391

procedure’s performance in ranking efficient units is not at all satisfactory, consistent with
the findings of Banker and Chang (2006). One claimed advantage of the AP procedure is that
it can distinguish efficiencies among those efficient observations. Our results in Panel A did
not lend support to this. Panel A shows that the correlations (only for those efficient points)
are very low and many of them are even negative, across all six models considered. Panel B
shows that the mean correlations (based on all observations) of AP’s procedures (super-BCC,
super-CCR and super-NIRS) are all lower than those of their counterparts (BCC, CCR and
NIRS) across both production functions (Cobb–Douglas and Polynomial). In addition, while
CCR and super CCR seem to be appropriate for the Cobb–Douglas production function, they
are not satisfactory for the polynomial function. This may be because the concavity of the
polynomial function violates the constant returns to scale assumption of CCR.

What might have caused the above findings?We hypothesize that the performance of AP’s
procedure may vary in different regions of observations. Table 2 summarizes the comparative
results across the three regions of DMUs.5 Panel A shows that the AP procedure does not
rank those efficient units well for any of the three regions, with region 1 being the worst,
followed by region 2 and then region 3. The results in Panel B and C of Table 2 are based
on all observations. These two panels show that both the AP procedure (see Panel B) and
the conventional DEA models (see Panel C) perform the worst in region 1. However, the
problem is more pronounced for the AP procedure. In general, region 2 and region 3 results
are more satisfactory for both the AP procedure and the conventional DEAmodels. Between
the two panels, Panel C results are consistently better than those of Panel B across regions.
This furthers corroborates that the AP procedure does not improve the rankings of DMUs
over the conventional DEA formulations (BCC, CCR and NIRS).

4 Outlier identification

The AP ranking procedure does not consider the potential impact of outliers on efficiency
estimation. Outliers are a few extreme observations often caused by errors inmeasuring either
the inputs or outputs. Since extreme observations determine the production frontier in DEA
models, the estimation of the frontier may be sensitive to measurement errors in the sample

5 Table 2 has the same structure as Table 1, but with the results from each region. When interpreting Table 2
results, one should not expect the results of Table 1 as the average of the three corresponding regions in Table
2 because of different sample sizes.
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Table 2 Means of pearson correlation coefficients between the true and estimated efficiencies when data are
separated into regions

Super BCC Super CCR Super NIRS

Region1 Region2 Region3 Region1 Region2 Region3 Region1 Region2 Region3

Panel A: super-efficiency model results based on observations that have
BCC/CCR/NIRS efficiency = 1 within each region

Cobb–Douglas −0.553 −0.443 0.104 0.098 0.147 0.349 −0.591 −0.423 0.264

Polynomial −0.393 0.033 0.224 0.002 0.180 0.875 −0.389 0.013 0.447

Super BCC Super CCR Super NIRS

Region1 Region2 Region3 Region1 Region2 Region3 Region1 Region2 Region3

Panel B: super-efficiency model results based on all observations within each region

Cobb–Douglas 0.634 0.757 0.879 0.883 0.895 0.918 0.647 0.776 0.950

Polynomial 0.527 0.919 0.973 0.240 0.335 0.493 0.530 0.918 0.973

BCC CCR NIRS

Region1 Region2 Region3 Region1 Region2 Region3 Region1 Region2 Region3

Panel C: BCC, CCR and NIRS results based on all observations within each region

Cobb–Douglas 0.858 0.959 0.904 0.883 0.897 0.936 0.838 0.961 0.961

Polynomial 0.864 0.912 0.973 0.226 0.327 0.473 0.868 0.912 0.972

data. If an observation has been contaminated with noise that increases the observed output
value or decreases the observed input values such that it gets rated as efficient, then it may
also enter the reference set of other observations and distort their estimated efficiency scores.
Such outliers may be influential in the estimation results obtained using a conventional DEA
model. It is desirable, therefore, to consider a procedure that allows us to identify and remove
such outliers.

Banker and Gifford’s (1988) procedure for identifying outliers generalizes Timmer’s
(1971) procedure. Timmer suggests discarding a certain percentage of efficient observations
from the sample and re-estimating the production frontier using the remaining observa-
tions. Another way to interpret Timmer’s procedure is that a certain proportion of efficient
observations are classified as outliers and eliminated before re-estimating the efficiency of the
remaining observations. BG’s procedure differs from that of Timmer’s in that they suggest the
use of a screen based on the super-efficiency score to identify those observations that aremore
likely to be contaminated with noise. In other words, rather than throwing out an arbitrary
set of efficient observations, BG suggest that only those observations with super-efficiency
scores higher than a pre-selected screen should be eliminated. If an efficient observation is
an outlier that has been contaminated with noise then it is more likely to have an output (or
input) level much greater (smaller) than that of other observations with similar input (output)
levels. Therefore, such outliers are more likely to have a super-efficiency score much greater
than one. This is the motivation underlying the BG procedure for outlier identification (see
Banker et al. 1989, pp. 279–280).
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4.1 Data generating process

To evaluate the BG procedure for outlier identification, we extended the data generating
process described earlier for the simulation experiments in the previous section. We consid-
ered two additional factors: probability that data are contaminated and the distribution of the
random noise for such contaminated observations.

4.1.1 Probability of contaminated observations

The probability of an observation being contaminated with random noise was specified to
be ρ. We generated ρ randomly from a uniform probability distribution over the interval [0,
0.1]. In other words, the probability that an observation is contaminated with random noise
ranges from 0 to 10%.

4.1.2 Random noise distribution

Noise distribution for the Cobb–Douglas function Conditional on an observation being con-
taminated, we specified a two-sided random noise distribution. We generated the logarithm
of the random noise vk for each observation k=1,…N, from a normal distribution N(0, s2v),
where sv = d E(z). For each experiment, the parameter dwas generated randomly from a uni-

form probability distribution over the interval [0, 1] and E(z) = (151+β1−51+β1 ) (151+β2−51+β2 )
100(1+β1)(1+β2)

equaled the mean of the efficient output quantity.
Although we consider a two-sided random noise distribution, only those outliers that

lie above the frontier are likely to affect the efficiency estimation of other observations by
entering their reference set. Outliers with negative errors are likely to lie inside the frontier
and have no impact on the efficiency estimation of other observations.
Noise distribution for the polynomial function We generated the random noise vk for each
observation k = 1, . . .N, from a half-Normal distribution |N(0, σ2v)|, where σv = d/2 E(z),
where parameter d was generated randomly from a uniform probability distribution over the
interval [0, 1] for each experiment and E(z) = 20.2.

4.1.3 Simulated observations

Simulated observations for the Cobb–Douglas function For each experiment, we first gener-
ated values of N, β1, β2 and σ2u as described in the previous section. In addition, we simulated
values of ρ, the probability of being contaminated with random noise, from a uniform dis-
tribution over [0, 0.1], and d from a uniform distribution over [0, 1] to specify the parameter
of the random noise distribution as σv = δE(z). Next, for each observation k in the sample
for an experiment, we randomly generated the values of the input quantities x1k and x2k, and
inefficiency θk = exp(uk) as described in the previous section. Further, for each observation
k, we also generated an index variable, q, from a uniform distribution over the interval [0, 1]
and random noise vk from the half-Normal distribution

∣∣N(0, σ2v)
∣∣. Finally, we obtained the

values for the observed output quantities yk as:

either yk = f((x1k, x2k) ∗ exp(vk)/exp(uk) if q ≤ ρ

or yk = f((x1k, x2k)/exp(uk) if q > ρ .
(8)
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Simulated observations for the polynomial function For each experiment, we first gener-
ated values of N, ρ and σ2u as described in the previous section. Next, for each observation
k in the sample for an experiment, we randomly generated the values of the input quan-
tities xk and inefficiency θk = uk as described in the previous section. Further, for each
observation k, we also generated an index variable, q, from a uniform distribution over
the interval [0, 1] and random noise vk from the half-normal distribution

∣∣N(0, σ2v)
∣∣. Since

DEA does not allow non-positive values, we added a constant, 10, to yk to ensure all
values are positive. Finally, we obtained the values for the observed output quantities yk
as:

either yk = f(xk) − uk − vk + 10 if q ≤ ρ

or yk = f(xk) − uk if q > ρ .
(9)

4.2 Screens for outlier identification

To evaluate the performance of the BG procedure, we considered the screen level 1.0 for
outlier identification as suggested by Banker and Gifford (1988). The screen level of 1.0
implies the elimination of all observations rated as super-efficient in the BG super-efficiency
model. In the first stage, we identify and eliminate outliers using the pre-selected screen
level and then in the second stage re-estimate the BCC, CCR and NIRS models with the
remaining observations. We refer to the second-stage efficiency estimates as the BG-SE
estimates.

4.3 Simulation results: average performance

Table 3 reports the mean correlations between the true efficiency values and the BG
efficiency estimates. For comparison purposes, we also report the mean correlations between
the true efficiency scores and the efficiency estimates from the BCC, CCR and NIRSmodels.
The main finding here is that the BG procedure is effective in identifying outliers, across
both production functions and the three different DEA models. On average, the results in
Table 3 indicate that the BG procedures using screens outperforms all of the initial BCC,
CCR and NIRS estimators. For example with a screen of 1.0, using the BG super efficiency
procedure improves ovesr the BCC model by 19% (= (0.635−0.543)/0.543), for the Cobb–
Douglas function averaged across different noise levels. Interestingly there is considerable
improvement when using the BG procedures relative to the conventional DEA models even
for very small probabilities of contamination. Figure 1 is based on the BG procedure results
in Table 2, with Cobb–Douglas results on the left chart and the polynomial results on the right
one. Clearly, as the noise level increases, the performance of the BG procedures deteriorates,
for all three DEA models we consider. In addition, the BG procedure for the CCR model
does not perform well for the polynomial function. As mentioned earlier, this may be due to
the fact that the constant returns to scale assumption of CCR is violated under the polynomial
function.

To further assess how well the BG procedure performs in efficiency estimation when
the data are not contaminated with random noise, we report in Table 4 correlation between
the true efficiency values and the BG estimates, as well as the correlation between true
efficiency values and the BCC/CCR/NIRS estimates. In general, these results in Table 4
confirm the intuition that the BG estimation procedure may not be as effective in this case.
Out of six scenarios in Table 4, only two (Super-BCC and Super-NIRS for the polynomial
function) outperform their counterparts. The remaining four perform worse. This implies
that the removal of some observations by using the BG procedure is likely to result in worse,
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Fig. 1 Pearson correlation comparison as a function of noise rate rho under Cobb–Douglas (left) and Poly-
nomial (right) production functions

Table 4 Means of correlation coefficients between the true efficiencies and BG estimated efficiencies when
data are not contaminated

Procedure Super-efficiency BCC CCR NIRS

Cobb–Douglas Screen level 1.0 None None None

Super-BCC 0.842 0.894 – –

Super-CCR 0.849 – 0.864 –

Super-NIRS 0.862 – – 0.957

Polynomial Super-BCC 0.767 0.725 – –

Super-CCR 0.063 – 0.163 –

Super-NIRS 0.765 – – 0.692

rather than better, estimation performance if there is no noise contamination. Under such
circumstances, there is a cost to eliminating observations identified as outliers using the BG
procedure.

In order to shed light on the performance of BG procedures in different regions, Table
5 details correlations of different DEA procedures by region, noise level and the screen
level. There are three main findings. First, all procedures’ performance deteriorates for all
regions as the noise level increases. Second, for the Cobb–Douglas function, the BG pro-
cedure shows clear improvement over the counterpart DEA model for each of the three
regions. For example, for region 2, the BG procedure on top of the BCC model (referred
to as super-BCC in Table 5) outperforms the BCC model by 21% = (0.84-0.69)/0.69.
However, for the polynomial functions, the BG-procedure results do not improve over
its counterparts as significantly when the DMUs are separated into three regions. Third,
most interestingly, as the noise level increases for the Cobb–Douglas function, only the
efficiencies of those DMUs in the middle (region 2) are estimated well. Both of the
two corner DMU regions (region 1 and region 3) are not estimated satisfactorily. This
finding is consistent across all the six procedures (BCC, CCR, NIRS, Super-BCC, Super-
CCR and Super-NIRS). We believe this is because the positive noise data in the middle
region tend to be muted by the greater likelihood of finding spanning observations in
constructing a convex combination of reference points, but this is less likely in the cor-
ners.
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5 Conclusion

In this paper, we have conducted simulation experiments to evaluate the performance of
the Banker and Gifford (1988) super-efficiency model when it is used for ranking efficient
units and when it is used for outlier identification. We find that Andersen and Petersen’s
(1993) procedure using the super-efficiency model for ranking efficient observations does
not perform satisfactorily. In contrast, the evidence supports the use of Banker and Gifford’s
(1988) and Bankera et al.’s (1989) super-efficiency based procedure to identify outliers. Most
importantly, we document that the poor performance is particularly acute for observations
with smaller input and output values. Performance is worse for the super-CCR model. Per-
formance of the BG outlier screening procedure also deteriorates with the level of noise, and
rather precipitously when the noise level rho exceeds 0.05.

Our study has the following important implications. From academic perspective, there
is an urgent need for future research to propose alternative methods or to extend the AP
procedure for the improvement of ranking the performance of efficient units. From practical
consideration, given that the BG procedure outperforms other conventional DEA procedures
only when the data is contaminated with a high level of random noise, it is essential for
decision makers to evaluate the extent of their data contamination before using the BG
procedure in removing outliers. However, a caveat is in order. The results obtained from this
study may not be applied directly to the multiple output and multiple input case without
conducting additional Monte Carlo simulation experiments.
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