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Abstract We study the exploitation of a one species, multiple stand forest plantation when
timber price is governed by a stochastic process. Our model is a stochastic dynamic program
with a weighted mean-risk objective function, and our main risk measure is the Condi-
tional Value-at-Risk. We consider two stochastic processes, geometric Brownian motion and
Ornstein–Uhlenbeck: in the first case, we completely characterize the optimal policy for all
possible choices of the parameterswhile in the second, we provide sufficient conditions assur-
ing that harvesting everything available is optimal. In both cases we solve the problem theo-
retically for every initial condition. We compare our results with the risk neutral framework
and generalize our findings to any coherent risk measure that is affine on the current price.

Keywords Multistage stochastic programming · Optimal harvesting · Forestry · Coherent
risk measures

1 Introduction

The presence of uncertainty in decision making can be seen in most fields, and the need
to incorporate stochastic elements has been acknowledged by several authors. In forestry
models, the most common elements that are considered stochastic are timber prices, interest
rates, growth processes, and forest fires. A variety of tools have been proposed to deal
with these problems, including Markov decision processes (Lembersky and Johnson 1975),
stochastic programming (Boychuk and Martell 1996), simulation (Kim et al. 2009; Carmel
et al. 2009) and others. As demonstrated by Lönnstedt and Svensson (2000), forest owners
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are more concerned by direct economic risks than biological hazards so in this work we focus
on price variations.

Themajority of papers that dealwith price uncertainty have risk neutral objective functions
such asmaximizing expected profit orminimizing expected costs. The literature of risk averse
models in forestry is still scarce. In Gong and Löfgren (2003), the authors investigate the
effect of risk aversion in a two-period harvest investment decision model and show that the
optimal harvesting policy depends on the sign of a marginal variance function. In Alvarez
and Koskela (2006), the authors show that higher risk aversion shortens the expected rotation
period, and that increased forest value volatility decreases the optimal harvesting threshold,
which is not true under risk neutrality.

The work Alvarez and Koskela (2007) is the first to consider risk aversion in stochastic
ongoing rotationmodels. It is shown that under risk aversion the optimal harvesting threshold
is lower, which translates into a shorter rotation period. The effect of risk aversion on the
length of the rotation period is also studied in Gong and Löfgren (2008) using a model with
regeneration costs. In this case, the risk averse rotation period can be either longer or shorter
than the risk neutral one depending on these costs. Clarke and Harry (1989) find the rotation
period when both stock size and price are stochastic. The single-rotation problem is solved
theoretically as an optimal stopping problem and the authors propose a numerical iterative
scheme to solve the ongoing-rotation problem. It is worth mentioning that all these papers
consider single stand models.

TheworksMosquera et al. (2011) and Tahvonen andKallio (2006) considermultiple stand
models in which risk aversion is represented via expected utility. Both papers study how the
introduction of risk aversion changes the optimal policy by numerical resolution. In particular,
Tahvonen and Kallio (2006) concludes that risk aversion completely changes the optimal
harvesting policy, favoring smooth forest configurations and making harvesting dependent
of price level and forest owner’s time preference and wealth. Also considering a multiple
stand model but representing risk aversion via Conditional Value-at-Risk (CVaR), Piazza and
Pagnoncelli (2015) prove analytically that risk aversion shortens the optimal rotation period
and study how the variation of the model’s parameters affect the optimal harvesting policy.

The main goal of this paper is to study theoretically a risk averse formulation of a harvest
scheduling problem for a multiple stands forest under stochastic timber prices. While the
works of Brazee and Mendelsohn (1988), Thomson (1992) and Yoshimoto and Shoji (1998)
assume normality and adopt a geometric Brownian motion (GBM) to represent the evolution
of timber prices, others, like Alvarez and Koskela (2005), Gjolberg and Guttormsen (2002),
argue that a mean reverting process, or Ornstein–Uhlenbeck (O–U) is a better description
of the timber price path due to empirical data that has been collected for several species. It
is not our intention to go any further into this discussion, and we refer the reader to Insley
and Rollins (2005) for more details. As the issue seems far from being settled, and following
Plantinga (1998) and Tahvonen and Kallio (2006), we decided to consider both stochastic
processes in our work.

Due to an increase of the available computational power, multistage stochastic problems
have gained significant attention recently, in areas such as finance (Blomvall and Shapiro
2006; Valladão et al. 2014), pension funds (Haneveld et al. 2010) and energy (Philpott et al.
2013), among others. We propose a multistage stochastic programming model in which the
decision maker optimizes aweighted mean-risk objective, maximizing expected return while
avoiding decisions that exhibit high variability. We build upon our previous work Piazza and
Pagnoncelli (2014) and extend the results for the risk averse case. The dynamics and the
assumptions of the model are the same as in our previous work, so we briefly describe the
model in Sect. 2 for completeness.
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The main contributions of the current paper are as follows. First, we completely charac-
terize the optimal policy in the case where prices follow GBM and, for the O–U case, we find
a sufficient condition for the optimality of harvesting every mature tree that can be translated
into a reservation price. Second, we establish a connection between the risk-neutral and risk
averse worlds, that is, we explain how the inclusion of risk affects the optimal harvest policy.
We will work mostly with the CVaR, but closed form results are also derived for the Mean
Deviation Risk of order 2. In particular, we extend our results for any risk measure that is
affine on the current price.

There are very few benchmark problems in stochastic harvest scheduling, and to the best
of our knowledge, our work is the first that finds closed form solutions when multiple stand
forest models and stochastic prices are considered. Furthermore, coherent risk measures have
been widely used in applications, and we believe this is one of the first papers in the literature
to incorporate them into forestry.

The rest of the paper is as follows: In Sect. 2wegive a complete description of ourmodel. In
Sect. 3 we write dynamic programming equations for the model and discuss the introduction
of risk measures in a dynamic framework. With the assumption that prices follow a GBM,
we completely characterize the optimal policy in Sect. 4 and compare the results obtained
with the risk neutral case. In Sect. 5 we assume prices follow an O–U process and obtain
sufficient conditions involving the current price. In Sect. 6 we generalize some of our results
for risk measures other than the CVaR. Section 7 concludes the paper and discuss possible
extensions. All proofs can be found in the “Appendix”.

2 Model formulation

The forest growth model we use was introduced by Rapaport et al. (2003) and considers a
one species forest plantation of total area S with maturity age of n years. In contrast with the
case of wild forests, the state of a forest plantation may be described by specifying the areas
occupied by trees of different ages, making the assumption that trees are planted within a
pre-specified and constant distance of each other.

For each period t ∈ N we denote xa,t ≥ 0 the area of trees of age a = 1, . . . , n in year
t , and x̄t ≥ 0 the area occupied by trees beyond maturity (older than n). Using a single
state variable to represent the over-mature trees conveys the underlying assumption that the
growth of trees is negligible beyond maturity. Each period we must decide how much land
ct ≥ 0 to harvest. Assuming that only mature trees can be harvested we must have

0 ≤ ct ≤ x̄t + xn,t , (1)

and then the area not harvested in that period will comprise the over-mature trees at the next
step, namely, x̄t+1 = x̄t + xn,t − ct . We neglect natural mortality at every age, again an
assumption valid in managed forest plantations but not in wild forests. Hence, the transition
between age classes is given by xa+1,t+1 = xa,t ∀a = 1, . . . , n − 1. The harvested area
is immediately allocated to new seedlings that will comprise the one year old trees in the
following year: x1,t+1 = ct .

We represent the state of the tree population by the vector state

X = (x̄, xn, . . . , x1)
T ,

and the dynamics described in the previous paragraph can be represented by

Xt+1 = AXt + Bct , (2)
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where

A =
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.

The expression of constraint (1) in terms of the defined matrices is

0 ≤ ct ≤ CAXt , with C = (
1 0 . . . . . . 0

)
. (3)

The order of events is the following: at every period t the decision maker observes the state
of the forest and the current price and decides how much she will harvest, ct , obtaining a
benefit pt ct . Her decision changes the current state of the system from Xt to Xt+1 according
to (2). Then timber price pt+1 is observed, leaving her in position of deciding the following
harvest ct+1.

3 Weighted mean-risk formulation

Decision makers usually want to maximize expected returns while avoiding risk. To achieve
this goal we propose a weighted mean-risk objective function R given by

R[X ] := λE[X ] + (1 − λ)ρ[X ], (4)

where ρ is some risk measure, X represents losses and λ ∈ [0, 1] balances the two objectives.
In Piazza and Pagnoncelli (2014) the authors find the optimal policy for the case λ = 1.

The variance is a classical risk measure, and it dates back to the workMarkowitz (1952). It
has been used extensively in many fields and it is a popular risk measure in forestry (Reeves
and Haight 2000; Gong 1998; Gong and Löfgren 2003; Ollikainen 1993). Another popular
measure is the Value-at-Risk (VaR), defined by

VaRα[X ] = inf{x : P(X ≤ x) ≥ 1 − α}, α ∈ (0, 1).

The VaR is the left side (1−α) quantile of the distribution of X and it is also used in forestry
(Zhong-wei and Yan 2009; Roessiger et al. 2011).

3.1 The Conditional Value-at-Risk

A risk measure that gained increasing popularity since the publication of Rockafellar and
Uryasev (2000) is the Conditional Value-at-Risk (CVaR). For a continuous random variable
X , the CVaR is defined as the average of losses above the VaR level:

CVaRα[X ] = E[X |X > VaRα[X ]] = inf
{
t ∈ R : t + α−1

E[X − t]+
}
. (5)

In the seminal work of Artzner et al. (1999), the authors defined a set of axioms that a
risk measure must satisfy in order to be called coherent. While the CVaR satisfies all those
properties, nor the variance or theVaR are coherent.We are going to use the CVaR extensively
throughout our paper since it will be our prototype example of risk measure.

The majority of papers in forestry use expected utility to model risk aversion. Although
risk measures and expected utility criteria are related through dual representations of the
risk functional (see example 6.14 of Shapiro et al. 2009), both have its own advantages and
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drawbacks. Our goal here is to apply risk measures to forestry and a comparison of both
approaches is out of the scope of this paper.

3.2 Dynamic programming formulation

In this paper we deal with risk averse stochastic dynamic problems and, in order to write
dynamic programming equations, we need to extend the concept of conditional expectation to
accommodate arbitrary risk measures. If X and Y are random variables, we can consider the
value ofR at the conditional distribution of X given Y = y, which we denote asR|Y [X ] and
refer to as a conditional risk mapping (Ruszczynski and Shapiro 2005). Following Shapiro
(2009), we consider a nested risk averse formulation based on conditional risk mappings:

{
V0(X0, p0) = Minc0

{
− p0c0 + δR|p0

[
Minc1 −p1c1 + δR|p1

[
· · ·

]]

s.t. (2) and (3),

}
(6)

where R|pt is a conditional risk mapping for t ∈ T and δ ∈ (0, 1) is the discount factor. In
this paper we will work with R|pt of the form (4). Throughout the paper we will consider
two different types of sets T : (i) T = {1, . . . , T } for the finite horizon case, where T is the
time horizon of the problem, and, (ii) T = N for the infinite horizon case, with particular
attention to the convergence properties of the objective function of (6). Details can be found
in Ruszczynski and Shapiro (2005), where the authors show that the corresponding dynamic
programming equations are,

Vt (Xt , pt ) = Min
ct∈[0,CAXt ]

{
− pt ct + δR|pt

[
Vt+1(AXt + Bct , pt+1)

] }
, (7)

for all t ∈ T and in the finite horizon case VT (XT , pT ) = −p(T )c∗(T ), with c∗(T ) =
CAX(T ) which corresponds to harvest the maximum possible amount.

If the conditional risk mappings are positive homogeneous (see Shapiro 2009), it is easy
to check that if

− pT−1 − δR|pT−1 [−pT ] ≤ 0, (8)

the optimal solution for t = T − 1 is c∗
T−1 = CAXT−1.1

Remark 1 In the general case, the determination of the optimal policy for an arbitrary t is
more difficult, as we do not know future policies. However, we will see that in other time
stages, conditions analogous to (8), i.e.,

− pt − δR|pt [−pt+1] ≤ 0 with t ∈ T , (9)

play a fundamental role in the characterization of the optimal policy in this article. Observe
that these conditions do not consider the entire future, but only the price of timber one period
ahead of time.

4 Geometric Brownian motion

We first study problem (6) when ρ = CVaRα and the dynamics of prices follow a geometric
Brownian motion (GBM). This dynamics has been extensively used to model asset prices

1 When −pT−1 − δR|pT−1 [−pT ] = 0 the optimum of (7) is reached for any c ∈ [0,CAXT−1], hence, for
this particular value we may adopt the convention c∗T−1 = CAXT−1.
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in financial markets and therefore represents a natural choice for timber prices. It is a well
known process, hence, we define it without further detail,

dpt = μptdt + σ ptdWt (GBM), (10)

where μ ∈ R is the drift of the GBM, σ > 0 is the constant variance and Wt denotes the
Wiener process.

For the GBM, the price pt+1 conditional on pt follows a lognormal distribution, and it is
possible to compute CVaRα|pt [−pt+1] explicitly:

CVaRα|pt [−pt+1] = −pt
eμ

α
Φ(z1−α − σ),

where Φ is the cumulative distribution function of the normal random variable with mean 0
and variance 1 and zα = Φ−1(1 − α) (see Theorem 6.2 of Shapiro et al. 2009).

It is easy to see that (9) is equivalent to

pt [−1 + λδeμ + (1 − λ)δeμκ] ≤ 0, with 0 < κ = 1

α
Φ(z1−α − σ) < 1. (11)

Therefore, condition (9) is equivalent to

δeμ[λ + (1 − λ)κ] ≤ 1,

that depends only on the parameters of the problem (δ, λ, α) and those of the price process
(μ, σ ). This implies that when prices follow a GBM, condition (9) is satisfied for all pt or
for none.

However, throughout this sectionweworkwith the strict inequality version of the condition
above

δeμ[λ + (1 − λ)κ] < 1, (12)

to assure convergence of the objective function in the infinite horizon case (see the proof of
Lemma 1).

We are now in condition to state the main result of this section, the characterization of
the greedy policy, i.e., c∗

t = CAXt for all t , when prices follow a GBM. The theorem
encompasses both finite and infinite horizon cases, and we present a brief technical lemma
showing that the value function is well defined in the latter case.

Lemma 1 Consider problem (6) with T = N and R = λE + (1 − λ)CVaRα assume prices
evolve according to (10). If Condition (12) holds, the value function V0 is well defined.

Theorem 1 Consider problem (6) withR = λE+ (1− λ)CVaRα and assume prices evolve
according to (10). If condition (12) holds, the greedy policy is optimal.

4.1 Discussion and insights

In this section we compare the optimality conditions for the risk neutral and risk averse cases.
In Piazza and Pagnoncelli (2014), it is shown that in the risk neutral setting under GBM, the
greedy policy is optimal if and only if

δeμ<1. (13)

Besides the obvious observation that when λ = 1 the risk neutral case is retrieved, other
interesting interpretations of condition (12) can be found. Since λ and κ belong to [0, 1], we
have the intuitive result that whenever the greedy policy is optimal for the risk neutral case
it will be automatically optimal for the risk averse case for the same choice of parameters.
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Fig. 1 κ as a function of σ for
α = 0.10, 0.05 and 0.01
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In Sect. 4.3 we show how the solution changes with λ; we now concentrate in the effect
of the other parameters. In Fig. 1 we can see that for values of σ close to zero, that is, in
the case where GBM is less volatile, the constant κ is close to one and conditions (12) and
(13) become essentially equivalent. For larger values of σ , that is, for higher volatility, we
observe that κ is closer to zero and, unless the drift μ is sufficiently high, the optimal policy
for a risk averse decision maker will be greedy.

Let us nowfix the value of σ and turn our attention to the role of the risk aversion parameter
α. In Fig. 1, as we increase α, that is, as the decision maker becomes less risk averse, the
multiplicative factor κ increases. In the limiting case, where α = 1, it can be seen from (11)
that κ = 1 and the risk neutral policy is retrieved.

It may seem that the consideration of both parameters α and λ is redundant as they both are
related to the level of risk aversion. This idea is reinforced by the fact that extreme values of α
and λ produce the same result, i.e., both α = 0 and λ = 1 yield the risk neutral solution. But,
they are conceptually different. Indeed, the value of α establishes which fraction of the worst
possible outcomes are taken into consideration, while λ assigns the weight these outcomes
will have in the objective function. Besides, for other risk measures the only parameter
controlling risk aversion is λ.

4.2 Another optimal policy

We show that Condition (9) is tight for the optimality of the greedy policy in the sense that if
it does not hold then the optimal policy is not greedy. If (9) does not hold, not only Lemma1
does not apply, but we can prove that the value function is not defined whenever T = N.2

Hence, we only consider T = {0, . . . , T }. It is natural to think that the decision maker should
postpone the harvest as much as possible. Hence, before the final time T , harvesting should
be stopped altogether in order to have the maximum surface available at time T . However,
observe that every land plot harvested and planted n or more time steps before T will contain
mature trees available for harvesting at time T . Hence, it is convenient to harvest every
mature tree at time T − n, since there is enough time for seedlings to mature before reaching
T . Repeating this reasoning we can conjecture that the only time steps when harvesting is

2 Details available from the authors upon request.
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Fig. 2 Efficient frontier for λ ∈ [0, 1]

allowed are T − kn for k = 0, 1, . . . , �T/n� and that everything available then should be
harvested. This is to say,

ct =
{
CAXt if t = T − kn
0 else.

Wecall this harvesting policy the accumulating policy (AP), andwe have the following result.

Theorem 2 Consider problem (6) withR = λE+ (1− λ)CVaRα and assume prices evolve
according to (10). If condition (12) does not hold, then the AP is optimal in the finite horizon
case.

4.3 Efficient frontier

Following Markowitz (1952) and Zheng (2009), we construct an efficient frontier by varying
the value of λwhen ρ = CVaR. For λ ∈ [0, 1], we calculate the total value at time t = 0 under
the greedy and accumulating policies. From Theorem 1 we know that the greedy policy will
be optimal for δeμ[λ + (1− λ)κ] less than one, and, beyond that value, Theorem 2 indicates
that the accumulating policy is optimal.

For a value of λ in the y axis, Fig. 2 shows the negative of the total value at time t = 0 under
the greedy policy (continuous line) and the accumulated policy (dashed line) in the x-axis.
The figure is generated with parametersμ = 0.2, σ = 0.4, p(0) = 1, δ = 0.95, α = 0.1 and
with T = 20 periods for the initial stateX(0) = (0, 0, 0, 1). With these values, condition (12)
gives a value of λ ≤ 0.742. Observe that the two lines intersect and the change of optimal
policies occurs for λ between 0.74 and 0.75, as we predicted.

5 Ornstein–Uhlenbeck process

Wenow study problem (6) when prices follow amean-revertingOrnstein–Uhlenbeck process
(O–U) and focus on ρ = CVaR. It is well-know that GBM does not capture some behaviors
of price movement such as mean-reversion, which is best emulated by the O–U process.
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Since O–U is a well-known process, we define it without further detail.

dpt = η( p̄ − pt )dt + σdWt (O–U), (14)

where η > 0 is the rate of mean-reversion to an equilibrium p̄, σ > 0 is the constant variance
andWt denotes theWiener process. A closed expression for the value of the price pt+1 given
the price pt can be written as follows:

pt+1 = e−η pt + (1 − e−η) p̄ +
∫ t+1

t
σeη(s−(t+1))dWs .

In an O–U process, it can be shown (see for example Maller et al. 2009) that at every
time period t the random variable pt follows a normal distribution3 with conditional mean
E|pt [pt+1] = p̄ + (pt − p̄)e−η, and conditional variance given by Variance|pt [pt+1] =
σ 2

2η (1 − e−2η).

If X follows a normal distribution with mean μ and variance σ , the CVaRα[X ] can be
explicitly computed:

CVaRα[X ] = μ + σ

α
√
2π

e−z2α/2, (15)

where zα = Φ−1(1−α) and Φ is the cumulative distribution function of the normal random
variable with mean 0 and variance 1 (see Theorem 6.2, Shapiro et al. 2009).

Using (15) we can calculate the CVaR at each time period as follows:

CVaRα|pt [−pt+1] = −pt e
−η − p̄(1 − e−η) + σ√

2π

√
1 − e−2η

2η

e−z2α/2

α
.

Using that δe−η ∈ (0, 1), condition (9) can be expressed as

p(t) ≥ δ

1 − δe−η

⎡
⎣ p̄(1 − e−η) − (1 − λ) σ√

2π

√
1 − e−2η

2η

e−z2α/2

α

⎤
⎦ , (16)

where the right hand side can be interpreted as a reservation price, i.e., a price threshold
above which it is optimal to harvest everything available.

In the previous section, when prices follow a GBM, we have condition (12) that does not
depend on pt and assures the satisfaction of (9) for all t . We do not have anything similar
when prices follow an O–U process, as we see that condition (16) depends on pt . Hence,
when solving Bellman equation (7) for t , we have no information of what may happen at
t + 1 or after and we have to consider every possible situation.

However, we will show in Theorem 3 that condition (16) is sufficient to assure that the
greedy policy is optimal at t , i.e., ct = CAXt . We must stress here that (16) is not necessary
and that we do not have any information about what the optimal policy is when it does not
hold.

To simplify notation we name

a = e−η and b = p̄(1 − e−η) − σ(1 − λ)√
2π

√
1 − e−2η

2η

e−z2α/2

α
, (17)

3 Even though the arithmetic O–U can lead to negative values, the process is frequently used to model
the evolution of prices (see, for example, Alvarez and Koskela 2005; Gjolberg and Guttormsen 2002). The
discussion of which process best represents timber prices is far from being settled. We refer the reader to Dixit
and Pindyck (1994), Insley and Rollins (2005) and the references therein for more information.

123



488 Ann Oper Res (2017) 258:479–502

and hence R|pt [−pt+1] = −apt − b. The idea of the proof consists in showing that the
coefficient of c in (7) is composed of terms of the form

Δ
mi
ji

(pt ) = δmi

{
−pta

mi (1−δ ji a ji ) − b

1 − a

[
1 − δ ji − ami (1−δ ji a ji )

]}
(18)

for some values of mi and ji such that ji ∈ {0, . . . , n − 1}.
Instead of checking the sign ofΔm

j (pt ) for every value ofm and j , we use the equivalence

Δm
j (pt ) ≤ 0 ⇐⇒ pt ≥ b

1 − a

[
1 − 1 − δ j

am(1 − δ j a j )

]
(19)

and prove in the next lemma that Δm
j (pt ) ≤ 0 when condition (16) holds.

Lemma 2 If a ∈ (0, 1) and b ≥ 0, condition (16) implies that

Δm
j (pt ) ≤ 0, for all m and j ∈ N.

When price follows an O–U process, we have that a < 1, but for some values of the
parameters we could have b < 0. Hence, the second hypothesis of Lemma 2 has to be
explicitly required in the statement of the main result of this section.

Lemma 3 Consider problem (6) with T = N with R = λE + (1 − λ)CVaRα and assume
prices evolve according to (14). The value function V0 is well defined.

Theorem 3 Consider problem (6) withR = λE+ (1− λ)CVaRα and assume prices follow
(14). If b ≥ 0 and condition (16) holds, then ct = CAXt is optimal at time t.

The right-hand side of (16) can be used as a reservation price, as we know that if pt is
above that value it is optimal to harvest every mature tree. The condition is sufficient but not
necessary: if (16) does not hold, we are not able to discard the greedy policy.

5.1 Discussion and insights

In Piazza and Pagnoncelli (2014) the risk neutral version of this problem was studied, and
the following reservation price was found

pr = δ

1 − δe−η
p̄ (1 − e−η),

which is exactly the positive term of the right hand side of (16). Therefore, for every value
of the parameters λ, η, α and σ , the greedy policy is more likely to be optimal in the risk
averse framework than in the risk neutral one.

If we choose α = 1 in the calculation of the CVaR we obtain the usual expected value
operator. Indeed, observe that the term e−z2α/2/α in (16) goes to zero when α approaches
1, implying that resulting reservation price would be pr , retrieving the solution for the risk
neutral harvesting problem.

It is straightforward to see that if the volatility σ goes to zero we have that the reservation
price also coincides with pr . This result is rather intuitive and it mimics what we obtained
for the GBM case: if the volatility is small the sufficient conditions for the optimality of the
greedy policy are essentially the same under risk neutrality and risk averseness. However,
when the volatility σ increases the two cases are significantly different.

When η goes to infinity, b goes to p̄ and a goes to zero. The reservation price simplifies
to δ p̄. In this case one can expect that the optimal policy will be greedy for any t since the
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Table 1 Parameters regions 0 < a ≤ 1 1 < a < 1/δ a > 1/δ

b ≥ 0 (i) (ii) (v)

b < 0 (iii) (iv) (v)

speed of the mean reversion is so high that the price is essentially equal to p̄ for all time
periods and therefore greater than the reservation price δ p̄. This is consistent with the result
for constant deterministic prices presented in Rapaport et al. (2003) that establishes that the
greedy policy is optimal for all time periods.

In the right hand side of (16), the term
√

1−e−2η

2η is strictly decreasing with η and it lies
between zero and one.When the speed of themean reversion η vanishes, thewhole expression
converges to 1. Since the first term in the expression of b goes to zero as η approaches zero,
we have in this case that b = −σ(1−λ)√

2πα
e−z2α/2 < 0. It is interesting to note that in this case

Theorem 3 does not apply. We deal with this particular situation in the next section.

6 Extension to affine weighted mean-risk measures

It is worth investigating whether the results of the previous section can be generalized for
other values of a and b. This would eliminate the hypothesis b ≥ 0 of Theorem 3, and, more
importantly, it would allow the extension of the results to other price processes and to risk
measures other than CVaRα .

The proof of Theorem 3 relies heavily in the fact that

R|pt [−pt+1] = −apt − b

and is valid for (a, b) ∈ (0, 1)×R+. In the following we study the extension of this theorem
to (a, b) ∈ (0, 1/δ) × R. We start with the generalized version of Lemma 3.

Lemma 4 Consider problem (6) with T = N and assume that R|pt [−pt+1] = −apt − b.
The value function V0(·, ·) is well defined if a ∈ (0, 1/δ).

We divide the semi-plane of parameters in five regions as shown in Table 1 and study
the variation of the right-hand side of (19) in each of these regions. The following theorem
summarizes the sufficient conditions for the optimality of the greedy policy, that can be found
with this method.

Theorem 4 Consider problem (6) and assume R|pt [−pt+1] = −apt − b.

1. In region (i), pt ≥ bδ/(1 − δa) is sufficient to assure c∗(t) = CAXt .
2. In region (ii), pt ≥ bδ/(1 − δa) is sufficient to assure c∗(t) = CAXt .
3. In region (iii), no sufficient condition assuring c∗(t) = CAXt is found if T = N. In the

finite horizon case pt ≥ b
1−a

[
1 − 1−δ

aT−t (1−δa)

]
is sufficient.

4. In region (iv), pt ≥ b/(1 − a) is sufficient to assure c∗(t) = CAXt .

Remark 2 Although regions (i) and (ii) deliver the same sufficient condition, we decided
to keep them separated as case (i) is exactly Theorem 3. The theorem does not provide
information about the region (iii) when T = N, because the method of proof used delivers
the condition pt = ∞. However, this method can be applied in the finite horizon case to
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retrieve a meaningful condition. Concerning region (v), not only Lemma 4 does not apply,
but it is possible to prove that the objective function is not well defined.4

Theorem 1 is a corollary of Theorem 4. Indeed, when prices follow a GBM and we use
R = λE + (1 − λ)CVaR, we have a = λeμ + (1 − λ)eμκ and b = 0. When b = 0, by
simple inspection we see that conditions (i) and (ii) reduce to pt ≥ 0, that is always satisfied.
Furthermore, a < 1/δ is equivalent to Condition (12).

Corollary 1 If b = 0 and pt ≥ 0 for all t (as is the case for a GBM price process) and
0 < a < 1/δ, the greedy policy is always optimal.

In the next subsection we compute explicit values of a and b for another risk measure,
showing the relevance of Theorem 4.

6.1 Mean deviation risk

Another important risk measure is the Mean Deviation Risk (MDR) of order p:

MDR[X ] := E[X ] + cE
[|X − E[X ]|p])1/p,

where p ∈ [1,+∞) and c > 0. TheMDRhas similarities with the expression of the variance,
and under mild hypothesis, e.g, nonatomic probability measures, is a coherent risk measure
for p > 1, c ≥ 0, and p = 1, c ∈ [0, 1/2] (Shapiro et al. 2009). For GBM and O–U we have
respectively:

MDR|pt (−pt+1) = −pt e
μ − cpt e

μ

(
E

[∣∣∣∣e− σ2
2 +σW − 1

∣∣∣∣
p])1/p

,

MDR|pt (−pt+1) = −pt e
−η − p̄(1 − e−η) + c

(
E

[∣∣∣∣
∫ t+1

t
σeη(s−(t+1))dW (s)

∣∣∣∣
p
])1/p

.

TheMDR is much less tractable than the CVaR. However, for the particular case of p = 2
and a O–U process, we are able to obtain explicit expressions using Itô’s isometry5:

MDR|pt (−p(t + 1)) = −pt e
−η − p̄(1 − e−η) + cσ

(
1

2η
− e−2η

2η

)1/2

.

Therefore, when the MDR of order 2 is used as a weighted risk objective as in (4), it is affine
in pt for O–U and the coefficients are

a = e−η, b = p̄(1 − e−η) − cσ

(
1 − e−2η

2η

)1/2

.

7 Conclusions

We study a harvest scheduling problem under price uncertainty.We depart from the usual risk
neutral framework and incorporate weighted mean-risk measures in the objective function.
Considering both the finite and infinite time horizon frameworks, we obtain conditions on
the parameters of the model that characterize the optimal policy.

4 Details available from the authors upon request.
5 The calculations are done in the “Appendix” of this manuscript.
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Our theoretical results characterize completely the optimal policy for the GBM case and
provide a closed expression of a reservation price for the O–U case. We focus first on the
Conditional Value-at-Risk, and later extend our results for any affine risk measure. We also
prove that the Mean-Deviation Risk is affine so our results apply directly to this case.

Future work includes considering a more complex forest growth model. For example,
taking into account natural mortality needs only a very simple modification in the matrix that
defines the growth dynamics. However, proofs may need a significant adaptation.

Consideringmulti-species forests would allow us to compare our results with an important
part of the present literature. The traditional paradigm indicates that a risk averse decision
maker would favor a more homogeneous land allocation, establishing more ecologically
friendly forests. Indeed, through numerical experiments, Hildebrandt et al. (2010), Knoke
et al. (2005) and Roessiger et al. (2011) show that higher risk aversion implies higher mixture
of species.
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celli acknowledges the financial support of FONDECYT under projects 11130056 and 1120244. A. Piazza
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ACT1106 and CONICYT REDES 140183.

Appendix

Preliminaries

Before getting into the proof of the lemmas and theorems stated in the main body of the
paper, we present some definitions that will be necessary throughout the proofs.

In (7), the optimal control ct in each period depends only on the current state of the forest
and price through the decision function ct = πt (Xt , pt ). A sequence Π = {πt }t∈T is called
a policy. Of course, a policy is feasible if Xt and ct = πt (Xt , pt ) satisfy (2) and (3) for every
possible value of Xt and pt at every instant t ∈ T . Observe that the non-negativity of the
state variables x̄t and xa,t for a = 1, . . . , n is assured by (2) and (3).

The expected benefit of a given policy Π for an initial state X0 and an initial price p0 is

QΠ
0 (X0, p0) = −p0π0(X0, p0) + δR|p0

[−p1π1(X1, p1) + δR|p1 [· · · ]
]
, (20)

if the time horizon is infinite. Correspondingly, we denote QΠ
0,T (X0, p0) the expected benefit

of policy Π whenever T = [1, . . . , T ].
Problem (6) can be stated as the problem of finding a feasible policy that minimizes (20),

V0(X0, p0) =
{
minΠ QΠ

0 (X0, p0)
s.t. Π is a feasible policy,

(21)

or analogously, V0,T (X0, p0) = minΠ QΠ
0,T (X0, p0) s. t. Π is a feasible policy.

In the sequel, we will also use the expected discounted benefit from an intermediate step

QΠ
t (Xt , pt ) = −pt ct + δR|pt

[−pt+1ct+1 + δR|pt+1 [· · · ]
]

and the corresponding value function

Vt (Xt , pt ) =
{
minΠ QΠ

t (Xt , pt )
s.t. Π is a feasible policy,

as well as the analogous definitions in the finite case.
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Appendix 1: Proof of Lemma 1

For given initial state and price X0, p0 we consider the cost resulting of the application of
policy Π (not necessarily optimal) up to T : QΠ

0,T (X0, p0). To lighten the notation we will

use QΠ
0,T instead of QΠ

0,T (X0, p0) as X0 and p0 remain constant throughout the proof. The

expression of QΠ
0,T is a slight modification of (20)

QΠ
0,T = −p0c0 + δR|p0 [−p1c1 + · · · + δR|pT−1 [−pT cT ]],

Due to the fact that pt ct ≥ 0 for all t (when prices follow a GBM) and the monotonicity of
any coherent risk measure we know that QΠ

0,T ≥ QΠ
0,T+1, hence the sequence QΠ

0,T either

converges to the limit or diverges to−∞when T → ∞. We now prove that QΠ
0,T is bounded

below for all T ,

QΠ
0,T = −p0c0 − δeμχp0c1 − · · · − (δeμχ)T p0cT ≥ −p0S

1 − (δeμχ)T+1

1 − δeμχ
,

where S represents the total surface of the forest and χ = λ + κ(1 − λ).
If δeμχ < 1we get QΠ

0,T > −p0S
1

1−δeμχ
> −∞ for all T . This implies that the sequence

QΠ
0,T converges when T goes to infinity. This limit is the value associated to the policy Π

denoted as QΠ
0 ,

QΠ
0 = −p0

∞∑
t=0

(δeμχ)t ct > −∞ (22)

As the bound on QΠ
0 does not depend on the policy Π , we conclude

V0(X0, p0) = Min
Π

QΠ
0 > −∞.

Appendix 2: Proof of Theorem 1

To prove that the greedy policy is optimal, we check that the benefit associated with it, QGP,
satisfies the Bellman equation (7) from any initial condition. The formula of QGP is obtained
using (22), where χ = λ + κ(1 − λ).

We consider first the infinite time horizon case. If the initial state is Xt = (x̄, xn, . . . ,
x2, x1), it is easy to see that the harvests associated to the GP are ct+in = x̄ + xn for all i ∈ N

and ct+in+ j = xn− j for j = 1, . . . , n − 1 and i ∈ N, and hence,

QGP
t (Xt , pt ) = −pt

∞∑
i=0

⎛
⎝(δeμχ)in x̄ +

n−1∑
j=0

(δeμχ)in+ j xn− j

⎞
⎠ . (23)

Given ct = c ∈ [0,CAXt ], the state at t + 1 is Xt+1 = (x̄ + xn − c, xn−1, . . . , x1, c) and
the value associated to the GP is

QGP
t+1(Xt+1, pt+1) = −pt+1

∞∑
i=0

(
(δeμχ)in(x̄ + xn − c)

+
n−2∑
j=0

(δeμχ)in+ j xn− j−1 + (δeμχ)in+n−1c
)
.
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Inserting Vt+1 = QGP
t+1 into the rhs of the Bellman equation (7), the argument of the Min

operator is

Φ(c) = −pt c + δR|pt

[
−pt+1

∞∑
i=0

(
(δeμχ)in(x̄ + xn − c)

+
n−2∑
j=0

(δeμχ)in+ j xn− j−1 + (δeμχ)in+n−1c

⎞
⎠
⎤
⎦

= −pt c − pt

∞∑
i=0

(
(δeμχ)in+1(x̄ + xn − c)

+
n−2∑
j=0

(δeμχ)in+ j+1xn− j−1 + (δeμχ)in+nc
)

(24)

The coefficient affecting c in Φ(c) is

coeff(c)=−pt

(
1 −

∞∑
i=0

(δeμχ)in+1+
∞∑
i=0

(δeμχ)in+n

)
= −pt (1− δeμχ)

∞∑
i=0

(δeμχ)in >0

As coeff(c) < 0, the minimum in (7) is attained when c = x̄ + xn . Inserting this value of
c in (24) yields

Φ(x̄ + xn) = −pt (x̄ + xn) − pt

∞∑
i=0

⎛
⎝

n−2∑
j=0

(δeμχ)in+ j+1xn− j−1 + (δeμχ)in+n(x̄ + xn)

⎞
⎠

= −pt

∞∑
i=0

⎛
⎝(δeμχ)in(x̄ + xn) +

n−1∑
j=1

(δeμχ)in+ j xn− j

⎞
⎠ = QGP(Xt , pt ),

showing that (7) holds and that the GP is optimal.
The proof for the finite horizon case is similar butmore involved. Indeed, let t be expressed

as T − (kn + j), where k = � T−t
n � and j ∈ {0, . . . , n − 1} is the remainder of the integer

division of (T − t) by n. This way of expressing t puts in evidence that after completing k
cycles there will be still j time steps to go until reaching the end of the horizon. Thus, the
expected benefit associated to the GP is

QGP
t (Xt , pt ) = −pt

[
k−1∑
i=0

(δeμχ)in

(
x̄ +

n−1∑
l=0

(δeμχ)l xn−l

)

+ (δeμχ)kn

⎛
⎝x̄ +

j∑
l=0

(δeμχ)l xn−l

⎞
⎠
⎤
⎦ .

The first term of the rhs represents the expected benefit of the k completed cycles, while
the second term corresponds to the last j steps. Again, we need to check that QGP satisfies
(7) and that the minimum is attained for c = CAXt . We leave the details to the reader.

123



494 Ann Oper Res (2017) 258:479–502

Appendix 3: Proof of Theorem 2

To prove that the accumulating policy is optimal, we check that the benefit associated with it
(QAP ) satisfies the dynamic programming equation (7). Let t be expressed as T − (kn + j),
where k = � T−t

n � and j ∈ {0, . . . , n − 1} is the remainder of the integer division of (T − t)
by n. After some computations we can prove that

QAP
t (Xt , pt ) = −pt

[
(δeμχ)k(x̄ +

j∑
l=0

xn−l) +
k∑

i=1

(δeμχ)in+ j S
]

(25)

where S represents the total surface of the forest and χ = λ + κ(1 − λ). We point out that
for k = 0, we follow the convention

∑0
1(·) = 0.

For the rest of the proof we divide the study into two cases depending on the value of j :
(i) j > 0 and (ii) j = 0.

(i) Here we have t + 1 = T − (k′n + j ′) where k′ = k and j ′ = j − 1 ∈ {0, . . . , n − 2}
and QAP

t+1(AXt + Bc, pt+1) can be expressed as

−pt+1

[
(δeμχ) j−1(x̄+xn−c+

j−1∑
l=0

xn−l−1) +
k∑

i=1

(δeμχ)in+ j−1S
]
,

where χ = λ + (1 − λ)κ . Inserting V = QAP into the right-hand side of the dynamic
programming equation (7), the argument of the min operator, Φ(c), is

− pt c + δR|pt
[ − pt+1

[
(δeμχ) j−1(x̄ + xn − c +

j−1∑
l=0

xn−l−1) +
k∑

i=1

(δeμχ)in+ j−1S
]]

= − pt c − pt
[
(δeμχ) j (x̄ + xn − c +

j−1∑
l=0

xn−l−1) +
k∑

i=1

(δeμχ)in+ j S
])

= − pt c(1 − (δeμχ) j ) − pt
[
(δeμχ) j (x̄ + xn +

j∑
l=1

xn−l) +
k∑

i=1

(δeμχ)in+ j S
]

= − pt c(1 − (δeμχ) j ) + QAP
t (Xt , pt ).

As the coefficient of c is non-negative, the minimum is attained when c = 0 and Φ(0) is
exactly QAP

t (Xt , pt ), showing that equation (7) holds.
(ii) Case t = T − kn. In this case, we have t + 1 = T − [(k − 1)n + n − 1)] and

QAP
t+1(AXt + Bc, pt+1) can be expressed as

− pt+1

[
(δeμχ)n−1(x̄ + xn − c +

n−2∑
l=0

xn−l−1 + c) +
k−1∑
i=1

(δeμχ)in+n−1S
]

= − pt+1

[
(δeμχ)n−1S +

k∑
i=2

(δeμχ)in−1S

]
= −pt+1

k∑
i=1

(δeμχ)in−1S.

Inserting again V = QAP into the right-hand side of the Bellman’s equation (7), the
argument of the min operator is

Φ(c) = −pt c + δR|pt

[
−pt+1

k∑
i=1

(δeμχ)in−1S

]
.
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The coefficient of c is negative, and thus, the minimum is attained when c = x̄ + xn . So we
have,

Φ(x̄ + xn) = −pt (x̄ + xn) − pt

k∑
i=1

(δeμχ)in S.

The right-hand side is exactly (25) when j = 0, hence we have Φ(x̄ + xn) = QAP
t (·, ·) and

equation (7) is satisfied.
In both cases, we have shown that QAP

t (·, ·) satisfies equation (7), hence it is the value
function and the proposed policy is optimal.

Appendix 4: Proof of Lemma 2

Due to (19), we only need to show that

δb

1 − δa
≥ b

1 − a

[
1 − 1 − δ j

am(1 − δ j a j )

]
. (26)

Using that

δb

1 − δa
= b

1 − a

[
1 − 1 − δ

1 − δa

]
,

we have that (26) is equivalent to

1

1 − a

[ 1 − δ

1 − δa

]
≤ 1

1 − a

[ 1 − δ j

am(1 − δ j a j )

]

⇐⇒ 1

1 − a

[am(1 − δ j a j )

1 − δa

]
≤ 1

1 − a

[1 − δ j

1 − δ

]

⇐⇒ 1

1 − a

[
am

j−1∑
l=0

(δa)l
]

≤ 1

1 − a

[ j−1∑
l=0

δl
]
.

Given that a ∈ (0, 1), the last inequality is always valid.

Appendix 5: Proof of Lemma 3

Given initial state and price X0, p0 we denote by QΠ
0,T (X0, p0) the cost resulting of the

application of a (not necessarily optimal) policy Π up to T . As in Lemma 1 we denote
QΠ

0,T = QΠ
0,T (X0, p0). Knowing that Rpt [−pt+1] = −apt − b, where a and b are defined

in (17), we can write QΠ
T as:

QΠ
0,T = −p0c0 + δR|p0 [−p1c1 + δR|p1 [−p2c2 + · · ·

+ δR|pT−3 [−pT−2cT−2 + δR|pT−2 [−pT−1cT−1 + δR|pT−1 [−pT cT ]]]]]
= −p0c0 + δR|p0 [−p1c1 + δR|p1 [−p2c2 + · · ·

+ δR|pT−3 [−pT−2cT−2 + δR|pT−2 [−pT−1(cT−1 + δacT ) − δbcT ]]]]
= −p0c0 + δR|p0 [−p1c1 + δR|p1 [−p2c2 · · ·

+ δR|pT−3 [−pT−2(cT−2 + δacT−1 + (δa)2cT ) − bδcT−1 − bδ2(a + 1)cT ]]]
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...

= −p0

T∑
t=0

(δa)t ct − b
T∑
t=1

δt ct
1 − at

1 − a

We will show that limT→∞ QΠ
0,T exists and define the value associated with policy Π for

the infinite time horizon as the value of that limit. To this end we compute

|QΠ
0,T+τ − QΠ

0,T | ≤ p0

T+τ∑
t=T+1

ct (δa)t + |b|
T+τ∑

t=T+1

δt ct
1 − at

1 − a

≤ p0

∞∑
t=T+1

ct (δa)t + |b|
∞∑

t=T+1

δt ct
1

1 − a

≤ (δa)T+1 p0S
1

1 − δa
+ δT+1S|b| 1

1 − δ

1

1 − a
. (27)

As the last expression converges to 0 when T → ∞ for all τ ∈ N, we conclude that
limT→∞ QΠ

0,T exists.

Appendix 6: Proof of Theorem 3

We state Xt+1 and equation (7) in terms of Xt and c as follows.

Xt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̄t
xn,t

xn−1,t
...
...

x1,t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−→ Xt+1 = AXt + Bc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̄t + xn,t − c
xn−1,t

xn−2,t
...
...

c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Vt (Xt , pt ) = min
c

{ − pt c + δR|pt (Vt+1(Xt+1, pt+1))
}
.

Themain idea of the proof is to consider the role played by c in all the possible expressions
of Vt+1(·, ·). This is not an easy task, but despite all the possible harvesting policies, the
coefficient of c has a particular structure: it is the sum of terms of the form Δ

mi
ji

(pt ) (as
defined in (18)), for some values of mi ∈ N and ji ∈ {0, . . . , n − 1} plus possibly one
negative term Γ m(pt ) = −δm[ptam + b

∑m−1
l=0 al ].6

Indeed, from t + 1 on, two different situations can arise: (i) nothing is harvested in the
next n steps or (ii) the first harvest occurs at t = j0 with 1 ≤ j0 < n.

In case (i), the state at t + n will be

Xt+n = (S − c, c, 0, . . . , 0)T .

It is easy to see that the influence of c extinguishes as the constraint on the harvest is ct+n ≤ S.
We do not know the complete expression of Vt+1(·, ·) but we do know that the coefficient of
c is simply Γ 0(pt ) = −pt with no Δm

j (pt ) terms.

6 We assume that at every step from t + 1 onwards, we either harvest nothing at all or everything available.
Due to the linearity of the forestry model, this assumption is equivalent to requiring that the coefficient of c in
(7) is never zero, but having a zero coefficient is an event with zero probability.
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In case (ii), the first harvest after t takes place at t + j0 and (7) can be written as:

Vt (Xt , pt ) = min
c

{ − pt c + δR|pt+1 [δR|pt+2 [. . . δRpt+ j0−1 [−pt+ j0(x̄t + · · · + xn− j0,t − c)

+ δR|pt+ j0
[Vt+ j0+1(Xt+ j0+1, pt+ j0+1)]]]]

}
.

Hence, the first term of the coefficient of c is of the form

Δ0
j0(pt ) = −pt (1 − δ j0a j0) − b

1 − a
(−δ j0 + δ j0a j0).

There might be more terms including c in the expression of Vt+ j0+1(·, ·). For a complete
characterization of the coefficient of c we refer the reader to Piazza and Pagnoncelli (2014)
where the analogous result in the risk neutral case is presented. The construction of the
coefficient of c follows the same lines, the reader only needs to substitute the operator E|pt
for R|pt .

The number of terms comprising the coefficient of c, may or not be finite. In the infinite
case, Lemma 3 implies that the sum converges.

The proof is completed by showing that the coefficient of c is negative. But, Lemma 2
shows that Δm

j ≤ 0 when condition (16) holds, which finishes the proof.

Appendix 7: Proof of Lemma 4

For values of a ∈ (0, 1) the proof presented for Lemma 3 is valid. For values of a ∈ [1, 1/δ)
we need to modify the proof from (27) onwards.

We have that

|QΠ
T+τ − QΠ

T |≤p0

T+τ∑
t=T+1

ct (δa)t + |b|
T+τ∑

t=T+1

δt ct

t−1∑
j=0

a j .

Using that 1 ≤ a and ct ≤ S for all t we get

|QΠ
T+τ − QΠ

T |≤(δa)T+1 p0S
1

1 − δa
+ S|b|

∞∑
t=T+1

t (aδ)t .

As the sum
∑∞

t=1 t (aδ)t converges whenever aδ < 1, its T -tail must go to zero when T goes
to infinity.

Finally, we have that the right hand side of the inequality above converges to 0 when
T → ∞ and we conclude that limT→∞ QΠ

T exists.

Appendix 8: Proof of Theorem 4

This theorem is a generalization of Theorem 3 from (a, b) ∈ (0, 1) × R+ to (a, b) ∈
(0, 1/δ) × R. The proof of Theorem 3 consist in characterizing the coefficient of c in the
Bellman equation (7). It is shown that this coefficient is the sum of infinite terms of the form
Δm

j (pt ). This construction does not depend on the value of a and b but relies exclusively in
the fact that the conditional risk measure is affine on pt . Hence, this part of the proof extends
directly to the more general setting of this theorem.
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Fig. 3 Semi-plane of parameters a and b

Table 2 Parameters regions 0 < a ≤ 1 1 < a < 1/δ a > 1/δ

b ≥ 0 (i) (ii) (v)

b < 0 (iii) (iv) (v)

The characterization of the coefficient’ sign relies on Lemma 2 presented in Sect. 5 that
gives a sufficient condition assuring that

Δm
j (pt ) ≤ 0 for all m ≤ T − t and for all j ∈ {1, . . . , n}. (28)

Lemma 2 is valid for (a, b) ∈ (0, 1)×R+. In the following we study the extension of this
lemma to (a, b) ∈ (0, 1/δ)×R. We start by noticing that (18) is not valid for a = 1. We will
use the following representation of Δm

j (pt ),
{

δmi

{
−ptami (1 − δ ji a ji ) − b

1−a

[
1 − δ ji − ami (1 − δ ji a ji )

]}
if a �= 1

δm{−pt (1 − δ j ) − b[m − δ j (m + j)]} if a = 1,

The parameters’ semi-plane is divided in five regions as shown in Fig. 3 and Table 2.7

In the following, we look for conditions implying Condition (28), as this is sufficient
to prove that the coefficient of c∗

t is negative and hence c∗
t = CAXt . We will see that the

following conditions imply Condition (28):

1. In region (i), pt ≥ bδ/(1 − aδ) (this is Lemma 2).
2. In region (ii), pt ≥ bδ/(1 − aδ).8

3. In region (iii), no sufficient condition assuring Condition (28) is found in the infinite
horizon case.

4. In region (iv), pt ≥ b/(1 − a)

7 In the particular case that 1 − δa = 0 we observe that Δm
j (pt ) does not depend of pt and that Condition

(28) can be verified a priori. The study of this particular case is straightforward and we omit it.
8 Although, regions (i) and (ii) yield the same sufficient condition, we keep them as independent regions
because the proof we present needs to separate the cases a ≤ 1 and a > 1, and because this theorem applied
in region (i) corresponds to Theorem 3 (see Remark 2).

123



Ann Oper Res (2017) 258:479–502 499

Let us denote by rmj (a, b) to the rhs of (19) when a �= 1 and the corresponding expression
for a = 1, i.e.,

rmj (a, b) =
⎧⎨
⎩

b
1−a

[
1 − 1−δ j

am (1−δ j a j )

]
if a �= 1

−b
1−δ j [m − δ j (m + j)] if a = 1

In the following, we prove the properties summarized in Fig. 3. We observe in the first
place that

Δm
j (pt ) ≤ 0 ⇐⇒ pt ≥ rmj (a, b) if 1 − δa > 0 (29)

We start by determining whether r01 (a, b) = bδ
1−δa bounds rmj (a, b) (below or above) for

all m and j = 1, . . . , n. We study the case a �= 1, leaving the easier particular case a = 1 to
the reader. We also make the observation that if b = 0 then rmj = 0 for all m and j .

r01 (a, b) � rmj (a, b)

⇐⇒ bδ

1 − δa
= b

1 − a

[
1 − 1 − δ

(1 − δa)

]
�

b

1 − a

[
1 − 1 − δ j

am(1 − δ j a j )

]

⇐⇒ −b

1 − a

[ 1 − δ

(1 − δa)

]
�

−b

1 − a

[ 1 − δ j

am(1 − δ j a j )

]

⇐⇒ b

a − 1

[ 1 − δ

1 − δa

]
�

b

a − 1

[ 1 − δ j

am(1 − δ j a j )

]
(30)

If sign(b) sign(a − 1) > 0, i.e., in regions (ii) or (iii), (30) is equivalent to

am
1 − δ j a j

1 − δa
�

1 − δ j

1 − δ

⇐⇒ am
j−1∑
l=0

(δa) j �
j−1∑
l=0

δ j

– If a > 1 (region (ii)), the inequality above holds with “≥”. Hence, r01 (a, b) ≥ rmj (a, b).

– If a < 1 (region (iii)), it holds with “≤”. Hence, r01 (a, b) ≤ rmj (a, b).

If sign(b) sign(a − 1) < 0, i.e., in regions (i) or (iv), (30) is equivalent to

1 − δ j

1 − δ
� am

1 − δ j a j

1 − δa
j−1∑
l=0

δ j �
j−1∑
l=0

δ j am
j−1∑
l=0

(δa) j

– If a > 1 (region (iv)), the inequality above holds with “≤”. Hence, r01 (a, b) ≤ rmj (a, b).

– If a < 1 (region (i)), it holds with “≥”. Hence, r01 (a, b) ≥ rmj (a, b).

Table 3 summarizes these results.
Putting this information together with that of (29), we conclude that to assure Condition

(28) it is sufficient to have the conditions indicated in Table 4.
In regions (i) and (ii) we are ready to give a sufficient condition assuring Condition (28):

pt ≥ r01 (a, b) = δb

1 − δa
.
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Table 3 Bounds for rmj (a, b) 0 < a ≤ 1 1 < a < 1/δ

b ≥ 0 r01 ≥ rmj r01 ≥ rmj

b < 0 r01 ≤ rmj r01 ≤ rmj

Table 4 Bounds for pt 0 < a ≤ 1 1 < a < 1/δ

b ≥ 0 pt ≥ r01 pt ≥ r01
b < 0 pt ≥ rmj ∀m, j pt ≥ rmj ∀m, j

To reach some conclusion in regions (iii) and (iv) we need some extra information of
rmj (a, b).

In region (iv) it is very easy to check that rmj (a, b) ≤ b/(1 − a). Hence pt ≥ b/(1 − a)

is sufficient to assure Condition (28).
In region (iii) is a bit different. We have that limm→∞ rmj (a, b) = +∞, hence pt cannot

be greater than rmj for all m. Hence, no conclusion can be drawn in the infinite horizon
case. However, in the finite horizon case Condition (28) only requires having pt ≥ rmj for

m ≤ T − t . Furthermore, some calculation shows that rm+1
j > rmj and rmj > rmj+1.Hence, we

can propose a condition depending on the value of T − t : pt ≥ rT−t
1 = b

1−a

[
1− 1−δ

aT−t (1−δa)

]
.

Appendix 9: Mean deviation risk calculation for O–U

For the particular case of p = 2 and a O–U process, the conditional MDR is given by:

MDR|pt (−p(t + 1)) = −pt e
−η − p̄(1 − e−η)

+ c

(
E

[∣∣∣∣
∫ t+1

t
σeη(s−(t+1))dW (s)

∣∣∣∣
2
])1/2

.

In order to calculate the stochastic integral we apply Itô’s isometry:

E

(∣∣∣∣
∫ T

0
G(t,Wt )dWt

∣∣∣∣
2)

= E

(∫ T

0
|G(t,Wt )|2 dt

)
, (31)

for a stochastic process G(t,Wt ) ∈ L
2(0, T ). Using (31) and noting that in our case the

process G is deterministic, we have

(
E

[∣∣∣∣
∫ t+1

t
σeη(s−(t+1))dW (s)

∣∣∣∣
2
])1/2

=
(
E

[∫ t+1

t
(σeη(s−(t+1)))2ds

])1/2

= σ

(
E

[∫ t+1

t
e2η(s−(t+1))ds

])1/2

= σ

(
1

2η
− e−2η

2η

)1/2

.
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Shapiro, A., Dentcheva, D., & Ruszczyński, A. (2009). Lectures on stochastic programming: Modeling and

theory (Vol. 9). Philadelphia: SIAM.
Tahvonen, O., & Kallio, M. (2006). Optimal harvesting of forest age classes under price uncertainty and risk

aversion. Natural Resource Modeling, 19(4), 557–585.
Thomson,T. (1992).Optimal forest rotationwhen stumpage prices followadiffusion process.LandEconomics,

68(3), 329–342.
Valladão, D. M., Veiga, Á., & Veiga, G. (2014). Amultistage linear stochastic programming model for optimal

corporate debt management. European Journal of Operational Research, 237(1), 303–311.
Yoshimoto, A., & Shoji, I. (1998). Searching for an optimal rotation age for forest stand management under

stochastic log prices. European Journal of Operational Research, 105(1), 100–112.
Zheng, H. (2009). Efficient frontier of utility and cvar.Mathematical Methods of Operations Research, 70(1),

129–148.
Zhong-wei, W., & Yan, P. (2009) Measurement of forest fire risk based on var. In International conference on

management science and engineering, 2009. ICMSE 2009. IEEE.

123


	The optimal harvesting problem under price uncertainty: the risk averse case
	Abstract
	1 Introduction
	2 Model formulation
	3 Weighted mean-risk formulation
	3.1 The Conditional Value-at-Risk
	3.2 Dynamic programming formulation

	4 Geometric Brownian motion
	4.1 Discussion and insights
	4.2 Another optimal policy
	4.3 Efficient frontier

	5 Ornstein--Uhlenbeck process
	5.1 Discussion and insights

	6 Extension to affine weighted mean-risk measures
	6.1 Mean deviation risk

	7 Conclusions
	Acknowledgements
	Appendix
	Preliminaries

	Appendix 1: Proof of Lemma 1
	Appendix 2: Proof of Theorem 1
	Appendix 3: Proof of Theorem 2
	Appendix 4: Proof of Lemma 2
	Appendix 5: Proof of Lemma 3
	Appendix 6: Proof of Theorem 3
	Appendix 7: Proof of Lemma 4
	Appendix 8: Proof of Theorem 4
	Appendix 9: Mean deviation risk calculation for O--U
	References




