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Abstract In this paper potential usage of different correlationmeasures in portfolio problems
is studied. We characterize especially semidefinite positive correlation measures consistent
with the choices of risk-averse investors. Moreover, we propose a new approach to portfolio
selection problem, which optimizes the correlation between the portfolio and one or two
market benchmarks. We also discuss why should correlation measures be used to reduce the
dimensionality of large scale portfolio problems. Finally, through an empirical analysis, we
show the impact of different correlation measures on portfolio selection problems and on
dimensionality reduction problems. In particular, we compare the ex post sample paths of
several portfolio strategies based on different risk measures and correlation measures.
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selection · Reward measure · Semidefinite positive association measure

Mathematics Subject Classification 1G10 · 15A03 · 80M50

1 Introduction

The dependency structure of random sources plays a crucial role in portfolio theory and
in several pricing and risk management problems. In particular, the classic Pearson linear
correlation measure is regularly used to measure and optimize the dispersion of portfolio
returns and to reduce the dimensionality of large-scale portfolio problems. It is well known
that the Pearson linear correlation works well with Gaussian vectors. However, in practice
the Gaussian distributional assumption of financial return series is mostly rejected, as was
already proved by e.g. Mandelbrot (1963a, b) and Fama (1965); see also Rachev and Mittnik
(2000) and the references therein.
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It follows that many other correlation measures have been proposed in the literature to
deal with the association among random variables, see, among others, Scarsini (1984), Joe
(1997), Cherubini et al. (2004) or Nelsen (2006) and the references therein. However, in
this paper we prove that most of these measures cannot be used directly to order investors’
choices, since they do not lead to a law invariant portfolio measure.

The first contribution of this paper is the discussion about models that has sufficient
capacity to describe the dependence structure of financial returns. We first identify the most
desirable characteristics of the Pearson linear correlation. In particular, we characterize the
class of semidefinite positive correlation measures and we analyze their connection with
deviation measures consistent with the preferences of risk-averse investors (see Rockafellar
et al. 2006). In this context, we study the possibility of using portfolio risk measures that
can be obtained by the contribution of different deviation measures and semidefinite positive
correlationmeasures.Moreover,we show that other linear correlationmeasures can be used in
portfolio selection problems as an alternative to the Pearson linear correlation. In particular,
we introduce a sufficient condition to obtain a linear correlation measure and we suggest
alternative linear correlation measures for stable sub-Gaussian distributed vectors.

The second contribution of this paper is an ex post empirical analysis on the use of different
correlation measures in the portfolio theory. In particular, we propose to use the correlation
measures for two distinct portfolio problems: (1) to reduce the dimensionality of large-scale
portfolio selection problems; (2) to identify portfolio strategies that optimize the correlation
between the portfolio and one or two market benchmarks. For both problems we perform an
empirical analysis utilizing all the active stocks of the main US stock markets (NYSE and
NASDAQ).

Regarding the first problem, we use different linear correlation measures to perform a
principal component analysis (PCA) that identifies the main portfolio factors whose disper-
sion is significantly different from zero. These factors are used to approximate the portfolio
returns in the large-scale portfolio selection problems. Therefore, using almost 1800 assets
regularly traded on the US stock market, we compare the ex post performance of a portfolio
selection strategy applied to the approximations of returns obtained by different specifications
of principal component analysis.

As concerns the second problem, we propose new portfolio optimization models that
respects two logical implications of investors’ behavior: (1) investors want to maximize the
correlation with the upper stochastic bound of the market; (2) investors want to minimize the
correlation with the lower stochastic bound of the market. Therefore, we compare ex post
sample paths of wealth obtained using portfolio optimization strategies based on different
correlation measures.

Weproceed as follows. InSect. 2we summarize someof the basic characteristics of concor-
dance/correlation measures and characterize the semidefinite positive correlation measures.
In Sect. 3 we define new linear correlation matrices and their relationship with the devia-
tion measures. In Sect. 4 we discuss when (and how) such correlation measures should be
used within portfolio selection problems. In Sect. 5 we conduct empirical comparison among
portfolio strategies based on the use of different correlation measures. We summarize our
principal findings in Sect. 6, while a final “Appendix” contains the proofs of the main results.

2 Concordance and semidefinite positive correlation measures

One of themost essential tasks of financial decision-making is themeasurement of the depen-
dency among the realizations of particular random variables. Specifically, let us consider n
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risky assets with gross returns1 z = [z1, z2, . . . , zn]′ .As a consequence of the Sklar theorem
(Sklar 1959) the joint distribution function is given by:

Fz(x) = C(Fz1(x1), Fz2(x2), . . . , Fzn (xn)), (1)

where Fzi (xi ) = Pr(zi ≤ xi ) is the marginal distribution function and C : [0, 1]n → [0, 1] is
the copula function. The copula function can therefore be defined by inverting (1):

C(u) = Fz
(
F−1
z1 (u1), F

−1
z2 (u2), . . . , F

−1
zn (un)

)
. (2)

It follows that the dependency among particular variables is fully described by suitable copula
function C. Furthermore, the copula function can be regarded as the joint distribution function
of the marginal distribution functions.

In the financial context it is often convenient to express the dependency between ran-
dom variables by a single number (more generally, for n random variables we get an
n-dimensional matrix). Most commonly used is the Pearson coefficient of correlation
cor(X, Y ). This measure is the inner product of standardized random variables in the Hilbert
L2 (Ω,�,Pr) = {

X |E(|X |2) < ∞}
space and it derives most of its properties from this

characteristic. In the next part of the paper, we assume that the random variables belong to
a space of random variables (generally called H ) that is closed with respect to the opposite,
i.e., if X belongs to H also −X belongs to H .

However, the Pearson coefficient of correlation is only one of possible measures of
dependency. Generally, concordance (rank correlation) measures are used to measure the
concordance/association/correlation between random variables. Given the random vector
(X, Y ) and given two joint distributions FX,Y , F ′

X,Y with the same marginal distributions
we state that F ′

X,Y is more concordant than FX,Y (FX,Y ≤C F ′
X,Y ), if FX,Y ≤ F ′

X,Y . The
concordance measures are easily definable by copula functions because they rely only on
the ‘joint’ features, having no relation with the marginal characteristics. Formally, a concor-
dance measure ρ defined on a space of continuous random variables H is any functional that
satisfies the following seven properties:

(i) ρ : H × H → [−1, 1];
(ii) for any random variable X ∈ H : ρ(X, X) = 1; ρ(X,−X) = −1;
(iii) ρ(X, Y ) = ρ(Y, X);
(iv) ρ(−X, Y ) = ρ(X,−Y ) = −ρ(X, Y );
(v) if X and Y are independent random variables, then ρ(X, Y ) = 0;
(vi) if we consider two bivariate random vectors X = (X1, X2), Y = (Y1, Y2), (Xi , Yi ∈

H )with the samemarginal distributions (F1, F2) such that FX(x) = Pr(X1 ≤ x1, X2 ≤
x2) ≤ FY(x) for anyx = (x1, x2) ∈ R

2 (i.e.XdominatesYwith respect to concordance
ordering2) then ρ(X1, X2) ≤ ρ(Y1, Y2) (or ρC1 ≤ ρC2 where C1 and C2 are the copulas
associated with bivariate vectors X, Y);

(vii) given a sequence of continuous bivariate random vectors {(Xn, Yn)}n≥1 with copulas
Cn that converge pointwise to the copula C, then ρCn converge to ρC .

1 We assume the standard definition of gross return between time t and time t + 1 of asset i , to be zi,t+1 =
Si,t+1+di,[t,t+1]

Si,t
, where Si,t is the price of the i-th asset at time t and di,[t,t+1] is the total amount of cash

dividends between time t and t + 1. We generally work with gross returns because they represent the random
wealth in the future period. We call return the rate of interest during the period [t, t + 1], which is given by
ri,t+1 = zi,t+1 − 1.
2 Analogously, we say that X dominates Y in the sense of the concordance ordering if and only if the
copulas C1, C2 associated with X, Y are ordered, i.e. C1 ≤ C2. This definition amounts to saying that
cov(h1(X1), h2(X2)) ≤ cov(h1(Y1), h2(Y2)) for any increasing function h1, h2 such that the covariance
exists).

123



628 Ann Oper Res (2015) 235:625–652

Observe that ρ(X1, X2) = ρ(h1(X1), h2(X2)) for any concordance measure ρ, for any
couple of continuous random variables (X1, X2) and for any two strictly monotonic (either
both increasing or both decreasing) functions h1, h2. The Pearson coefficient of correlation
is not a concordance measure, since it does not satisfy Property (vii). For further details on all
properties of concordance measures and their proofs see Joe (1997), Cherubini et al. (2004)
or Nelsen (2006).

The most popular concordance measures are Kendall’s tau, Spearman’s rho, Gini’s index
of cograduation (Gini’s gamma), and Blomqvist’s beta. The concordance measure definition
is given only for continuous random variables. Clearly, we can try to extend the definition
to non-continuous random variables using the standard extension of the copula given by
Schweizer and Sklar (1974). However, with the standard extension of the copula, the most
interesting concordance measures (Kendall, Spearman etc.) do not satisfy axiom (vii) when
non-continuous random variables are used, see Nešlehová (2007) and the references therein.
In the next part of the paper, we continue to call ‘concordance measures’ their extended
definitions to non-continuous random variables.

In order to consider a larger class of association measures, rather than concordance mea-
sures, we introduce the class of correlation measures.

Definition 1 The correlation measure defined on a given space of random variables H is any
functional ρ : H × H → [−1, 1] that is law invariant (i.e. ρ(X, Y ) is uniquely determined
by the joint distribution of (X, Y )) and satisfies the first five properties of concordance
measures as given above. We say that a correlation measure ρ is semidefinite positive on
the space H if for any vector X = (X1, X2, . . . , XN )′ with Xi ∈ H the correlation matrix
Q = [ρi, j ] (where ρi, j = ρ(Xi , X j )) is semidefinite positive. We call ϕ-correlation measure
any correlation measure that satisfies the following additional property:

(vi-bis) |ρ(X, Y )| = 1 if, and only if, Y = ϕ(X) almost surely (a.s.) for a given class of
real monotonic functions ϕ.

Note that semidefinite positive correlationmeasures are generally used to determine uncor-
related factors with linear and non linear principal component analysis (PCA) that summarize
most of the variability of functions applied to random variables. Clearly, the concordance
measures and the Pearson correlation coefficient are correlation measures belonging to the
class of continuous random variables. In particular, the Pearson correlation coefficient sat-
isfies the property |ρ(X, Y )| = 1 if and only if Y = aX + b a.s. for certain real a and b.
Similarly, for a pair of monotonic real functions h1 and h2 we can define a ϕ-correlation
measure ρ̃(X, Y ) = ρ(h1(X), h2(Y )) where ρ is the Pearson correlation coefficient. In this
case |ρ̃(X, Y )| = 1 if and only if Y = h−1

2 (ah1(X) + b) a.s. for certain real a and b. Note,
that the Spearman concordance measure ρS(X, Y ) = ρ(FX (X), FY (Y )) can be written as
the Pearson correlation of the cumulative distribution functions and thus it is a ϕ-correlation
measure.

Any correlation measure can be used to assess the dependence between random variables,
but only some particular semidefinite positive correlation measures can be applied to reduce
the dimensionality of statistical problems and to evaluate the dispersion of portfolios. For any
couple of random variables X, Y and for any correlation measure ρ(X, Y ) the correlation
matrix

Q =
[
1 ρX,Y

ρX,Y 1

]
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is semidefinite positive, since

0 ≤ (|x1| − |x2|)2 ≤ x ′Qx = x21 + x22 + 2x1x2ρX,Y ≤ (|x1| + |x2|)2
for any x = [x1, x2]′ ∈ R

2. However, this property is not sufficient to guarantee that a
correlation measure is semidefinite positive since simple counterexamples can be given.
Semidefinite positive correlation measures are characterized by the following theorem.

Theorem 1 Let ρ be a correlation measure defined on a space of real random variables H
(closed with respect to the opposite). Then ρ is a semidefinite positive correlation measure if
and only if for any finite subspace of random variables H1 ⊆ H the following two properties
are satisfied:

1. there exists a vectorial space V , an inner vectorial product 〈·, ·〉 : V × V → R and a
function g : H2 × H2 → V × V , where H2 = H1 ∪ (−H1), such that 〈g(X, Y )〉 =
〈g(Y, X)〉 and 〈g(−X, Y )〉 = 〈g(X,−Y )〉 = − 〈g(X, Y )〉 and

ρ(X, Y ) = 〈g(X, Y )〉√〈g(X, X)〉 〈g(Y, Y )〉 ;

2. if X and Y are independent random variables belonging to H1, then 〈g(X, Y )〉 = 0.

Moreover, as a consequence of Cauchy–Schwarz inequality, we get that |ρ(X, Y )| = 1 if
and only if (v1, v2) = g(X, Y ) and v1 = av2 for a given real a.

From the above results we easily deduce that Kendall, Spearman, and Blomqvist mea-
sures are semidefinite correlation measures on the space of the continuous random variables,
since they satisfy properties (1) and (2) of Theorem 1. Moreover, for any L p (Ω,�,Pr) ={
X |E(|X |p) < ∞}

space of random variables defined in a probability space (Ω,�,Pr) we
can introduce the following classes of semidefinite positive correlation measures.

Proposition 1 For any p > 0 the following functionals defined on L p (Ω,�,Pr) space are
semidefinite positive correlation measures.

M1

ρp(X, Y ) =
E

((
X − Vp/2(X)

)〈p/2〉 (
Y − Vp/2(Y )

)〈p/2〉)〈min(2/p,2)〉

∥∥X − Vp/2(X)
∥∥
p

∥∥Y − Vp/2(Y )
∥∥
p

,

where (x)〈q〉 = sign(x) |x |q , Vq(X) is the unique real value such that E ((X−
Vq(X)

)〈q〉) = 0 and ‖X‖p = E
(|X |p)min(1,1/p)

is the classic metric in L p. Moreover
∣∣ρp(X, Y )

∣∣ = 1 if and only if Y = aX + b a.s. for some real a and b.
M2

τp(X, Y ) = E
(
(X − X1)

〈p/2〉 (Y − Y1)〈p/2〉
)〈min(2/p,2)〉

‖(X − X1)‖p ‖(Y − Y1)‖p
,

where (X1, Y1) is an independent identically distributed (i.i.d.) copy of (X, Y ).
M3

Op,�1(Z1, Z2) = cor(Z1, Z2)
〈min(2/p,2)〉,

where Z1 = (X 〈p/2〉−E(X 〈p/2〉|�1)), Z2 = (Y 〈p/2〉−E(Y 〈p/2〉|�1)),�1 is a sub-sigma
algebra of � (i.e. �1 ⊂ �) and X,Y ∈ L p(Ω,�,Pr) are not �1 measurable. Measure
Op,�1 is a correlation measure among all the random variables Zi (above defined)
orthogonal to L2(Ω,�1,Pr) (when we use the scalar product (U, V ) −→ E(UV )).
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All these measures are logical extensions of the Pearson correlation measure. We obtain
the Pearson correlation measure with measures of type M1, M2 and M3 when p = 2 and
�1 = {∅;Ω}. In addition, if X and Y are continuous random variables, then V0(X) and
V0(Y ) are the medians of X and Y , respectively. Thus lim p→0 ρp(X, Y ) = βB(X, Y ) and
measures of typeM1 are extensions of theBlomqvistmeasure (whichwe obtainwhen p = 0).
Similarly, measures of type M2 are logical extensions of the Kendall correlation (which we
obtain for p = 0). Measure M3 is useful for identifying the variability of the part of each
random variable3 which is ‘uncorrelated’ with �1. This variability is here represented by the
correlation of random variables subtracted of their projection on the subspace of probability
(Ω,�1,Pr) (where �1 ⊂ �).

Working with semidefinite positive correlation matrices is fundamental in the case of sev-
eral statistical problems. However, the estimator of semidefinite positive correlation matrices
may not be semidefinite positive. In this case, we should approximate the estimates as sug-
gested by Rousseuw and Molenberghs (1993).

Generally, the ordering properties of correlationmeasures are very useful inmanyfinancial
problems. On the one hand, several semidefinite positive correlation measures, differently
from concordance measures, are not necessarily isotonic with the concordance ordering. On
the other hand, the most interesting correlation measures in the portfolio theory are those
linked to investors’ choices. Since the investors are generally non-satiable and/or risk-averse,
the optimal portfolio choices should be consistent with these investors’ preferences.

3 Deviation measures and linear correlation measures in portfolio
selection problems

One of the most popular measures proposed to order admissible portfolios according to their
risk is the standard deviation. Several papers in the recent literature discuss the possibility of
using other measures of risk and variability to optimize investor’s choices. Typical examples
of such variability measures are deviation measures that are defined axiomatically (Rock-
afellar et al. 2006; Rachev et al. 2008). A deviation measure is any positive functional D that
is law invariant (i.e. D(X) = D(Y ) for any X and Y with the same distribution) and that
satisfies the following properties:

P1 D(X + c) = D(X) for all X and constant c > 0;
P2 D(0) = 0, and D(aX) = aD(X) for all X and a > 0;
P3 D(X) ≥ 0 for all X, with D(X) = 0 if and only if X is constant;
P4 D(X + Y ) ≤ D(X) + D(Y ) for all X and Y.

All deviationmeasures that satisfy theFatou property are consistentwith concave ordering,
see Bauerle and Müller (2006), i.e. if X dominates Y in the concave order (X ≥cv Y ), the
deviation measure of X is lower than or equal to the deviation measure of Y , D(X) ≤ D(Y ).
Recall that we say portfolio X ≥cv Y if and only if every risk-averse investor prefers X to Y,

i.e. E(u(X)) ≥ E(u(Y )) for every concave (utility) function u. This is also considered as an
implicit definition of risk-averse investors. Moreover, in a certain sense, semidefinite positive
correlation matrices represent multivariate measures of dispersion, and they generally cannot
be used to measure the dispersion of a given portfolio (except in special cases).

3 Let us write a random variable X ∈ L2(Ω, �, Pr) as the sum of X − E(X |�1) and E(X |�1), (i.e.,
X = [X − E(X |�1)] + E(X |�1)). While E(X |�1) is �1 measurable by definition, the first part of this sum
is ‘uncorrelated’ with all the random variables belonging to L2(Ω, �1, Pr) (i.e. ∀Y ∈ L2(Ω, �1, Pr) then is
null the Pearson correlation cor(Y, X − E(X |�1) = 0).
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In practical terms, let us consider n assets with gross returns z = [z1, z2, . . . , zn]′ and the
vector of portfolio weights x = [x1, x2, . . . , xn]′. Given a semidefinite positive correlation
matrix Qρ = [ρi, j ] of gross returns, we may consider the following measure of portfolio
dispersion:

dρ,σ (x ′z) =
√
x ′Qρ,σ x, (3)

where Qρ,σ = [σz j σzi ρi, j ], ρ is a semidefinite positive correlation measure and σz is a
deviation measure. When there is a riskless return among the asset returns (say, the first
component), then ρ1, j = ρ j,1 = 0 for any j, since a constant is independent of any random
variable. Therefore, the riskless asset does not make any contribution to the measure dρ,σ .

The measure dρ,σ is a logical extension of portfolio variance and it takes into account
different contribution of correlation ρ and risk σz j of a given asset j. In the definition of
portfolio dispersion (3), it is essential to use a semidefinite positive correlation measure ρ,

since the semidefinite positivenessmakes it possible to guarantee the convexity ofd2ρ,σ .On the
other hand, Bauerle and Müller (2006) prove the consistency with risk-averse preferences
for several convex measures. In this section we mainly analyze the possibilities of using
measures of type dρ,σ for portfolio problems. Firstly, we observe that measure dρ,σ does not
always satisfy the law invariance property.

Example 1 Let us assume there are three assets with gross returns z = (z1, z2, z3)′ and
suppose that the third gross return has the same distribution as a suitable combination of z1
and z2, xz1+ yz2, i.e. the portfolios [x, y, 0]z and [0, 0, 1]z have the same distribution. Since
any deviation measure σz is law invariant then σ 2

z3 = σ 2
xz1+yz2 . Generally, however, unless

Qρ,σ is the variance–covariance matrix, the following relation holds:

dρ,σ ([0, 0, 1]z)2 = σ 2
xz1+yz2 �= x2σ 2

z1 + y2σ 2
z2

+ 2xyσz1σz2ρ(z1, z2) = dρ,σ ([x, y, 0]z)2.
This appears to be more evident if we suppose that the vector z is Gaussian with Pearson
correlation ρ(z1, z2) = 0.5 and that the portfolio 0.5z1 + 0.5z2 has the same distribution
as z3, that is, Gaussian with variance σ 2

z3 = 0.52σ 2
z1 + 0.52σ 2

z2 + 0.52σz1σz2 . Observe that
for the two-dimensional Gaussian distribution with linear correlation coefficient ρ, the well-
known relation τ = 2

π
arcsin(ρ) between Kendall’s tau and the linear correlation coefficient

holds. Now, if we consider an alternative dispersion matrix Qρ̃,σ = [σz j σzi ρ̃i, j ], where σz j
is the standard deviation of z j and ρ̃i, j is the Kendall correlation measure between the i-
th and the j-th components, then ρ̃1,2 = τ(z1, z2) = 2

π
arcsin(0.5) = 0.3333. Therefore

dρ̃,σ ([0, 0, 1]z)2 = σ 2
z3 �= dρ̃,σ ([0.5, 0.5, 0]z)2 even if portfolios 0.5z1 + 0.5z2 and z3 have

the same distribution. Thus the measure dρ̃,σ (x ′z) = √
x ′Qρ̃,σ x is not law invariant.

On the one hand, the above example suggests that it can be guaranteed only for some
particular correlation measures that the measure dρ,σ satisfies the law invariance property.
In particular, as proved in Proposition 2, if ρ is a semidefinite positive correlation measure
different from thePearson linear correlation and z is elliptically distributedwithfinite variance
(or a more general two parametric family), then dρ,σ does not generally satisfy the law
invariance property. On the other hand, if ρ is the Pearson linear correlation measure, then
dρ,σ is law invariant for any deviation measure σ that we use (together with the mean) to
characterize the family of elliptical distributions.

Proposition 2 Suppose that all the portfolios of returns belong to a translation- and scalar-
invariant family of random variables (i.e. if the r.v. X belongs to the family also X+t and aX
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belong to the same family for any real a, t) that admits finite variance. Suppose that all the
random variables of this family have a distribution identified by two parameters: the mean
and a deviation measure (i.e. if two random variables have the same mean and deviation
measure then they have the same distribution). Consider two different parameterizations
(m, std) and (m, σ ) for this family of random variables, where m is the mean, std is the
standard deviation and σ is a deviation measure. Let ρ be a semidefinite positive correlation
measure defined on this class of random variables. Then dρ,σ (x ′z) = √

x ′Qρ,σ x satisfies
the law invariance property if and only if ρ is the Pearson correlation measure.

Therefore, for random variables depending on two parameters as in Proposition 2 (for
example elliptical distributions), it makes sense to use the measure dρ,σ , where we distin-
guish the contribution of the Pearson correlation measure ρ and of the deviation measure σ .
Moreover, all the portfolio returns belong to a translation- and scalar-invariant family depend-
ing on a finite number of parameters, which can be often seen as the union of translation-
and scalar-invariant families depending on two parameters (see Ortobelli 2001). Thus, if we
assume that all the returns admit finite variance, it makes sense to use the measure dρ,σ

only if ρ is the Pearson correlation measure and σ is a deviation measure. However, the
empirical evidence suggests that the return series are in the domain of attraction of a stable
Paretian law that does not necessarily admit finite variance (see, among others, Grabchak
and Samorodnitsky 2010). For this reason we study the most general case.

A sufficient condition guaranteeing that measure (3) is invariant in law is given by the
following proposition.

Proposition 3 Suppose that ρ is a semidefinite positive correlation measure defined on all
possible portfolios of gross returns x ′z. Suppose that the functional ρ can be represented for
all portfolios as suggested by property (1) in Theorem 1, i.e. ρ : H × H → [−1, 1] and

ρ(X, Y ) = 〈g(X,Y)〉√〈g(X,X)〉〈g(Y ,Y)〉 ,

where H is the class of all admissible portfolios x ′z and 〈., .〉 : V × V → R is a vectorial
inner product. Let us assume the function g : H ×H → V ×V such that g(X, Y ) is bilinear,
i.e. g(aX +bZ , Y ) = ag(X, Y )+bg(Z , Y ) and g(X, aY +bZ) = ag(X, Y )+bg(X, Z). If
σX = √〈g(X, X)〉 is a deviation measure, then dρ,σ (x ′z) = √

x ′Qρ,σ x is invariant in law.

More generally, we can define the semidefinite positive correlation measures that satisfy
the properties of Proposition 3 as follows.

Definition 2 We say that ρ is a linear correlationmeasure in the class of the random variables
H if it satisfies the following properties:

1. ρ is a semidefinite positive correlation measure defined on the class of random variables
H ;

2. for every vector X = (X1, X2, . . . , XN )′ with Xi ∈ H and a, b ∈ RN with

a = [a1, . . . , aN ]′ and b = [b1, . . . , bN ]′, it holds ρ
(∑N

i=1 ai Xi ,
∑N

i=1 bi Xi

)
=

ρ
(
a′X, b′X

) = a′Qb√
a′Qab′Qb

, where Q = [
vi j
]
is a semidefinite positive matrix such

that vi j = 〈
g(Xi , X j )

〉
, where g and 〈·, ·〉 are defined by Theorem 1;

3. the functional σX = √〈g(X, X)〉 is a deviation measure.

Therefore as a consequence of Proposition 3 we can guarantee that for any linear corre-
lation measure there exists at least one deviation measure σ (i.e. σX = √〈g(X, X)〉) such
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that dρ,σ is invariant in law. Examples of linear correlation measures are all those that can be
seen as an inner product of a Hilbert space of random variables. Typical examples of linear
correlation measures on L2 (Ω,�,Pr) space are: the Pearson correlation, and correlation
O2,�1 (which is still the Pearson linear correlation applied to all random variables orthogonal
to L2 (Ω,�1,Pr)).

In order to find new invariant-in-law measures of the type (3) and new linear correlation
measures, we consider correlation measures ρ for elliptical random variables with infinite
variance. In particular, several empirical financial investigations show that the returns ri
(i = 1, . . . , n) exhibit the following tail behavior

Pr(|ri | > u) ∼ u−αi Li (u) as u → ∞, (4)

where 0 < αi < 2 and Li (u) is a slowly varying function at infinity, i.e.

lim
u→∞

Li (cu)

Li (u)
→ 1 for all c > 0,

see Samorodnitsky and Taqqu (1994) and Rachev and Mittnik (2000).
From empirical evidence on stock returns (see, among others, Mandelbrot 1963a, b; Fama

1965; Grabchak and Samorodnitsky 2010; Nolan 2003) we always observe that the index
of stability αi belongs to interval (1,2), so that relation (4) implies that returns are in the
domain of attraction of an α-stable law that admits finite mean and not finite variance. This
asymptotic behavior of data is generally approximated by assuming that the returns follow
a stable Paretian law Sα(γ, β, μ). A stable Paretian law depends on four parameters: the
index of stability α ∈ (0, 2], the asymmetry parameter β ∈ [−1, 1], the dispersion parameter
γ > 0, and the location parameter μ.

Typically, we can assume that the vector of returns r is α-stable sub-Gaussian distributed.
That is, the characteristic function of r has the following form:

Φr (u) = E(exp(iu′r)) = exp
(
− (u′Qu

) α
2 + iu′μ

)
, (5)

where Q = [
vi j
]
is a positive definite dispersion matrix and μ is the mean vector (when

α > 1).Note that an α stable sub-Gaussian distribution is an elliptical distribution symmetric
around the mean (since β = 0) and when α = 2 the vector r is Gaussian with mean μ and
variance covariancematrix Q/2. Sinceμi and vi i (i = 1, . . . , n) are respectively the location
parameter and the square scale parameter of the α stable distributed i-th component ri , then
we can estimate them either using the maximum likelihood estimator or other estimators.4

As noted by Kring et al. (2008), parameter vi j (also called covariation parameter) can be seen
as the difference of square scale parameters, i.e.:

vi j = γ 2
(ri+r j )/2

− γ 2
(ri−r j)/2

, (6)

where γ 2
(ri±r j)/2

are the square scale parameters of the randomvariables
(
ri ± r j

)
/2.Thus, to

estimate the covariation parameters vi j (with i �= j) of the stable vector we use the estimator
v̂i j = γ̂ 2

(ri+r j )/2
− γ̂ 2

(ri−r j )/2
. Alternatively, to estimate the stable sub-Gaussian parameters,

we can use the moment estimator considering the following relations

v
q/2
j j = A(α, q)E

(∣∣r j − E(r j )
∣∣q)

4 Generally, for the stable sub-Gaussian law we fix the skewness parameter β = 0, and we impose a common
stability parameter α, and we evaluate the stable parameters of the series. As stability parameter α we use the
empirical mean of the stability parameters of the components. The stable Paretian parameters can be estimated
by using the maximum likelihood estimator (see Nolan 2003; Rachev and Mittnik 2000).
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for any q ∈ (−1, α) where A(α, p) = Γ (1− p
2 )

√
π

2pΓ (1− p
α )Γ

(
p+1
2

) and

vi j = v
(2−p)/2
j j A(α, p)E

(
(ri − E(ri ))

(
r j − E(r j )

)〈p−1〉) (7)

for any p ∈ [1, α) (see Ortobelli et al. 2005). Moreover, under these distributional assump-
tions a linear correlation measure for the vector of returns r (or for the vector of gross returns
z) is given by the following proposition.

Proposition 4 Suppose that the vector of gross returns z isα stable sub-Gaussian distributed
(α > 1) and suppose that σ is an alternative (to the stable scale parameter γ ) deviation
measure that, together with the mean, characterizes this elliptical family (i.e. if two stable
distributed random variables have the same mean and deviation measure σ , then they have
the same distributions). Let ρ be a semidefinite positive correlation measure defined on the
class of all these elliptically distributed returns. Then ρ is a linear correlation measure and
dρ,σ (x ′z) = √

x ′Qρ,σ x satisfies the law invariance property if and only if

ρ(x ′z, y′z) = x ′Qy
√

(x ′Qx) (y′Qy)
(8)

where
〈
g(x ′z, y′z)

〉 = x ′Qy and Q is the matrix defined in (5).

We call stable correlation measure the linear correlation measure ρ(zi , z j ) = vi j√
vi iv j j

associatedwith a vector ofα-stable sub-Gaussian distributions. In particular, by using formula
(7), the linear correlation can be defined by:

ρ(zi , z j ) = vi j√
vi iv j j

= E
(
(zi − E(zi )) sign

(
z j − E(z j )

))

E (|zi − E(zi )|) (9)

for all stable sub-Gaussian distributions that admit a finite first moment. Formula (9) pro-
duces an alternative definition of the Pearson linear correlation when the vector of returns
is Gaussian distributed. On the other hand, if we use the standard method of the moments
to estimate ρ(zi , z j ), we may get a nonsymmetric estimator of the linear correlation matrix.
For this reason we can consider

ρ(X, Y ) = E ((X − E(X)) sign (Y − E(Y )))

2E (|X − E(X)|) + E ((Y − E(Y )) sign (X − E(X)))

2E (|Y − E(Y )|)
(10)

as a linear correlation measure of α-stable sub-Gaussian laws with α > 1. As a matter of fact,
formula (10) is always a linear correlation measure on the class of all admissible portfolios
when the vector z admits an α-stable sub-Gaussian distribution. We obtain an alternative
linear correlation measure if we apply it to all random variables X − E(X |�1).

Moreover, once we have some different types of correlation measures, we can produce
further correlation measures as described in the following corollary.

Corollary 1 The convex combination of concordancemeasures (correlationmeasures, semi-
definite positive correlation measures) is still a concordance measure (correlation measure,
semidefinite positive correlation measure). Moreover, let ρi (i = 1, . . . ,m) be m lin-
ear correlation measures defined for all random variables X, Y belonging to a space
H ⊆ L1 (Ω,�,Pr) that we assume contains its centered random variables. Suppose that ρi
admits the representation ρi (X, Y ) = 〈gi (X,Y )〉i√〈gi (X,X)〉i 〈gi (Y,Y )〉i , where 〈., .〉i : V(i) × V(i) → R,
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i = 1, . . . ,m, are vectorial inner products. Then 〈X, Y 〉 = ∑m
i=1 ai 〈gi (X, Y )〉i (ai ≥ 0;∑m

i=1 ai = 1) is an inner product in the class of the centered random variables belonging to

H and thus ρ(X, Y ) = 〈X,Y 〉√〈X,X〉〈Y,Y 〉 is a linear correlation measure.

The lack of invariance in lawdoes not permit the use ofmeasures dρ,σ (x ′z)within portfolio
selection problems. When dρ,σ (x ′z) is invariant in law, we obtain the following proposition.

Proposition 5 Suppose that the matrix Qρ,σ does not depend on the portfolio weights x,
and that all random variables are defined in a finite probability space where the probability
is uniform. If dρ,σ (x ′z) is invariant in law, it is consistent with the preferences of risk-averse
investors.

Clearly, the assumption that we are in a finite probability space Ω = {ω1, ω2, . . . , ωn} ,

with uniform probability Pr ({ωi }) = 1
n , is not very realistic. However, several consistent

estimators Q̃ρ,σ of Qρ,σ are computed as if the gross returns were defined in a finite prob-
ability space with uniform probability and, also for this reason, the estimator Q̃ρ,σ is still
semidefinite positive. Thus, for example, if σzi = E( f (zi )) and ρi, j = E(v(zi , z j )) for some

functions f and v, then σ̃z j = 1
n

∑n
k=1 f (z(k)j ), ρ̃i, j = 1

n

∑n
k=1 v(z(k)i , z(k)j ) (where z(k)j is

the k-th observation of z j ) are consistent estimators of σzi and ρi, j , and Q̃ρ,σ = [̃σz j σ̃zi ρ̃i, j ]
is a consistent estimator of Qρ,σ .

Therefore, when dρ,σ (x ′z) is invariant in law (according to Bauerle and Müller 2006)
and the estimated distribution of w′z is dominated in the convex order by the estimated
distribution of y′z, then w′ Q̃ρ,σ w ≤ y′ Q̃ρ,σ y . Moreover, as also pointed out by Bauerle
andMüller (2006), when the probability space is non-atomic, we can guarantee that ameasure
D is consistent with the choices of risk-averse investors if D is an invariant-in-law, convex
measure that satisfies the Fatou property. Thus the following corollary holds.

Corollary 2 Suppose that the matrix Qρ,σ does not depend on the portfolio weights x.
If dρ,σ (x ′z) is invariant in law and satisfies the Fatou property, then it is consistent with
the choices of risk-averse investors. In particular, under the assumption of Proposition 2
(4), dρ,σ (x ′z) is consistent with the choices of risk-averse investors only if ρ is the Pearson
correlation measure (stable correlation measure) and σ is a deviation measure that (together
with the mean) characterizes the distribution family.

Moreover, we can also prove that concordance measures cannot be used as linear corre-
lation measures even if the linear correlation measures are not the only correlation measures
related to functionals consistent with risk-averse preferences.5

4 Two distinct ways to use correlation measures in portfolio problems

We distinguish two possible directions for the application of correlation measures within
portfolio theory. In particular, we use these measures either in optimization problems or
in order to reduce the dimensionality of the problem. Let us briefly discuss both of them
below.

5 The proof of this statement can be given by the authors if required.
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4.1 The portfolio dimensional problem

Papp et al. (2005) and Kondor et al. (2007) have shown that the number of observations
should increase with the number of assets in order to obtain a good approximation of the
portfolio risk-reward measures. It is therefore necessary to find the right trade-off between
a statistical approximation of the historical series depending only on a few parameters and
the number of historical observations. In practice, there are two different ways to reduce the
dimensionality of a large-scale portfolio selection problem: preselection or factor models.
With preselection, only some assets are preselected with respect to one or more optimality
criteria (see Ortobelli et al. 2011) to be used in the portfolio selection. On the other hand,
portfolio managers reduce the dimensionality of the problem by approximating the gross
return series with a k-fund separation model (or some other regression-type model, see Ross
1978) that depends on an adequate number (not too large) of parameters. As in the following
empirical analysis, the two methodologies are often combined together. We first preselect
two hundred assets and then reduce the randomness of the problem by approximating the
preselected gross returns with a k-fund separation model.

In order to apply a k-fund separation model, we perform a principal component analysis
(PCA) of the stock returns. In doing so, we identify the few factors (portfolios) with the
highest return variability. We therefore replace the original n correlated time series zi with
n uncorrelated time series Ri assuming that each zi is a linear combination of the series Ri .
This is always possible when we use a linear correlation measure ρ. We then implement a
dimensionality reduction by choosing only those factors whose deviation measure 〈Ri , Ri 〉
is significantly different from zero. We call portfolio factors fi the s time series Ri with
a significant variability, while the remaining n − s series with very small variability are
summarized by an error. Thus, each series zi is a linear combination of the factors plus a
small uncorrelated noise:

zi =
s∑

j=1

ai j f j +
n∑

j=s+1

ai j R j =
s∑

j=1

ai j f j + εi . (11)

We can apply the PCA either to the Pearson correlation matrix or to any other linear
correlation measure. For example, Q = [ρi, j ] could be the stable sub-Gaussian correlation
measure or ρi, j = O2,�1(zi , z j ) for a suitable sigma algebra �1. Once we have identified the
s factors f j = ∑n

i=1 yi zi ( j = 1, . . . , s; such that
∑n

k=1 y
2
k = 1), which explains most of

the variability of the returns, we further reduce the variability of the error by regressing the
series on the factors f j , so that we get:

zi = bi,0 +
s∑

j=1

bi, j f j + εi . (12)

We can then apply any portfolio optimization problem to the approximated portfolio:

x ′z � x ′̂b0 +
s∑

j=1

x ′̂b j f j ,

where b̂ j = [̂b1, j , . . . , b̂n, j ]′ is the vector of estimated coefficients b̂i, j ( j = 0, 1, . . . , s).
This procedure is computational efficient and can be applied using any linear correlationmea-
sure. Clearly, we can use a similar procedure to capture even a non-linear factor dependence.
Indeed, if we consider a bijective non-linear function h that associates with any random gross
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return zi another random variable ui (i.e. ui = h(zi )), we can apply the PCA to the random
variables ui , obtaining

ui = b̃i,0 +
s∑

j=1

b̃i, j f̃ j + ε̃i . (13)

We can therefore apply portfolio selection to the approximated gross returns: x ′z �∑n
i=1 xi h

−1(̃bi,0 +∑s
j=1 b̃i, j f̃ j ).

4.2 Portfolio selection problems

The portfolio selection problem is generally studied by considering the reward and the risk of
the admissible portfolios. In this context investors choose a portfolio that minimizes a given
risk measure q provided that the reward measure v is constrained by some minimal value m;
that is,

min
x

q(x ′z − zb)
n∑

i=1
xi = 1; xi ≥ 0;

v(x ′z − zb) ≥ m,

(14)

where zb denotes the gross return of a given benchmark. In particular, as risk measure q we
could use the measure dρ,σ , where ρ is a linear correlation measure and σ is a deviation
measure. The portfolio that yields the maximum reward per unit of risk is called the market
portfolio. In particular, when the reward and risk are both positive measures, the market
portfolio is the solution for the optimization problem:

max
x

v(x ′z−zb)
q(x ′z−zb)

n∑

i=1
xi = 1; xi ≥ 0.

(15)

Generally, we can distinguish two different types of benchmarks: artificial benchmarks
and traded benchmarks. Traded benchmarks are indices traded on the market that represent
some sectors and/or markets. For these benchmarks we can obtain historical observations.
Artificial benchmarks are not tradedon themarket, and they are artificially createdbyportfolio
managers to represent the best/worst indicators of the assets used. Typical examples are the
upper and lower market stochastic bounds (see, among others, Rachev and Mittnik 2000 or
Ortobelli and Pellerey 2008).

The simplest upper and lower stochastic bounds are respectively given by maxi zi and
mini zi which satisfy the relation maxi zi ≥ x ′z ≥ mini zi for all vectors of portfolio weights
x belonging to the simplex S = {x ∈ R

n |∑n
i=1 xi = 1; xi ≥ 0}. Thus, investors want to

maximize the concordance and/or the correlation with the upper bound benchmark maxi zi
and to minimize the concordance and/or the correlation with the lower bound benchmark
mini zi . Alternatively, with traded benchmarks, investors want to:

1. maximize the correlation between the portfolio x ′z and the benchmark zb, if the traded
benchmark is on the right tail;

2. minimize the correlation between the portfolio x ′z and the traded benchmark zb, if the
benchmark is on the left tail.

In particular, when the reward and risk are both positive measures, and there exists
a portfolio x ′z such that the difference between correlation measures is positive (i.e.
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ρ1
(
x ′z,maxi zi

) − ρ2
(
x ′z,mini zi

)
> 0), we still call market portfolio the portfolio that

yields the maximum reward per unit of risk, optimizing the differences between correlation
measures. That is, the market portfolio is the solution of the following optimization problem:

max
x

v(x ′z)
q(x ′z)

(
ρ1

(
x ′z,max

i
zi

)
− ρ2

(
x ′z,min

i
zi

))

n∑

i=1
xi = 1; xi ≥ 0.

(16)

Generally, the optimization problem (16) admits more local optima and thus we should use
a heuristic for the global optimization.

5 An empirical ex post analysis

In this section we first describe the data set and the methodology used to compare different
models. Then we employ various deviation and correlation measures, as defined in Sects. 2
and 3, within the portfolio selection problem. Such empirical analysis is also useful because
we cannot compare particular measures theoretically, but it somehow follows from the nature
of the portfolio valuation process.We evaluate two distinct tasks: (i) dimensionality reduction
of large-scale portfolio problems and (ii) portfolio performance optimization.

For both problems we use all active stocks on NYSE and NASDAQ from January 1,
2002 to August 20, 2014 (1791 stocks in total) as provided by DataStream. We first analyze
their returns and then we compute the average of basic returns statistics over each month
(20 trading days) from March 4, 2007 to August 20, 2014 using the previous 1300 daily
observations.

Since central theories in finance assume that stock returns follow a Gaussian distribution,
we consider the Jarque–Bera test for normality (with a 95% confidence level) of the returns
(see Table 1).We also report there the average values ofminimum,maximum,mean, standard
deviation, skewness, kurtosis, the maximum likelihood estimates of stable Paretian parame-
ters (α, γ, β, μ) and percentage of rejections using the Kolmogorov–Smirnov statistic to test
the stable Paretian assumption with a 95% confidence level.

The average results show us that the Gaussian distributional hypothesis is rejected (on
average) for about 77.3% of the stocks, and the stable Paretian hypothesis is rejected for
about 14.7% of the cases. The average values of the other parameters suggest the strong
presence of heavy tails, since the average kurtosis is much higher than 3 and the stability

Table 1 Comparison of parameters computed on daily returns for the global dataset and preselected assets

Mean SD Skew Kurt Max Min

Global 8 × 10−5 0.018 0.021 6.125 0.121 −0.102

Preselected 4 × 10−3 0.024 0.953 9.022 0.161 −0.093

Stable Paretian parameters JB KS

μ α β σ (95%) (95%)

Global 7 × 10−5 1.732 0.015 0.011 0.773 0.147

Preselected 4 × 10−3 1.703 0.210 0.013 0.852 0.173
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parameter α is lower than 2. The average values of the other parameters do not suggest a
strong presence of skewness, since the averages of asymmetry parameter β and the skewness
are around zero, and also the averages of the maximum and of the minimum are almost equal
in absolute value. Therefore we deduce that the impact of heavy tails might be very strong
using this data set.

We next examine the ex post impact of different correlation measures considering two
portfolio problems: portfolio dimensionality reduction problems and portfolio performance
ones.

We use a moving window of 1300 trading days (about 5years) for the computation of
each optimal portfolio and we compute it every month (20 trading days). Since the weights
x ∈ S represent the percentages of wealth invested in each asset, and since the values of the
assets change every day, we should recalibrate the wealth daily, maintaining the percentage
constant every day during each period [tk, tk + 20] ,where tk is the time at which we compute
the new portfolio composition, so that the computational time is kept at low level.

Then, considering an initial wealth Wt0 = 1, which we have invested on March 4, 2007,
we evaluate the ex post wealth sample path for both problems. Thus, at the k-th optimization
(k = 0, 1, 2, . . . ,m), three main steps are performed to compute the ex post final wealth:

Step 1 Apply the portfolio dimensionality reduction techniques and approximate the returns
as suggested in Sect. 4.1.

Step 2 Determine the market portfolio x (k)
M that optimizes the portfolio problem applied to

the approximated returns.
Step 3 During the period [tk, tk+1], where tk+1 = tk + 20, we must recalibrate the portfolio

daily, maintaining the percentages invested in each asset equal to those of the market
portfolio x (k). Thus, the ex post final wealth is given by:

Wtk+1 = Wtk

(
20∏

i=1

(
x (k)
M

)′
z(ex post)
(tk+i)

)

, (17)

where z(ex post)
(tk+i) is the vector of observed daily gross returns between (tk + i − 1)

and (tk + i). The optimal portfolio x (k)
M is the new starting point for the (k + 1)-th

optimization problem.

Steps 1, 2 and 3 are repeated until the observations are available.

5.1 Portfolio dimensionality reduction of large scale portfolio problems

In order to reduce the dimensionality, at each recombination step we consider only those 200
assets that exhibit the highest Rachev ratio (RR).6 That is, we take returns ri with the highest
RR(ri ):

RR(X) = AVaR0.05(−X)

AVaR0.05(X)
,

where AVaRp(X) = −
p∫

0
F−1
X (u)du is the Average Value at Risk, and compute the average

of the same basic statistics as for the global dataset. Obviously, the preselected assets are not

6 We refer to Rachev et al. (2008) and references therein for a discussion on the properties of RR. The ratio has
been often used to preselect assets with the highest expected earnings for unity of risk in momentum portfolio
strategies (see among others, Ortobelli et al. 2009, and the references therein). Such assets often exhibit higher
earnings and lower losses as well as positive skewness since this measure is based on the values of the return
distributional tails.

123



640 Ann Oper Res (2015) 235:625–652

always the same for all observation periods and thus we consider a dynamic data set where
the final number of preselected stocks over the horizon of 7years is 953 (among 1791). By
doing so we guarantee a substantial turnover of the portfolio, since there are several new
preselected stocks that are classified as the best ones (in the sense of RR) every month.

The average values of the statistics computed for the returns of the preselected assets
reported in Table 1 suggest the presence of heavy tails (kurtosis greater than eight and
stability index α lower than two) and positive skewness (skewness and asymmetry stable
parameter β are positive and the average value of the maximum is higher than the absolute
value of the average of the minimum). A comparison between the statistics of the global
data set and the preselected stocks also shows us that the average mean of preselected log
returns is about 51 times the average mean of the global data set, even if the preselected
stocks exhibit heavier tails since the kurtosis parameter is higher and the stability parameter
is lower. Thus, it is not surprising that the Gaussian hypothesis is rejected for about 85% of
the stocks, while the stable Paretian hypothesis is rejected for about 17% of the cases.

We apply a PCAbased on the following correlationmeasures to the 200 preselected stocks:

P1 Pearson linear correlation of the gross returns zi .
P2 Pearson correlation applied to the random variables zi − E(zi |�1) orthogonal to

L2 (Ω,�1,Pr). As sigma algebra �1 we consider a finite sub-sigma algebra of the sigma
algebra generated by the upper stochastic bound maxk zk given by

�1 = �(m) = 〈{Ai ; i = 1, . . . ,m}〉 ,

where

A1 =
{
max
k

zk ≤ F−1
maxk zk

(
1

m

)}
,

Ai =
{
F−1
maxk zk

(
1

m
(i − 1)

)
〈max

k
zk ≤ F−1

maxk zk

(
1

m
i

)}

for i = 2, . . . ,m − 1; and

Am =
{
max
k

zk > F−1
maxk zk

(
1 − 1

m

)}
.

Observe that ifm converges to infinity, �(m) converges to the sigma algebra generated by
maxk zk . In this sense, �1 is a first trivial approximation of the sigma algebra generated
by maxk zk . In particular, in our empirical comparison we use m = 40. Under these
assumptions, the conditional expectation can be easily estimated, since it is given by the
simple function:

E(X/�1)(w) =
n∑

i=1

I[X (w)∈Ai ]
1

Pr(Ai )

∫

Ai

Xd Pr ∀w ∈ Ω,

where I[X (w)∈A] is equal to 1 if X (w) ∈ A, and it is equal to 0 otherwise.
P3 Pearson correlation applied to the bijective non-linear function of the returns h(ri ) =

sign(ri ) |ri |0.5 as suggested in formula (13). This correlation measure take into account
non-linear dependence among returns, and it is finite for any sub-Gaussian stable distrib-
uted vector of returns with finite mean (α > 1).

P4 Pearson correlation applied to the function of the returns

h(ri ) = sign(ri ) |ri |(α−0.001)/2
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andα is the average of theMLE indices of stability (i.e.α = 1
n

∑n
k=1 αk). This correlation

measure takes into account a non-linear dependence among returns, and it is finite even
when the vector of returns admits sub-Gaussian α stable distribution.

S1 Stable approximated correlation ρ(zi , z j ) = vi j√
vi iv j j

. Here we use formula (6) to estimate

vi j (i �= j) and the MLE estimator of stable dispersion vkk once the index of stability
α = 1

n

∑n
k=1 αk has been fixed as the average of the indices of stability.

S2 Stable approximated correlation ρ(Xi , X j ) = vi j√
vi iv j j

applied to the random variables

Xi = zi − E(zi |�1), where �1 is the finite sigma algebra of the point (ii) and the
coefficients vi j are computed as for S1.

S3 Stable correlation given by formula (10) that is finite for all α stable distributed vectors
with α greater than 1. In this case we estimate the correlation matrix using the moment
estimator.

S4 Stable correlation given by formula (10) applied to the random variables zi − E(zi |�1)

where �1 is the finite sigma algebra defined in P2.

As regards our choice of sigmaalgebra�1, the randomvariable E(zi |�1) canbe considered
as a first approximation of the random variable E(zi |maxk zk). Thus, when we approximate
the returns using factors derived from the principal component analysis on the correlation
matrices of the random variables zi − E(zi |�1), we account the part of the returns which are
‘uncorrelated’ with the upper market stochastic bound.

In order to evaluate the impact of different PCAs on portfolio selection, we compare the
ex post wealth sample paths obtained by maximizing a performance measure valued on the
approximated preselected returns. In particular, we maximize the performance ratio

v(x ′z)
q(x ′z)

= E(x ′z − 1)

E(|x ′z − maxk zk |) , (18)

where the reward measure is the mean E(x ′r) of the portfolio returns and the risk measure
is the absolute distance between the portfolio and the upper market stochastic bound.

Observe that upper limit constraints are generally applied by financial institutions to
guarantee a minimal diversification [see, for example, the discussion on diversified strategies
(Pflug et al. 2012; DeMiguel et al. 2009)]. Thus we suppose that no short sales are allowed
and that we cannot invest more than 5% in a single asset, i.e. 0 ≤ xi ≤ 0.05 for any
i = 1, . . . , n, to guarantee a diversification. Applying the principal component analysis at
each optimization time, we observe that 25 factors are sufficient to explain on average more
than 50% of the variability for all the linear correlation matrices. Therefore, as suggested at
the beginning of this section, at each optimization time (i.e. every 20 trading days) and for
each correlation matrix we approximate the 200 preselected returns using 25 factors derived
from the principal component analysis. We then regress the return series (or its functions, for
the correlations ofP3 andP4) on the 25 factors f j (or f̃ j ) andwe approximate the portfolio of
returns x ′z � x ′̂b0 +∑s

j=1 x
′̂b j f j (or x ′z � ∑n

i=1 xi h
−1(̃bi,0 +∑s

j=1 b̃i, j f̃ j )) using OLS

estimates of parameters b j (̃b j ). Finally, at each optimization time and for each correlation
matrix we solve the optimizationproblem:

max
x

E(x ′z−1)
E(|x ′z−maxk zk |)

n∑

i=1
xi = 1; xi ≥ 0; xi ≤ 0.05

evaluated for the approximated returns. Since this problem admits a single optimum we use
the standard solver in Matlab (that is, the function ‘fmincon’) to determine its solution.
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Fig. 1 Ex post comparison of wealth obtained optimizing a performance ratio applied either to the original
preselected returns (strategy noPCA) or to the approximated preselected returns. Approximation is obtained
with factor models. Darker color of the curve indicates higher final value

In Fig. 1 we report the ex post comparison of the sample paths of wealth obtained with
different portfolio approximation. In this figure we also consider the case when no PCA
(noPCA) is applied to the 200 preselected stocks. The figure shows that:

(a) If we do not apply any PCA, we get the worst ex post results; In particular we observe
that all strategies that apply a PCA rise more than the noPCA strategy during the ‘bull’
market period from March 2009 till April 2010 and from October 2010 till August
2014, in the ‘bear’ market period from April 2010 till October 2010. While we do not
observe very big differences during the US sub-prime mortgage crisis period before
March 2009. This difference is a consequence of the effects of the pre-selection that is
able to identify several stocks with very common behavior during the first bear market
period (see also Ortobelli et al. 2011). As a matter of fact, we observe that during the
bear market period before March 2009 the 25 principal components derived from all
PCAs are able to explain a significant higher percentage of variability on average than
the variability explained after March 2009.

(b) The Pearson correlation does not give a particularly good performance, even if the ex
post performance is much better than having no PCA reduction of dimensionality;

(c) We get the best performance bymaximizing the performance ratio applied to the approx-
imated returns that uses one of the following correlation matrices in the principal
component analysis: S4, S1, P4.

Thus, this analysis confirms that it is important to reduce the dimensionality of large-scale
portfolio problems considering the heavy tails of the returns. Moreover, the empirical results
show that in several cases we may obtain good portfolio approximations by applying a PCA
to correlationmatrices different from the Pearson linear correlation. In order to evaluate these
results more precisely, we consider some empirical statistics on the ex post returns on the
portfolio strategies.

Concerning the strategies based on different return approximations, we report in Table 2
the values of (1) two reward measures of the ex post returns (the empirical mean m(X)
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Table 2 Statistics computed for daily ex post returns obtained for particular strategies with different ex ante
return approximations (all results multiplied by 102)

P1 P2 P3 P4 S1 S2 S3 S4 noPCA

Mean 0.051 0.049 0.059 0.053 0.084 0.046 0.045 0.086 0.030

SD 1.71 1.72 1.71 1.71 2.11 1.68 1.72 2.11 1.89

AVaR+ 3.97 4.04 4.01 4.01 5.27 3.88 3.99 5.27 4.31

AVaR− 4.26 4.29 4.21 4.23 5.24 4.16 4.26 5.24 4.78

WT 231.58 234.09 235.39 234.26 249.20 230.56 232.20 249.91 227.91

SR 197.22 189.49 232.20 204.27 319.83 182.03 175.85 333.29 126.15

PR1 2.97 2.84 3.49 3.08 3.99 2.74 2.61 4.09 1.60

PR2 1.20 1.14 1.41 1.25 1.61 1.11 1.05 1.65 0.64

PR3 93.17 94.20 95.25 94.80 100.47 93.19 93.72 100.59 90.32

and AVaR−, which is AVaR of the opposite random variable AVaR0.05(−X)); (2) two devi-
ation measures of the ex post returns (the standard deviation σ(X) and AVaR+, which is
AVaR of the centered random variable AVaR0.05((X − E(X))); (3) all possible reward risk
ratios derived from these two measures, ie. Sharpe ratio, mean/AVaR(X − E(X)) (PR2),
AVaR(−X)/AVaR(X − E(X)) (PR3), AVaR(−X)/(st.dev.(X)) (PR4); (4) final wealth
WT obtained onAugust 20, 2014 (at the end of the ex post period). A particular result indicates
that the S4 strategy yields the highest ex post final wealth (about 3.33), the highest reward
measures m(X), AVaR−

0.05, and all the highest ex post reward/risk performances. However,
the S2 strategy seems to be the less ex post risky one, since it presents the smallest risk
measures σ(X) and AVaR+

0.05.

5.2 Portfolio performance optimization

In this part of the empirical analysis we conduct an ex post comparison among several
versions of optimization problem (16) based on different risk and correlation measures.
Since in the previous analysis we obtained the best ex post results using the S4 strategy, in
this analysis we reduce the dimensionality of the large-scale portfolio problem using the same
techniques. Therefore, at each recombination step we consider 200 assets that present the
highest Rachev ratio. We then approximate the preselected returns using 25 factors derived
from the principal component analysis applied to the correlation matrix described as S4 in
Sect. 5.1.

Finally, we solve the optimization problem (16) in order to examine the impact of different
correlationmeasures on the USmarket. As performance ratios we consider the classic Sharpe
ratio, SR (see Sharpe 1994):

SR(x ′z) = v(x ′z)
q(x ′z)

= E(x ′r)
E
(
(x ′z − E(x ′z))2

)0.5 ,

and a Modified Sharpe ratio,MSR

MSR(x ′z) = v(x ′z)
q(x ′z)

= E(x ′r)
dρ,σ (x ′z)

,
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where as risk measure we use dρ,σ (x ′z) = √
x ′Qρ,σ x instead of the standard deviation. In

particular, as correlation measure ρ we still use the Pearson linear correlation measure, while
the deviationmeasure σ is the AVaR of the centered random variable i.e. σX = AVaR5%((X−
E(X)).

Moreover, we consider five different factors of the type:
(

ρ1

(
x ′z,max

i
zi

)
− ρ2

(
x ′z,min

i
zi

))

differently measuring the correlation of the portfolio return with the upper and lower bounds.
For all the factors (ρ1 − ρ2) we assume that the correlation ρi is of the same type in order to
guarantee that (ρ1 − ρ2) > 0. In particular, we set ρ1 and ρ2 as follows:

Gini ρ1(X, Y ) = ρ2(X, Y ) = 1
�n2/2�

[∑n
i=1 |pi + qi − n − 1| −∑n

i=1 |pi − qi |
]
is the

sample estimation of Gini’s index of cograduation, where pi and qi are the ranks of
random variables X and Y , respectively;

Prs ρ1(X, Y ) = ρ2(X, Y ) is the Pearson correlation measure;

Spr ρ1(X, Y ) = ρ2(X, Y ) = cov(FX (X),FY (Y ))√
var(FX (X)),var(FY (Y ))

is the Spearman concordance measure;

Knd ρ1(X, Y ) = ρ2(X, Y ) = E(sign((X1 − X2)(Y1 − Y2))) is the Kendall concordance
measure, where (X1, Y1) and (X2, Y2) are independent replications of (X, Y );

Stb ρ1(X, Y ) = ρ2(X, Y ) = vXY√
vXX vYY

is the stable correlation given by formula (10) that
is finite for all α stable distributed vectors with α > 1.

Thus, every month we solve the optimization problem:

max
x

v(x ′z)
q(x ′z)

[
ρ1

(
x ′z,max

i
zi

)
− ρ2

(
x ′z,min

i
zi

)]

n∑

i=1
xi = 1; xi ≥ 0; xi ≤ 0.05

(19)

evaluated on the preselected approximated returns. Since this optimization problem may
present more local optima, we use the heuristic proposed by Angelelli and Ortobelli (2009)
to approximate the global optimum.

In Fig. 2 we report the ex post comparison of the sample paths of wealth obtained with
the Sharpe ratio (SR) and the functionals based on different correlation measures. Figure 3
reports the same typology of results when we use the Modified Sharpe ratio (MSR) as the
performance measure, i.e., v(x ′z)

q(x ′z) = E(x ′r)
dρ,σ (x ′z) . In these figures we also consider:

a) the case when we do not apply any PCA to the 200 preselected stocks and the factor
ρ1 − ρ2 = 1, i.e. there is no correlation contribution ((M)SR1);

b) the casewhenwe apply the PCA to the correlationmatrix described in point 8 of Sect. 5.1,
but there is no correlation contribution, i.e. ρ1 − ρ2 = 1 ((M)SR2);

c) the behavior of the S&P 500 index during the examined period.

Figures 2 and 3 show that:

– if we do not apply any PCA and do not use the correlation factor ρ1−ρ2 (i.e. ρ1−ρ2 = 1)
we get the worst ex post results;

– if we do not use the correlation factor ρ1 − ρ2 we get worst results than if we use it;
– the performances strategies that give the best results are those based on the Kendall

correlation measure;
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Fig. 2 Ex postwealth obtained optimizing portfolio strategies given by the Sharpe ratio multiplied by selected
association factors. Darker color of the curve indicates higher final value

Fig. 3 Ex post wealth obtained optimizing portfolio strategies given by the Modified Sharpe ratio multiplied
by selected association factors. Darker color of the curve indicates higher final value

– all the strategies based on the maximization of the modified Sharpe ratio (multiplied with
a correlation factor) generally present higher final wealth than the analogous strategies
based on themaximization of the Sharpe ratio (except for the Spearman correlation factor
where the ex post wealth difference is almost null);

– most strategies we proposed in the paper outperform the behavior of the S&P 500 index
(see Fig. 2; Table 3).

Thus this analysis confirms that it is important to reduce the dimensionality of large-scale
portfolio problems and to take into account the joint behavior of the portfolio of returns
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Table 3 Statistics computed for daily ex post returns obtained for strategies with different performance ratios
(SR andMSR) and different association measures of the portfolio and the market stochastic bounds (all results
multiplied by 102)

Knd Prs Stb Gini SR1 SR2 Spr S&P500

Sharpe×association factor

Mean 0.104 0.084 0.073 0.088 0.032 0.055 0.085 0.030

SD 1.69 1.62 1.63 1.64 1.46 1.51 1.62 1.44

AVaR+ 4.04 3.86 3.86 3.84 3.18 3.52 3.87 3.37

AVaR− 4.00 3.95 3.97 4.01 3.61 3.64 3.88 3.59

WT 539.15 378.51 307.78 407.18 149.51 226.67 381.93 143.49

SR 6.15 5.18 4.48 5.38 2.20 3.64 5.21 2.06

PR1 2.60 2.13 1.85 2.20 0.89 1.51 2.18 0.82

PR2 101.14 97.65 97.22 95.74 88.15 96.50 99.80 93.89

PR3 239.49 237.89 235.99 234.24 218.70 232.97 238.75 234.42

Knd Prs Stb1 Gini SR1 SR2 Spr S&P500

Modified sharpe×association factor

Mean 0.109 0.085 0.087 0.098 0.038 0.056 0.082 0.030

SD 1.67 1.62 1.61 1.61 1.49 1.52 1.61 1.44

AVaR+ 4.02 3.87 3.80 3.81 3.29 3.53 3.84 3.37

AVaR− 3.91 3.92 3.89 3.89 3.72 3.68 3.85 3.59

WT 592.99 387.46 401.65 489.02 165.89 231.98 365.13 143.49

SR 6.51 5.26 5.40 6.05 2.56 3.71 5.08 2.06

PR1 2.78 2.17 2.24 2.51 1.03 1.53 2.13 0.82

PR2 102.79 98.62 97.56 97.92 88.47 96.05 99.71 93.89

PR3 240.75 238.82 235.51 236.29 220.57 232.75 237.80 234.42

and the market stochastic bounds. Moreover, we also confirm that we can find performance
strategies based on a different concept of risk (namely dρ,σ (x ′z)) which outperforms the
Sharpe ratio and the S&P 500 market index. Table 3 reports the values of the same statistics
reported in Table 2 computed on the ex post returns on all these strategies.

In particular, Table 3 shows that the Kendall strategy presents the highest ex post final
wealth, mean, Sharpe ratio, and the highest ex post performance ratios, mean/AVaR0.05((X −
E(X)), AVaR0.05(−X)/AVaR0.05(X − E(X)). In addition, for most strategies based on the
maximization of the modified Sharpe ratio (except for those strategies where no correlation
or no PCA is considered), we get higher mean and a lower risk (standard deviation and
AVaR0.05((X − E(X))) of the ex post returns) than when using those strategies obtained by
maximizing the Sharpe ratio (multiplied with a correlation factor). This result confirms that
it makes sense to use measures of the type dρ,σ (x ′z), where we distinguish the contribution
of a linear correlation measure ρ and of a proper deviation measure σ .

Comparing some results of Tables 2 and 3 (SR2 vs. S4 and SR1 vs. noPCA) we deduce
that the strategies based on themaximization of the Sharpe ratio as well as its modification are
more risk-averse and less aggressive than those based on the maximization of performance
ratio (18). In fact, the SR1 strategy presents smaller risk measures (σ(X) and AVaR0.05((X −
E(X))) and a higher ex post final wealth (2.27) than does noPCA strategy (1.26), while both
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Table 4 Sensitivity of the most profitable strategy (Table 3) with respect to MSR probability levels u and
constraint on portfolio position xi (all results multiplied by 102)

xi xi ≤ 10% xi ≤ 50% xi ≤ 100%

u 1% 5% 10% 1% 5% 10% 1% 5% 10%

Mean 0.113 0.109 0.107 0.116 0.112 0.109 0.122 0.115 0.112

SD 1.84 1.72 1.68 1.87 1.80 1.71 1.96 1.81 1.74

AVaR+ 4.40 4.12 4.03 4.48 4.30 4.09 4.68 4.34 4.17

AVaR− 4.40 4.06 3.98 4.48 4.29 4.02 4.67 4.29 4.10

WT 238.95 239.76 239.65 239.06 239.20 239.96 239.36 239.75 240.06

SR 608.45 592.53 571.80 630.51 607.25 594.17 689.19 639.28 615.70

PR1 6.14 6.37 6.35 6.17 6.24 6.41 6.23 6.36 6.43

PR2 2.57 2.70 2.69 2.58 2.62 2.72 2.61 2.69 2.73

PR3 99.84 101.45 101.34 99.97 100.40 101.78 100.29 101.25 101.89

SR1 and SR2 strategies presents smaller ex post final wealth (2.27, 1.5) than does the S4
strategy (3.33).

When we examine the turnover and diversification of the optimal portfolios, we observe
that there is no strategy that invests in only twenty assets, even ifwe impose thatmore than 5%
cannot be invested in each asset. However, to better evaluate the portfolio diversification and
the impact of different dispersion measures, we examine the ex post wealth we obtain opti-
mizing the modified Sharpe ratio times the Kendall correlation factor (i.e. the previous ‘best’
strategy) using different portfolio constraints and different dispersion measure definitions.

In particular, we assume that problem (19) changes as follows:

– investors cannot invest more than 10, 50 and 100% in each asset (i.e. xi ≤ 0.1; 0.5; 1)
– deviation measure of modified Sharpe ration (MSR)σX = AVaRu((X − E(X)) is based

on u = 1%; 5%; 10%.

Results over the same horizon as in the basic case are apparent from Table 4.
On the one hand we, observe that relaxing the portfolio constraints we generally reduce

the diversification and we improve the ex post wealth. However, there is no strategy that
invests in only ten (two, one) assets, even if we state that more than 10% (50, 100%) cannot
be invested in each asset. In addition, we observe a strong turnover at each optimization
time for all strategies that is also due to the preselection procedure. Thus, by using these
portfolio strategies, we always observe a satisfying diversification and turnover in the optimal
portfolios.Moreover, aswe could expect, the risk of the strategy (seeσ(X) andAVaR0.05((X−
E(X)) of Table 4) also increases, when we relax the portfolio constraints and portfolio
diversification decreases. On the other hand, we observe that the ex post wealth increases
when the confidence level u of deviation measure σX = AVaRu((X − E(X)) decreases for
fixed portfolio constraints. Therefore, we proved that the optimal portfolios are very sensitive
to different deviation measures used in optimization problem (19) in particular when these
measures evaluate the portfolio distributional tails.7

7 This observation partially confirms the studies on the sensitivity of CVaR (Stoyanov et al. 2013).
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6 Conclusion

This paper serves a twofold objective. First, the properties of association measures were
theoretically discussed in order to characterize semidefinite positive correlation measures
and their consistency with the investors’ choices. Secondly, two different ways of correlation
measures usage in portfolio selection problems were proposed and their ex post empirical
analysis on the US stock market was performed.

The empirical experiments show us (1) that the dimensional reduction of large-scale port-
folio problems may have a substantial impact on the portfolio selection of the US stock
market; (2) that it makes sense to distinguish the contribution of a correlation measure and a
deviation measure in measuring risk; in this context it is important to consider proper correla-
tion and deviationmeasures for returns with heavy tails; (3) that the (properlymeasured) joint
behavior of the portfolio and the market stochastic bounds may have a substantial impact on
the portfolio selection of the US stock market.

Since the empirical analysis has shown a strong impact of different correlation measures
on the investor’s choices, it is evident that there must be reasons to investigate new linear
correlation measures as suggested by our empirical analysis and motivated by the theoretical
discussion conducted.
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Appendix

Proof of Theorem 1 Suppose that properties 1 and 2 of the theorem are satisfied. Cauchy–
Schwarz inequality applied to V guarantees property 1 and 2 of correlation measures, i.e.
ρ : H × H → [−1, 1] and ρ(X, X) = 1; ρ(X,−X) = −ρ(X, X) = −1. Consider
g(X, Y ) = (v1,g, v2,g). Properties 3 and 4 of correlation measures are logical consequences
of 〈g(X, Y )〉 = 〈g(Y, X)〉 and 〈g(−X, Y )〉 = 〈g(X,−Y )〉 = −〈g(X, Y )〉, while Property 5
of the correlation measure follows by property 2 of the theorem. Moreover, since ρ(X, Y )

can be seen as an inner product of the vectors v1,g√〈g(X,X)〉 and
v2,g√〈g(Y,Y )〉 , we deduce from the

Gram representation theorem that the correlation matrix that satisfies properties 1 and 2 of
the theorem is semidefinite positive.

Viceversa, letρ be a semidefinite positive correlationmeasure. Then any correlationmatrix
Q = [ρi, j ] should be semidefinite positive. Consider the correlation matrix defined on the
random variables belonging to H1 = {X1, . . . , Xn}. From the Gram representation theorem
we know that an n-dimensional correlation matrix Q = [ρi, j ] is semidefinite positive if, and
only if, there exists n vectors v1, v2, . . . , vn , in a vectorial space V such that ρ(Xi , X j ) =
ρi, j = 〈vi , v j 〉. Sinceρ : H1×H1 → [−1, 1] andρ(Xi , Xi ) = 1, then 〈vi , vi 〉 = 1.Consider
the function g(±Xi ,±X j ) = (±kivi ,±k jv j

)
for some positive real ki , k j (i, j = 1, . . . , n) .

Therefore we obtain ρi, j = 〈g(Xi ,X j )〉√〈g(Xi ,Xi )〉〈g(X j ,X j )〉 . Since ρ(−Xi , X j ) = ρ(Xi ,−X j ) =
−ρ(Xi , X j ) it follows that 〈g(−Xi , X j )〉 = 〈g(Xi ,−X j )〉 = −〈g(Xi , X j )〉. If X and Y are
independent random variables ρ(X, Y ) = 0 and thus 〈g(X, Y )〉 = 0.
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Proof of Proposition 1 We first prove Case M1. Observe that Vp/2(aX +b) = aVp/2(X)+b
holds for any constant a and b and the functional

cvp(X, Y ) = E

((
X − Vp/2(X)

)〈p/2〉 (
Y − Vp/2(Y )

)〈p/2〉)〈min(2/p,2)〉

is an inner product in the L p space. Thus using the same notation of Theorem1we can assume
that 〈g(X, Y )〉 = cvp(X, Y ) and then we easily prove that cvp satisfies the properties of The-
orem 1. In particular, cvp(X, Y ) = cvp(Y, X) and cvp(aX + b, Y ) = cvp(X, Y )a〈min(p,1)〉.
Moreover, if X is independent of Y , then

cvp(X, Y )
1

〈min(2/p,2)〉 = E

((
X − Vp/2(X)

)〈p/2〉)
E

((
Y − Vp/2(Y )

)〈p/2〉) = 0.

If
∣
∣ρp(X, Y )

∣
∣ = 1, then |cvp(X, Y )| = ∥

∥X − Vp/2(X)
∥
∥
p

∥
∥Y − Vp/2(Y )

∥
∥
p , so that there

exists a real c such that
(
X − Vp/2(X)

)〈p/2〉 = c
(
Y − Vp/2(Y )

)〈p/2〉 and the thesis follows.
Regarding Case M2, we can easily prove that Y = X a.s. implies X1 = Y1 a.s. and con-

sequently τp(X, X) = 1. Since (X1, Y1)
d= (X, Y ), the assumption Y = X a.s. implies

that for any xn ∈ Q; Pr(X1 ≤ xn, Y1 > xn) + Pr(X1 > xn, Y1 ≤ xn) = 0. Consider
Ω̃ = (∪nΩn)

C (where Ωn = {w|X1(w) ≤ xn, Y1(w) > xn or X1(w) > xn, Y1(w) ≤ xn}).
Then Pr(Ω̃) = 1 and X1(w) = Y1(w) for any w ∈ Ω̃ (otherwise if X1(w) > Y1(w)—or
X1(w)〈Y1(w)—there exists xn ∈ Q such that X1(w) > xn ≥ Y1(w)—or X1(w) ≤ xn〈Y1(w)

contrary to the assumption that w ∈ Ω̃ ). Moreover since (X − X1) and (Y − Y1) are sym-
metric random variables E

(
(X − X1)

〈p/2〉) = E
(
(Y − Y1)〈p/2〉

) = 0, when X and Y are
independent random variables τp(X, Y ) = 0. All the other properties of Theorem 1 are sat-
isfied by the measures τp(X, Y ). Regarding Case M3, we observe that the random variable
Z = (X 〈p/2〉 − E(X 〈p/2〉|�1)), where X ∈ L p(Ω,�,Pr) is orthogonal to L2(Ω,�1,Pr)
because for any V ∈ L2(Ω,�1,Pr) then E(V Z) = E(V E(Z |�1)) = 0. Since the mea-
sure Op,�1 is the Pearson measure applied to the space of the random variables of the type
Z = (X 〈p/2〉 − E(X 〈p/2〉|�1)) orthogonal to L2(Ω,�1,Pr) the measure M3 is a correlation
measure on this space. On the one hand, the measureM3 is not law invariant correlation mea-
sure on the whole space of random variables L p(Ω,�,Pr).As amatter of fact, if X(1), Y(1) ∈
L p, (X(1), Y(1))

d= (
X(2), Y(2)

)
not necessarily

(
Z1,(1), Z2,(1)

) d= (
Z1,(2), Z2,(2)

)
where

Z1,(i) = (X 〈p/2〉
(i) − E(X 〈p/2〉

(i) |�1)) and Z2,(i) = (Y 〈p/2〉
(i) − E(Y 〈p/2〉

(i) |�1)) (i = 1, 2) and

it may be Op,�1(Z1,(1), Z2,(1)) �= Op,�1

(
Z1,(2), Z2,(2)

)
. On the other hand, measure M3

satisfies concordance property (v) on the whole space L p, because if X is independent from
Y then Op,�1(Z1, Z2) = 0.

Proof of Proposition 2 Under the assumptions of the proposition every portfolio of returns
is uniquely determined by the mean and the variance or the mean and by another deviation
measure. Moreover, as a consequence of Theorem 5 in Ortobelli (2001), if we use another
deviation measure σX to characterize these distribution families then σX = a

√
var(X)

where a is a positive constant for all the random variables X of the two parametric
family. Suppose that the vector of returns z = (z1, z2, z3)′ is distributed with mean vec-
tor μ = [μ1, μ2, μ1x + (1 − x)μ2] for a given x ∈ (0, 1) and a given variance covariance
matrix

Q =
⎡

⎣
var(z1) cov(z1, z2) 0

cov(z1, z2) var(z2) 0
0 0 var(z3)

⎤

⎦ ,
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where var(z3) = x2var(z1) + (1− x)2var(z2) + 2x(1− x)cov(z1, z2). Then the distribution
of portfolio [x, (1− x), 0]z is equal to the distribution of z3. Therefore, if ρ is a semidefinite
positive correlation measure and σ is a deviation measure, we obtain

dρ,σ ([0, 0, 1]z)2 = σ 2
z3 = a2var(z3) = a2var(x, (1 − x), 0]z)

and

dρ,σ ([x, (1 − x), 0]z)2 = x2a2var(z1) + a2(1 − x)2var(z2)

+ 2x(1 − x)a2
√

var(z1)var(z2)ρ(z1, z2),

where a is the positive constant defined as a consequence of Theorem 5 in Ortobelli (2001)
applied to the family of these distributions. Therefore dρ,σ ([0, 0, 1]z)2 = a2var(x, (1 −
x), 0]z) = dρ,σ ([x, (1 − x), 0]z)2 if and only if

√
var(z1)var(z2)ρ(z1, z2) = cov(z1, z2).

Moreover, let ρ be the Pearson correlation measure and let z = [z1, z2, . . . , zn]′ be the vector
of the returns. If two portfolios x ′z and y′z have the same distributions and σ is a deviation
measure, then σzi = a

√
var(zi ) (where a is a positive constant) for any i = 1, . . . , n and

dρ,σ (x ′z)2 =
n∑

i=1

x2i σ
2
zi + 2

n∑

i=1

∑

j=i+1

xi x jσzi σzi ρi, j = a2var(x ′z)

= a2var(y′z) =
n∑

i=1

y2i σ
2
zi + 2

n∑

i=1

∑

j=i+1

yi y jσzi σzi ρi, j = dρ,σ (y′z)2.

Proof of Proposition 3 Under these assumptions, the matrix Qρ,σ = [σz j σzi ρi, j ] =
[〈g(zi , z j )〉]. Moreover, from bilinearity we deduce x ′Qρ,σ x = 〈g(x ′z, x ′z)〉. If we have
two portfolios x ′z and y′z with the same distribution

y′Qρ,σ y = 〈g(y′z, y′z)〉 = σ 2
y′z = σ 2

x ′z = 〈g(x ′z, x ′z)〉 = x ′Qρ,σ x,

where we used the invariance in law of the variability measure σX = √〈g(X,X)〉. Thus
dρ,σ (x ′z) is invariant in law.

Proof of Proposition 4 As a consequence of (7) the measure (8) is defined on the marginals
by:

ρ(zi , z j ) = vi j√
vi iv j j

=
A(α, p)E

(
(zi − E(zi ))

(
z j − E(z j )

)〈p−1〉)

A(α, 1)A(α, p − 1)E (|zi − E(zi )|) E
(∣∣z j − E(z j )

∣∣p−1
)

for any p ∈ [1, α). Moreover, considering that the matrix Q is semidefinite positive, we can
easily verify that ρ is a linear correlation measure (for further details on stable sub-Gaussian
distributions see Samorodnitsky and Taqqu 1994). Under the assumptions of the proposition,
every portfolio of gross returns x ′z is uniquely determined by the mean x ′μ (since α > 1)
and the dispersion x ′Qx of this elliptical distribution or the mean and the deviation measure
σx ′z . Therefore, as a consequence of Theorem 5 in Ortobelli (2001), we can essentially repeat
the proof of Proposition 2 and the measure dρ,σ (x ′z) is invariant in law if and only if ρ is
defined by (8).
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Proof of Corollary 1 Let us consider ρ(X, Y ) = ∑m
i=1 aiρi (X, Y ) such that ai ≥

0;∑m
i=1 ai = 1. Clearly, ρ(X, Y ) is a concordance (correlation) measure if all ρi (X, Y )

satisfy the seven (five) properties of concordance (correlation) measures. Similarly, if ρi
for i = 1, . . . ,m are semidefinite positive correlation measures, then also ρ = ∑m

i=1 aiρi
is semidefinite positive because any correlation matrix Q = ∑m

i=1 ai Qi derived from ρ

is the convex combination of the correlation matrices Qi derived from the measures ρi .

Observe that if ρi (X, Y ) i = 1, . . . ,m are linear correlation measures 〈gi (X, X)〉i ≥ 0
and 〈gi (X, X)〉i = 0 if and only if X is a constant. Thus 〈X − E(X), X − E(X)〉 ≥ 0
and it is equal to zero if and only if X − E(X) = 0. Since 〈gi (X, Y )〉i = 〈gi (Y, X)〉i
then 〈X − E(X), Y − E(Y )〉 = 〈Y − E(Y ), X − E(X)〉 . In addition, for any a, b ∈ R and
X, Y, Z ∈ H , 〈gi (aX + bZ , Y )〉i = a〈gi (X, Y )〉i + b〈gi (Z , Y )〉i , thus 〈aX + bZ , Y 〉 =
a〈X, Y 〉 + b〈Z , Y 〉 and 〈X, Y 〉 is an inner product in the class of centered random variables
belonging to H .
Proof of Proposition 5 The matrix Qρ,σ is still semidefinite positive since x ′Qρ,σ x =
y′Qρ y ≥ 0 where y = (x1σz1 , x2σz2 , . . . , xnσzn )

′. Moreover, Bauerle and Müller (2006)
have proved that in a finite probability space where the probability Pr is uniform, any invari-
ant in law, convex measure D (i.e. D(aX + (1 − a)Y ) ≤ aD(X) + (1 − a)D(Y ) for any
a ∈ [0, 1]) is consistent with the choices of risk-averse investors. The measure x ′Qρ,σ x
(or its estimator x ′ Q̃ρ,σ x with semidefinite positive matrix Q̃ρ,σ ) is convex in the class of
portfolio returns x ′z since the function f (x) = x ′Qρ,σ x ( f (x) = x ′ Q̃ρ,σ x) is a convex
function because the Hessian of function f (x) is Qρ,σ (Q̃ρ,σ ). Then, for any a ∈ [0, 1]:

(ax + (1 − a)y)′ Qρ,σ (ax + (1 − a)y) ≤ ax ′Qρ,σ x + (1 − a)y′Qρ,σ y.

Themeasure x ′Qρ,σ x (or its estimator x ′ Q̃ρ,σ x) is strictly convex whenmatrix Qρ,σ (Q̃ρ,σ )
is definite positive. According to Bauerle and Müller (2006), if w′z is dominated in the sense
of the convex order by y′z, then w′Qρ,σ w ≤ y′Qρ,σ y.
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