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Abstract We revisit a single-server retrial queue with two independent Poisson streams
(corresponding to two types of customers) and two orbits. The size of each orbit is infinite.
The exponential server (with a rate independent of the type of customers) can hold atmost one
customer at a time and there is no waiting room. Upon arrival, if a type i customer (i = 1, 2)
finds a busy server, it will join the type i orbit. After an exponential time with a constant
(retrial) rate μi , a type i customer attempts to get service. This model has been recently
studied by Avrachenkov et al. (Queueing Syst 77(1):1–31, 2014) by solving a Riemann–
Hilbert boundary value problem. One may notice that, this model is not a random walk in the
quarter plane. Instead, it can be viewed as a random walk in the quarter plane modulated by
a two-state Markov chain, or a two-dimensional quasi-birth-and-death process. The special
structure of this chain allows us to deal with the fundamental form corresponding to one state
of the chain at a time, and therefore it can be studied through a boundary value problem.
Inspired by this fact, in this paper, we focus on the tail asymptotic behaviour of the stationary
joint probability distribution of the two orbits with either an idle or a busy server by using
the kernel method, a different one that does not require a full determination of the unknown
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generating function. To take advantage of existing literature results on the kernel method, we
identify a censored random walk, which is an usual walk in the quarter plane. This technique
can also be used for other random walks modulated by a finite-state Markov chain with a
similar structure property.

Keywords Retrial queue · Random walks in the quarter plane · Random walks in the
quarter plane modulated by a finite-state Markov chain ·CensoredMarkov chain · Stationary
distribution · Generating function · Kernel method · Exact tail asymptotics

Mathematics Subject Classification 60K25 · 60J10

1 Introduction

In this paper, we revisit a single server retrial queueing systemwith two orbits and no waiting
room, which has been studied by Avrachenkov et al. (2014). The analysis in Avrachenkov
et al. (2014) is based on the solution of a Riemann–Hilbert boundary value problem, while
our focus is on exact tail asymptotics for the joint stationary distribution of the two orbits
under a busy or idle state of the server, using the kernel method, a different method that does
not require a full determination of the unknown generating function. In this system, there are
two independent exogenous Poisson streams (representing two types of customers) flowing
into the server, and the server can hold at most one customer at a time. Upon arrival, if a type i
customer finds a busy server, it will join its orbit and wait for retrial at a specified exponential
rate for the customers of type i . Such a queueing system could serve as a model for two
competing job streams in a carrier sensing multiple access system, and it has an application
in a local area computer network (LAN) as explained in Avrachenkov et al. (2014).

Retrial queueing systems have been attracting researchers’ attention for many years (e.g.,
Artalejo and Gómez-Corral 2008; Artalejo 2010; Falin 1990; Yang and Templeton 1987 and
references therein). Much of the previous work lays the emphasis on performance measures,
such as the mean size of the orbit, the average number of the customers in the system, the
average waiting time among others. We also notice that stationary tail asymptotic analysis
has recently become one of the central research topics for retrial queues due to not only its
own importance, but also its applications in approximation and performance bounds. For
example, Shang et al. (2006) proved that the stationary queue length of the M/G/1 retrial
queue has a subexponential tail if the queue length of the corresponding M/G/1 queue has
a tail of the same type. Kim et al. (2010) extended the study on the M/G/1 retrial queue by
Kim et al. (2007) to a M AP/G/1 retrial queue, and obtained tail asymptotics for the queue
size distribution. Tail asymptotic properties were obtain for M/M/m retrial queue by Kim
and Kim (2012), and Kim et al. (2012). By adopting matrix-analytic theory and the censoring
technique, Liu et al. (2012) studied the M/M/c retrial queues with non-persistent customers
and obtained tail asymptotics for the joint stationary distribution of the number of retrial
customers in the orbit and the number of busy servers.

Most of the studies on retrial queues assumed a single type of customers flowing into the
system, and references on retrial systems with multi-class customers are quite limited. The
model studied by Avrachenkov et al. (2014) and again in this paper is such a system. This
model is an example of the two-dimensional QBD process (for example, see Ozawa 2013),
or the random walk in the quarter plane modulated by a two-state Markov chain (another
example of retrial queues having this structure is Li and Zhao 2005). In Avrachenkov et al.
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(2014), the authors showed how this modulated model is converted to a scalar fundamental
form, which can be solved in terms of a Riemann–Hilbert boundary value problem (BVP) due
to its special structure of this system.Motivated by this, we extend their research on thismodel
by considering the tail asymptotic behaviour of the stationary joint probability distribution
of the two orbits with either an idle or a busy server, by using the kernel method—a different
method that does not require a full determination of the unknown generating function. For
more details about the kernel method, readers may refer to Fayolle et al. (1999), Li and Zhao
(2009, 2011, 2012), and Li et al. (2013). We point out that tail asymptotic properties for
Markov modulated or more general block-structured random walks have also been studied
by using other methods, for example in Miyazawa and Zhao (2004), Sakuma et al. (2006),
Kobayashi et al. (2010), and Miyazawa (2015).

It is worthwhile to mention that many typical queues have a linear retrial rate, while the
retrial rate for the model in this paper is a constant, independent of the number of customers
in the orbit (but dependent on type i). Such a system can be a model for the situation in which
only the head of the line customer is allowed for retrial. This type of retrial queues are also
very important with many interesting applications. Studies on this type of retrial queues are
enormous including: Fayolle (1986), Farahmand (1990), Choi et al. (1993), Gómez-Corral
(1999), Artalejo et al. (2001), Breuer et al. (2002), and Kim et al. (2014). Readers may also
refer to the survey papers (Gómez-Corral 2006; Avram et al. 2014) for more information.

Themain contribution in this paper includes: (1) the characterization of the tail asymptotic
properties in the joint distribution for a large queue i (i = 1, 2) with either an idle or a busy
server. A total of three types of properties are identified (see Theorems 6.2, 6.3, and 6.4 for
the case of a busy server, and Theorems 6.5 and 6.6 for the case of an idle server); and (2)
an illustration on how to convert a matrix-form fundamental form for the Markov modulated
random walk into a (scalar) functional form corresponding to one state of the chain, through
a censored Markov chain or solving the matrix-form fundamental form (see remarks in the
last section). Therefore, it can be studied by the kernel method.

The rest of the paper is organized as follows: Sect. 2 provides the model description;
Sect. 3 identifies the censored random walk in the quarter plane; dominant singularities
of the unknown generating function are located in Sect. 4, while the detailed asymptotic
property of the unknown function at its dominant singularity is discussed in Sect. 5; exact tail
asymptotic properties for stationary probabilities of the system, which are our main results,
and their detail proofs are presented in Sect. 6. Concluding remarks are made in the final
section.

2 Model description

In this paper, we consider a single server queueing system with two independent Poisson
streams of arrivals and two retrial orbits, the same system studied in Avrachenkov et al.
(2014). FollowingAvrachenkov et al. (2014), the two arrival rates are denoted by λi , i = 1, 2,
with λ = λ1 + λ2. The server can hold at most one customer at a time (without a waiting
room). It means that when the server is busy, an arriving type i customer will join in orbit i
of infinity capacity. Retrials from all customers in orbit i for service are characterized by a
Poisson process with constant rate μi . The service time for each customer is independent of
its type and follows an exponential distribution with rate μ. The retrial mechanism imposed
can be a model when only the customer at head of the line (orbit) is allowed for retrial.

Let I (t) be the state of the server (either idle or busy), or the number of customers in the
server, and let Qi (t) denote the number of customers in orbit i at time t for i = 1, 2. Then,
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Fig. 1 Matrix transition diagram

it generates a continuous time Markov chain X (t) = {(Q1(t), Q2(t), I (t)) : t ∈ [0,∞]}
on the state space {0, 1, . . .} × {0, 1, . . .} × {0, 1}. From Avrachenkov et al. (2014), we
know that the system is stable if and only if λ(λ1 +μ1) < μμ1 and λ(λ2 +μ2) < μμ2.
Under the stability condition, the unique stationary probability vector for the system is
denoted by �m,n = (πm,n(0), πm,n(1)) for m, n = 0, 1, . . .. For the purpose of finding the
stationary distribution, we consider the corresponding discrete time Markov chain through
the uniformization technique.Without loss of generality, we assume thatλ+μ+μ1+μ2 = 1.
For this discrete time chain, a transition diagram, partitioned according to the state of the
server, is depicted in Fig. 1, where

A1,0 = A(1)
1,0 = A(2)

1,0 = A(0)
1,0 =

(
0 0
0 λ1

)
,

A0,1 = A(1)
0,1 = A(2)

0,1 = A(0)
0,1 =

(
0 0
0 λ2

)
,

A−1,0 = A(1)
−1,0 =

(
0 μ1

0 0

)
,

A0,−1 = A(2)
0,−1 =

(
0 μ2

0 0

)
,

A0,0 =
(

μ λ

μ μ1 + μ2

)
,

A(1)
0,0 =

(
μ + μ2 λ

μ μ1 + μ2

)
,

A(2)
0,0 =

(
μ + μ1 λ

μ μ1 + μ2

)
,

A(0)
0,0 =

(
μ + μ1 + μ2 λ

μ μ1 + μ2

)
.
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We define the probability generating function (PGF) P(k)(x, y) for the stationary proba-
bilities πm,n(k) as

P(k)(x, y) =
∞∑

m=0

∞∑
n=0

πm,n(k)xm yn, |x | ≤ 1, |y| ≤ 1, k = 0, 1,

and denote

P(x, y) =
(

P(0)(x, y), P(1)(x, y)
)

.

Following the idea in Fayolle et al. (1999), we can obtain the (matrix-form) fundamental
form for the Markov modulated random walk in the quarter plane:

P(x, y)H(x, y) = P(x, 0)H1(x, y) + P(0, y)H2(x, y) + �0,0H0(x, y), (2.1)

where

H(x, y) = −h̄(x, y),

H1(x, y) = −h̄(x, y) + h̄1(x, y)y,

H2(x, y) = −h̄(x, y) + h̄2(x, y)x,

H0(x, y) = h̄0(x, y)xy + h̄(x, y) − h̄1(x, y)y − h̄2(x, y)x

with

h̄(x, y) = xy

⎛
⎝ 1∑

i=−1

1∑
j=−1

Ai, j x i y j − I

⎞
⎠ ,

h̄1(x, y) = x

⎛
⎝ 1∑

i=−1

1∑
j=0

A(1)
i, j x i y j − I

⎞
⎠ ,

h̄2(x, y) = y

⎛
⎝ 1∑

i=0

1∑
j=−1

A(2)
i, j x i y j − I

⎞
⎠ ,

h̄0(x, y) =
1∑

i=0

1∑
j=0

A(0)
i, j x i y j − I.

For detailed derivation, see the work in [15].

Remark 2.1 It is worthwhile to mention that the fundamental form (1.3.6) in Fayolle et al.
(1999) is for the generating function excluding boundary probabilities, while ours is for the
complete joint probability vector. In [15], it is pointed out that these two forms (for Markov
modulated random walks) are equivalent. In fact, for k = 0, 1, let

π(k)(x, y) =
∞∑

m=1

∞∑
n=1

πm,n(k)xm−1yn−1,

and π(x, y) = (π(0)(x, y), π(1)(x, y)), then

−π(x, y)h̄(x, y) = π(x, 0)h̄1(x, y) + π(0, y)h̄2(x, y) + �0,0h̄0(x, y)
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by noticing that

π
(k)
1 (x) = π(k)(x, 0) =

∞∑
m=1

πm,0(k)xm−1,

π
(k)
2 (y) = π(k)(0, y) =

∞∑
n=1

π0,n(k)yn−1.

For the retrial queueing system studied in this paper, after some calculations, we have

H(x, y) =
(

(λ + μ1 + μ2)xy −(μ2x + μ1y + λxy)

−μxy −[λ2xy2 + λ1x2y − (λ + μ)xy]
)

,

H1(x, y) =
(

μ2xy −μ2x
0 0

)
,

H2(x, y) =
(

μ1xy −μ1y
0 0

)
,

H0(x, y) =
(
0 0
0 0

)
.

Hence, the fundamental form (2.1) can be simplified as

P(x, y)H(x, y) = P(x, 0)H1(x, y) + P(0, y)H2(x, y).

Equivalently,
(

P(0)(x, y), P(1)(x, y)
)(

(λ + μ1 + μ2)xy −(μ2x + μ1y + λxy)

−μxy −[λ2xy2 + λ1x2y − (λ + μ)xy]
)

=
(

P(0)(x, 0), P(1)(x, 0)
)(

μ2xy −μ2x
0 0

)
+
(

P(0)(0, y), P(1)(0, y)
)(

μ1xy −μ1y
0 0

)
,

or,

(λ + μ1 + μ2)P(0)(x, y) − μP(1)(x, y)

= μ2P(0)(x, 0) + μ1P(0)(0, y), (2.2)

(λxy + μ1y + μ2x)P(0)(x, y) + [λ1x + λ2y − (λ + μ)]xy P(1)(x, y)

= μ2x P(0)(x, 0) + μ1y P(0)(0, y). (2.3)

(2.2) and (2.3) are identical to equations (18) and (19) in Avrachenkov et al. (2014), derived
from direct calculations.

3 Censored Markov chain

One may notice that Eqs. (2.2) and (2.3) provide a relationship between generating func-
tions for an idle server and for a busy server. Therefore, we start our analysis for a busy
server since in this case, the censored Markov chain can be expressed explicitly. This cen-
sored Markov chain is a random walk in the quarter plane, which has been extensively
studied in the literature. To this end, we first consider the uniformized discrete time Markov
chain of the continuous time chain X (t) for the retrial model with uniformization parameter
θ = λ + μ + μ1 + μ2 = 1. We partition the transition matrix P of the uniformized chain
according to the server state and then consider the censored chain to the set of states of
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a busy server. Specifically, let X (n) = {(Q(1)
n , Q(2)

n , In)} be the uniformized chain on the
state space {0, 1, . . .} × {0, 1, . . .} × {0, 1} and let E = {0, 1, . . .} × {0, 1, . . .} × {1} and
Ec = {0, 1, . . .} × {0, 1, . . .} × {0}. Partition the transition matrix P according to E and its
complement Ec into:

P =
( Ec E

Ec P00 P01

E P10 P11

)
,

where using the lexicographical order for states of (Q(1)
n , Q(2)

n ), Pi j can be expressed as

P00 =

⎛
⎜⎜⎜⎝

A0

A1

A1
. . .

⎞
⎟⎟⎟⎠ , P01 =

⎛
⎜⎜⎜⎝

B0

B1 B0

B1 B0
. . .

. . .

⎞
⎟⎟⎟⎠ ,

P10 =
⎛
⎜⎝

C0

C0
. . .

⎞
⎟⎠ ; P11 =

⎛
⎜⎝

D0 D1

D0 D1
. . .

. . .

⎞
⎟⎠ ,

with

A0 =

⎛
⎜⎜⎜⎝

μ + μ1 + μ2

μ + μ1

μ + μ1
. . .

⎞
⎟⎟⎟⎠ , A1 =

⎛
⎜⎜⎜⎝

μ + μ2

μ

μ

.. .

⎞
⎟⎟⎟⎠ ,

B0 =

⎛
⎜⎜⎜⎝

λ

μ2 λ

μ2 λ

. . .
. . .

⎞
⎟⎟⎟⎠ , B1 =

⎛
⎜⎝

μ1

μ1
. . .

⎞
⎟⎠ , C0 =

⎛
⎜⎝

μ

μ

.. .

⎞
⎟⎠ ,

D0 =
⎛
⎜⎝

μ1 + μ2 λ2
μ1 + μ2 λ2

. . .
. . .

⎞
⎟⎠ , D1 =

⎛
⎜⎝

λ1
λ1

. . .

⎞
⎟⎠ .

Notice that P00 is diagonal, it is straightforward to have the fundamental matrix of P00 as
follows:

P̂00 =
∞∑

n=0

Pn
00 = diag( Â0, Â1, Â1, . . .),

where

Â0 = diag

(
1

λ
,

1

λ + μ2
,

1

λ + μ2
, . . .

)
,

Â1 = diag

(
1

λ + μ1
,

1

λ + μ1 + μ2
,

1

λ + μ1 + μ2
, . . .

)
.
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Fig. 2 Transition diagram of the censored random walk

Furthermore, notice that P10 is also diagonal, and therefore the censored chain to E can be
easily computed as

P(E) = P11 + P10 P̂00P01 =

⎛
⎜⎜⎜⎝

D0 + μ Â0B0 D1

μ Â1B1 D0 + μ Â1B0 D1

μ Â1B1 D0 + μ Â1B0 D1
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ .

This censored chain is an example, referred to the simple random walk, of the random walks
in the quarter plane studied in Fayolle et al. (1999), whose transition diagram is depicted in
Fig. 2.

In our case,

p1,0 = p(1)
1,0 = p(2)

1,0 = p(0)
1,0 = λ1, p0,1 = p(1)

0,1 = p(2)
0,1 = p(0)

0,1 = λ2;
p−1,0 = μ̂1

λ + μ1 + μ2
, p0,−1 = μ̂2

λ + μ1 + μ2
, p0,0 = μ1 + μ2 + λμ

λ + μ1 + μ2
;

p(1)
−1,0 = μ̂1

λ + μ1
, p(1)

0,0 = μ1 + μ2 + λμ

λ + μ1
;

p(2)
0,−1 = μ̂2

λ + μ2
, p(2)

0,0 = μ1 + μ2 + λμ

λ + μ2
;

p(0)
0,0 = μ1 + μ2 + μ,

where μ̂i = μμi for i = 1, 2.
Let α = λ + μ1 + μ2 = 1 − μ and λ̂i = αλi for i = 1, 2. It follows from Avrachenkov

et al. (2014) that under the system stability condition (for the retrial queue), at least one of
λ̂1 < μ̂1 and λ̂2 < μ̂2 holds. Without loss of generality, we assume that λ̂1 < μ̂1 throughout
the paper. For this censored random walk, the fundamental form [equation (1.3.6) in Fayolle
et al. (1999)] is given by:
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− h(x, y)π(1)(x, y) = h1(x, y)π
(1)
1 (x) + h2(x, y)π

(1)
2 (y) + h0(x, y)π0,0(1), (3.1)

where

h(x, y) = xy

⎛
⎝ 1∑

i=−1

1∑
j=−1

pi, j x i y j − 1

⎞
⎠ = a(x)y2 + b(x)y + c(x), (3.2)

h1(x, y) = x

⎛
⎝ 1∑

i=−1

1∑
j=0

p(1)
i, j x i y j − 1

⎞
⎠ = a1(x)y + b1(x), (3.3)

h2(x, y) = y

⎛
⎝ 1∑

i=0

1∑
j=−1

p(2)
i, j x i y j − 1

⎞
⎠ = a2(x)y2 + b2(x)y + c2(x), (3.4)

h0(x, y) =
1∑

i=0

1∑
j=0

p(0)
i, j x i y j − 1 = a0(x)y + b0(x), (3.5)

with

a(x) = p0,1x, b(x) = p−1,0 − (1 − p0,0)x + p1,0x2, c(x) = p0,−1x;
a1(x) = p(1)

0,1x, b1(x) = p(1)
−1,0 − (1 − p(1)

0,0)x + p(1)
1,0x2;

a2(x) = p(2)
0,1, b2(x) = p(2)

0,0 − 1 + p(2)
1,0x, c2(x) = p(2)

0,−1;
a0(x) = p(0)

0,1, b0(x) = p(0)
1,0x − (1 − p(0)

0,0).

In Li and Zhao (2011, 2012), a kernel method has been promoted for studying exact tail
asymptotic properties for random walks in the quarter plane. In the following, we apply this
method to the retrial queue model to explicitly (in terms of system parameters) characterize
regions on which different tail asymptotic properties hold. First, based on the fundamental
form in (3.1), asymptotic properties at the dominant singularity for the generating function
π

(1)
1 (x) or π

(1)
2 (y) are obtained, based on which regions of different exact tail asymptotic

properties for probabilities πm,n(1) with a fixed value of n or m are identified through a
Tauberian-like theorem (Theorem 6.1). Then, based on the relationship given in (2.2), the
generating functions π

(0)
1 (x) and π

(0)
2 (y) are analyzed, and characterization of the exact tail

asymptotic properties for πm,n(0) is provided.

4 Dominant singularity of π
(1)
1 (x)

Since discussions for dominant singularities of the two functions π
(1)
1 (x) and π

(1)
2 (y) are

repetitive, we only provide details for π
(1)
1 (x).

According to Li and Zhao (2011, 2012), the dominant singularity of π
(1)
1 (x) is either

a branch point of the Riemann surface defined by the kernel equation h(x, y) = 0, or a
pole of the function π

(1)
1 (x). The following two subsections are devoted to these two cases,

respectively.
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4.1 Branch points for kernel equation h(x, y) = 0

For the censored random walk, we consider the kernel equation h(x, y) = 0 defined by the
kernel function h(x, y) in the fundamental form (3.1). Write αh(x, y) as a quadratic form in
y with coefficients that are polynomials in x :

αh(x, y) = (λ̂2x)y2 +
[
λ̂1x2 − (λ̂1 + λ̂2 + μ̂1 + μ̂2)x + μ̂1

]
y + μ̂2x . (4.1)

For a fixed x , h(x, y) = 0 has two solutions

Y±(x) = −b̂(x) ± √
�(x)

2λ̂2x
,

where b̂(x) = αb(x) = λ̂1x2 − (λ̂1 + λ̂2 + μ̂1 + μ̂2)x + μ̂1 and �(x) = b+(x)b−(x) with

b+(x) = b̂(x) + 2x
√

λ̂2μ̂2 = (x − 1)(λ̂1x − μ̂1) − (

√
λ̂2 −

√
μ̂2)

2x,

b−(x) = b̂(x) − 2x
√

λ̂2μ̂2 = (x − 1)(λ̂1x − μ̂1) − (

√
λ̂2 +

√
μ̂2)

2x .

Denote the branch points by xi , i = 1, 2, 3, 4, which are the zeros of �(x), then we have

b+(x) = λ̂1(x − x2)(x − x3) and b−(x) = λ̂1(x − x1)(x − x4), (4.2)

where

0 < x1 < x2 < 1 < μ̂1/λ̂1 ≤ x3 < x4 < +∞
and

x3 =

(
λ̂1 + μ̂1

)
+
(√

λ̂2 −√
μ̂2

)2

−
√√√√
[(

λ̂1 + μ̂1

)
+
(√

λ̂2 −√
μ̂2

)2
]2

− 4λ̂1μ̂1

2λ̂1
(4.3)

is a candidate of the dominant singularity of π
(1)
1 (x).

Consider the following cut planes:

C̃x = Cx − [x3, x4],
C̃y = Cy − [y3, y4],
˜̃
Cx = Cx − [x3, x4] ∪ [x1, x2],˜̃
Cy = Cy − [y3, y4] ∪ [y1, y2],

where Cx and Cy are the complex planes of x and y, respectively. In the cut plane ˜̃Cx , define
the two branches of Y (x) by

Y0(x) = Y−(x) and Y1(x) = Y+(x) i f |Y−(x)| ≤ |Y+(x)|,
Y0(x) = Y+(x) and Y1(x) = Y−(x) i f |Y−(x)| > |Y+(x)|.

Symmetrically, when x and y are interchanged, we also have branch points yi , i =
1, 2, 3, 4, satisfying
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0 < y1 < y2 < 1 < y3 < y4 < +∞
as well as the two branches X0(y) and X1(y) defined in a similar fashion.

Detailed properties of the branches Y0(x) and Y1(x) (X0(y) and X1(y)) are needed in
the asymptotic analysis for functions π

(1)
1 (x) and π

(0)
1 (x) (π(1)

2 (y) and π
(0)
2 (y)), which are

presented in the following two lemmas.

Lemma 4.1 The functions Yi (x), i = 0, 1, are meromorphic in the cut plane ˜̃Cx . In addition,

(i) Y0(x) has one zero and no poles and Y1(x) has two poles and no zeros. Hence, Y0(x) is
analytic in ˜̃Cx .

(ii) |Y0(x)| < |Y1(x)| in the whole cut complex plane ˜̃Cx . |Y0(x)| = |Y1(x)| takes place
only on the cuts.

(iii) |Y0(x)| < 1 if |x | = 1, x �= 1, and Y0(1) = min
(
1, μ̂2

λ̂2

)
≤ 1.

(iv) For all x ∈ Cx , |Y0(x)| ≤
√

μ̂2

λ̂2
and |Y1(x)| ≥

√
μ̂2

λ̂2
.

(v) If x ∈ [x1, x2], then |Y0(x)| =
√

μ̂2

λ̂2
and X0(Y0(x)) = x.

Moreover,

(vi) 0 < Y0(x) ≤ 1 for 1 ≤ x ≤ μ̂1

λ̂1
(recall that λ̂1 < μ̂1).

Parallel results for Xi (y), i = 0, 1 can be stated as well.

Proof See Fayolle and Iasnogorodski (1979), Li and Zhao (2011) and Li and Zhao (2012)
for proofs of (i)–(v). Here we only detail the proof to (vi).

For 1 ≤ x ≤ μ̂1

λ̂1
, let αh(x,y)

x = 0, which leads to

b̃(y) +
(

λ̂1x + μ̂1

x

)
y = 0,

where b̃(y) = λ̂2y2−(λ̂1+ λ̂2+ μ̂1+ μ̂2)y + μ̂2. Since λ̂1x + μ̂1
x is decreasing on

[
1,
√

μ̂1

λ̂1

]

and increasing on
(√

μ̂1

λ̂1
,

μ̂1

λ̂1

]
, therefore, 2

√
λ̂1μ̂1 ≤ λ̂1x + μ̂1

x ≤ λ̂1 + μ̂1. For y < 0, the

inequalities {
b̃(y) + 2y

√
λ̂1μ̂1 ≥ 0

b̃(y) + (λ̂1 + μ̂1)y ≤ 0

have no solutions. For y ≥ 0, solve the following inequalities{
b̃(y) + 2y

√
λ̂1μ̂1 ≤ 0

b̃(y) + (λ̂1 + μ̂1)y ≥ 0

to have y2 ≤ y ≤ min
(
1, μ̂2

λ̂2

)
, or max

(
1, μ̂2

λ̂2

) ≤ y ≤ y3. This means that for 1 ≤ x ≤ μ̂1

λ̂1
,

y2 ≤ Y0(x) ≤ 1. 	

Lemma 4.2 We present more properties about Y0(x) and X0(y) below:

(i) If μ̂2 > λ̂2, then 0 < Y0(x) < 1 for x ∈ (
1, μ̂1

λ̂1

)
, and 1 < Y0(x) <

√
μ̂2

λ̂2
for

x ∈ ( μ̂1

λ̂1
, x3

)
. Specially, Y0

(
μ̂1

λ̂1

) = 1 and Y0(x3) =
√

μ̂2

λ̂2
> 1.

123



108 Ann Oper Res (2016) 247:97–120

(ii) If μ̂2 < λ̂2, then 0 < Y0(x) < 1 for x ∈ (1, x3). Also, Y0
(

μ̂1

λ̂1

) = μ̂2

λ̂2
< 1 and

Y0(x3) =
√

μ̂2

λ̂2
< 1.

(iii) If μ̂2 = λ̂2, then x3 = μ̂1

λ̂1
, 0 < Y0(x) < 1 for x ∈ (1, μ̂1

λ̂1
), and Y0(1) = Y0

(
μ̂1

λ̂1

) = 1.

Similarly,

(i’) If μ̂2 > λ̂2, then 0 < X0(y) < 1 for y ∈ (
1, μ̂2

λ̂2

)
, and 1 < X0(y) <

√
μ̂1

λ̂1
for

y ∈ ( μ̂2

λ̂2
, y3

)
. Specially, X0

(
μ̂2

λ̂2

) = 1 and X0(y3) =
√

μ̂1

λ̂1
> 1.

(ii’) If μ̂2 ≤ λ̂2, then 1 < X0(y) <
√

μ̂1

λ̂1
for y ∈ (1, y3). Also, X0(1) = 1 and X0(y3) =√

μ̂1

λ̂1
> 1.

Proof Based on Eqs. (4.1) and (4.2), it is easy to know that b̂(x) < 0 for x ∈ (1, x3), so

the branch Y0(x) should take Y−(x) = −b̂(x)−√
�(x)

2λ̂2x
. Solving the inequalities Y0(x) > 1 and

Y0(x) < 1 with x ∈ (1, x3), we obtain, after some simple calculations, the results in (i)–(iii)
of the lemma. (i’) and (ii’) can be proved in the same way. 	


4.2 Poles of π
(1)
1 (x)

Since the censored random walk is a standard walk in the quarter plane, literature results
can now be applied to the analysis of the dominant singularity of π

(1)
1 (x). Therefore, besides

the branch point x3, given in (4.3), the other candidate for the dominant singularity is a pole
of function π

(1)
1 (x). In the following, we refine literature results, which lead to an explicit

characterization of both the dominant pole and the regions for different exact tail asymptotic
properties.

Theorem 4.1 (Theorem 4.4 in Li and Zhao 2012) If x p is the pole of π(1)
1 (x) with the smallest

modulus in (1, x3], then x p is a zero of h1(x, Y0(x)) or Y0(x p) is a zero of h2(X0(y), y). In
the latter case, |Y0(x p)| > 1. On the other hand, if x p is the zero of h1(x, Y0(x)) or Y0(x p)

with |Y0(x p)| > 1 is a zero of h2(X0(y), y) with the smallest modulus in (1, x3], then x p is

the pole of π
(1)
1 (x) in (1, x3]. Moreover, x p is real. Parallel results can be easily stated for

π
(1)
2 (y).

For the retrial queue model with two input streams and two orbits studied in this paper,
we show in the following that the pole of π

(1)
1 (x) [respectively π

(1)
2 (y)] can only be the zero

of h1(x, Y0(x)) [respectively h2(X0(y), y)].
First, we discuss properties of the pole of π

(1)
1 (x) in interval (1, x3]. For convenience, let

x∗ be the unique zero in (1, x3] of the function h1(x, Y0(x)) if such a zero exists, otherwise let
x∗ = +∞ (in this case, obviously x∗ can never be the dominant singularity since x3 < +∞).
Instead of directly considering the equation h1(x, Y0(x)) = 0, we consider the product of
two functions h1(x, Y0(x)) and h1(x, Y1(x)), which is a polynomial:

h1(x, Y0(x))h1(x, Y1(x)) = μ̂2

α(λ + μ1)2
(x − 1)g(x),

where

g(x) = λλ1(λ + μ1)x2 + λμ1(λ + μ1 − μ)x − μμ2
1.
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Since λ(λ1 + μ1) < μμ1, it is easily to check that g(0) < 0 and g(1) < 0. Hence g(x) = 0
has one positive zero x+ and one negative zero x−. Especially, x+ > 1. The expressions of
the two zeros are given as

x+ =
−λμ1(λ + μ1 − μ) +

√
[λμ1(λ + μ1 − μ)]2 + 4λλ1(λ + μ1)μμ2

1

2λλ1(λ + μ1)
,

x− =
−λμ1(λ + μ1 − μ) −

√
[λμ1(λ + μ1 − μ)]2 + 4λλ1(λ + μ1)μμ2

1

2λλ1(λ + μ1)
. (4.4)

Since either pi, j or p(1)
i, j is not X-shaped (refer to Li and Zhao 2012 for details) in this

censored random walk, Theorem 4.5 in Li and Zhao (2012) guarantees that the candidate
zero of h1(x, Y0(x)) can only be x+. Solving h1(x+, y) = 0, and then from (3.3) we get

y = Y (x+) = 1 − [λ1(λ + μ1)x+ − μμ1](x+ − 1)

λ2(λ + μ1)x+
, (4.5)

where Y (x+) is either Y0(x+) or Y1(x+). On the other hand, μμ1
λ1(λ+μ1)

> 1 and g
(

μμ1
λ1(λ+μ1)

) =
λ2μμ2

1
λ1

> 0, hence, 1 < x+ <
μμ1

λ1(λ+μ1)
. This means Y (x+) > 1. Furthermore, to check

whether or not x+ is the pole of π
(1)
1 (x), we will carry out a discussion under the condition

μ̂2 > λ̂2 and μ̂2 ≤ λ̂2, respectively, in the following lemma.

Lemma 4.3 1. When μ̂2 > λ̂2, the value of x∗ depends on the value of x+:
(a) For x+ ∈ (1, μ̂1

λ̂1

]
, we have x∗ = +∞;

(b) For x+ ∈
(

μ̂1

λ̂1
,min

(
x3,

μμ1
λ1(λ+μ1)

))
, we have x∗ = x+ < x3 if Y (x+) <

√
μ̂2

λ̂2
, and

x∗ = +∞ otherwise;

(c) For x+ = x3 <
μμ1

λ1(λ+μ1)
, we have Y (x+) =

√
μ̂2

λ̂2
and x∗ = x+ = x3;

(d) For x3 < x+ <
μμ1

λ1(λ+μ1)
, we have x∗ = +∞.

2. When μ̂2 ≤ λ̂2, we have x∗ = +∞.

Proof For the case μ̂2 > λ̂2, if x+ ∈
(
1, μ̂1

λ̂1

]
, it leads to 0 < Y0(x) < 1 from Lemma 4.2.

For the case μ̂2 ≤ λ̂2, if x+ ∈ (1, x3], it leads to Y0(x+) ≤
√

μ̂2

λ̂2
≤ 1 from Lemma 4.1. The

both cases contradict Y (x+) > 1. Hence, we can conclude that h1(x, Y0(x)) has no zero on
[1,+∞) (x+ is the zero of h1(x, Y1(x))). Therefore, x∗ = +∞. Other conclusions are easy
to make. 	

Remark 4.1 It is worthwhile to notice that: (i) If there does not exist a pole in (1, x3], then x3
is the dominant singularity of π(1)

1 (x). Therefore, for the purpose of dominant singularity, we
do not need to consider case 1(d) in Lemma 4.3. (ii) The right-hand expression in (4.5) can
be either Y0(x+) or Y1(x+). (iii) It is possible that both x+ and x− are zeros of h1(x, Y1(x)).
In this case, h1(x, Y0(x)) = 0 has no solution.

Next, we show h2(X0(y), y) has no zeros. Based on Theorem 4.1, if the pole in (1, x3] of
π

(1)
1 (x) is not x∗, then it is denoted by x̃1. For convenience, define y∗ to be the unique zero

of h2(X0(y), y) in (1, y3] if such a zero exists, otherwise let y∗ = +∞. Following the same
idea as above, we have

h2(X0(y), y)h2(X1(y), y) = μ̂1

α(λ + μ2)2
(y − 1) f (y),
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where

f (y) = λλ2(λ + μ2)y2 + λμ2(λ + μ2 − μ)y − μμ2
2

has two zeros: y− < 0 and y+ > 1. Solving h2(x, y+) = 0, and then from (3.4) we get

x = X (y+) = 1 − [λ2(λ + μ2)y+ − μμ2](y+ − 1)

λ1(λ + μ2)y+
,

where X (y+) is either X0(y+) or X1(y+).
Using a similar argument, parallel results to Lemma 4.3-1 can be obtained. Since λ2(λ +

μ2) < μμ2 and f
(

μμ2
λ2(λ+μ2)

)
= λ1μμ2

2
λ2

> 0, we have 1 < y+ <
μμ2

λ2(λ+μ2)
. This leads to

X (y+) > 1. Next, we claim that x̃1 cannot exist.

If h2(X0(y), y) has a zero y∗ in (1, y3], then y∗ = y+ and 1 < X (y+) = X0(y∗) ≤
√

μ̂1

λ̂1
.

From Theorem 4.7 in Li and Zhao (2012) we know x̃1 = X1(y∗). Hence, x̃1 ∈
[√

μ̂1

λ̂1
,

μ̂1

λ̂1

)
and 0 < Y0(x̃1) < 1 from Lemma 4.2. Obviously, it contradicts to that Y0(x̃1) is a pole of
π

(1)
2 (y). Therefore, x̃1 cannot exist.
Based on the above discussion, we are ready to summarize the detailed properties on

the location of the dominant singularity. For convenience, we introduce the following three
conditions:

Condition 1. μ̂2 > λ̂2, x+ ∈
(

μ̂1

λ̂1
,min

(
x3,

μμ1
λ1(λ+μ1)

))
and Y (x+) <

√
μ̂2

λ̂2
.

Condition 2. μ̂2 > λ̂2 and x+ = x3 ∈ ( μ̂1

λ̂1
,

μμ1
λ1(λ+μ1)

)
.

Condition 3. One of the following three: (a) μ̂2 ≤ λ̂2; (b) μ̂2 > λ̂2 and x+ ∈ (1, μ̂1

λ̂1
];

and (c) μ̂2 > λ̂2, x+ ∈
(

μ̂1

λ̂1
,min

(
x3,

μμ1
λ1(λ+μ1)

))
, and Y (x+) ≥

√
μ̂2

λ̂2
.

Lemma 4.4 Case 1: Under Condition 1, the dominant singularity xdom = x∗ = x+ <

x3, which is a pole.
Case 2: Under Condition 2, the dominant singularity xdom = x3 = x∗ = x+, which is
both a branch point and a pole.
Case 3: Under Condition 3, the dominant singularity xdom = x3 < x∗ = +∞, which is
a branch point.

Remark 4.2 One should notice that the above lemma is a refinement of the literature result
for a general random walk in the quarter plane. It provides explicit conditions (in terms of
system parameters), under which the dominant singularity xdom of π

(1)
1 (x) (also explicitly

expressed) is either xdom = x3 or xdom = x+, since all the branch point x3, the pole x+ and
Y (x+) are explicitly expressed in (4.3), (4.4) and (4.5), respectively.

5 Asymptotic properties of π
(1)
1 (x) at its dominant singularity

Once again, in this section, we only provide detailed analysis for the function π
(1)
1 (x). Due to

symmetry, parallel results forπ(1)
2 (y) can be easily stated and similarly proved. In the previous

section, we proved that either x3 or x+ is the dominant singularity of π
(1)
1 (x). In this section,

we prove (in Theorem 5.1) that there exist three types of detailed asymptotic properties as x
approaches to the dominant singularity xdom of π

(1)
1 (x), depending on xdom = x+ < x3 or

xdom = x3 < x+ or xdom = x+ = x3 respectively.
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For simplicity in the following discussion, especially for the case of xdom = x3, we
write

Y0(x) = p(x) + q(x)

√
1 − x

xdom
,

h1(x, Y0(x)) = p1(x) + q1(x)

√
1 − x

xdom
,

Y0(xdom) − Y0(x) =
(
1 − x

xdom

)
p∗(x) − q(x)

√
1 − x

xdom
,

h1(x, Y0(x)) − h1(xdom, Y0(xdom))=
(
1 − x

xdom

)
p∗
1(x) + q1(x)

√
1 − x

xdom
, (5.1)

where

p(x) = − b̂(x)

2λ̂2x
, q(x) = − 1

2λ̂2x

√
�(x)

1 − x/xdom
, if xdom = x3,

p1(x) = − b̂(x)a1(x)

2λ̂2x
+ b1(x), q1(x) = a1(x)q(x),

p∗(x) = (p(xdom) − p(x))xdom

xdom − x
and p∗

1(x) = (p1(x) − p1(xdom))xdom

xdom − x
.

Theorem 5.1 The behaviour of π
(1)
1 (x) at the dominant singularity is given as

(i) If xdom = x∗ = x+ < x3, then

lim
x→x+

(
1 − x

x+

)
π

(1)
1 (x) = C1,0,

where

C1,0 =
(λ + μ1)

√
�(x+)

[
h2(x+, Y0(x+))π

(1)
2 (Y0(x+)) + h0(x+, Y0(x+))π0,0(1)

]
μ̂2λλ1x+(x+ − 1)(x+ − x−)

.

(ii) If xdom = x3 = x∗ = x+, then

lim
x→xdom

√
1 − x/xdomπ

(1)
1 (x) = C2,0,

where

C2,0 = 2

λ1
× h2(xdom, Y0(xdom))π

(1)
2 (Y0(xdom)) + h0(xdom, Y0(xdom))π0,0(1)√

xdom(xdom − x1)(xdom − x2)(x4 − xdom)
.

(iii) If xdom = x3 < x∗ = +∞, then

lim
x→x3

√
1 − x/x3π

′(1)
1 (x) = C3,0,

where π
′(1)
1 (x) is the derivative of π

(1)
1 (x) and

C3,0 = −q(x3)

2x3

d

dy

[
h2(x3, y)π

(1)
2 (y) + h0(x3, y)π0,0(1)

h1(x3, y)

] ∣∣∣∣
y=Y0(x3)

.
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Proof (i) If xdom = x∗ = x+ < x3, then xdom is a simple pole of π
(1)
1 (x). Based on the

analysis in Li and Zhao (2012), we can rewrite

π
(1)
1 (x) = −

[
h2(x, Y0(x))π

(1)
2 (Y0(x)) + h0(x, Y0(x))π0,0(1)

]
h1(x, Y1(x))

h1(x, Y0(x))h1(x, Y1(x))

= −
[
h2(x, Y0(x))π

(1)
2 (Y0(x)) + h0(x, Y0(x))π0,0(1)

]
h1(x, Y1(x))

μ̂2
α(λ+μ1)2

(x − 1)g(x)

= −
[
h2(x, Y0(x))π

(1)
2 (Y0(x)) + h0(x, Y0(x))π0,0(1)

]
h1(x, Y1(x))

μ̂2
α(λ+μ1)

(x − 1)λλ1(x − x−)(x − x+)
.

It follows that

lim
x→x+

(
1 − x

x+

)
π

(1)
1 (x) = C1,0.

(ii) If xdom = x3 = x∗ = x+, then h1(xdom, Y0(xdom)) = 0. In this case, we can rewrite
π

(1)
1 (x) as

π
(1)
1 (x) = −h2(x, Y0(x))π

(1)
2 (Y0(x)) − h0(x, Y0(x))π0,0(1)√

1 − x/xdom
[√

1 − x/xdom p∗
1(x) + q1(x)

] .

It follows that

lim
x→xdom

√
1 − x/xdomπ

(1)
1 (x)

= h2(xdom, Y0(xdom))π
(1)
2 (Y0(xdom)) + h0(xdom, Y0(xdom))π0,0(1)

−a1(xdom)q(xdom)
= C2,0.

(iii) If xdom = x3 < x∗, let

T (x, y) = −h2(x, Y0(x))π
(1)
2 (Y0(x)) − h0(x, Y0(x))π0,0(1)

h1(x, Y0(x))
.

Then the derivative of π
(1)
1 (x) is given by

π
′(1)
1 (x) = ∂T

∂x
+ ∂T

∂y

dY0(x)

dx

with

dY0(x)

dx
= p′(x) + q ′(x)

√
1 − x/xdom − q(x)

2xdom
√
1 − x/xdom

,

where p(x) andq(x) are defined inEq. (5.1). Since it is obvious that lim
x→x3

√
1−x/x3

dY0(x)

dx
=

−q(x3)

2x3
, lim

x→x3

√
1 − x/x3

∂T

∂x
= 0 and ∂T

∂y is continuous at (x3, Y0(x3)), so,

lim
x→x3

√
1 − x/x3π

′(1)
1 (x) = −q(x3)

2x3

∂T

∂y

∣∣∣∣
(x3,Y0(x3))

= C3,0.
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6 Tail asymptotic properties in stationary probabilities

Exact tail asymptotic properties in stationary probabilities are obtained directly from the
corresponding asymptotic properties of the unknown generating function by applying the
following Tauberian-like theorem. This theorem is originated from Bender (1974), and more
complete versions canbe found inFlajolet andSedgewich (2009),which include the following
theorem as a special case.

Theorem 6.1 (Tauberian-like theorem for single singularity) Let A(z) = ∑
n≥0 anzn be

analytic at zero with R the radius of convergence. Suppose that R is a singularity of A(z)
that can be continued to a �-domain at R. If for a real number β /∈ {0,−1,−2, . . .},

lim
z→R

(1 − z/R)β A(z) = g,

where g is a non-zero constant. Then,

an ∼ g


(β)
nβ−1R−n,

where 
(β) is the value of Gamma function at β, and an ∼ bn is equivalent to limn an/bn = 1.

The Tauberian-like theorem claims that the tail behaviour in the sequence of the coeffi-
cients in the Taylor expansion of the analytic function corresponds to the asymptotic property
of the function at its dominant singularity. In the following subsections, we show how to apply
Theorem 6.1 to characterize the tail behaviour in the joint probabilities πm,n(k) for a fixed
number n of customers in orbit 2. Specifically, in Sect. 6.1, we provide a characterization
for tail asympotics, when the server is busy, in the sequence of: (1) boundary probabilities
πm,0(1); (2) marginal probabilities π

(1)
m = ∑∞

n=1 πm,n(1); (3) joint probabilities πm,n(1) for
a fixed n > 0 (along the direction of queue one). While in Sect. 6.2, when the server is idle,
we provide a characterization for tail asympotics in πm,n(0) for a fixed n and for the marginal
distribution π

(0)
m = ∑∞

n=1 πm,n(0).

Remark 6.1 By symmetry, tail behaviour in πm,n(1) and πm,n(0) for a fixed number m of
customers in orbit 1 (and also in the marginal distributions for the second queue length when
the server is busy and idle, respectively) can be easily stated and similarly proved.

6.1 Exact tail asymptotics when the server is busy

First, we consider the sequence πm,0(1) of the boundary probabilities. When the second
queue is empty and the server is busy, the exact tail asymptotic behaviour of the stationary
probability sequence πm,0(1) along the increasing direction of the first queue is a direct
consequence of the characterization of the asymptotic property for the function π

(1)
1 (x) in

Theorem 5.1 and the Tauberian-like theorem (Theorem 6.1).

Theorem 6.2 For a stable retrial queue with two input streams and two orbits studied in this
paper, when m is large, we have three types of tail asymptotic properties for the boundary
probabilities πm,0(1):

Type 1: (Exact geometric decay) Under Condition 1,

πm,0(1) ∼ C1,0

(
1

x+

)m−1

, m ≥ 1;
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Type 2: (Geometric decay with prefactor m−1/2) Under Condition 2,

πm,0(1) ∼ C2,0√
π

m− 1
2

(
1

xdom

)m−1

, m ≥ 1;

Type 3: (Geometric decay with prefactor m−3/2) Under Condition 3,

πm,0(1) ∼ C3,0√
π

m− 3
2

(
1

x3

)m−2

, m ≥ 1.

Here, constants Ci,0 (i = 1, 2, 3) are given in Theorem 5.1.

Remark 6.2 One may notice that in Type 3, the power of the decay rate is m − 2 instead of
m − 1 since the Tauberian-like theorem is applied to the derivative of the function.

For characterizing the asymptotic behaviour of the marginal probability π
(1)
m =∑∞

n=1 πm,n(1), we compute π(1)(x, 1),

π(1)(x, 1) = h1(x, 1)π(1)
1 (x) + h2(x, 1)π(1)

2 (1) + h0(x, 1)π0,0(1)

−h(x, 1)

= −
1

(λ+μ1)

[
λ1(λ + μ1)x − μ̂1

]
π

(1)
1 (x) + λ1π

(1)
2 (1) + λ1π0,0(1)

λ1x − μ̂1
α

= α

λ + μ1

[
λ1(λ + μ1)x − μ̂1

]
π

(1)
1 (x) + λ1(λ + μ1)(π

(1)
2 (1) + π0,0(1))

μ̂1(1 − λ̂1
μ̂1

x)
.

If λ̂2 �= μ̂2, it follows from (4.2) that we have μ̂1/λ̂1 < x3. Therefore, fromLemma 4.4we
can claim that 1 < μ̂1/λ̂1 < min(x∗, x3) is always true. Obviously, μ̂1/λ̂1 is the dominant
singularity of π(1)(x, 1), which is a simple pole. If λ̂2 = μ̂2, then from Lemma 4.2-(iii), we
have x3 = μ̂1/λ̂1. Again, according to Lemma 4.4, the dominant singularity of π

(1)
1 (x) is

x3 = μ̂1/λ̂1 < x∗ = +∞. Notice that limx→x3 π
(1)
1 (x) is finite. Therefore, the Tauberian-

like theorem can be still applied.

Theorem 6.3 (i)

lim
x→μ̂1/λ̂1

(
1 − x

μ̂1/λ̂1

)
π(1)(x, 1) = Cm,

where

Cm = − μ2

λ + μ1
π

(1)
1 (μ̂1/λ̂1) + λ̂1

μ̂1

(
π

(1)
2 (1) + π0,0(1)

); (6.1)

and (ii) The marginal probabilities π
(1)
m has an exact geometric decay with decay rate equal

to xdom = μ̂1/λ̂1:

π(1)
m ∼ Cm

(
λ̂1

μ̂1

)m−1

.

Remark 6.3 It should be noticed that one may consider
∑∞

n=0(πm,n(1)+πm,n(0)) the usual
marginal distribution of the first queue. Its tail asymptotic property can be easily obtained
since the property for π

(1)
m and πm,0(1) have been studied, and the property for π

(0)
m =∑∞

n=1 πm,n(0) and πm,0(0) can be similarly obtained.
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Next, the exact tail asymptotic behaviour for joint probabilities can be obtained from the
recursive relationship of the generating functions ϕn(x), defined by

ϕn(x) =
∞∑

m=1

πm,n(1)xm−1, n ≥ 0.

It is clear that ϕ0(x) = π
(1)
1 (x). From the balance equations of the censored random walk,

we can obtain

c(x)ϕ1(x) + b1(x)ϕ0(x) = a∗
0 (x), (6.2)

c(x)ϕ2(x) + b(x)ϕ1(x) + a1(x)ϕ0(x) = a∗
1 (x), (6.3)

c(x)ϕn+1(x) + b(x)ϕn(x) + a(x)ϕn−1(x) = a∗
n (x), n ≥ 2, (6.4)

where

a∗
0 (x) = −c2(x)π0,1 − b0(x)π0,0,

a∗
1 (x) = −c2(x)π0,2 − b2(x)π0,1 − a0(x)π0,0,

a∗
n (x) = −c2(x)π0,n+1 − b2(x)π0,n − a2(x)π0,n−1, n ≥ 2.

Rewrite (6.4) as

ϕn+1(x) = −b(x)ϕn(x) − a(x)ϕn−1(x) + a∗
n (x)

c(x)
, n ≥ 2,

and note that c(x) = p0,−1x . Hence, we established the fact that ϕn(x) has the same singu-
larities as ϕ0(x) since that the zero of c(x) is not a pole of ϕn(x) for all n ≥ 0.

By adopting Theorem 7.1 and Lemma 7.2 in Li and Zhao (2012) directly, we define

Ai (xdom) = −b1(xdom)

c(xdom)
Ci,0, i = 1, 2, 3 and B3(x3) = − p1(x3)

c(x3)
C3,0,

then we can conclude the results in the following theorem.

Theorem 6.4 Corresponding to the three types in Theorem 5.1, when m is large, we have
the following tail asymptotic properties for the joint probabilities πm,n(1) for a fixed n:

Type 1: (Exact geometric decay)

πm,n(1) ∼ A1(x+)

(
1

Y1(x+)

)n−1 ( 1

x+

)m−1

, n ≥ 1;

Type 2: (Geometric decay with prefactor m−1/2)

πm,n(1) ∼ A2(xdom)√
π

(
1

Y1(xdom)

)n−1

m− 1
2

(
1

xdom

)m−1

, n ≥ 1;

Type 3: (Geometric decay with prefactor m−3/2)

πm,n(1) ∼ [A3(x3) + (n − 1)B3(x3)]√
π

(
1

Y1(x3)

)n−1

m− 3
2

(
1

x3

)m−2

, n ≥ 1.
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6.2 Exact tail asymptotics when the server is idle

Having known the exact tail asymptotic properties of the boundary, marginal and joint distri-
butions for I (t) = 1 (or the server is busy), we can now study the tail asymptotic properties
for I (t) = 0 (or the server is idle) based on the relationship given in (2.2).

Setting y = 0 in (2.2) leads to

(λ + μ1)P(0)(x, 0) = μP(1)(x, 0) + μ1P(0)(0, 0), (6.5)

which means that P(0)(x, 0) and P(1)(x, 0) have the same asymptotic property.
Similarly, setting y = 1 in (2.2) leads to

αP(0)(x, 1) = μP(1)(x, 1) + μ2P(0)(x, 0) + μ1P(0)(0, 1). (6.6)

Substituting (6.5) into (6.6) gives

αP(0)(x, 1) = μP(1)(x, 1) + μμ2

λ + μ1
P(1)(x, 0) + μ1μ2

λ + μ1
P(0)(0, 0) + μ1P(0)(0, 1).

Since the asymptotic property at the dominant singularity of P(0)(x, 1) is dominated by the
asymptotic property of the function μP(1)(x, 1), P(0)(x, 1) and P(1)(x, 1) have the same
asymptotic property. Based on the above, we have the following conclusion:

Theorem 6.5 Assume that the retrial queue with two input streams and two orbits is stable.

(i) For large m, we have three types of tail asymptotic properties for the boundary proba-
bilities πm,0(0) correspondingly.

Type 1: (Exact geometric decay)

πm,0(0) ∼ μ

λ + μ1
C1,0

(
1

x+

)m−1

, m ≥ 1;

Type 2: (Geometric decay with prefactor m−1/2)

πm,0(0) ∼ μ

λ + μ1

C2,0√
π

m− 1
2

(
1

xdom

)m−1

m ≥ 1;

Type 3: (Geometric decay with prefactor m−3/2)

πm,0(0) ∼ μ

λ + μ1

C3,0√
π

m− 3
2

(
1

x3

)m−2

m ≥ 1.

Here, constants Ci,0 (i = 1, 2, 3) are given in Theorem 5.1.

(ii) The tail asymptotic property of the marginal distribution π
(0)
m = ∑∞

n=1 πm,n(0) is deter-
mined by

π(0)
m ∼ μ

α
Cm

(
λ̂1

μ̂1

)m−1

,

where Cm is provided by (6.1).

We finally characterize the tail asymptotic behaviour for the joint probabilities πm,n(0)
for a fixed n > 0. Define the generating function

G(k)
n (x) =

∞∑
m=0

πm,n(k)xm, k = 0, 1 n ≥ 1.
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Referring to equation (14) in Avrachenkov et al. (2014), we have

αG(0)
n (x) − μG(1)

n (x) = μ1π0,n(0),

which obviously leads to the following theorem.

Theorem 6.6 Corresponding to the three types in Theorem 5.1, when m is large, we have
the following tail asymptotic properties of the joint probabilities πm,n(0) for a fixed n:

Type 1: (Exact geometric decay) Under Condition 1,

πm,n(0) ∼ μ

α
A1(x+)

(
1

Y1(x+)

)n−1 ( 1

x+

)m−1

, n ≥ 1;

Type 2: (Geometric decay with prefactor m−1/2) Under Condition 2,

πm,n(0) ∼ μ

α

A2(xdom)√
π

(
1

Y1(xdom)

)n−1

m− 1
2

(
1

xdom

)m−1

, n ≥ 1;

Type 3: (Geometric decay with prefactor m−3/2) Under Condition 3,

πm,n(0) ∼ μ

α

[A3(x3) + (n − 1)B3(x3)]√
π

(
1

Y1(x3)

)n−1

m− 3
2

(
1

x3

)m−2

, n ≥ 1.

7 Concluding remarks

In this paper, we considered the exact tail asymptotic behaviours of a retrial queue with
two input streams and two orbits. Partitioned according to the two states of the server, this
model is formulated as a random walk in the quarter plane whose transition probabilities
are modulated by a two-state Markov chain (idle or busy). Our work is a revisit of the same
model studied in Avrachenkov et al. (2014). While in Avrachenkov et al. (2014), the study
is based on the solution to a BVP, we employed a different method, the kernel method. The
advantage of using this method mainly relies on the fact that there is no need to have a full
determination of the unknown generating function. Instead, we only need the location of the
dominant singularity of the unknown function and the asymptotic property at its dominant
singularity. By thismethod, tail asymptotic properties in stationary probabilities for themodel
are obtained when the first queue size is large. Due to symmetry, it is not difficult to state
and (similarly) prove parallel exact tail asymptotic properties when the second queue size is
large. In addition, exact tail asymptotic results for other probability sequences formed from
the joint stationary probabilities can also be considered. For example, we can consider the
total number of customers in the system as follows: let

πT =
∑
m,n:

m+n=T

πm,n

and we compute π(1)(x, x), according to (3.1):

π(1)(x, x) = −
(
λx − μ̂1

λ+μ1

)
π

(1)
1 (x) + (

λx − μ̂2
λ+μ2

)
π

(1)
2 (x) + λπ0,0(1)

x(λx − μ̂1+μ̂2
α

)
.
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Then, the dominant singularity is determined by comparing x = (μ̂1+μ̂2)/λ̂ to the dominant
singularities of π

(1)
1 (x) and π

(1)
2 (x), and therefore the asymptotic property at its domi-

nant singularity is determined. The exact tail asymptotic property is a consequence of the
Tauberian-like theorem.

This paper used a censored chain to convert the matrix-form fundamental form into a
usual (scalar) fundamental form. It is not always feasible to do this conversion since explicit
expressions might not exist for the censored chain. A general method is to solve the matrix-
form fundamental form to have a relationship between generating functions for different
states of the modulated chain. For example, the censored chain to the idle state does not have
an explicit expression for its transition matrix. However, in terms of the relationship in (2.2)
and (2.3) obtained by solving the matrix-form fundamental form, we can have the following
functional equation:

R(x, y)P(0)(x, y) = A(x, y)P(0)(x, 0) + B(x, y)P(0)(0, y), |x | ≤ 1, |y| ≤ 1,

with

R(x, y) = λ̂1(1 − x)xy + λ̂2(1 − y)xy − μ̂1(1 − x)y − μ̂2(1 − y)x,

A(x, y) = [(1 − y)(λ2y − μ) + λ1(1 − x)y]μ2x,

B(x, y) = [(1 − x)(λ1x − μ) + λ2(1 − y)x]μ1y,

which is equivalent to:

R(x, y)π(0)(x, y) = A(x, y) − R(x, y)

y
π

(0)
1 (x)

+ B(x, y) − R(x, y)

x
π

(0)
2 (y) + A(x, y)+B(x, y)−R(x, y)

xy
π0,0(0).

After some calculations, the above equation also can be written as

−ĥ(0)(x, y)π(0)(x, y) = ĥ(0)
1 (x, y)π

(0)
1 (x) + ĥ(0)

2 (x, y)π
(0)
2 (y) + ĥ(0)

0 (x, y)π0,0(0),

where

ĥ(0)(x, y) = [λ̂1x + λ̂2y + μ̂1x−1 + μ̂2y−1 − (λ̂ + μ̂1 + μ̂2)]xy,

ĥ(0)
1 (x, y) = [λ1(λ + μ1)x + λ2(λ + μ1)y + μ̂1x−1 − λ(λ + μ1) − μ̂1]x,

ĥ(0)
2 (x, y) = [λ1(λ + μ2)x + λ2(λ + μ2)y + μ̂2y−1 − λ(λ + μ2) − μ̂2]y,

ĥ(0)
0 (x, y) = λλ1x + λλ2y − λ2.

The above functional equation is the fundamental form corresponding a randomwalk defined
by

p̂1,0 = λ̂1, p̂0,1 = λ̂2, p̂−1,0 = μ̂1, p̂0,−1 = μ̂2, p̂0,0 = 1 − (λ̂ + μ̂1 + μ̂2),

p̂(1)
1,0 = λ1(λ + μ1), p̂(1)

0,1 = λ2(λ + μ1), p̂(1)
−1,0 = μ̂1, p̂(1)

0,0 = 1 − [λ(λ + μ1) + μ̂1],
p̂(2)
1,0 = λ1(λ + μ2), p̂(2)

0,1 = λ2(λ + μ2), p̂(2)
0,−1 = μ̂2, p̂(2)

0,0 = 1 − [λ(λ + μ2) + μ̂2],
p̂(0)
1,0 = λλ1, p̂(0)

0,1 = λλ2, p̂(0)
0,0 = 1 − λ2.

We now can apply the kernel method to the resulting fundamental form to obtain exact tail
asymptotic properties for probabilities with an idle server.
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Finally, we emphasize that this work serves as an illustration of how the kernel method can
be applied to random walks modulated by a finite-state Markov chain, which has a similar
structure property to that the retrial queue model possesses.
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