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Abstract The aim of this paper is to propose a fuzzy chance constrained goal programming
model for solving a multi-attribute financial portfolio selection problem under two types of
uncertainty namely randomness and fuzziness. The chance-constrained goals are considered
as random variables. The obtained portfolio through this model is the portfolio of the best
compromise where the financial decision-maker was asked tomake tradeoffs among conflict-
ing and incommensurable attributes such as the expected return, risk and the earning price
ratio. The proposed model has been applied to the Tunisian stock exchange market for the
period July 2003 to December 2007.

Keywords Stochastic programming · Fuzzy goal programming · Portfolio selection · Fuzzy
preferences

1 Introduction

Markowitz (1952) published his pioneeringworkwhich laid the foundation ofmodern portfo-
lio analysis. Through this model the Financial Decision-Maker (FDM) desires optimizing the
expected return and the financial risk. The mean–variance analysis of Markowitz (1952) was
limited to the risk adjusted return and excluding several other important factors. The literature
review reveals that in practice the FDM likes to integrate simultaneously other incommensu-
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rable and conflicting factors and also his/her preferences. Solving themulti-attribute financial
portfolio problem requires an aggregation procedure such as the Goal Programming (GP).
This model is the most widely utilized approach in multi-criteria decision making aid and
financial portfolio selection (Aouni 2009, 2010; Aouni et al. 2014; Tamiz et al. 1995). Aouni
et al. (2014) and Jones et al. (2010) provide a quite an exhaustive literature review on the
application of GP for portfolio selection problem within different application contexts where
the available information can be deterministic and precise, fuzzy and stochastic as well.

Several GP variants have been developed to handle the uncertainty related to the securities
for thefinancial portfolio selection. These variants are based onprobability and fuzzy theories.
Tamiz et al. (1996) suggest a two stage GP model for selecting the best financial portfolio.
Aouni et al. (2005) have proposed the first formulation of the stochastic GP model that
integrates explicitly the FDM’s preferences through the satisfaction functions concept where
the aspiration levels are considered as stochastic variables with a normal distribution. Ben
Abdelaziz et al. (2007, 2009), proposed a stochastic GP approach to generate a satisfying
portfolio under the assumption of non-normality of the equity returns and they suggested the
generation of a limited number of scenarios from an observed random distribution.

The proposedGPmodel byArenas Parra et al. (2001) is based on the investor’s preferences
where the aspiration levels (goals) are fuzzy and expressed through an interval. Alinezhad
et al. (2011) reformulated a multi-objective fuzzy problem as a fuzzy GP model by using
MINMAX fuzzy GP and they applied it to a fuzzy allocated portfolio. In this model, the
decision-making parameter and goals are considered as unbalanced triangular fuzzy numbers.

The existing fuzzy and stochastic GP formulations for portfolio selection are dealing with
the uncertainty and the fuzziness that are considered separately. The existing models do not
combine simultaneously the uncertainty and fuzziness. Fuzzy-Stochastic models could be
applied to select securities to build the financial portfolio of the best compromise where
randomness and fuzziness are combined.

In this paper, the concept of fuzzy probability distribution will be proposed to handle the
uncertainty related to the portfolio decision-making parameters. The paper aims to develop a
fuzzy chance-constrained GP formulation for portfolio selection under both types of uncer-
tainty. Stochastic uncertainty is related to the chance constrained goals that are assumed
independent random variables. Fuzzy uncertainty uses approximate values provided by the
FDM to evaluate the decision-making parameters such as the satisfying probability level for
the chance constrained goals and the importance relation for the objectives.

The other important issue related to the portfolio selection problem is risk measurement.
The different existing GP variants for portfolio selection minimize the risk of the return
(Arenas Parra et al. 2001; BenAbdelaziz et al. 2009) or the Beta coefficient for computational
simplicity (Aouni et al. 2005). Szego (2002) found that the use of this frame-work with assets
that present returns defined by non-elliptic distributions can underestimate extreme events
that may cause losses. In this paper a chance constraint on probability of losses is used among
the decision criteria to describe probabilistically the market risk of a trading portfolio.

This paper is organized as follows, in Sect. 2; we will describe the model formulation. The
third section will be devoted to the fuzzy stochastic goals with the transformation procedures
for obtaining their equivalent deterministic goals and a fuzzy chance-constrained GP model.
In Sect. 4, wewill propose a fuzzymulti-objective programmingmodel for constructing fuzzy
preference relations and we will formulate a fuzzy chance-constrained GP model integrating
the fuzzy preference of the FDM. In Sect. 5, we will illustrate our formulation through some
data from the Tunisian StockMarketwhere the collected data are from July 2003 toDecember
2007. Some concluding remarks will be formulated within Sect. 6.
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2 Model formulation

For the stochastic constraints or objectives, chance-constrained technique specifies satis-
faction thresholds as a degree for achievement of the stochastic constraints. The chance
constrained technique was effective in reflecting probability distributions in the right-hand
sides of the constraints or objectives; however, it cannot reflect ambiguity. In fact, in many
situations such as in the stock market, the FDM is not able to specify precise values for the
parameters. For instance, it is generally more realistic to give a certain range for the value
or to define these satisfaction thresholds as fuzzy numbers. Therefore, a concept of fuzzy
probability distribution will be proposed to describe this type of uncertainty. So the consid-
ered decision-making problem can be expressed as a fuzzy stochastic satisfaction constrained
problem.

Consider the following fuzzy stochastic constrained satisfaction problem:

Find X (X1,X2, . . . ,Xn)

So to satisfy: Pr
(∑n

i=1
aijXi ≤ bj

)
>̃βj ∀ j = 1, 2, . . . ,m;

Subject to: X ∈ F =
{
X ∈ Rn/cX

(≤
≥
)
C,X ≥ 0,C ∈ R

}
(1)

where X ∈ Rn is the decision vector having n decision variables (X1,X2, . . . ,Xn), c is
a constant matrix, C is a constant vector, F is the feasible solution set, Pr indicates the
stochastically defined goals, in which

(∑n
i=1 aij

)
represents the jth random objective for

achievement of the associated goal level bj,(aij) is a random variable and βj is the fuzzy
satisfying probability level for achievement of the aspired level of the jth goal. And where >̃
indicates the fuzziness of ≥ restriction as per indicated by Zimmermann (1978).

3 The deterministic equivalent formulation

Within this section we will be providing the deterministic equivalent mathematical model of
the fuzzy stochastic model.

3.1 Membership function for modeling parameter fuzziness

In fuzzy programming, the fuzzy probabilistic goals are characterized by their associated
membership functions. From model (1), the fuzzy probabilistic goal can be presented as:

Pr
(∑n

i=1
aijXi ≤ bj

)
>̃βj ∀ j = 1, 2, . . . ,m. (2)

Let us consider a probability θj(0 < θj < βj) as the lower tolerance range. According to Pal
et al. (2003), the membership function μj (X) ∀ j = 1, . . . ,m; for each fuzzy probabilistic
goal, could be expressed as follows:

μj (X) =

⎧
⎪⎨
⎪⎩

1 if Pr
(∑n

i=1 aijXi ≤ bj
) ≥ βj

Pr(
∑n

i=1 aijXi≤ bj)−
(
βj−θj

)
θj

if βj − θj ≤ Pr
(∑n

i=1 aijXi ≤ bj
)
< βj

0 if Pr
(∑n

i=1 aijXi ≤ bj
)
< βj − θj

(3)
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3.2 Chance-constrained approach

In some decision-making situations related to financialmarket, it is quite difficult for the FDM
to predict some parameter values. This is due to the uncertainty of occurrence of the state of
nature attached to each decision-making parameter. In order to develop our model, we have
inspired by Hulsurkar et al. (1997) and we have used the chance-constrained programming
approach to obtain the deterministic equivalent of the stochastic model. From model (1), we
can obtain:

Pr
(∑n

i=1
aijXi ≤ bj

)
≥ βj ∀ j = 1, 2, . . . ,m. (4)

Assume that aij is a random variable having normal distribution with the mean E(aij) and the
variance var(aij). Assuming that the covariance between the random variables aik and akj is
known, we will define a random variable dj as follows:

dj =
∑n

i=1
aijXi ∀ j = 1, 2, . . . ,m. (5)

Since ai1, . . . , aim are random variables and normally distributed and X1,X2, . . . ,Xn are
unknown, dj will be normally distributed with:

E
(
dj
) =

∑n

i=1
E
(
aijXi

) ∀j = 1, . . . ,m; (6)

and

var
(
dj
) = X′VjX ∀j = 1, 2, . . . ,m; (7)

where Vj is the jth covariance matrix defined as follows:

Vj =
⎡
⎢⎣
var

(
aj1

) · · · cov
(
aj1, ajn

)
...

. . .
...

cov
(
ajn, aj1

) · · · var
(
ajn

)

⎤
⎥⎦ ∀ j = 1, 2, . . . ,m. (8)

The objectives highlighted in (4) can be expressed as follows:

Pr
(
dj ≤ bj

) ≥ βj ∀ j = 1, 2, . . . ,m; (9)

and

Pr

⎛
⎝dj − E

(
dj
)

√
var

(
dj
) ≥ bj − E

(
dj
)

√
var

(
dj
)

⎞
⎠ ≥ βj ∀ j = 1, 2, . . . ,m; (10)

where
⎛
⎝dj − E

(
dj
)

√
var

(
dj
)

⎞
⎠ ∀ j = 1, 2, . . . ,m. (11)

This is a standard normal random variable with a mean equal to zero and variance equal to
one. Thus, the probability of having dj less than or equal to bj can be written as:

Pr
(
dj ≤ bj

) = φ

⎛
⎝bj − E

(
dj
)

√
var

(
dj
)

⎞
⎠ ∀ j = 1, 2, . . . ,m; (12)
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whereφ(z) represents the cumulative density function of the standard normal randomvariable

evaluated at z. If Kβj denotes the value of the standard normal variable at which φ
(
Kβj

)
= βj

then the constraint (10) can be replaced by:

φ

⎛
⎝bj − E

(
dj
)

√
var

(
dj
)

⎞
⎠ ≥ φ

(
Kβj

)
∀ j = 1, . . . ,m. (13)

This inequality will be satisfied only if:
⎛
⎝bj − E

(
dj
)

√
var

(
dj
)

⎞
⎠ ≥

(
Kβj

)
∀ j = 1, . . . ,m; (14)

or

E
(
dj
) + Kβj

√
var

(
dj
) ≤ bj ∀ j = 1, . . . ,m. (15)

Substituting Eqs. (6) and (7) in Eq. (15), we get:

E
(∑n

i=1
aijXi

)
+ Kβj

√(
X′VjX

) ≤ bj ∀ j = 1, . . . ,m. (16)

Then, introducing the crisp expression (3) in to (16), the membership function μj (X) will
be as follows:

μj (X) =
(
E
(∑n

i=1 aij Xi
) + Kβj

√(
X′VjX

)) − (
bj + βj − θj

)

θj
∀ j = 1, . . . ,m. (17)

4 Fuzzy chance-constrained GP for modeling the FDM fuzzy preference

In this section, we will propose a fuzzy stochastic approach based on the GP model. The
membership functions defined in Eq. (17) are utilized to formulate a weighted additive fuzzy
chance-constrained GP model as follows:

Max Z =
∑m

j=1
wjμj

Subject to:

μj =
(
E
(∑n

i=1 aij Xi
) + Kβj

√(
X′VjX

)) − (
bj + βj − θj

)

θj
∀ j = 1, 2, . . . ,m;

X ∈ F =
{
X ∈ Rn/cX

(≤
≥
)
C,X ≥ 0,C ∈ R

}

0 ≤ μj (X) ≤ 1 ∀ j = 1, . . . ,m;
m∑
j=1

wj = 1.

wj ≥ 0 ∀ j = 1, 2, . . . ,m; (18)

where wj is the fuzzy weight of the jth objective, also called the preferred weight attached
to the jth objective by the FDM. These weights reflect the FDM’s preferences for the dif-
ferent fuzzy objective. Up to now, some studies dealt with the FDM’s preference where the
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parameters are usually subjectively fixed and considered as crisp values (Aouni et al. 2005;
Mansour et al. 2007). As it is known, decision making is a basic human activity, in which
most decision processes are based on preference relations. However, the FDM often finds
it difficult to describe his preference precisely, because most decisions must be made under
risk, uncertainty, and incomplete or fuzzy information. The fuzzy approach is effective for
modeling such preferences relations which allow FDM to give vague or imprecise responses
when he/she is in the process of comparing the importance relation among the objectives.

Therefore, in this paper, the weights of the objectives are considered fuzzy coefficients.
In order to elucidate these coefficients, we put forward the following definitions.

Definition 1 Let us consider L = (ljk)mxm as a preference relation, where L is a fuzzy
preference relation (Tanino 1984), if:

ljk ∈ [0, 1] ∀ j, k = 1, 2, . . . ,m; ∀j �= k (19)

ljk + lkj = 1 ∀ j, k = 1, 2, . . . ,m; ∀j �= k (20)

ljj = 0.5 ∀ j = 1, 2, . . . ,m; (21)

where ljk ∀ j, k = 1, 2, . . . ,m; ∀j �= k represents the preference intensity of objective j
comparatively to k.

Definition 2 Let L = (ljk)mxm be a fuzzy preference relation, then L is called an additive
consistent fuzzy preference relation, if the following additive transitivity (given by Tanino
1984) is satisfied:

ljk = ljz − lkz + 0.5 ∀ j, k, z,= 1, 2, . . . ,m; ∀j �= k �= z (22)

Let

W (w1,w2, . . . ,wm)
T (23)

be the weight vector of the additive preference relation L = (ljk)mxm where

w j ≥ 0 ∀ j = 1, 2, . . . ,m; (24)∑m

j=1
wj = 1. (25)

If L = (ljk)mxm is an additive consistent preference relation, then such a preference relation
is given by:

ljk = [
0.5

(
wj − wk + 1

)] ∀ j, k = 1, 2, . . . ,m; ∀j �= k. (26)

However, in the general case, Eq. (26) does not hold. Here, we refer to Xu (2004) and we shall
relax Eq. (26) by looking for the weight vector of the fuzzy preference relation L = (ljk)mxm

that approximates Eq. (26) by minimizing the error εjk where:

εjk = ljk − (
0.5

(
wj − wk + 1

)) ∀ j, k = 1, 2, . . . ,m; ∀j �= k. (27)

Thus, we can construct the following multi-objective programming model:

Min εjk = (
ljk − (

0.5
(
wj − wk + 1

))) ∀ j, k = 1, 2, . . . ,m; ∀j �= k

Subject to: ∑m

j=1
wj = 1

wj ≥ 0 ∀ j = 1, 2, . . . ,m. (28)
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The previous problem (28) can also be formulated as the following GP model:

Min
m∑
j=1

m∑

k=1,j�=k

(
δ
+
jk + δ

−
jk

)

Subject to:

ljk − [
0.5

(
wj − wk + 1

)] + δ
−
jk − δ

+
jk = 0; ∀ j, k = 1, 2, . . . ,m; ∀j �= k

∑m

j=1
wj = 1; (29)

wj ≥ 0 ∀ j = 1, 2, . . . ,m;
δ
−
jk, δ

+
jk ≥ 0 ∀ j, k = 1, 2, . . . ,m; ∀j �= k

where δ
+
jk and δ

−
jk are the positive and negative deviations from the target goal εjk respectively.

The model (29) can be reformulated as a fuzzy multiple objective programming model, as
follows:

Max γ

Subject to:

1 −
(
δ
−
jk + δ

+
jk

)
≥ γ ∀ j, k = 1, 2, . . . ,m; ∀j �= k (30)

ljk−[
0.5

(
wj−wk+1

)] + δ
−
jk − δ

+
jk = 0 ∀ j, k = 1, 2, . . . ,m; ∀j �= k

m∑
j=1

wj = 1

wj ≥ 0 ∀ j = 1, 2, . . . ,m;
δ
−
jk, δ

+
jk ≥ 0 ∀ j, k = 1, 2, . . . ,m; ∀j �= k.

The weight vector W (w1,w2, . . . ,wm)
T of the fuzzy preference relation L = (ljk)mxm ∀ j,

k = 1, 2, . . . ,m; ∀j �= k, can be obtained by solving the mathematical model (30).
Combining models (18) and (30) will result to a fuzzy chance-constrained GP model that

integrates explicitly the fuzzy preference of the FDM, as follows:

Max

⎡
⎣γ +

m∑
j=1

wjμj

⎤
⎦

Subject to:

μj =
(
E
(∑n

i=1 aijXi
) + Kβj

√(
X′VjX

) ) − (
bj + βj − θj

)

θj
∀ j = 1, 2, . . . ,m; (31)

1 −
(
δ
−
jk + δ

+
jk

)
≥ γ ∀ j, k = 1, 2, . . . ,m; ∀j �= k

ljk − [
0.5

(
wj − wk + 1

)] + δ
−
jk − δ

+
jk = 0 ∀ j, k = 1, 2, . . . ,m; ∀j �= k

∑m

j=1
wj = 1

X ∈ F =
{
X ∈ Rn/cX

(≤
≥
)
C,X ≥ 0,C ∈ R

}

wj ≥ 0 ∀ j = 1, 2, . . . ,m;
δ
−
jk, δ

+
jk ≥ 0 ∀ j, k = 1, 2, . . . ,m; ∀j �= k
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In the next section we will illustrate this model through an application from the Tunisian
Stock Exchange Market.

5 Application to the Tunisian Stock Exchange Market

In this section, we consider a sample of 45 stocks from the Tunisian Stock Exchange Market
to illustrate our fuzzy chance constrained GP portfolio selection approach and the proposed
solution strategy to get the best financial portfolio set. The collected data are from July 2003
to December 2007 (Table1). The data were downloaded from the following website: www.
bvmt.com.tn. We have considered one month as a basic period to obtain the historical returns
and the monthly price-earning ratio (PER) over fifty four periods (months). The goal values
and the tolerance limits are provided by an exchange intermediate FDM (Table2). The three
objectives considered in this application case are as follows.

a. Rate of return
This objective measures the profitability of each security. In portfolio selection; the FDM
wants to maximize the chance of the total investment return no less than a certain aspired
level. The rate of return is as follows:

Ri =
(
Pit − Pi,t−1+Di,t

)

Pi,t−1
∀ i = 1, . . . , n; (32)

where Pi,t is the price of security i at time t and Di,t is the dividend received during the
period [t − 1, t].

b. Price-Earning Ratio (PER)
The Price-Earning Ratio (PER) of a security measures the time it takes to cover the price
by future income. This objective can be formulated as follows: A valuation ratio of a
company’s current share price compared to its per-share earnings.

PERi = Market value per stock i

earnings per stock i
∀ i = 1, . . . , n; (33)

where PERi is the PER for the ith stock.
c. Value-at- Risk (VaR)

The Value-at-Risk (VaR) is used in various engineering applications, including financial
ones. VaR risk constraints are equivalent to chance-constraints on probabilities of losses.
Some risk communities prefer VaR, others prefer chance (or probabilistic) functions.
Lucas andKlaassen (1998) define theVaRas themaximumexpected loss on an investment
over a specified horizon given some confidence level. The VaRβj of the loss is as follows:

VaRβj = Min
{
VaR |Pr

[∑n

i=1
XiRi ≤ VaR

]
≥ βj

}
(34)

The parameter βjrepresents the confidence level.

In order to determine the weights of the different objectives, we suppose that there are three
objectives under consideration. The FDMprovides his/her preferences over these three objec-
tives in the following fuzzy preference relation: Consider the following fuzzy comparison
matrix L (e.g. l12 = 0.6) represents the preference degree of objective 1 to 2, the degree is
provided by the FDM.

L =
⎡
⎣
0.5 0.6 0.7
0.4 0.5 0.7
0.3 0.3 0.5

⎤
⎦ (35)
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Based on the data of Tables1 and 2, we will formulate the mathematical model that provides
the most satisfactory portfolio for the FDM, as follows:

Max

⎡
⎣γ +

3∑
j=1

wjμj

⎤
⎦

Subject to: (36)

μ1 =
(
E
(∑45

i=1 RiXi

)
+ Kβ1

√(
X′V1X

) ) − (
Rpf + β1 − θ1

)

θ1

μ2 =
(
E
(∑45

i=1 PERiXi

)
+ Kβ2

√(
X′V2X

) ) − (
PERpf + β2 − θ2

)

θ2

μ3 =
(
E
(∑45

i=1 RiXi

)
+ Kβ3

√(
X′V1X

) ) − (
VaRpf + β3 − θ3

)

θ3

1 −
(
δ
−
jk + δ

+
jk

)
≥ γ

ljk − [
0.5

(
wj − wk + 1

)] + δ
−
jk−δ

+
jk = 0 ∀ j, k = 1, 2, 3; ∀j �= k

3∑
j=1

wj = 1

45∑
i=1

Xi = 1

X ∈ F =
{
X ∈ Rn/cX

(≤
≥
)
C,X ≥ 0,C ∈ R

}

wj, δ
−
jk, δ

+
jk ≥ 0 ∀ j, k = 1, 2, 3; ∀j �= k.

The software LINGO package was used to solve model (36). By solving this model, we
obtained the weight vector W (w1,w2, . . . ,wm)

T of incomplete fuzzy preference relation
and also the proportions Xi to be invested in security i.

The value of membership functions μ1,μ2,μ3 are 0.9917, 0.9544 and 1 respectively.
These results show that the proposed fuzzy stochastic GP approach provides a financial
portfolio with a higher level of the FDM’s satisfaction. In order to compare our results
with those obtained by the normalizing rank aggregation method (Xu et al. 2009), we first
generated the values of the weights derived by our fuzzy chance-constrained GP approach
by integrating fuzzy preference of the FDM. These are given in Table3 and we compared
them with those obtained from the normalizing rank aggregation method.

By using Xu et al. (2009) method, we obtained the following equations:

wj =
∑m

k=1 ljk∑m
j=1

∑m
k=1 ljk

∀ j, k = 1, 2, . . . ,m; ∀j �= k . (37)

The weight vector can be obtained by using Eq. (37). Then the comparison is carried on by
using the Euclidean Distance (Golany and Kress 1993):

E =
[∑

j

∑
k

(
ljk − wj

wk

)2
]1/2

∀ j, k = 1, 2, . . . ,m; ∀j �= k.
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Table 1 Stocks’ financial data Stock variable Rate of return PER

A B X1 0.00084 9.5617

ATB X2 0.00023 8.6164

BH X3 0.0019 11.53109

BIAT X4 0.00042 9.6721

BNA X5 0.00139 8.75103

BT X6 0.00098 10.6721

BTEI X7 0.000391 9.56321

ASTREE X8 0.00994 13.74319

STAR X9 0.000998 10.634123

ASS.SALIM X10 0.00109 9.6302

TUNIS RE X11 0.00208 17.98642

ATL X12 0.00069 12.8875

CIL X13 0.00053 19.7533

ATTI. LEA X14 0.000439 8.76338

T.L.S X15 0.00107 10.7632

ELWI. LAS. X16 0.00817 11.88423

SPDIT X17 0.000789 17.9653

TUNINV X18 0.00101 7.98542

PL.TS X19 0.000429 17.6324

SIMPAR X20 0.000498 11.756

PGH X21 0.000529 7 .6548

SIAME X22 0.000791 8.0832

SIPHAT X23 0.00106 15.8732

SOMOCER X24 0.0001 7.041

SOTUVER X25 0.000762 12.9632

STIP X26 0.0000103 11.306

AL X27 0.000483 14.5432

ALKIMIA X28 0.000198 11.0472

ICF X29 0.000295 15.1309

SFBT X30 0.00041 11.8621

AMS X31 0.000693 11.886

SITEX X32 0.00001 13.984

SOPAT X33 −0.0107 −11.874

S.T.S X34 0.00038 7.9042

TUN LAIT X35 −0.000564 −18.042

ADWIYA X36 −0.00765 −9.672

ASSAD X37 0.001098 10.774

GIF-FILTER X38 0.00359 11.765

TPR X39 0.000397 7.3054

ELECTRO X40 0.00251 18 .9543

MAG GEN X41 0.00209 8.631
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Table 1 continued Stock variable Rate of return PER

MONOPRIX X42 0.000542 13.89312

SOTETEL X43 0.000298 11.458

SOTRAPIL X44 0.000287 16.8432

SOTUMAG X45 0.000419 7 .50742

Table 2 Parameters related to
goals

Rate of return PER Risk

Objective achievements 0.03928 12.7 0.008263

θj 0.05 0.09 0.02

βj 0.95 0.9 0.97

Table 3 Comparison of the weighting methods

Solution method w1 w2 w3
w1
w2

w1
w3

w2
w3

E

Fuzzy chance-constrained GP 0.4081 0.305 0.2869 1.337 1.423 1.064 0.3719

Normalizing rank aggregation method 0.4 0.3333 0.2667 1.166 1.5 1.25 0.4178

The E criterion is a quadratic error measure that evaluates the sum of the deviations
between ratio of weights and their corresponding entry in the matrix. The criterion measures
the actual (Euclidean) distance between the ratios obtained by the derived weights and the
ratio-scale raw data. So the best method is one having the minimum Euclidean distance
criterion value. From Table3, we notice that the Fuzzy Chance-Constrained GP approach
outperforms the normalizing rank aggregation method.

6 Concluding remarks

In this paper we have developed a fuzzy chance-constrained goal programming approach
for the financial portfolio selection where the satisfying probability level of the chance con-
strained objectives and the importance relation among such objective are fuzzy and random.
We assumed that the stochastic uncertainty is related to the chance-constrained objectives
that are independent. The Financial Decision Maker’s preferences were considered as fuzzy
and not well defined. The fuzzy chance constraints on the probabilities of losses were used
to describe the market risk. The proposed model has been applied to the Tunisian Stock
Exchange Market for the period July 2003 to December 2007. The obtained results look
promising.
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