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Abstract In this paper we present a greedy algorithm for solving the problem of the max-
imum partitioning of graphs with supply and demand (MPGSD). The goal of the method is
to solve the MPGSD for large graphs in a reasonable time limit. This is done by using a two
stage greedy algorithm, with two corresponding types of heuristics. The solutions acquired in
this way are improved by applying a computationally inexpensive, hill climbing like, greedy
correction procedure. In our numeric experiments we analyze different heuristic functions
for each stage of the greedy algorithm, and show that their performance is highly dependent
on the properties of the specific instance. Our tests show that by exploring a relatively small
number of solutions generated by combining different heuristic functions, and applying the
proposed correction procedure we can find solutions within only a few percent of the optimal
ones.
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1 Introduction

A wide range of practical problems can be efficiently represented by means of graph parti-
tioning. Due to this, many variations of the problem have been analyzed which correspond
to specific applications like having a balanced partitioning (Andreev and Räcke 2004), min-
imizing the number or weight of cuts (Reinelt et al. 2008; Barnes et al. 1988), or by limiting
the number of cuts (Reinelt and Wenger 2010). In this paper the focus is on the problem
of maximum partitioning of a graph with supply and demand (MPGSD). This problem is
defined on a graph G, in which each node is either a supply or a demand node. Each node v

has a corresponding positive number, which is called the supply of node v; otherwise, if v is
a demand node, this value would be called demand. Each demand node can at most receive
power from one supply node through the edges of G. The objective in MPGSD is to find a set
of disjoint connected subgraphs S of graph G, such that each of them has exactly one supply
node, whose supply is at least the sum of demands of all demand nodes in it. The goal is to
maximize the total demand that is included in the subgraphs. Formally speaking the MPGSD
is not a true partitioning problem since not all the nodes are included in the subgraphs, but this
term has been commonly used in the published literature. One of the important applications
of this theoretical graph problem is modeling of self-adequacy of interconnected micro-grids
(Arefifar et al. 2012), although in a much simplified form. The maximum partitioning prob-
lem has been applied for several problems in the field of power supply and delivery networks
(Boulaxis and Papadopoulos 2002; Ito et al. 2005; Morton and Mareels 2000; Teng and Lu
2002).

In existing literature the main focus of research for the MPGSD has been on theoretical
aspects of the problem (Ito et al. 2008;NarayanaswamyandRamakrishna2012; Ito et al. 2005;
Kawabata and Nishizeki 2013). One direction of this research was in developing methods to
create relaxed versions of the problem. Due to the complexity of the problem, the research
up to now has focused on some specific types of graphs like trees (Narayanaswamy and
Ramakrishna 2012; Ito et al. 2005; Kawabata and Nishizeki 2013) and series-parallel graphs
(Ito et al. 2008). An interesting approach for solving this problem, for general graphs, is given
in Popa (2013). In it an algorithmbased on the calculation of all the paths from supply nodes to
demand nodes has been developed for applications in power supply networks. Due to the fact
that all such paths need to be calculated/updated the algorithm is computationally expensive.
The proposed algorithm gives a guarantee of a 2k approximation, where k is the number of
supply nodes. The original problem has also been extended with additional properties to be
more suitable for specific applications. One such example is the parametric version of the
problem, in which all the demands and supplies are dependent of a single parameter λ for
application to power supply networks (Morishita and Nishizeki 2013). Another extension is
the problem of minimum cost partitions of trees with supply and demand in which a maximal
capacity has been added to edges (Ito et al. 2012).

It should be noted that theMPGSDat first glance looks similar to the capacitated p-median
problem which seeks to choose p nodes as median nodes and then assigns all the remaining
nodes to one of those medians; see, e.g., Maniezzo et al. (1998). In the capacitated version
of the problem the medians have a limited capacity but any node may be assigned to any
median if the capacity constraint allows this (in an idealized form assuming the existence of
a complete graph). For the MPGSD this is not as easy as we need to find disjoint subgraphs
connected to the (let us call them) medians observing the capacity constraint. In a similar
way we may argue when it comes to the capacitated clustering problem; see, e.g., Scheuerer
and Wendolsky (2006). Here a given set of nodes with known demands has to be partitioned
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into p distinct clusters. Each cluster is made up by a customer acting as its cluster center. The
objective is to minimize the sum of distances from all cluster centers to all other customers
in their cluster, such that a predefined capacity limit of the cluster is not exceeded and every
customer is uniquely assigned to one cluster. As a final example for other types of somewhat
related partitioning problems consider the partitioning of the nodes of a given graph into a
number of balanced classes, while minimizing the number of cut edges between the classes
(Galinier et al. 2011).

In this paper we present a greedy heuristic approach to solving the MPGSD. The goal
of developing such an algorithm is to allow solving large scale instances, which is needed
when modeling real power systems especially in the case of interconnected microgrids. It
has previously been shown that heuristics are very efficient in the case of other types of
partitioning problems (Barnes et al. 1988; Kernighan and Lin 1970; Kim and Moon 2004). It
is important to point out that in the existing research there is a lack of experimental results.
With this work we provide such results and the code developed for the proposed method has
been made available for download.

The proposed method is based on a two stage greedy algorithm. Further, two greedy
correction procedures are developed to improve the quality of acquired solutions. The paper
also includes an analysis of several heuristic functions that are used in the two stages of the
algorithm. We wish to emphasize that the goal of this research is to develop a method that
can find good approximate solutions within reasonable computational time. Because of this
the developed algorithm does not incorporate a look ahead mechanism based on the analysis
of adding more than one node to the partial solutions at each iteration. Although this type
of lookahead frequently significantly improves the quality of solutions acquired by greedy
algorithms, this is achieved at a significant increase of the calculation time (unless some
related finetuning is performed).

In our numeric experiments we have observed that although certain heuristics have had
an overall better performance, in the sense of having the best average of found solutions,
there would be a wide discrepancy when individual problem instances are observed. Such
behavior would be even more evident when the correction procedure was included. It is a
well known fact that when having several competing heuristics for an optimization problem,
it is good practice to apply all of them and simply select the best found solution. This idea
can effectively be applied for the MPGSD, since we can combine different heuristics for
each of the stages of the algorithm. In this way we can explore a relatively small number of
potentially good solutions. In our test we show that such an approach can find approximate
solutions that have an average error of 1–5% when trees or general graphs are considered.

The paper is organized as follows. In Sect. 2we define theMPGSDmore comprehensively.
Then we present the proposed algorithm, with separate subsections dedicated to each of the
stages of the algorithm and the correction procedure. In Sect. 4 we show the results of our
computational experiments.

2 Maximal partitioning of a graph with supply/demand

In this section we give a definition for the MPGSD as a slightly modified version of the one
given in Ito et al. (2008).

The MPGSD is defined for an undirected graph G = (V, E) with a set of nodes V and
a set of edges E . The set of nodes V is split into two disjunct subsets Vs and Vd . Each
node u ∈ Vs is called a supply node and will have a corresponding positive integer value
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Fig. 1 Examples of problem instances for the MPGSD. On the left the square nodes represent supply nodes
and circles demand nodes. Numbers within the nodes correspond to supply and demand values, respectively.
The right side shows the solutions, where the same color of nodes (or shaded area) indicates they are a part
of the same subgraph

sup(u). Elements of the second subset v ∈ Vd are called demand nodes and will have a
corresponding positive integer value dem(v). The goal is to find a set of disjoint subgraphs
Π = {S1, S2, .., Sn} of the graph G that satisfies the following constraints. All the subgraphs
in Π must be connected subgraphs containing only a single distinct supply node. As a result
we have |Vs | = n. Each of the Si must have a supply greater or equal to its total demand.
Each demand node can be an element of only one subgraph, or in other words it can only
receive ‘power’ from one supply node through the edges of G. Note that it is not necessary
for all demand nodes to be covered by Π .

The goal is to maximize the fulfillment of demands, or more precisely to maximize the
following sum: ∑

S∈Π

∑

v∈S∩Vd
dem(v) (1)

while the following constraints are satisfied for all Si ∈ Π

∑

v∈Si∩Vs
sup(v) ≥

∑

v∈Si∩Vd
dem(v) (2)

Si ∩ S j = ∅, i �= j (3)

Si is connected (4)

It has been shown that the MPGSD is NP-hard even in the case of a graph containing
only one supply node and having a star structure (Ito et al. 2008). An illustration of problem
instances and corresponding solutions for the MPGSD is given in Fig. 1.
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3 Outline of the algorithm

In this section we will first give a short outline of the greedy algorithm and correspond-
ing corrections and in the following section each of the steps will be presented in detail.
As previously mentioned the solution of the MPGSD will consist of |Π | = n subgraphs,
where n = |Vs | is the number of supply nodes. The idea of the greedy algorithm is to
start with n disjunct subgraphs Si . At the initial step of the algorithm each of the subgraphs
would consist of only one supply node si . Next, at each step (iteration) we would expand
one of the subgraphs Si with one node v ∈ Vd . In practice each iteration would consist
of two sub-stages. In the first we would select which subgraph Si would be expanded, and
in the second stage we would decide by which node v. The selection of v will be con-
strained in a way that the newly generated subgraph is connected, and that v is not an
element of any other subgraph. This selection should also produce a subgraph whose total
demand is less than or equal to its supply. Of course, the selection of Si and v should be
done using some heuristic measure that we expect to produce high quality solutions for the
problem.

It is common practice to improve the solutions acquired using direct greedy algorithms
based on some local search to explore similar ones within a specific neighborhood. Examples
of such an approach are the 2-opt (Tupia et al. 2013; Croes 1958) and 3-opt (Alfa et al.
1991; Marinakis et al. 2005) algorithms with their application to problems that can formally
define suitable neighborhoods. The problem with such approaches is that if we chose a small
neighborhood the chances of improvement are limited. On the other hand if the chosen
neighborhood is large the method becomes computationally expensive, in many cases even
similar to the use of some advanced meta-heuristic that can produce approximate solutions of
higher quality. This is especially a problem with large scale test instances, where even if the
neighborhood is defined relatively strictly, it will still consist of a large number of potential
candidates. As it is discussed in Barnes et al. (1988), in case of graph partitioning problems
this approach generally equates to exchanging nodes between subgraphs.

In ourmethods,we propose using a greedy correction approach that can find improvements
of the original solution by exploring only neighboring solutions that are selected using a
heuristic procedure. Two such greedy correction procedures are used. In the first we simply
check if some node v, that is not an element of any of the created subgraphs, can be exchanged
with some node u of a neighboring subgraph Si to increase the total covered demand. As
it is mentioned in Popa (2013), which we have also experienced in our initial work on the
MPGSD (Jovanovic and Bousselham 2014), one of the main drawbacks of greedy algorithms
is that a subgraph can be easily cut off from the rest of the graph as nodes are added to other
subgraphs. As a consequence of this, it is possible that some supply nodes will be covering
only a very small amount of demands. The second correction procedure attempts to resolve
this problem.

3.1 Greedy algorithm

To formally define our algorithm, first we shall specify a corresponding set NV to v ∈ V
where NV (v) represents the set of adjacent nodes to v in G:

NV (v) = {u | u ∈ V ∧ (u, v) ∈ E} (5)

The idea is to slowly grow each of the subgraphs Si at each iteration by adding new nodes.
Since the subgraphs will be changing at each step of the algorithm we introduce the notation
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Ski for the state of subgraph Si at iteration k. We will define the function NV k for subgraphs
Si , that represents the set of all the nodes that are connected to some node in Ski .

N̂ k
i = NV k(Si ) = {u | u ∈ V ∧ ∃(v ∈ Ski )(u, v) ∈ E} (6)

It is obvious that if at some step k we select some node v ∈ N̂ k
i , and adding it to Ski , the

resulting subgraph Sk+1
i will be connected. The selection of v must also be defined in a way

that the constraints (2), (3) are satisfied, or in other words that there is no such Sk+1
j for which

v ∈ Sk+1
j and that the demand has not become larger than the supply in Sk+1

j . To achieve this,

we define a corrected set of nodes Nk
i , such that by adding v ∈ Nk

i to Ski the new subgraph
will satisfy all the constraints. To do this we first define function supki as the available supply
for each Ski given in Eq. (7).

Supki =
∑

v∈Si∩Vs
sup(v) −

∑

v∈Si∩Vd
dem(v) (7)

Now we can define Nk
i in the following way.

Nk
i =

{
u | u ∈ N̂ k

i ∧ dem(u) ≤ Supki

}∖ n⋃

j=1

Skj (8)

It is important to mention that the sets of neighbors Nk
i can be efficiently calculated using

an auxiliary structure that helps track the used nodes by updating the set of edges E for
graph G, using a similar procedure like in the case of covering problems given in Jovanovic
and Tuba (2011, 2013). Details of the implementation are presented in our previous work
(Jovanovic and Bousselham 2014).

Using the sets Nk
i , we can define a greedy algorithm for the MPGSD using two heuristic

functions. At each step of the algorithm, the first heuristic hs is used to select the best Si , and
the second heuristic hn will be used to select the best v ∈ Nk

i to add to Si . The algorithm
stops if all the neighboring sets Nk

j are empty. In the following two subsections, we present
the types of heuristic functions used at each stage of the greedy algorithm.

3.1.1 Heuristics for subgraph selection

We first define a heuristic function hs that gives us the desirability of selecting a subgraph Ski
at iteration k for expansion. There are two main properties of Ski that should be considered:
the available supply Supki , or in other word the amount of supply that has not been covered

by some demand, and the number of potential candidates |Nk
i |.

One heuristic will consider subgraphs with a higher value of Supki as more desirable,
in the sense that they should be selected earlier. The logic behind this heuristic is that it
is expected that more nodes need to be added to such subgraphs than to ones with a lower
available supply. In the proposed greedy algorithm the number of non-satisfied demand nodes
is constantly decreasing and as a consequence there exists a possibility that there may not be

enough available demand to reach Supki . Using this idea we define the heuristic hs1 as

hs1(S
k
i ) = Supki (9)

As mentioned before, in the proposed algorithm we can enter a state in which it is not
possible to expand subgraph Ski due to being cutoff from the rest of the graph by other
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subgraphs. Since each node can be an element of only one subgraph, there is a possibility
that all the elements of Nk

i will be added to other subgraphs since a node can be a neighbor
of several different subgraphs. Because of this we shall consider subgraphs with a low value
of |Nk

i | highly desirable. The second heuristic hs2 can be formally defined as

hs2(S
k
i ) = 1

|Nk
i | , |Nk

i | �= 0 (10)

Finally we introduce a third heuristic function hs3 that balances the two effects

hs3(S
k
i ) = Supki

|Nk
i | , |Nk

i | �= 0 (11)

We should point out that for the heuristic functions hs2 and hs3 the case |Nk
i | = 0 will be

considered least desirable and will never be selected.

3.1.2 Heuristics for node selection

The second type of heuristic function hn that needs to be defined is used for giving the
desirability of adding v ∈ Nk

i to Ski . In designing such heuristic we shall follow a similar
logic as in the case of heuristic functions for subgraphs.

Let us first define function hn1 as

hn1(v) = dem(v) (12)

In Eq. (12) nodes v with high demand are considered more desirable. The idea of this
heuristic is that it gets harder to satisfy high demands as the algorithm progresses due to
fact that the available supply constantly decreases as new nodes are added to the subgraph.
Because of this it seems better to resolve high demands early.

The second heuristic for selection of nodes is designed to avoid the problem of subgraphs
being cutoff from the rest of the graph. In this case the desirability of node u ∈ Nk

i will
be proportional to increases/decrease of the number of elements of Nk+1

i . Formally we can
define the new heuristic hn2 as

C(u, Ski ) =
{
v | v ∈ NV (u) ∧ ¬(v| ∈ Nk

i ) ∧ (dem(v) ≤ Supki − dem(u))
}

(13)

hn2(u) = |C(u, Ski )| (14)

C(u, Ski ) is defined as the set of new neighbors that will be added. This set consists of
neighboring nodes to u, which are not already in Nk

i and whose demand is not greater than
the available supply of Ski after adding node u. The heuristic function hn2 is now simply the
number of elements of C(u, Ski ) as given in Eq. (14).

As in the case of selecting a subgraph, in case of nodes we will also use a balanced
heuristic. In this case nodes with a high demand and a significant increase in the number of
neighbors of the corresponding subgraph are considered highly desirable. We define a new
heuristic.

hn3(u) = (hn2(u) + 1)hn1(u) (15)

In Eq. (15) the addition of one is included to distinguish between nodes that do not add
new connections to the subgraph.
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Fig. 2 Illustration of several steps of the greedy algorithm when heuristics hs1 and hn1 are used. The second
number for supply nodes indicates the number of available supply. The colored edges connected to grey(non-
located nodes) give us the neighborhood of a subgraph

3.1.3 Approximate computational cost

The proposed greedy algorithm can be presented using the following pseudo code (see also
Fig. 2 for the illustration of several steps of the algorithm):

Initialize All Si with supply nodes; choose appropriate heuristic functions hs and hn
while (Sum(Supi ) > 0) and Sum(|Ni |) > 0) do
Select Si using hs(Si )
Select u ∈ Ni using hn(u)

Add u to Si
Perform Updates

end while
In the algorithm we first initialize all of the subgraphs as different supply nodes. The

iterative algorithm is repeated until all the available supply is covered or no subgraph has any
neighboring nodes to which it can expand. We first select subgraph Si that is to be expanded
and then the node with which it will be expanded. Finally, the necessary updates to auxiliary
structures are performed. In our previous work (Jovanovic and Bousselham 2014) we give
detailed explanation of the auxiliary structures and how they are used for a simpler version
of the algorithm.

Our goal of this work is more dedicated towards experimental investigation rather than
theoretical analysis. Therefore, we only present a descriptive approximation of the asymptotic
calculation time of the proposed algorithm. This time can be approximated as follows:

|Vd | ∗ (|Vs | + |AvgNumNeighbors(Si )| + AvgNumConnections(u)) (16)

In (16) the term |Vd | is included as we will be adding demand nodes one by one to
the partial solution. At each iteration we will first select the most desirable subgraph or, in
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other word, finding the maximal value of |hs| for which we will need |Vs | operations. It is
important to mention that this can be done more efficiently, since at each step only a limited
number of subgraphs will be changed. For the selection of the best node for expansion,
we will have to check all the neighbors of a subgraph Si which gives us the second term
|AvgNumNeighbors(Si )|. This value will be highly dependent on the density of the graph,
but will never be higher than |Vd |. This has the consequence that the proposed algorithm will
be much more efficient in case of sparse graphs. In our experiments we have seen that this
value is generally significantly lower than |Vd |/|Vs |. The proposed heuristic functions can be
calculated in constant time if suitable auxiliary structures are used. The calculation time for
the update procedure for such structures will be proportional to the number of connections
that the added node u has.

3.2 Greedy correction

In this section we present a greedy correction method for improving the solutions acquired
using the algorithmpresented above.Asmentionedbefore, in thiswaywewish to avoid testing
a large neighborhood of solutions acquired by the greedy algorithm. This shall be done in
two ways, in the first correction we shall attempt to incorporate some of the demand nodes
that have not yet been included into the generated subgraphs. This is done by exchanging
them with some node of the generated subgraphs. The second correction focuses on the
problem that some of the supply nodes, and corresponding subgraphs, can be cut off from
the rest of the graph at a very early stage of the algorithm. Note that this case frequently
results with a set of subgraphs in which a large amount of demand has not been covered. The
idea of this correction is to expand such subgraphs at the cost of their neighbors with the
hope that the amount of the covered demand can be increased by applying the first correction
procedure. For both types of corrections it is essential that the connectivity of the corrected
subgraphs is maintained. As it is well known, testing the connectivity of a subgraph can be a
computationally expensive procedure so we shall first introduce a simple auxiliary structure
that can be used to simplify this test.

3.2.1 Auxiliary tree structure

There have been several algorithms developed for finding all the articulation points
(Chaudhuri 1998; Kukreja 2013), i.e., nodes whose removal will result in an unconnected
graph, but such a calculation would be redundant for the needs of the proposed algorithm. In
the proposed method we only wish to avoid selecting an articulation point, in case it satisfies
some other constraints. Because of this we will use an approximate approach for recognizing
such points to avoid unnecessary calculations.

The idea is to represent each of the subgraphs as a tree. In this way only leafs will be
considered in the correction procedure. It is not necessary to have a complete tree structure
but only a method that makes it possible to track leafs. Such a structure should be simple to
update when nodes are added/removed from the subgraph, and is preferred to have a higher
number of leafs. This can be done in the following way, each node of the graph will have
a corresponding integer value ch(u) indicating the number child nodes in the tree. We can
generate such a structure using the following simple procedure when generating the solution.
Let us consider the case that node u is added/removed with respect to subgraph Ski
1. Each node u has a corresponding value ch(u) which indicates the number of children

it has in a tree. Initially all nodes have ch(u) = 0, except supply nodes which have the
maximal possible value of ch, since they can not be removed from a subgraph.
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2. Select all the neighbors of u that are elements of Ski .
3. For a node v among the nodes which have the largest value ch(v), increment ch(v).

In case of several nodes with the same value ch simply select the one with a lower id
(number of the node).

4. When a leaf node u is removed form Ski , select from its neighbors v ∈ Ski the one with
the largest value of ch(v), and decrease ch(v). In case of several nodes having the same
value of ch select the one with a lower id .

Using this structure it is possible to check if a node is a leaf in constant time. The update
procedure for maintaining this structure only depends on the number of connections that a
node has. It is important that this structure gives in some cases false positives, for articulation
points. From our experience this would very seldom effect the performance of the algorithm.

3.2.2 Correction for non-located nodes

The idea behind the first corrections is that it is possible to exchange a node u that is non-
located, with some leaf node v of a subgraph and increase the covered supply. Here we use the
term non-located for nodes that are not a part of any of the generated subgraphs. It is expected
that this type of procedure will not be computationally expensive due to the fact that only a
low number of nodes will be left non-located after the greedy algorithm has been applied.

To fully specify this type of correction procedure, we first formally define the set of nodes
v ∈ Si that can be exchanged with u as

Ex(u, Si ) = {v | (v ∈ Si ) ∧ (ch(v) = 0) ∧ (0 < dem(u) − dem(v) ≤ Supi )} (17)

Here supi gives the amount of available supply of subgraph Si . Using this definition we
can present the correction procedure using the following pseudo-code:

repeat
Initialize N with all non-located nodes
Nout = N
for all u ∈ N do
for all Si connected to u do
Ex = Ex(u, Si )

if (Ex �= ∅) or (sup(u) ≤ Supi ) then
v = min_dem(Ex(u, Si ))
Si = (Si \ {v}) ∪ {u}
Nout = (Nout \ {u}) ∪ {v}
Update Auxiliary Structures
Exit Subgraph loop

end if
end for

end for
N = Nout

until NoChange

The main loop of the proposed correction procedure goes through all the non-located
nodes u, and for each of them it checks if it can improve the amount of covered demand
for one of the neighboring subgraphs. We consider a subgraph Si neighboring to node u if
there exists v ∈ Si such that (u, v) ∈ E . The correction is done greedily in the sense that the
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Fig. 3 Illustration of several steps of the non-located correction, and its ability to resolve complex exchanges
between subgraphs when improving the solution

maximal level of improvement will be selected. More precisely, node u will be exchanged
with v ∈ Si giving the minimal value of dem(v)with the constraint that the total demand will
not be greater than the total available supply. Note that in some cases it may not be necessary
to remove a node for Si .

After each exchange it is necessary to update the auxiliary structures. Since it is possible
that a new improvement, becomes possible after the performed exchange operation, we also
need to track the new unlocked nodes. In the pseudo code this is done using the set Nout . After
all the non-located nodes are tested, we repeat the main loop for the new set of non-located
nodes. The correction has been completed when no improvement can bemade for any u ∈ N .

A specific case of the exchange correction is if we allow the exchange of a non-located
node u with a v ∈ Si in case dem(u) = dem(v). It is obvious that we can not simply
extend Ex(u, Si ) by such v, since an endless cycle could arise of first adding u to Si , and
removing v and in the following iteration we could just do the reverse if no further changes
have been performed on Si . On the other hand such an exchange is useful since it makes
it possible to diversify the search. Because of this we will allow such exchanges, but they
will be treated separately, in the sense that we will apply the algorithm given in the pseudo
code, but exclusively with the change that Ex(u, Si ) will only contain nodes v such that
dem(v) = dem(u), we will call this operation a switch non-located correction. The details
of avoiding cycles will be given in a later subsection.

Although the procedure only performs tests in the relation of a free node to a single
subgraph, by applying the consecutive corrections exchanges can occur between several
subgraphs. By doing so this simple procedure can produce a significant level of improvement
which we illustrate in Fig. 3.

3.2.3 Cutoff correction

The focus of the second correction procedure is to improve a solution in which some supply
nodes and their corresponding subgraphs have been cut from the rest of the graph at an early
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Fig. 4 Example of two consecutive applications of the cutoff correction. In this case the correction is first
applied on the left subgraph, and the changes on the graph make it possible to improve the right subgraph in
the second application of the correction

stage of the algorithm. One example of such a situation is given in Fig. 4. In many cases it is
not possible to improve such a solution using the previously presented correction procedure.
The idea is to expand the subgraphs that have a high level of available supply by taking
some demand nodes from neighboring subgraphs. This is done in the hope that the expanded
subgraph will get access to some non-located nodes or that the new corrected solution can
be improved using the previously presented correction procedure.

To formally present this correction procedure we first define the set of neighboring nodes
to a subgraph

Nn(Si ) = {v | (∃u ∈ Si )((v, u) ∈ E)} (18)

Now we can define the set of nodes to which subgraph Si can be expanded as follows:

Ex(Si ) = {v | (v ∈ Nn(Si )) ∧ (ch(v) = 0) ∧ (dem(v) ≤ Supi )} (19)

In Eq. (19) the set Ex(Si ) consists of all neighboring nodes that are leafs whose demand
is not greater than the available supply Supi of subgraph Si . With these definitions we can
present the correction procedure using the following pseudocode.
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S = MaxSupplyExpandable(Π)

repeat
if (Ex(S) �= ∅) then
u = max_dem(Ex(S))

S = S ∪ {u}
Sub(u) = Sub(u) \ {u}
Update Auxiliary Structures

end if
until NoChange

As can be seen in the pseudo code we select the subgraph S that has the maximal available
supply and can be expanded or in other words Ex(S) �= ∅. At each iteration of the main loop
we will expand S with that node u that has the highest demand, and we will always select a
non-located node before one that is part of some subgraph. This procedure will be repeated
until no more nodes can be added to S.

We illustrate this correction procedure in Fig. 4, by showing the effect of two consecutive
applications.

3.2.4 Problem of cycles

One problem that can occur when using consecutive cutoff and switch corrections is that we
can enter into cycles. Here we use the term cycle for the situation when after n corrections the
set of subgraphs Π is the same as before any corrections have been done. A simple example
is when in the first correction some node u ∈ Si is moved to subgraph S j , and in the following
correction u is moved back to Si . Note that such cycles can also include non-located nodes.
It is evident that cycles can be of an arbitrary length, but in our experience we have seen that
they are very seldom longer than six correction operations.

In the implementation of the proposed algorithm we have used the following method for
avoiding cycles. Let us assume the last n corrections have resulted in a cycle. This means
that a sequence of correctionsC1,C2, ..,Cn leaves the partitioning unchanged. A simple way
of avoiding the repetition of the same cycle is not allowing correction Cn+1 to be equal to
C1. In practice this means we will remove the possibility of selecting node u that appears
in correction C1 when selecting Cn+1. Although this procedure escapes the majority of
cycles, as we have seen in our tests, it can still get trapped in some. As a consequence, when
implementing the proposed corrections, it is necessary to include amethod for checking if the
algorithm has started to stagnate.Wewill consider the algorithm stagnant if form corrections
the covered demand has not increased.

For the sake of completeness we include a straightforward method to check if a cycle has
happened in the last n corrections. For each node u we know in which correction Ci it first
appears, we can store the pair (S j , u) if u ∈ S j before the correction is applied. In case that
after applying n corrections, we have u ∈ S j for all the nodes that have been effected by
some correction Ci , a cycle is completed. In our implementation of the proposed algorithm
we will be checking for all cycles up to length n.

3.2.5 Combined correction and multi-heuristic approach

From the definition of the cutoff correction it is evident that it does not necessarily increase the
amount of covered demand, but it changes the partitioning to one that can be improved using
the non-located node correction. To have the maximal effect of the proposed corrections it is
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necessary to have several consecutive applications of each. There are several potential orders
in which these corrections can be applied to improve the quality of the solution acquired
using the proposed greedy algorithm; through trial and error we have found that best results
are achieved when this is done as in the following pseudocode.

repeat
repeat
if (CorrectionNonLocated()) then
CorrectionSwi tch()

end if
until (NoChangeNonLocated ∨ Stagnation)

repeat
CorrectionCutof f ()

until (NoChangeCutO f f ∨ Stagnation)

until (NoChange ∨ Stagnation)

In the presented code functions CorrectionNonLocated() and CorrectionCutoff() perform
the corrections as presented in the previous subsections, and return if any change has been
performed on the graph. CorrectionSwitch() is used for the specific case of the non-located
correction when only nodes with equal demand are allowed to be exchanged. We have found
that the highest level of improvement is accomplished, when we first exhaust all the non-
located corrections, using the switchversionof it to increase the potentially tested partitioning.
In the second step we apply all the possible cutoff corrections. These two steps are repeated
until no more changes to the partitioning are achieved. A natural extension of the proposed
algorithm is to use a varying number of nodes that are considered in the correction procedures.
Similar approaches have proven very efficient on other graph problems. As we have stated
in the previous subsection, the method for avoiding cycles does not manage to detect all of
them. Because of this it is necessary to include tests if the algorithm has started to stagnate in
the sense that no increase to the level of covered demand has occurred in the last n iterations.

As mentioned in the introduction, when for a specific problem we have several competing
heuristics it is a common practice to apply all of them and select the best found solution.
This simple concept can effectively be applied in the case of MPGSD, since we can combine
heuristics for different stages of the algorithm. In this way we can explore a relatively small
number of potentially good solutions. This approach becomes even more effective due to
the use of the correction procedure, which in a sense behaves like a hill climbing method.
Because of this the multiheuristic approach makes it possible to explore several local, poten-
tially global, optimal solutions. In practice we have used three heuristics for the selection of
the subgraph to be expanded, and four for the selection of nodes. In the case of node selec-
tion we have included an extra heuristic function which selects the node with the minimal
demand. This type of heuristic was not discussed in the corresponding subsection, due to the
fact that it generally does not have a good performance. In case of the multiheuristic approach
it effectively complements the other heuristics. We say this in the sense that by combining it
with the correction procedure, it can find good solutions that have been overseen by greedy
algorithms based on the other heuristics.

4 Tests and results

In this section we evaluate the performance of the proposed algorithm. We shall first give a
comparison of the effect of using different heuristics for each stage of the algorithm. In our
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test we also examine the two proposed correction procedures and themultiheuristic approach.
The algorithm has been implemented in C# using Microsoft Visual Studio 2012. The source
code and the executive files are available at http://mail.ipb.ac.rs/~rakaj/home/graphsd.htm.
The calculations have been done on amachinewith Intel(R)Core(TM) i7-2630QMCPU 2.00
Ghz, 4 GB of DDR3-1333 RAM, running on Microsoft Windows 7 Home Premium 64-bit.

With the goal of having a comprehensive evaluation of the proposed algorithm we have
performed experiments on a wide range of graph sizes. We have conducted tests on graphs
having 2–400 supply nodes and 6–8000 demand nodes. For each of the test sizes 40 different
problem instances have been generated and we observe the average solution quality for each
size. Such experiments have been performed on trees and general graphs. The goal of the
conducted tests was to evaluate each heuristic, correction methods and show the advantage
of using the multiheuristic approach.

The problem instances (graphs) for n supply and m demand nodes have been generated
using the following algorithm. First we generate an array containing n + m integer random
weights uniformly distributedwithin the interval [10, 40]. In case of general graphs, (n+m)∗2
random edges would be added to the graph but making sure that the graph is connected. In
case of the second type of graphs, i.e. trees, we would simply generate a random tree for
n + m nodes. For both types of graphs the next step was to select n random nodes as
seeds for n subgraphs (partitions). The subgraphs are grown using an iterative method until
(n + m) ∗ (0.95) nodes of the original graph are contained in one of the subgraphs. The
growth of subgraph Si has been performed by expanding it to a random neighboring node
that does not belong to any of the other subgraphs. Finally, for each of the subgraphs Si a
random node v ∈ Si is chosen and its weight (supply) w is set using the following formula:

w =
∣∣∣∣∣∣

∑

a∈Si
dem(a)

∣∣∣∣∣∣
− dem(v) (20)

For each of the test graphs, generated using this method, the optimal solution is known and
is equal to the sum of supplies of all supply nodes. Note that by using such a procedure it is
possible to have a set that does not have n subgraphs due to some supply nodes being cut off
from the rest of the graph. We have excluded such graphs from our test cases. The generated
test instances are available for download at http://mail.ipb.ac.rs/~rakaj/home/graphsd.htm.

In the first group of tests a comparison of the effect of using different heuristics for selecting
subgraph Si is observed. The results of this type of experiments are given in Tables 1 and 2 for
general graphs and trees. For each of the heuristics the same heuristic hn1, node with highest
demand, was used for node selection. In these tables we observe the average normalized error
of the found solution compared to the optimal one, which is known due to the method of
generating problem instances. More precisely, for each of the 40 test instances, for one graph
size, we calculate the normalized error in percent (Optimal − f ound)/Optimal ∗ 100,
and give the average value of such errors in Tables 1 and 2. To have a better analysis of the
proposed heuristics we also observe the standard deviation, and maximal error.

In the case of general graphs, our tests show that the use of heuristic function hs2, selection
of a subgraph with a minimal number of neighbors, is most beneficial with the average error
between 0.7–8.2%. According to Tables 1 and 2 all the heuristics had a better performance
in case of a large ratio m/n in case of the normalized error. This can be explained by the
fact that in this case the cutoff of subgraphs was less likely which is a major source of error.
In such cases, although the normalized error is small, generally less than 2%, the absolute
error is still significant. Our tests have shown that although hs2 gives better average results,
it is less reliable than the balanced approach using hs3 which in the majority of the cases has
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Table 1 Comparison of heuristics for subgraph selection in case of general graphs

Sup × dem Error hs1 (%) Error hs2 (%) Error hs3 (%)

Avg Max SD Avg Max SD Avg Max SD

2 × 6 7.4 46.1 8.7 3.9 19.3 5.6 5.6 19.3 6.1

2 × 10 5.6 23.1 4.4 4.3 11.8 2.6 4.5 11.8 3.1

2 × 20 1.8 4.2 1.1 1.7 4.1 1.1 2.1 5.2 1.3

2 × 40 0.8 1.7 0.5 0.7 2.1 0.5 0.6 1.7 0.4

5 × 15 10.9 38.8 7.8 6.5 20.0 4.8 7.9 20.1 5.3

5 × 25 7.9 34.6 6.0 4.5 15.6 3.3 4.9 13.1 2.5

5 × 50 3.9 10.3 2.6 1.9 5.2 1.0 2.6 8.1 1.3

5 × 100 2.0 13.6 2.5 0.9 4.8 0.8 0.9 3.7 0.6

10 × 30 11.5 23.9 4.4 6.7 15.2 3.4 8.4 18.1 3.5

10 × 50 7.4 14.2 2.8 5.2 15.0 3.0 5.0 12.2 2.1

10 × 100 3.9 13.1 2.4 2.3 9.5 1.6 2.3 5.2 0.9

10 × 200 2.5 13.0 2.8 1.5 10.6 1.9 1.1 5.9 0.9

25 × 75 12.1 19.2 3.2 8.2 16.8 2.9 9.1 14.6 2.9

25 × 125 8.6 13.6 2.1 5.5 8.9 1.6 6.0 10.3 1.6

25 × 250 4.6 8.7 1.5 2.8 7.7 1.4 2.9 5.5 0.9

25 × 500 2.8 6.1 1.4 1.5 4.9 1.1 1.3 3.2 0.6

50 × 150 12.0 15.6 1.9 8.0 12.2 2.1 8.6 12.2 1.8

50 × 250 8.8 10.8 1.3 5.9 10.4 1.6 6.1 10.1 1.3

50 × 500 4.6 7.4 1.3 2.6 4.5 0.9 2.6 3.7 0.6

50 × 1000 3.1 6.0 1.0 1.2 2.9 0.6 1.3 2.8 0.5

100 × 300 11.7 14.6 1.5 7.9 10.6 1.3 8.7 11.0 1.1

100 × 500 8.8 11.6 1.1 5.7 9.0 1.1 6.0 8.2 0.9

100 × 1000 4.7 7.0 0.9 2.9 5.6 0.8 2.9 4.3 0.5

100 × 2000 3.0 4.6 0.7 1.5 3.0 0.6 1.4 2.3 0.4

200 × 600 12.1 14.3 1.0 8.0 9.7 0.9 8.9 11.8 0.9

200 × 1000 8.8 10.8 0.7 5.8 7.4 0.6 6.2 7.2 0.5

200 × 2000 4.9 6.2 0.5 2.9 4.0 0.5 2.9 3.8 0.3

200 × 4000 3.1 4.2 0.4 1.5 2.5 0.4 1.4 2.2 0.3

400 × 1200 11.8 13.4 0.6 7.9 9.2 0.6 8.7 9.8 0.5

400 × 2000 8.7 10.0 0.5 5.9 7.0 0.6 6.2 6.8 0.3

400 × 4000 4.8 5.8 0.5 2.8 3.4 0.3 2.9 3.7 0.3

400 × 8000 3.0 3.7 0.3 1.5 2.0 0.3 1.4 1.8 0.2

The average, maximal and standard deviations are given in correspondence to the relative error compared to
the optimal solution for each graph size. The best results have been italicized

a smaller average maximal error, which can go even up to 20%. In case of trees we have a
different behavior in several aspects. First, the decrease of average error with the increase
of the number of demand nodes does not occur, since for this type of graphs, the use of the
proposed algorithm is more likely to result in some subgraphs being cutoff. For this type of
graphs the balanced heuristic gives the best performance when average and maximal error
are considered. One explanation for this is that in case of trees, the number of neighbors for
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Table 2 Comparison of heuristics for subgraph selection in case of trees

Sup × dem Error hs1 (%) Error hs2 (%) Error hs3 (%)

Avg Max SD Avg Max SD Avg Max SD

2 × 6 1.7 26.4 5.9 0.0 0.0 0.0 0.5 18.2 2.8

2 × 10 5.5 35.1 8.0 3.5 51.1 8.2 3.2 20.5 5.1

2 × 20 8.7 28.9 9.1 5.1 40.6 9.7 5.0 29.8 7.0

2 × 40 6.1 30.6 7.7 3.5 41.1 8.9 2.7 11.7 3.5

5 × 15 8.5 27.2 8.7 3.8 23.4 6.3 2.4 23.4 4.8

5 × 25 7.9 21.8 6.0 7.7 47.6 11.1 5.2 25.5 5.5

5 × 50 10.6 29.6 7.0 8.3 41.4 10.1 5.3 15.8 4.5

5 × 100 16.4 50.9 11.2 15.8 43.7 13.1 6.2 17.1 4.4

10 × 30 8.7 27.2 6.4 4.3 19.2 5.5 4.2 17.2 4.6

10 × 50 9.7 29.5 5.6 6.1 24.6 5.7 4.4 11.6 3.2

10 × 100 11.4 26.7 6.3 9.6 30.1 7.0 5.7 14.9 3.8

10 × 200 13.9 26.0 6.6 13.1 32.6 8.1 7.6 21.6 4.7

25 × 75 9.5 22.5 4.9 3.6 12.9 3.4 5.1 13.6 3.4

25 × 125 10.8 17.3 3.8 6.8 17.8 4.2 5.3 11.4 2.2

25 × 250 10.7 20.2 3.2 8.6 19.6 4.0 5.7 11.5 2.1

25 × 500 11.6 19.4 3.9 11.1 24.1 4.3 6.1 12.3 2.5

50 × 150 8.7 17.0 2.9 4.4 8.9 2.2 4.2 8.9 1.9

50 × 250 10.2 18.7 3.1 6.2 12.3 2.5 5.7 12.2 2.0

50 × 500 11.9 18.8 3.0 8.5 13.1 2.3 6.9 11.9 2.0

50 × 1000 12.8 18.3 2.4 11.3 16.9 3.1 7.1 10.8 1.5

100 × 300 9.8 14.1 2.0 4.8 8.8 1.8 5.3 8.3 1.3

100 × 500 10.3 14.4 1.8 6.1 10.8 1.8 5.7 8.9 1.3

100 × 1000 11.2 14.5 1.8 8.4 14.0 2.1 6.5 8.2 1.2

100 × 2000 12.1 17.5 1.9 10.3 13.5 2.0 6.8 9.8 1.3

200 × 600 9.5 13.7 1.5 4.5 8.2 1.6 5.2 7.7 1.2

200 × 1000 10.2 12.7 1.2 6.2 7.9 1.0 5.9 8.0 0.9

200 × 2000 11.4 14.8 1.5 8.7 11.9 1.3 6.6 8.4 0.9

200 × 4000 12.0 15.1 1.5 10.2 13.5 1.5 7.0 9.3 0.9

400 × 1200 9.3 11.8 0.9 4.6 6.7 0.7 5.4 6.9 0.7

400 × 2000 10.2 12.6 1.0 6.3 8.4 0.9 6.0 7.3 0.7

400 × 4000 11.2 13.1 1.0 8.7 11.5 0.9 6.9 8.2 0.6

400 × 8000 11.8 13.6 1.0 10.2 12.8 0.9 7.1 8.7 0.6

The average, maximal and standard deviations are given in correspondence to the relative error compared to
the optimal solution for each graph size. The best results have been italicized

each subgraph would vary much less, and without using a balanced approach the heuristic
would frequently have a similar effect as a random search.

In our second group of tests we observe the effect of using different types of heuristics for
node selection. For each of the graph types we have used the best performing heuristic for
subgraph selection, from Tables 1 and 2, and combined them with different node selection
heuristics. These results are presented in Tables 3 and 4, in which we present the same values
as for the first type of heuristics. For general graphs we have found that the use of the heuristic
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Table 3 Comparison of heuristics for node selection in case of general graphs

Sup × dem Error hn1 (%) Error hn2 (%) Error hn3 (%)

Avg Max SD Avg Max SD Avg Max SD

2 × 6 3.9 19.3 5.6 10.8 31.6 9.7 4.0 19.3 5.3

2 × 10 4.3 11.8 2.6 8.1 18.1 4.3 4.9 12.3 2.5

2 × 20 1.7 4.1 1.1 4.2 14.7 2.7 1.7 5.2 1.3

2 × 40 0.7 2.1 0.5 1.7 4.0 1.0 0.8 2.0 0.5

5 × 15 6.5 20.0 4.8 11.9 28.3 5.7 8.7 26.4 6.0

5 × 25 4.5 15.6 3.3 7.7 17.7 3.4 5.5 16.4 3.4

5 × 50 1.9 5.2 1.0 3.6 9.9 1.8 3.1 10.5 2.2

5 × 100 0.9 4.8 0.8 2.4 7.5 1.5 1.8 14.4 2.7

10 × 30 6.7 15.2 3.4 10.5 19.3 3.4 7.1 17.4 3.3

10 × 50 5.2 15.0 3.0 7.9 18.6 3.2 6.3 13.1 2.5

10 × 100 2.3 9.5 1.6 4.5 9.6 2.1 3.2 11.3 2.1

10 × 200 1.5 10.6 1.9 2.8 8.9 1.6 2.3 8.0 1.8

25 × 75 8.2 16.8 2.9 11.2 17.0 2.6 8.8 19.5 3.4

25 × 125 5.5 8.9 1.6 8.5 17.6 2.2 6.2 10.4 1.7

25 × 250 2.8 7.7 1.4 4.7 7.0 1.1 3.6 6.9 1.5

25 × 500 1.5 4.9 1.1 3.0 6.4 1.2 2.2 5.0 1.0

50 × 150 8.0 12.2 2.1 11.2 15.5 2.2 8.9 15.3 2.8

50 × 250 5.9 10.4 1.6 9.0 12.3 1.6 6.7 10.4 1.5

50 × 500 2.6 4.5 0.9 5.0 7.0 1.1 3.4 5.7 0.9

50 × 1000 1.2 2.9 0.6 3.0 4.4 0.7 2.3 3.4 0.6

100 × 300 7.9 10.6 1.3 10.7 13.5 1.4 8.7 11.9 1.6

100 × 500 5.7 9.0 1.1 8.6 10.2 0.9 6.6 9.2 1.2

100 × 1000 2.9 5.6 0.8 5.1 6.6 0.7 3.7 5.6 0.8

100 × 2000 1.5 3.0 0.6 3.3 4.8 0.7 2.4 4.1 0.7

200 × 600 8.0 9.7 0.9 11.2 13.6 1.0 8.6 11.5 1.0

200 × 1000 5.8 7.4 0.6 8.6 9.8 0.6 6.7 8.6 0.9

200 × 2000 2.9 4.0 0.5 5.0 6.5 0.6 3.7 5.1 0.6

200 × 4000 1.5 2.5 0.4 3.2 4.0 0.4 2.3 3.6 0.5

400 × 1200 7.9 9.2 0.6 11.3 12.9 0.7 8.7 10.3 0.8

400 × 2000 5.9 7.0 0.6 8.7 10.4 0.6 6.6 7.8 0.5

400 × 4000 2.8 3.4 0.3 5.1 6.0 0.4 3.7 4.9 0.4

400 × 8000 1.5 2.0 0.3 3.2 3.9 0.3 2.4 3.0 0.3

The average, maximal and standard deviations are given in correspondence to the relative error compared to
the optimal solution for each graph size. The best results have been italicized

hn1 gives the best results for both average and maximal error. In case of trees, again we find
that the balanced approach with heuristic hn3 finds the best quality solutions.

In the last group of tests we compare the effect of the two correction procedures, and the
multiheuristic approach to the simple use of the greedy algorithm. This is done for both types
of graphs, and we consider the average error and maximal error and total execution time for
the 40 test instances. As we can see from Tables 5 and 6 the approaches are computationally
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Table 4 Comparison of heuristics for node selection in case of trees

Sup × dem Error hn1 (%) Error hn2 (%) Error hn3 (%)

Avg Max SD Avg Max SD Avg Max SD

2 × 6 0.5 18.2 2.8 2.8 24.5 7.5 0.0 0.0 0.0

2 × 10 3.2 20.5 5.1 2.1 9.9 3.4 1.8 20.5 3.9

2 × 20 5.0 29.8 7.0 3.5 26.9 5.8 4.2 28.6 7.3

2 × 40 2.7 11.7 3.5 3.2 21.8 4.9 2.6 21.2 4.8

5 × 15 2.4 23.4 4.8 5.4 30.4 7.1 3.2 28.1 6.5

5 × 25 5.2 25.5 5.5 6.3 25.5 6.2 4.4 25.5 5.4

5 × 50 5.3 15.8 4.5 5.2 16.9 4.9 4.1 14.2 3.9

5 × 100 6.2 17.1 4.4 5.6 20.1 5.1 5.1 16.4 4.8

10 × 30 4.2 17.2 4.6 4.7 18.0 4.8 3.2 16.0 3.8

10 × 50 4.4 11.6 3.2 4.0 11.2 3.0 3.0 8.7 2.6

10 × 100 5.7 14.9 3.8 4.9 14.1 3.3 3.9 11.7 3.1

10 × 200 7.6 21.6 4.7 6.3 17.2 3.6 5.5 12.2 3.3

25 × 75 5.1 13.6 3.4 5.3 16.7 3.1 3.1 11.0 2.7

25 × 125 5.3 11.4 2.2 4.8 11.1 2.6 4.0 10.9 2.6

25 × 250 5.7 11.5 2.1 4.9 8.5 1.8 4.4 9.9 2.1

25 × 500 6.1 12.3 2.5 5.9 13.9 2.4 5.6 10.2 2.0

50 × 150 4.2 8.9 1.9 5.7 11.9 2.1 3.1 7.3 1.8

50 × 250 5.7 12.2 2.0 5.9 9.3 1.6 4.4 9.2 1.8

50 × 500 6.9 11.9 2.0 6.0 9.3 1.7 5.3 12.0 2.1

50 × 1000 7.1 10.8 1.5 6.1 9.5 1.7 6.1 9.6 1.8

100 × 300 5.3 8.3 1.3 6.1 10.2 1.9 3.8 7.7 1.4

100 × 500 5.7 8.9 1.3 5.8 8.4 1.2 4.4 6.9 1.2

100 × 1000 6.5 8.2 1.2 6.0 8.8 1.4 5.5 9.8 1.5

100 × 2000 6.8 9.8 1.3 6.3 8.3 1.2 6.4 10.2 1.5

200 × 600 5.2 7.7 1.2 5.4 7.2 1.0 3.4 4.9 0.9

200 × 1000 5.9 8.0 0.9 5.7 7.7 0.9 4.4 7.3 1.0

200 × 2000 6.6 8.4 0.9 6.1 8.6 1.0 5.5 8.1 1.0

200 × 4000 7.0 9.3 0.9 6.4 8.7 1.0 6.3 9.5 1.2

400 × 1200 5.4 6.9 0.7 6.0 7.6 0.7 3.8 4.8 0.5

400 × 2000 6.0 7.3 0.7 5.8 7.3 0.6 4.5 5.8 0.6

400 × 4000 6.9 8.2 0.6 6.0 7.1 0.5 5.6 6.4 0.5

400 × 8000 7.1 8.7 0.6 6.4 7.6 0.7 6.6 8.2 0.5

The average, maximal and standard deviations are given in correspondence to the relative error compared to
the optimal solution for each graph size. The best results have been italicized

very effective. Even in the case of the largest instances having 400 supply nodes and 8000
demand nodes the total execution time for 40 test instances is 10 and 7 seconds for general
and tree graphs, respectively, when the greedy algorithm is considered. The increase in the
execution time of the non-located and combined corrections was dependent on the average
number of connections in the graphs. In case of general graphs the increase of the calculation
time of the non-located and combined correction was approximately 50 and 150%, while
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Table 5 Evaluation of proposed correction methods and the multiheuristic approach for general graphs

Sup × dem Avgerror (%) Max error (%) Time (s)

Gr NL Com Mult Gr NL Com Mult Gr NL Com Mult

2 × 6 3.9 3.9 3.9 0.5 19.3 19.3 19.3 10.2 0.0 0.0 0.0 0.0

2 × 10 4.3 4.2 4.2 0.8 11.8 11.8 11.8 6.0 0.0 0.0 0.0 0.0

2 × 20 1.7 1.5 1.5 0.1 4.1 3.7 3.7 0.8 0.0 0.0 0.0 0.0

2 × 40 0.7 0.5 0.5 0.0 2.1 2.1 2.1 0.0 0.0 0.0 0.0 0.0

5 × 15 6.5 5.9 5.2 2.0 20.0 20.0 14.9 9.1 0.0 0.0 0.0 0.0

5 × 25 4.5 3.4 3.2 1.3 15.6 8.1 8.1 3.4 0.0 0.0 0.0 0.0

5 × 50 1.9 1.5 1.4 0.4 5.2 2.8 2.8 1.2 0.0 0.0 0.0 0.0

5 × 100 0.9 0.7 0.5 0.0 4.8 2.8 1.2 0.1 0.0 0.0 0.0 0.2

10 × 30 6.7 5.6 4.7 2.0 15.2 11.5 11.0 6.3 0.0 0.0 0.0 0.0

10 × 50 5.2 4.5 3.6 1.9 15.0 12.2 7.3 4.3 0.0 0.0 0.0 0.0

10 × 100 2.3 1.9 1.4 0.6 9.5 9.5 2.8 1.0 0.0 0.0 0.0 0.2

10 × 200 1.5 1.2 0.6 0.1 10.6 10.1 2.8 0.2 0.0 0.0 0.1 0.9

25 × 75 8.2 7.4 6.0 3.6 16.8 16.8 10.5 6.8 0.0 0.0 0.0 0.2

25 × 125 5.5 4.8 3.9 2.6 8.9 8.9 6.3 3.7 0.0 0.0 0.0 0.5

25 × 250 2.8 2.4 1.6 0.9 7.7 7.4 4.3 1.5 0.0 0.0 0.1 1.4

25 × 500 1.5 1.3 0.7 0.2 4.9 4.9 2.5 0.3 0.0 0.1 0.2 3.5

50 × 150 8.0 6.8 5.5 4.0 12.2 11.1 8.6 5.8 0.0 0.0 0.1 0.9

50 × 250 5.9 5.2 4.2 3.2 10.4 9.6 8.8 4.2 0.0 0.0 0.2 1.9

50 × 500 2.6 2.3 1.6 1.0 4.5 4.1 3.0 1.5 0.1 0.1 0.3 4.2

50 × 1000 1.2 1.1 0.7 0.2 2.9 2.7 1.9 0.5 0.2 0.3 0.6 10.1

100 × 300 7.9 7.1 6.0 4.8 10.6 8.9 7.9 7.0 0.1 0.1 0.3 3.0

100 × 500 5.7 5.1 4.2 3.5 9.0 8.4 6.4 5.1 0.1 0.2 0.4 5.5

100 × 1000 2.9 2.5 1.8 1.2 5.6 4.8 3.0 1.6 0.3 0.4 0.9 12.5

100 × 2000 1.5 1.3 0.7 0.3 3.0 2.8 1.5 0.8 0.7 0.9 1.9 30.4

200 × 600 8.0 7.1 6.4 5.3 9.7 8.6 8.6 6.9 0.3 0.4 0.7 9.4

200 × 1000 5.8 5.2 4.5 3.9 7.4 6.4 6.2 4.4 0.6 0.7 1.3 19.6

200 × 2000 2.9 2.5 2.0 1.3 4.0 3.6 2.8 1.7 1.4 1.6 3.4 48.3

200 × 4000 1.5 1.3 0.8 0.4 2.5 2.2 1.4 0.8 2.6 3.3 6.3 98.7

400 × 1200 7.9 7.1 6.4 5.6 9.2 8.5 8.2 6.8 1.4 1.7 2.5 33.8

400 × 2000 5.9 5.3 4.6 4.0 7.0 6.3 5.5 4.5 2.3 2.9 4.5 61.2

400 × 4000 2.8 2.5 2.0 1.4 3.4 3.1 2.7 1.9 4.8 5.9 9.4 145.7

400 × 8000 1.5 1.3 0.8 0.4 2.0 1.8 1.2 0.7 9.8 13.4 22.0 348.5

The average, maximal and standard deviations are given in correspondence to the relative error compared to
the optimal solution for each graph size. The computational time is given for solving all the test instances of
one graph size

in the case of trees it was 20 and 50% of the calculation time of the greedy algorithm. The
execution time of the multiheuristic approach was around 12 times of the combined heuristic
correction, which is expected since 12 such runs are performed. The level of improvement of
the average error was significant for both of the correction methods, and managed to improve
it in almost all the sets of instances. In case of the average maximal error, the performance
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Table 6 Evaluation of proposed correction methods and the multiheuristic approach for trees

Sup × dem Avgerror (%) Maxerror (%) Time (s)

Gr NL Com Mult Gr NL Com Mult Gr NL Com Mult

2 × 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 × 10 1.8 1.6 1.1 0.1 20.5 20.5 8.8 3.4 0.0 0.0 0.0 0.0

2 × 20 4.2 3.9 1.8 0.1 28.6 27.5 27.5 3.1 0.0 0.0 0.0 0.0

2 × 40 2.6 2.4 2.4 0.3 21.2 21.2 21.2 8.9 0.0 0.0 0.0 0.0

5 × 15 3.2 2.0 1.3 0.2 28.1 28.1 7.2 3.3 0.0 0.0 0.0 0.0

5 × 25 4.4 3.5 2.4 0.2 25.5 25.1 25.1 2.2 0.0 0.0 0.0 0.0

5 × 50 4.1 3.5 2.7 0.6 14.2 14.1 14.1 14.1 0.0 0.0 0.0 0.0

5 × 100 5.1 4.8 4.3 0.9 16.4 16.0 16.0 8.8 0.0 0.0 0.0 0.0

10 × 30 3.2 2.0 1.3 0.1 16.0 15.1 15.1 1.9 0.0 0.0 0.0 0.0

10 × 50 3.0 2.5 1.9 0.2 8.7 7.7 7.7 4.9 0.0 0.0 0.0 0.0

10 × 100 3.9 3.5 2.9 0.6 11.7 10.4 9.7 5.1 0.0 0.0 0.0 0.0

10 × 200 5.5 5.3 5.1 2.2 12.2 11.9 11.9 7.3 0.0 0.0 0.0 0.4

25 × 75 3.1 2.3 1.8 0.3 11.0 11.0 7.9 1.5 0.0 0.0 0.0 0.0

25 × 125 4.0 3.3 2.5 0.7 10.9 10.5 10.5 4.7 0.0 0.0 0.0 0.1

25 × 250 4.4 3.9 3.6 2.0 9.9 9.5 9.5 5.6 0.0 0.0 0.0 0.5

25 × 500 5.6 5.4 5.3 3.7 10.2 10.0 9.9 8.9 0.0 0.1 0.1 1.5

50 × 150 3.1 2.2 1.5 0.5 7.3 6.3 5.1 2.0 0.0 0.0 0.0 0.4

50 × 250 4.4 3.5 3.2 1.7 9.2 8.8 8.8 5.2 0.0 0.0 0.1 0.8

50 × 500 5.3 4.8 4.7 3.4 12.0 11.3 11.3 6.7 0.1 0.1 0.2 2.0

50 × 1000 6.1 5.8 5.8 4.6 9.6 9.5 9.5 7.1 0.2 0.2 0.3 4.1

100 × 300 3.8 2.7 2.3 1.1 7.7 6.7 6.7 3.7 0.1 0.1 0.1 1.5

100 × 500 4.4 3.5 3.2 2.3 6.9 5.7 5.7 4.0 0.1 0.2 0.2 2.8

100 × 1000 5.5 4.9 4.9 4.0 9.8 9.2 9.2 6.2 0.3 0.4 0.5 6.0

100 × 2000 6.4 6.1 6.1 5.1 10.2 9.8 9.8 7.3 0.7 0.8 1.1 12.7

200 × 600 3.4 2.3 2.0 1.1 4.9 4.0 3.9 2.2 0.3 0.4 0.5 5.9

200 × 1000 4.4 3.6 3.4 2.8 7.3 6.7 6.7 4.0 0.6 0.6 0.8 9.6

200 × 2000 5.5 5.0 5.0 4.4 8.1 7.5 7.4 6.2 1.2 1.4 1.6 20.0

200 × 4000 6.3 6.0 6.0 5.4 9.5 9.3 9.3 7.2 2.5 3.1 3.6 43.4

400 × 1200 3.8 2.7 2.6 1.9 4.8 3.8 3.8 2.9 1.3 1.4 1.6 20.8

400 × 2000 4.5 3.7 3.6 3.1 5.8 4.9 4.9 4.0 2.2 2.5 2.8 35.3

400 × 4000 5.6 5.1 5.1 4.5 6.4 5.8 5.8 5.3 4.7 5.4 6.0 74.1

400 × 8000 6.6 6.3 6.3 5.7 8.2 7.9 7.9 7.0 9.8 11.8 12.9 159.5

The average, maximal and standard deviations are given in correspondence to the relative error compared to
the optimal solution for each graph size. The computational time is given for solving all the test instances of
one graph size

of the corrections was dependent on the graph size, and as it increases so does the level of
improvement. For several graph sizes the corrections did not manage to improve this value
which indicated that strong locally optimal solutions exist which can not be escaped using
this procedure.
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The use of the multiheuristic approach produced a great improvement in the quality of
found solutions. The average errorwas less than1 in 40%of the graph sizes, it never exceeding
5.7%, while having an error greater than 4% in less than 20% of the graph sizes. The use of
this approach has proven to be very robust and has given an improvement for the maximal
error in almost all the cases. Out of the 64 test sizes for only two of them it gave a maximal
error greater than 10%.

5 Conclusion

In this paperwe presented amethod for solving the problemofmaximal partitioning of graphs
with supply and demand, with a special focus on solving large scale problem instances.
The main goal of this work was to provide some experimental results for the problem as
most of the previous works were more of a theoretical nature. Test data sets and the source
code for the implemented algorithm are publicly available. The proposed method consists
of a greedy algorithm based on two separate heuristics, and two correction procedures. We
have presented several potential heuristic functions for the two stages of the algorithm and
analyzed their effectiveness on sparse general graphs and trees. The calculation time for the
proposed correction procedures is similar to the one of the greedy algorithm, while managing
to considerably improve the initially acquired solutions.

Our experiments have shown that the performance of competing heuristics significantly
differs depending on the graph properties. Due to the fact that the correction procedure, to
a large extent, behaves like a hill climbing method, the combination of different heuristics
with it produces very good results. This type of multiheuristic approach manages to produce
high quality average solutions while at the same time being very robust. In the conducted
experiments it has been shown that even for very large graphs consisting of more than 8000
nodes, good quality solutions can be found within seconds.
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