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Abstract Pressure on developing economies to make quantifiable emissions reduction com-
mitments has led to the introduction of intensity based emissions targets, where reductions in
emissions are specified with reference to some measure of economic output. The Copenhagen
commitments of China and India are two prominent examples. Intensity targets substantially
increase the complexity of policy simulation and analysis, because a given emissions intensity
target could be satisfied with a range of emissions and output combinations. Here, a simple
algorithm, the Iterative Method, is proposed for an energy economic model to find a unique
policy solution that achieves an emissions intensity target at minimum economic loss. We
prove the mathematical properties of the algorithm, and compare its numerical performance
with other methods’ in the existing literature.
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1 Introduction

Designing, modelling and analysing global climate policies are becoming increasingly com-
plex. Pressure on developing economies to make quantifiable emissions reduction commit-
ments has led to the introduction of intensity based emissions targets under the United Nations
Framework Convention on Climate Change (UNFCCC 2010), where reductions in emissions
are specified with reference to some measure of output, generally gross domestic product
(GDP). The Copenhagen commitments of China and India are two prominent examples.

The promotion of emissions intensity targets in international climate agreements has been
driven by developing economies arguing against limits to growth. It increases flexibility and
allows for continued growth and development because an intensity target for emissions allows
there to be a range of possible emission and output combinations that are consistent with the
intensity target. For instance, according to the US Energy Information Administration (EIA)’s
International Energy Statistics, China’s emissions intensities of 2007 and 2009 were both at
2.178 billion metric tons (BMT) CO; per trillion US dollars ($) of GDP, while the annual
GDPs differed by nearly 0.5 trillion $ and CO, emissions by more than 1.2 BMT (see Fig. 1).

From a modelling perspective, intensity targets substantially increase the complexity of
policy analysis, with respect to both theoretical design and computational implementation.
As is demonstrated in Fig. 1, although the emission and GDP trajectories are smooth and
monotone, there can be sharp turnarounds in the emission intensity, potentially leading to
multiple policy solutions to a carbon intensity target. Theoretical design therefore involves
specifying the criteria for selecting a particular emissions and output combination that is
consistent with the intensity target. This allows policy instruments to be modelled and het-
erogeneous policy options to be consistently compared across economies. Computational
implementation involves developing the modelling tools capable of accounting for the com-
plex interaction that occurs between emissions policy instruments, emissions levels and
output effects under an emissions intensity target.

Serious studies on theoretical design and computational implementation regarding mod-
elling emissions intensity targets are lagging behind the advancement of climate policy in
the real world. There leaves much to be explored in this field: what criteria is acceptable
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Fig. 1 China’s Emissions Intensity, 2001-2011. Source: US Energy Information Administration
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to select a combination of emissions and GDP profile among many possible combinations
consistent with the intensity target; how to assess the policy implications in the intensity
targeting context; how can intensity targets be comparable with emissions level targets?

In this paper, we attempt to address some of the questions listed above. We first specify
a plausible criterion for selecting a particular emissions and output combination that is con-
sistent with the intensity target: to minimize economic loss, as measured by the deviation in
GDP from the BAU projection in the absence of policy. Then, a simple algorithm is proposed
for an energy economic model to find a unique policy solution that achieves the intensity
target while satisfying the criteria as defined. We have also compared our proposed algorithm
to other approaches in the existing literature. The motivation here is to enable further research
in this area by providing a relatively simple solution to the complex problem of modeling
emissions intensity in a way that enables consistent comparison with emissions level targets.

To our knowledge, there exists no previous study addressing the complexity of intensity
based emissions targets or offering an algorithm for model simulation. This technical note
therefore fills a gap in the literature.

2 Literature review

Our paper fits into the large research area that considers the tradeoffs between carbon emis-
sions and economic growth. Humans produce carbon emissions by burning coal, oil, and
natural gas to generate energy for power, heat, industry, and transportation, which are essen-
tial for the economy. Therefore, the reduction of carbon has important economic implications
for developing countries, such as China and India (see Yi et al. 2011; Lv et al. 2012; Yang
and Yang 2012; Govindaraju and Tang 2013; Liao and Cao 2013; Wang et al. 2013; Wu
et al. 2014). As there is a significant CO, intensity convergence across the world (Zhu et al.
2014), intensity based emissions targets appears to be an appealing approach to global equal-
ity and development. They are materialized in the recent Copenhagen Accord (UNFCCC
2010).

There have been intensive debates in the literature, regarding whether or not the use
of intensity based emissions targets can help reduce economic uncertainty, particularly
uncertainty in GDP (see Ellerman and Sue Wing 2003; Quirion 2005; Jotzo and Pezzey
2007; Newell and Pizer 2008; Marschinski and Edenhofer 2010). Model-based study is
a good tool to verify these confronting arguments (see Tian and Whalley 2009; McK-
ibbin et al. 2011; Lu et al. 2013; Zhang et al. 2013; Hiibler et al. 2014). However, an
intensity target could be met by a range of possible emission and output combinations,
so any comparison with level targets can be misleading unless we explore all the possible
combinations.

The existing modelling literature deals with the emissions intensity target by three main
approaches. The first approach (Naive Method) is to translate the emissions intensity target
into emissions level target using the business-as-usual (BAU) GDP projection in the absence
of policy (see Hiibler et al. forthcoming). This does not solve the emissions intensity target and
will lead to an underestimation of the carbon price. Specifically, the model’s simulated GDP
will usually decrease as a carbon policy is placed, leading to a higher intensity than the target
even if the emissions level is reduced. The second approach (Direct Method) is to directly
solve for the policy (e.g. a carbon price) such that the emissions intensity, a combination of
functions of GDP and emissions in terms of policy instruments, is equal to the target (see
Zhang et al. 2013). This may be problematic if multiple solutions exist, making it difficult to
consistently compare policy options across economies. The third one is the Iterative Method
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Fig. 2 Flow charts of various methods to simulate emissions intensity targets

proposed in this paper which has been implemented in McKibbin et al. (2011) and Lu et al.
(2013). It finds the carbon policy that meets the emissions intensity target while securing the
highest GDP outcome. In other words, the Iterative Method will minimize the economic cost
as measure by deviation from the BAU. This is more policy relevant and appealing to need
of developing countries for continued growth and development.
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The flow chart of each method is listed in Fig. 2. We shall show shortly that the Iterative
Method is a refinement of the Naive Method, and it will perform better than the Direct Method
in the presence of multiple solutions.

3 Preliminary assumptions

As is discussed in the introduction, any given emissions intensity target could be satisfied
with a range of emissions and GDP level combinations, and the first step in generating
a solution is to define the criteria for selecting a particular combination. In the algorithm
presented here, the policy solution is chosen so as to achieve the emissions intensity tar-
get and minimize the deviation in GDP with reference to the model’s BAU projection in
the absence of policy. Given that the promotion of emissions intensity targets in interna-
tional climate agreements has been driven by developing economies arguing against limits
to growth, the specification is policy relevant and appealing from a practical viewpoint
because GDP can be easily measured. We note that minimizing GDP loss is not the only
possible (and usually not the best) objective of selecting a policy solution. Other objec-
tives could also be chosen such as minimizing welfare loss of households if the model is
based on a utility function, and the distributional effects of a policy across sub-regions and
households should be also considered. But our approach is a useful starting point for future
research.

To define the problem and its solution explicitly, let R = (—o0, 00), R4 := [0, 00), and
Ryt :=(0,00). Let ¢ € Ry be the emissions intensity target in year ¢ (say, 2020) and let
T € R be the carbon policy that is implemented in year s, such that s < ¢ (say, 2015). Let G
and E be the model projections such that G(t) and E(t) correspond to the level of GDP and
emissions in year ¢ given policy 7 that is implemented in year s, and G(7), E(t) € R4. The
BAU projections are denoted G(0) and E(0). In the scope of this paper, the carbon policy
is assumed to be a carbon tax, or its price equivalence in a cap-and-trade system. “Carbon
policy” is referred to as a singular noun because the evolution of carbon policy is generally
assumed to start with an initial price and to follow a per annum growth rate that corresponds
to the real rate of interest for the economy.! This so-called “Hotelling Rule” mimics the
expected behaviour of an efficient emissions market that allows for banking and borrowing
of emissions rights.

The following four assumptions are made regarding an energy economic model. These
assumptions are general, and we provide justification following each of them.

Assumption 1 There exists at least one policy t* € Ry such that E(t*)/G(t*) = .

This assumption ensures that there is a solution to the problem. Let 7, be the minimum
of all *s that satisty E(t*)/G(t*) = ¢. By Assumption 1, 7, exists.

Assumption 2 The projection function E is continuous and weakly decreasing in 7.

This assumption implies that the policy instrument is effective for domestic emissions
reduction, that is, increasing the carbon price results in a reduction (or at least no increase)
in the level of emissions. In the context of this paper, by stating that “E is decreasing
in t”, we mean, for example, that a country’s emissions in 2020 will be lower than it
would otherwise be if a carbon policy is implemented in 2015; but not that a country’s

I See e.g., Lu et al. (2013) for a thorough literature and policy review.
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emissions in 2020 will be lower than its emissions in 2015 due to the implementation
of a carbon policy. In reality, developing countries such as China and India are carry-
ing out carbon emission reduction policies, but this does not directly result in emission
reductions. Instead, we see reduction in the emissions intensity of these countries, because
they are emitting less than what they would otherwise do given the same pace of GDP
growth.

Assumption 3 The projection function G is continuous. It satisfies: (1) G(t) > G(t,,) for
all T € [0, 7,4); and (2) G is weakly decreasing on [7,,, 00).

Property (1) of Assumption 3 states that achieving the emissions intensity target incurs a
higher economic cost than not doing so or doing less. Property (2) implies that the adverse
impact of the carbon price on economic output gradually becomes unambiguous, and it also
allows for the possibility that overall GDP is unaffected, for instance, via structural adjustment
in energy consumption.

It is not difficult to see that Assumption 3 is satisfied when the projection function G
is continuous and strictly decreasing in . However, this is not conversely necessary since
Assumption 3 does not require that 71 < 0 = G(11) > G(rp) for any 71, 0 € [0, T)p).
In other words, GDP does not need to be linearly related to the carbon policy. Wiggling
and humps of the projection function over [0, t;,,) are allowed. The intuition behind is
that, with avoided climate damages as well as a secondary tax reduction effect, GDP may
jump up in response to the imposition of a modest carbon price. This secondary effect is
most likely to occur when the carbon price revenue is recycled to households as a lump
sum transfer or used to cut the rates of other distortionary taxes, such as capital taxes (see
McKibbin et al. 2009, 2015). Reboud effects of this type have been intensively studied in
the economic literature as the “double dividend” of carbon taxes (Parry et al. 1999; Parry
and Bento 2000). This suggests the nonlinear relation between GDP and the carbon pol-
icy.

Assumptions 1-3, together, imply that 7, leads to the highest GDP and emissions level
combination. In other words, 7, is the policy solution that achieves the emissions intensity
target and minimizes the deviation from the baseline GDP, i.e., G(0).

Assumption 4 % > &.

This assumption implies that the simulation model’s BAU carbon intensity will be higher
than the country’s committed target and that an active carbon policy is therefore needed.
Assumptions 14, together, ensure that projection function E is not flat. Otherwise, we will
have E(0)/G(0) = E(t,)/G(0) > ¢ = E(t,,)/G(t,) and consequently G(0) < G (),
contradicting Assumption 3.

4 The Iterative Method

Here we present our algorithm. For k > 0 and tx > 0, define the operator 7 such that
Tk+1 = T (tx) means tx4+1 solves E(tx4+1) = € X G(tr). In practice, the operator T is the
model-specific numerical utility to backsolve for a carbon price 141 that meets the predeter-
mined emissions target ¢ x G(tx). We use the term “backsolve”, because energy economic
models are normally constructed with the natural closure,? such that the carbon price is exoge-
nous and emissions are endogenous. To backsolve, for example, energy economic models

2 Ineconomic modelling, closure is the decision of which variables are exogenous and which are endogenous.
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that are built using GAMS.? or GEMPACK* can exogenize emissions and endogenize the
carbon price in the alternative closure, and let the software compute the solution.

Under Assumptions 1-4, the carbon policy solution can be found by the following algo-
rithm.

Iterative Method: Searching for a cost-minimizing carbon policy

set 7, =0
Repeat

| set 7., =T(z,)
until 7, , =7,

*
return 7 =7,

Panel c of Fig. 2 contains a flow chart of the Iterative Method. Specifically, we start with
the natural closure and set tp = 0. With the BAU GDP projection, G(0), we derive an
intermediate ‘target’ level of emissions, ¢ x G(0). We then switch to the alternative closure
and let the model backsolve for 7| such that E(t;) = & x G(0). This is identical to the
Naive Method up to the point; but our algorithm will continue to obtain the associated GDP
projection G(t1). Subsequently, we derive a new intermediate ‘target’ level of emissions
& x G(11), and let the model backsolve for 75 such that E(12) = ¢ x G(11). The iteration is
continued until we have 7441 = ¢ = t*, which implies E(t*) = ¢ x G(t*), or equivalently,
E(t*)/G(t*) = e.

We provide a mathematical proof in the Appendix showing how the Iterative Mothod
works to find 7, that achieves the emissions intensity target at minimum economic cost.
In the following, we shall demonstrate the application of our algorithm and compare its
numerical performance with other methods’ in the existing literature.

5 Application
5.1 A stylized model

Instead of using a large-scale energy economic model that is less transparent, let us consider
a stylised reduced form that is sketched in the top panel of Fig. 3. This is a comparative
static model for China, and it shows the relation between the country’s emissions and GDP in
2020 and the carbon price that starts in 2015 and increases by 4% annually through 2020. In
the absence of a carbon price, the country emits 8.5 BMT of CO,, and produces 7.5 trillion
$ of GDP, consistent with the G-Cubed projections for China in 2020 (see e.g., McKibbin
etal. 2011; Lu et al. 2013); and the country’s emission intensity is above 1.1 BMT CO, per
triillion dollars of GDP, close to China’s 12 Five-Year Plan for 2015.% In other words, we
have assumed that China’s carbon intensity will stay almost the same from 2015 to 2020
without a carbon price.

3 See http://www.gams.com.
4 See http://www.monash.edu.au/policy/gempack.htm.

5 Please see Table 1 on page 1166 and Figure 2 on page 1168 of Lu et al. (2013) for a derivation of this using
the EIA International Energy Statistics.

@ Springer


http://www.gams.com
http://www.monash.edu.au/policy/gempack.htm

148 Ann Oper Res (2017) 255:141-155

GDP and Emissions in 2020

z l »—x GDP, Tlrillion Uss$ |
, +—+ Emissions, BMT of CO2 |
6 4
5 4
4 7
3TN 4
2O 2I0 4I0 6‘0 8I0
Carbon Price in 2015
s Elmissions Intlensity and Target in 202|0
110 A—A Emissions Intensity | |
Target Intensity
10 b
0.9k _W"M i
0.8 .
0.7F .
0.6 4
0'50 210 4]0 610 8I0

Carbon Price in 2015
Fig. 3 A stylized model calibrated to China

100

The country’s emissions and GDP are functions of the carbon price ($ per tonne of CO3)

that starts in 2015 and increases by 4 % annually through 2020, such that
E(r)=85-0.1-7
G(t)=754+0.05-7

when(0 <t < 5;

E(1)=8-0.1-(t—5)
G(t) =7.75—0.05- (t — 5)

when 5 <t < 30;

E(t) = 5.5—0.05 - (t — 30)
G(t) = 6.5—0.1-(t — 30)

when 30 < 7t < 50;

E(r) =45-0.1-(r —50)
G(t) =45-0.01-(r —50)

when 50 < 7 < 70; and

E(r) =25
G(r) =43
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when 7 > 70. Intuitively, we have assumed that the introduction of the carbon price (when
T < 30) will encourage the uptake of low-hanging-fruit mitigation technologies, which
effectively reduces emissions. The impact of the carbon price on the economy is minor,
and “double dividend” exists (when T < 5). However, current technologies are limited in
their mitigation potential, and the economy will endure hardship if the carbon price rises
continuously (when 30 < v < 50). If the carbon price is sufficiently high (when 50 < v <
70), backstop technologies will become available, reducing the economic costs of mitigation.
GDP and emissions will be constant when T > 70.% These lower bounds are set according
to China’s annual GDP and emissions in the early 2000’s (see Fig. 1).

The stylized model is designated to reflect nonlinear and discontinuous dynamics of the
socioeconomic system that are associated with step changes of energy supply and demand,
and future technological progress. It is not difficult to verify that the model satisfies Assump-
tions 1-4 of Sect. 3.

5.2 Implementation

Following China’s commitment to the Copenhagen Accord as of 2020, we assume that the
government has committed to reducing emissions intensity to 0.9 BMT CO, per trillion $.
This is equivalent to a 40 % reduction from the 2005 level.” For reference, let us call it “Target
€”. As is suggested in the bottom panel of Fig. 3, the country’s emissions intensity target can
be achieved by three possible carbon prices: (around) $23, $38 or $55.8 Notably, the carbon
price of $23 results in the highest possible GDP of around 7 trillion $ which is the closest to
the BAU projection. In contrast, carbon prices of $38 and $55 lead to lower GDPs of 6 and
4.5 trillion $, respectively. In other words, the economic loss, as measured by the deviation
in GDP from a BAU projection, is minimized when the carbon price is set to $23.

The execution of our Iterative Method is visualized as the arrows in Fig. 4. It follows the
steps of Sect. 4, and converges quickly to the cost-minimizing carbon price of $23.

5.3 Numerical performance

To compare their performances in Python,” we simulate the stylized model using the Naive
Method (Hiibler et al. forthcoming), the Direct Method (Zhang et al. 2013), and our proposed
Iterative Method. The results are summarized in Fig. 5.

Panel 1 of Fig. 5 shows the carbon price that is solved (vertical axis), given the initial guess
of the carbon price that is used by each method (horizontal axis) when calling the Python
“scipy.optimize.fsolve” routine. We see that while the Naive Method and our Iterative Method
are robust to the initial guesses of carbon price, the Direct Method is largely unstable and
leading to multiple solutions. The Naive Method underestimates the carbon price, and only
our Iterative Method is bound to find the desired solution of $23. Panels 2 and 3 show the
corresponding carbon intensity and GDP outcomes. We see that the Naive Method fails to
achieve the intensity target and that the Direct Method cannot guarantee the lowest GDP loss
when achieving the carbon intensity target. Only our Iterative Method is bound to find the
cost-minimizing carbon price. Panel 4 shows the CPU time that is required by each method to

6 This is more than three times of the carbon tax in Australia from July 2012 to June 2014 or about ten times
of the current EU Allowance price.

7 This target is derived in Table 1 on page 1166 and Figure 2 on page 1168 of Lu et al. (2013) using the EIA
International Energy Statistics.

8 These carbon prices are within range found by Lu et al. (2013).

9 The source codes of the script are available on request.
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solve for the policy solution. We see that the Naive Method is the fastest, but it fails to solve
the emissions intensity target. The Direct Method is roughly five times faster than our Iterative
Method. However, the speed comes at the cost of not guaranteeing to find the cost-minimizing
carbon price. If there exists only one solution to the emissions intensity target, it is arguable
that the Direct Method is more efficient. But in the presence of multiple solutions (as in our
illustrative example), more computational time will be required to vary the initial guess and to
explore all possible policy solutions. In this sense, our Iterative Method is more cost-effective.

As a caveat, the simulation does appear that it is most efficient to use the Direct Method
with an initial guess for the carbon price that is close to zero. But this is only particular to
curvature of the simplified numerical example. This reduced-form model is smooth enough to
facilitate local convergence from zero to the cost-minimizing carbon price of $23. In reality,
however, energy economic models are often of large scale, incorporating complex, nonlin-
ear and discontinuous dynamics of the economic and energy system, such as technological
breakthrough, and price oscillations. Therefore a similar pattern of local convergence may
not be expected. Moreover, a low initial guess for the carbon price that is close to zero tends
to cost significantly more time to solve using the Direct Method. This could emerge as a
major problem for large-scale energy economic models.

5.4 Policy implications

In order to mitigate carbon emissions while allowing for continued economic growth and
development, developing countries such as China and India have committed to reduce their
emissions intensities. This increases the complexity of modeling climate change policies
because an intensity target can be possibly met by a range of emissions and output combi-
nations. In our numerical example, a given emissions intensity target could be satisfied with
a range of emissions and output combinations. Using different methods of simulation will
lead to different estimates of the carbon price ranging from $20 to over $50. This will result
in differences in projected abatement costs at the magnitude of trillion $. The wide spread of
simulation results reflect the large empirical uncertainties in climate policy implementation
as previously commented by Pearson (2012). These uncertainties pose a substantial challenge
for the government and the independent agencies charged with implementation.

Coping with uncertainties, the intention for China and India to use the emissions intensity
target is to increase flexibility and allow for continued growth and development. In this
regard, the policy application of our algorithm is tremendous because it allows policymakers
to explore the flexibility and to maximize the growth potential under a mitigation target. The
algorithm has proved to be an effective tool in finding the policy solution that achieves the
target at minimum economic cost. In other words, policy recommendations that are based on
simulation using the algorithm will ensure that the abatement done within a given country
would be done at minimum cost. This will help to resolve uncertainties related to the economic
cost of mitigation policies, firming the evidence base on which the particulars of national
climate policy are formulated. Alleviating developing economies’ concerns about limits to
growth, in turn, will facilitate the progress of international climate change negotiations.

One the other hand, in practice, if the policy in place (e.g. an existing carbon tax) is to be
evaluated by certain simulation model, our algorithm can serve as a tool for assessment as to
whether the current policy is on the trajectory that leads to the cost-minimizing solution—if
not, the algorithm then points to a potential policy correction that can adjust to achieve the
intensity target at the lowest cost given the current status. That said, the algorithm should not
be overvalued due to its numerical essence. It is a tool based on simulation models; and the
policy value of the algorithm is also limited to such models.

@ Springer



152 Ann Oper Res (2017) 255:141-155

6 Conclusion

The algorithm presented in this paper provides a simple but non-trivial solution to the complex
problem of modelling climate policy commitments specified in terms of an emissions intensity
target. In practice, a variety of GDP and emission levels may satisfy an emissions intensity
target and may be reached with a range of policy instruments. The algorithm addresses
the issue from two asspects. First, it proposes a sensible criterion for selecting one particular
combination of emissions and GDP: one that minimizes the economic loss, as measured by the
deviation in GDP from a BAU projection in the absence of policy. Second, it provides a unique
solution to the problem that satisfies this criteria under some fairly general asssumptions about
an economic/energy model.

In the existing literature, there are three approaches dealing with the emissions inten-
sity target in energy economic models. Using a stylised simulation model to compare the
numerical performances of the three methods, we find that the Naive Method fails to solve
the emissions target. While the Direct Method works to solve the problem, it does not guar-
antee to find the cost-minimizing carbon price. In the presence of multiple solutions, our
Iterative Method is the only one to provide a unique and coherent solution that is consistent
with emissions intensity target while minimizing the GDP loss with reference to the BAU
projection. Overall, it suggests that our proposed algorithm is an attractive solution to the
problem.

Appendix: Algorithm properties

In this appendix, we will show how our Iterative Method works to find that achieves the
emissions intensity target while minimizing the economic cost. For future reference, let us
define the auxiliary function E such that £ (r) = ¢ x G(1), and note that a policy solution
exists where E (t) = & x G(1) = E(7). As the auxilary function E only differes from G by
a scaler, E has the same properties as G does. In other words, Assumption 3 is equivalent to

Assumption 5 The auxilary function E is continuous. It satisfies: (1) E (t) > E (tyn) for all
T € [0, ) ; and (2) E is weakly decreasing on [7,,, 00).

Similarly, Assumption 4 is equivalent to
Assumption 6 E(0) > E (0).

Figure 6 contains examples where Assumptions 1, 2, 5 and 6 are satisfied and Fig. 7
contains examples where at least one of the assumptions are violated. More specifically, in
Fig. 6, Example a corresponds to the scenario where only one policy solution to the emissions
intensity target exists; Example b corrresponds to the scenario where there are two solutions;
Example ¢ corresponds to the scenario in which the rebound effects discussed above are
prominent and the carbon price is sufficiently low. It shall be shown that the algorithm works
for all three examples. In contrast, in Fig. 7, Example a violates Assumption 1 as there is
no policy solution to the emissions intensity target; Example b violates Assumption 5 which
unrealistically states that the carbon price will continue to increase GDP over quite a wide
range; and Example ¢ violates Assumption 6 because the BAU emission intensity is lower
than the target and thus no mitigation is needed.

Our proposed algorithm is characterised by the following properties:

Property 1 Foranyk > 0and0 < 1ty < Ty, Tk+1 > Tk
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Fig. 7 Examples where the algorithm cannot be applied
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Proof Suppose for a contradiction that x4 < t%. Then by Assumption 2,
E(w) = E(w+1) = E(w)

Since E(0) > E 0), if E (tx) > E(7¢), then by continuity there exists 7, € [0, 7;,) such that
E(t,) = E(t,), contradicting the definition of 7,,; if E(t}) = E(tt), then i is a solution
and by definition of t,, we have 7; > 1, again a contradiction. ]

Property 2 Foranyk >0 and 0 <7t < Ty, Tkt1 < Tpp-

Proof Suppose for a contradiction that 441 > t,,. Then by Assumptions 2 and 5,
E(w) = E(ur1) < E(t) = E(w) < E(w)

which is a contradiction. ]
Property 3 Let 79 = 0. The sequence (t) converges to T,.

Proof This follows readily from Properties 1 and 2, and the Monotone Convergence Theorem.
O

Altogether, Properties 1 — 3 ensures that our proposed algorithm will solve for t,,. By
Assumption 3, G(t,,) is the highest possible GDP outcome that is compatible with the
emissions intensity target. In other words, the economic loss, as measured by the deviation
in GDP from the BAU projection, is minimized.
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