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Abstract Operating room schedules are regularly influenced by uncertain demands such
as unknown surgery durations or randomly arriving emergency patients. The performance
of these schedules depends on the information available about these uncertainties when
designing the schedules. We focus on an offline operational planning level which assigns
patients to days and rooms without focusing on the intra-day sequence. A sufficient amount
of time per day is to be reserved for elective and emergency surgeries. At the same time
we observe that the performance of a particular schedule influences several stakeholders’
interests. We therefore combine the aspects of uncertain planning parameters and multiple
stakeholders’ interests and investigate the performanceof schedules for operating roomsusing
a dedicated robust multi-criteria optimisation approach. We compute a robust compromise
schedule focusing on stochastic surgery times and different objectives and simultaneously
reserve timewindows dedicated to randomly arriving emergency demand. In order to evaluate
the schedule’s quality, we perform an extensive simulation study and demonstrate to what
extent each robust schedule achieves the mentioned goals. In a second step, we perform a
sensitivity analysis in order to investigate how significant changes in assumptions about the
stochastic model parameters affect the level of achievement of the different objectives.
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1 Introduction

The financing for most hospitals in Germany is based on a fixed payment system which was
introduced in the late 1990s. Payments are based on patients’ diagnosis related groups. A
major change of that new system was that reimbursements for hospital treatments no longer
depended on the patients’ length of stay but on the actual diagnosis. This forced hospitals to
efficiently use their capacities and still challenges them to keep the process related variable
costs low. The operating room, or more generally the operating theatre, is considered to be the
largest cost and revenue centre within a hospital. Therefore, the utilisation of its capacity has
a major influence on the hospital’s overall (financial) performance (cf. Lamiri et al. 2008).

In general, planning and decision making in health care and especially in hospitals affects
multiple stakeholders’ interests and is often based on various criteria (cf. Kou and Wu 2014,
Morton 2014 or Diaby et al. 2013). Particularly, when focusing on a hospital’s operating
theatre, assigning elective and emergency patients for surgery to an operating room has
an impact on patients’ waiting time as well as on staff’s workload and on the hospital’s
throughput. In order to respect all interests simultaneously when constructing a compromise
schedule, we apply a multi-criteria approach based on fuzzy sets. In addition to focusing on
different objectives, we also include uncertain demand such as unknown surgery durations
and additional demand caused by emergency patients into our model which have a strong
impact on the quality in terms of the performance of an operating room schedule. From
that perspective, attributes of a good schedule should be (1) high performance independent
of a particular realisation of uncertain parameters and the (2) ability to balance different
stakeholders’ interests. In order to evaluate the quality of such a schedule we investigate
several aspects, e. g. the levels of satisfaction according to different goals, the performance
in worst-case settings with very high demand and the impact of changes in assumptions
regarding the uncertain model parameters.

1.1 Problem description

We consider the problem of scheduling elective patients into given surgical blocks that can
be derived from a predetermined master surgical schedule (MSS). A MSS allocates time
windows in the available operating rooms to medical specialities. This allocation is based
on regular demand and can be executed repeatedly every week. Usually, there are time slots
of 4 or 8h available which are assigned to the surgical specialities. Revisions of this plan
may become necessary due to significant changes in the demand (cf. Oostrum et al. 2008).
Designing MSSs is a common tactical decision problem for hospitals and covers a medium-
term planning horizon. The approach presented in this paper is intended to support short-term
decision making which is based on an existing MSS.

Available capacities of operating rooms and surgical blocks are reserved for the use of both
elective and emergency patients. The respective durations for these surgeries are considered
to be uncertain and influence the workload of a schedule. Scheduling elective patients and
reserving emergency time is critical for the sum of surgery times not to exceed the maximum
time limit for the planning period. Figure 1 shows the example of a day for a single operating
room where two elective surgeries have been assigned for surgery and additional demand
occurs while the schedule is executed. If the nominal level of planned utilisation (which
is usually based on expected surgery times) is too high and if demand is also high then
one of the elective surgeries has to be rescheduled to one of the following days, because
the emergency surgery itself cannot be postponed and needs to be treated on the same day
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Fig. 1 Visualisation of the decision setting depicting different demand settings and consequences onworkload

(see Fig. 1). We assume that it is beneficial if a schedule can be executed whatever values
the uncertain parameters may take without changing the assignments of patients to days
and rooms. Note that we focus on the allocation of surgeries only and no sequencing is
considered, so our problem can be seen as a sub-problem of the one studied in Marques et al.
(2014).

We suggest an optimisation approach which provides a robust schedule and simultane-
ously takes several stakeholders’ interests into account. The key feature of the approach is
that the decision variables are split between those that are fixed in advance and those whose
values depend directly on the uncertain outcome of the model parameters. Hence, the overall
idea is to fix patients’ surgery dates before knowing the exact duration of the surgery and
to provide additional variables which allow for re-actively adapting the schedule’s capaci-
ties. The planning should also account for reservation of additional capacity for emergency
surgeries ahead of the execution of the schedule.

1.2 Literature review

The considered operation room scheduling problem is an offline operational problem accord-
ing to a classification provided by Hans and Vanberkel (2012). At this offline planning level,
sequences of surgeries may be taken into account, yet no emergency surgeries are considered.
On the other hand, the main online planning task is to insert emergency surgeries into the
existing schedule and to modify the schedule according to the performance of surgeries. The
studies by M’Hallah and Al-Roomi (2014) and Zhao and Li (2014) simultaneously consider
offline and online scheduling within combined approaches. Reviewing a lot of papers and
covering various approaches Cardoen et al. (2010) and Guerriero and Guido (2011) provide
well-structured overviews of publications and they analyse many relevant aspects. It is stated
in both surveys that most, if not all, decisions in the field of operating room scheduling are
considered from different stakeholders’ points of view which is the same with the allocation
of hospital resources in general and many authors state that decision making in hospitals in
general should be supported in order to meet these differing preferences (cf. Wachtel and
Dexter 2008).

In a recent study, van Essen et al. (2012a) study the offline operational problem of emer-
gency surgeries which need to be operated as soon as possible. They suggest to provide
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well structured Break-In-Moments in order to allow for as many points in time as possible
to insert an emergency case into an existing schedule. Their approach supports structuring
the sequence of elective surgeries before emergency surgeries arrive. Only a few studies
focus explicitly on either multiple objectives or different stakeholders’ interests. van Essen
et al. (2012b) focus on the actual offline operational planning problem in order to reschedule
patients required by emergency demand. They discuss several stakeholders’ interests and
evaluate scheduling policies regarding the impact on the stakeholder’s satisfaction. In their
study, they focus on patients and staff as the most important stakeholders and re-organise an
existing schedule which is necessary due to the arrival of an emergency patient. In contrast to
the paper by van Essen et al. (2012b), Meskens et al. (2013) formulate a multiple-objective
approach. However, both papers deal with a daily planning horizon and take into account
the sequence of surgeries. Marques et al. (2014) present a bi-criteria approach focusing
on the hospital management as the key stakeholder. Handling uncertainty aspects requires
adequate modelling of elective and emergency patients. Studies by Min and Yih (2010),
Lamiri et al. (2008), Bibi et al. (2007) or Zhang et al. (2009) examine only one out of the
mentioned uncertainty aspects. To the best of our knowledge none of the discussed papers
incorporate different stakeholders’ interests in terms of a multi-objective approach. Thus, we
aim to fill this gap and especially investigate the benefits which can be attained considering
several objectives simultaneously. In order to model the conflicting interests, we construct
a compromising allocation and focus especially on its evaluation later on in a simulation
study.

The remainder of this article is as follows: Sect. 2 presents an optimisation model which
allocates surgeries to operating rooms and days with regard to three different objectives.
Section 3 deals with an optimisation approach which is used to compute a robust compromise
schedule. In Sect. 4 the implications regarding performance of a given schedule are derived
in a simulation study and the proposed concept is evaluated. We analyse consequences of
changes in several input parameters and point out possible effects on the quality of the
schedule. A summary and an outlook to further research conclude the paper.

2 Multi-criteria optimisation approach

In this section, the optimisation approach is presented which considers the assignment of
elective patients to operating rooms over a given period of time, yet without focusing on
the intra-day sequence of surgeries. The approach also takes into account reservations for
emergency surgeries.We discuss this optimisation approach particularly focusing on different
stakeholders’ objectives.

On a superior planning level with a larger planning horizon, the approach to be pre-
sented is employed repeatedly and embedded into a rolling horizon approach. The approach
consists of two interdependent stages which are executed consecutively in the real world
setting and handled simultaneously within a single optimisation approach. The first stage
assigns elective patients to rooms and days with consideration of given uncertainty restric-
tions and time reservations are made for emergency demand. Based on this assignment of
appointments, the computed allocation can be adapted flexibly to various realisations of
uncertain model parameters during the second stage which means that the allocation remains
unchanged because the capacity levels can be adjusted. This includes particularly the reser-
vation for emergency demand. First, we will describe sets, parameters and decision variables
and discuss characteristics of the model and its parameters before presenting the optimisation
model.
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2.1 Sets, parameters and decision variables

We consider a planning horizon of T days and J parallel and identically equipped operating
rooms (with J := {1, . . . , J }) which provide time windows for either one or two of in total
L medical specialities (� ∈ L := {1, . . . , L}). We refer to these time windows as (surgical)
blocks in relation to the concept of aMSS (see previous section). Surgeries may be postponed
to the following planning period which is indicated by an additionally introduced day T + 1.
The overall planning period is denoted byT := {1, . . . , T, T+1} inwhich postponements are
explicitly included. The main task is to schedule a group of elective patients i ∈ I according
to their diagnosis into the given blocks with respect to given constraints and objectives.
Subsets of patients who require treatment from the same surgical speciality are introduced
accordingly (I� ⊂ I , with I� ∩ I�′ = ∅ and � �= �′).

On each day available time for the individual specialities as well as the overall time of the
operating rooms is denoted by RC�j t (speciality blocks) and C j t (rooms). Both times can be
exceeded if necessary up amaximum levelwhich isMC�j t for specialities andCmax

j t for operat-
ing rooms. Besides, rmax < J limits the number of rooms to which capacity to be reserved for
emergency treatments can be assigned. Assigning patients has to be done regarding stochastic
surgery times duri—these times can be approximated using an appropriate distribution, e. g.
based on historical data. In addition, the stochastic parameter Et describes the overall time
needed for emergency treatments on a day. Both parameters become relevant, when time for
elective and emergency surgery has to be booked ahead of the execution of the schedule.

The binary decision variable xi j t ∈ {0; 1} shows whether a patient is scheduled in a
particular room on a certain day within the planning period (xi j t = 1) or not (xi j t = 0). If
surgeries have to be postponed this is indicated by xi j (T+1) = 1, in this case patients will
be considered in the following planning period. The decision variable e jt ≥ 0 indicates the
amount of time (e. g. hours) which is blocked for emergency treatments in a particular room
on a day within the planning period. The values of e j t may be restricted to guarantee, for
example, at least 1h of time reserved for emergencies in order to avoid too short time slots.
In terms of r jt ∈ {0; 1} it is indicated whether capacity for emergency is reserved in a room
(r jt = 1) or not (r jt = 0)which is required to limit the number of roomswhich are considered
for reservation. As deviations from the regular capacity level C j t are tolerated, these are
calculated in terms of continuous variables η+

j t , η
−
j t ≥ 0 for overall room time. In order to

assure that positive or negative deviations do not occur simultaneously η+
j t · η−

j t = 0 must
hold which can easily be formulated as a linear term. Within each surgical block deviations
from the regularly available amount of time are possible which are calculated accordingly
using δ+

�j t , δ
−
�j t ≥ 0. These require the same properties as η+

j t , η
−
j t .

2.2 Constraints

There are three groups of constraints which cover the main aspects of the considered decision
problem. These constraints focus on (1) the use of available capacities and the according
limitations, (2) reservations for emergency surgery and (3) assignment conditions. In addition,
there are a few technical formulations in order to guarantee feasibility of the schedule. First,
the daily available level of overall room capacity is limited and can be used by elective
patients and emergency reservations. Constraints have to ensure that for each day of the
planning horizon the time allocated for elective and emergency surgery should utilise without
excessively exceeding the regular capacity of a particular operating room. Deviations from
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that capacity are allowed because especially the capacity reservation for emergency surgeries
depends on an unknown daily demand Et .

Second, timewindows for randomly arriving emergency patients are allocated. These high
priority patients need to be treated on the day of their arrival. So sufficient slack needs to be
provided. As mentioned above, in terms of e j t ≥ 0 a part of the room time is reserved and
dedicated to emergency surgeries. Wullink et al. (2007) showed that for the case of parallel
operating rooms the dedication of single rooms to emergency surgeries should be avoided.We
allow that reservations may be considered in a maximum number of rmax rooms. Providing
capacity for emergencies in many rooms reduces the overall capacity, which is a common
strategy (cf. Hans et al. 2012).

Third, we formulate constraints to schedule patients according to their date of hospitalisa-
tion. This means that a surgery cannot be planned on a day prior to a particular hospitalisation
date ai . In addition, themodel has to guarantee that patientswill definitely be assigned—either
within the planning period or referred to awaiting list. These constraints have an impact on the
problem size, too, and affect the computational requirements as they significantly decrease
the size of the solution space.

2.3 Stakeholder objectives

We capture patients, staff, and management as people or groups that are directly affected by a
schedule. If thesemultiple interests need to be considered simultaneously, the problem is how
to harmonise the existing interdependencies in order to provide a schedule which is finally
acceptable for all stakeholders. All objectives can be met satisfactorily if the operating room
scheduling problem is formulated as an (uncertain) multi-objective optimisation problem and
three different objective functions z = (z1, z2, z3) are used to represent the interests of the
three stakeholder groups which are denoted by k ∈ K = {1, 2, 3}.

2.3.1 Patients

From a patient’s perspective, the quality of a schedule depends on the time between the first
possible day for surgery—which is in fact the hospitalisation date—and the actual day of the
surgery. We define this difference as waiting time in terms of (1). The day of hospitalisation
depends on the hospital’s capacities and finally the pathway indicated by the diagnosis but
may also be influenced by a patient’s preferences.

∑

i∈I

⎛

⎝
∑

j∈J

T+1∑

t=ai

t · xi j t − ai

⎞

⎠ → min (1)

Focusing on the cumulative waiting time apparently is a fair aggregation of these time-
dependent preferences because individual waiting times are weighted equally. Yet, there can
be a large spread in the resultingwaiting times. Focusing onminimising themaximumwaiting
time instead guarantees that a priori all patients are considered to be equal, too. In addition
this ensures that all of them do not have to wait longer than a jointly minimised threshold. On
the other hand there will be fewer short waits as the spread of results is likely to be smaller
with a minmax approach. Implicitly assigned weights in this case are beneficial for those
patients who would potentially wait longer. However, taking into account the cumulative
waiting time will consider every patient’s waiting time to be of equal importance. Patients
having their first possible day for surgery close to the end of the planning horizon are more
likely to be deferred to the following planning period whatever approach is chosen (average
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waiting time vs. maximum waiting time). The resulting unfairness regarding postponements
can be resolved using amulti-period or rolling-horizon approach taking into account multiple
planning periods. However, this is beyond the scope of this publication. Note that we consider
patients to be scheduled ahead of the planning period and that no elective appointments will
be made for patients arriving within this period.

2.3.2 Staff

Once a schedule is fixed, the utilisation of the operating rooms depends on actual surgery
times. To a certain extend, the available capacity can be adjusted to meet a demand at short
notice. On the other hand, meeting the level of daily working time is also important. Hence,
for each day and room the total deviation from available capacity has to be considered, too.
This becomes necessary if a particular schedule is planned with adding a lot of slack to
the uncertain surgery times to ensure there is enough capacity available. As a result, the
performance lacks utilisation and throughput of patients which leads to a high amount of
unused time. In fact, this unused time has to be considered being an opportunity loss. With
objective (2) we aim to minimise the amount of overtime in order to meet the level of daily
working time.

∑

j∈J

T∑

t=1

η+
j t → min (2)

In a simulation study later on, we will analyse how planning less overtime affects possible
opportunity losses in terms of idle time in the operating theatre.

2.3.3 Management

With respect to a hospital’s financial situation, we formulate a third goal to maximise the
number of patients treated within the planning period. Indirectly, we use the number of
patients deferred to the next planning period and minimise the number of deferrals as a proxy
for a maximal number of cases.

∑

i∈I

∑

j∈J
xi j (T+1) → min (3)

This objective function is reasonable especially for German hospitals due to the existing
health care system. In general, hospitals and health insurance companies negotiate a certain
amount of cases to be performed within a strategic planning horizon, e. g. 12 months or
longer. In order to guarantee that a hospital is funded with the maximum payment possible
for a particular period of time, the number of surgeries should be maximised.

2.3.4 Interdependencies

The different objective functions will not necessarily lead to the same optimal schedule
because of the existing conflicts but to individual optimal solutions. The inherent interde-
pendencies allow for good compromise solutions which will be approached using fuzzy sets
for multi-criteria modelling later on in this paper. Minimising the waiting time of patients as
within the first objective naturally leads to a high rate of utilisation on particular days depend-
ing on the patients’ hospitalisation dates. Focusing on this goal only, the risk of postponement
increases if there are too many patients scheduled for surgery. In general, a large number of
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surgeries being scheduled increases the risk of overtime and has also a negative impact on
staff’s satisfaction. The drawbacks of scheduling patients close to their date of hospitalisation
can be approached by levelling the usage of the operating rooms as suggested in the second
objective. This will in fact lead to a heterogeneous schedule according to the distances to
the hospitalisation date. Besides, the management is also interested in an equally levelled
utilisation of the hospital’s resources. In a way, this interest modelled in the third objective
is partially incorporated in the first objective. A rapidly increasing number of requests for
surgeries as it can be observed in Germany over the last years forces hospitals to control
the number of surgeries performed. Therefore they do not focus on levelling the resource
utilisation only but mainly work towards a high number of surgeries. Even though this might
result in overtime, financial reimbursements for a high number of surgeries can be used to
compensate for financial consequences.

2.4 Optimisation model

Following the previous section’s discussion the overall multi-objective optimisation model
can be specified as follows—all parameters, variables and sets used for this and the following
models are listed in the Appendix (see Tables 6, 7).

∑

i∈I

⎛

⎝
∑

j∈J

T+1∑

t=ai

t · xi j t − ai

⎞

⎠ → min (4)

∑

j∈J

∑

t∈T
η+
j t → min (5)

∑

i∈I

∑

j∈J
xi j (T+1) → min (6)

subject to:
∑

i∈I�
duri xi j t + δ−

�j t − δ+
�j t,s = RC�j t ∀�, j, t (7)

δ+
�j t ≤ MC�j t − RC�j t ∀�, j, t (8)
∑

j∈J
e j t − Et ≥ 0 ∀t = 1, 2, . . . , T (9)

e j t ≤ M · r j t ∀ j, t (10)
∑

j∈J
r j t ≤ rmax ∀t (11)

∑

�∈L

∑

i∈I�
duri xi j t + e j t + η−

j t − η+
j t = C j t ∀ j, t (12)

η+
j t ≤ Cmax

j t − C j t ∀ j, t (13)

∑

j∈J

T+1∑

t=ai

xi j t = 1 ∀i (14)

∑

j∈J

ai−1∑

t=1

xi j t = 0 ∀i (15)
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xi j t ∈ {0; 1} ∀i, j, t (16)

e j t ≥ 0 ∀ j, t (17)

r j t ∈ {0; 1} ∀ j, t (18)

η+
j t , η

−
j t ≥ 0 ∀ j, t (19)

δ+
�j t , δ

−
�j t ≥ 0 ∀�, j, t (20)

The objective functions minimise waiting time (4), staff overtime (5) and the number of
deferrals (6) as discussed previously. The constraints (7) limits the regularly booked time for
specialities and together with (8) exceeding the usually available time limit is possible up to
a certain amount of time. In case of two surgical specialities sharing a room this enables to
shift time from one discipline to the other if required. Constraint (9) assures that the time
booked for emergency patients covers at least the uncertain amount of emergency demand –
only during the actual planning period. In terms of (10) and (11) it is ensured that the booked
time for the emergency surgeries is spread across a limited number of rooms. According
to the first two constraints, restrictions (12) and (13) limit the time consumed by elective
and emergency surgery reservations and allow for exceeding this limit up to a maximum
time limitation. Through (14) an elective assignment can only be made for a day after a
first possible day which is usually the day of admission or some day later. Correspondingly,
no assignments are allowed before this mentioned date, which is ensured in terms of (15).
Constraints (16)–(20) state the domain of the variables. The uncertain parameters duri and
Et are considered to be random variables and it requires assumptions on these before being
able to solve the above presented model.

2.5 Scenario-based reformulation

We propose to apply a scenario-based optimisation approach using a set of S different sce-
narios (s ∈ S := {1, 2, . . . , S}). A scenario is defined as a set of single-valued realisations
of every stochastic parameter and it is assumed that every scenario can occur with identical
probability. Consider that stochastic parameters are replaced by scenario-dependent para-
meters (e. g. duri,s and Et,s) the resulting model can be solved for every k ∈ K and s ∈ S
and a number of schedules (at most |K| · |S|) can be obtained which are likely to differ due
to changes in the model parameters. This would be a wait and see approach which is only
applicable in case that one could wait until the realisation of a particular scenario can be
observed and then choose a predetermined best solution. However, information about out-
comes of stochastic model parameters is not available in advance and we propose to use a
two-stage approach instead.

In order to avoid re-allocations of surgeries due to unexpected changes in surgery times
we aim to fix patients’ dates of surgery and the respective operating rooms in advance. With
this two-stage optimisation approach some of the variables are fixed before knowing which
of the considered scenarios will occur (first stage) whereas the other variables are optimally
adjusted for every of the considered scenarios (second stage). This means in particular that
the variables xi j t , e jt , and r j t do not change if a particular scenario happens. So the schedule
and the included reservations of surgery times for emergency patients are fixed at the first
stage. These allocations are done with respect to uncertainty and ensure that the amount
of available capacity is sufficient for elective and emergency patients. At the second stage,
necessary changes of block and room capacities are calculated for every of the considered
scenarios with respect to the given maximum limitations. These changes indicate overtime
or idle time and are calculated in terms of η+

j t,s , η
−
j t,s , δ

+
�j t,s and δ−

�j t,s .
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Table 1 Models and dependencies of variables

Model Characteristics Variables and uncertainty

BM Basic model described in (4)–(20) n/a

SBM 1 Scenario-based extension of model BM All variables depend on s ∈ S,
only one scenario s is considered

SBM 2 Amended version of model SBM 1
(robust compromise)

(xi j t , r j t , e j t ) are fixed for all s ∈ S, remaining

variables δ+
�j t , δ

−
�j t and η+

j t , η
−
j t are calculated

individually for all s ∈ S

In relation to three different optimisation models we will refer to three different types of
feasible solutions and respective sets which are listed in Table 1. For the basic model BM
described in (4)–(20) we use ξ ∈ X . Feasible solutions for the scenario-based model SBM1
will be written as ξs ∈ Xs . These solutions ξs consist of fixed values for xi j t , e jt and r jt and
the according values for the adjustment variables δ+

�j t , δ
−
�j t and η+

j t , η
−
j t . All of these variables

are determined given a single scenario s. Finally, for the two-stage scenario-based model
SBM2 feasible solutions are denoted in terms of ξS ∈ XS . Note that in terms of Xs we only
consider a single scenario whereas with XS a set of scenarios S is taken into account. In
particular, ξS includes optimal values for δ+

�j t,s, δ
−
�j t,s and η+

j t,s, η
−
j t,s in every of the chosen

scenarios s ∈ S and also values for xi j t , e jt , and r jt which do not change if the outcomes of
the uncertain model parameters change.

An uncertain environment has major influence on the performance of an operating room
schedule especially when the interests of multiple stakeholders are considered in terms of
different objective functions. We assume that the decision-maker is risk-averse and hence we
propose a robust optimisation concept in Sect. 3. This concept allows to generate a robust
compromise schedule which is applicable even within some worst case settings. The sug-
gested approach merges multi-criteria optimisation and a robustness concept in terms of a
fuzzy sets approach which is being adapted to an uncertainty setting. Computational exper-
iments in Sect. 4 will be based on the models presented in this and in the following chapter.

3 Robust multi-criteria approach

The overall goal of this approach is to provide schedules that are robust against variations
in surgery times and meet the stakeholders’ individual goals as good as possible. These two
aspects will be simultaneously covered in our approach. We consider robustness with respect
to stochastic model parameters and multiple objectives. This means that a solution should be
designed in a way such that flexible adjustments are possible in order to achieve objective
function values close to scenario-dependent optimal values. The approach applied in this
paper is explicitly described for on uncertainty setting in the following section. The reader is
referred to Werners (1987a, b) and Werners (1988) for a presentation of the concept applied
to a deterministic multi-criteria setting.

3.1 Evaluating achievement of stakeholder preferences

The main idea is to describe the quality of a schedule in terms of a linguistic expression such
as an acceptable schedule regarding the first goal. We apply a fuzzy sets approach in order
to describe whether a schedule is acceptable regarding a stakeholder’s individual interests
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within an uncertain environment. A piecewise linear function μk describes for all feasible
solutions whether a particular solution is part of a set of acceptable schedules regarding a
certain goal k. We define a fuzzy set consisting of several tuples (zk(ξS), μ(zk(ξS)) which
indicate for possible schedules the relative distance to the best solution.

F acceptable
k := {(

zk(ξ
S), μk(zk(ξ

S))
) | ξS ∈ XS}

The membership function μk (·) maps to what extent an objective function value and conse-
quently a respective schedule belongs to the set of acceptable schedules with respect to the
considered set of scenarios s ∈ S. Hence, the membership function allows to evaluate any
given schedule regarding a stakeholder’s objective. Thepiecewise linearmembership function
takes the value 0 if the decision maker does not accept the solution and 1 if he is completely
satisfied with the solution. For solution evaluations in between these values the membership
function increases linearly. Therefore, objective functions values need to be identified orman-
ually chosen by the decisionmaker which act as thresholds for full satisfaction (μk(·) = 1) or
disagreement (μk(·) = 0). We consider these objective values being bounds which can also
significantly reduce the size of the search space of schedules. Note that we will use scenario-
dependent individually optimal solutions ξk,s ∈ Xs in order to determine these lower and
upper bounds for acceptable objective function values. Later on, we will focus on ξS ∈ XS

with regard to the membership functions to determine a robust compromise solution.

3.2 Normalisation of objective function values

As pointed out in Sect. 2.5 we consider that the unknown distributions for the model para-
meters can be approximated using a set of scenarios S. We furthermore assume that each of
the objectives can be solved optimally. Recall that there can be as many as |K| · |S| diffferent
scenario-dependent models. These models lead to the same number of scenario-dependent
individually optimal schedules ξk,s which are likely to be non-identical. Given that the indi-
vidually optimal solution is achieved, the stakeholder is naturally entirely satisfied because his
goal is fully achieved. Regarding the proposed scenarios, a lower bound should be valid for all
considered scenarios out ofS. Thus, in terms of (21) we set a lower bound for every objective.

zk := min
s∈S {zk(ξk,s)} k = 1, 2, 3 (21)

For the given set of scenarios S this is a reasonable limitation and no solution will result in a
lower objective function value. Depending on the chosen scenarios it may occur that the ran-
dom variables take specific values which would lead to an even lower value for zk . This might
happen because the list of scenarios does not encompass all the actually possible situations.
However, this is considered to happen occasionally and does not have a major impact.

Reasonable upper bounds can be formulated accordingly. It is supposed thatwith respect to
conflicting goals a particular stakeholder is not entirely satisfied with a solution which does
not reach his individually optimal schedule. For example, the level of satisfaction for the
staff’s objective decreases with an increasing amount of (cumulative) overtime. This might
be caused by shorter waiting times for patients. Hence, the last solution for a stakeholder to
accept is a schedule ξk′,s that minimises at least one of the other stakeholders’ objectives. In
terms of (22) we set corresponding upper bounds for every objective function.

zk := max{zk(ξk′,s) | k′ ∈ K, s ∈ S} k, k′ = 1, 2, 3 (22)

The quality of these limitations naturally depends on the chosen scenarios, especially if only
a small number of characteristic scenarios is chosen.With respect to the existing individually
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optimal solutions, there are at least three Pareto-efficient schedules and thus a variation in
one of the lower or upper bounds cannot influence the schedules’ efficiency.

On the basis of the identified limitations we assume that the stakeholders’ preferences can
be described adequately in terms of a piecewise linear function. We focus on the increasing
part of this function. For each objective function there exists a set of acceptable solutions
Fk that is composed of schedules and the corresponding stakeholder’s levels of satisfaction.
In terms of linear membership functions the objective function values are normalised and
represent a particular level of acceptance. Note that we now consider solutions ξS ∈ XS .

μk(ξ
S) = zk − zk(ξS)

zk − zk
, with zk ≤ zk(ξ

S) ≤ zk, k = 1, 2, 3 (23)

The membership function (23) takes its highest value 1 if a schedule ξS leads to an objec-
tive function value equal to the objective function value of the individually optimal solution.
Recall that zk(ξS) < zk is impossible because of the calculated lower bound. A stakeholder’s
level of satisfaction decreases linearly with increasing objective functions values (for min-
imisation goals). Negative evaluation values might result if zk(ξS) > z̄k , yet those solutions
are very unsatisfactory for the decision maker. Therefore, these solutions will be excluded
from consideration in the model later on. Determining the membership functions for goals
dependent on the other goals is a well-known approach in fuzzy multi-criteria optimisation
and generally used (cf. Mehrbod et al. 2012).

In particular, the way how the various membership functions μk are defined within this
approach does depend on the degree of conflict between the goals of various decision mak-
ers. This is likely to impact the resulting number of schedules which are considered to be
acceptable for all stakeholders. In addition, the difference between what the decision maker
chooses to be best and worst case objective function values impacts the slope of the piecewise
linear membership function. This can influence the implicit weights which are attached to the
different goals. However, the presented approach enables to evaluate a particular solution,
e. g. the robust compromise schedule, and its performance relative to the best possible and
last acceptable solution. Moreover, it can also be seen as a way to obtain a first compromise
solution which marks the starting point for negotiations among the stakeholders.

3.3 Aggregating preferences

In order to simultaneously meet the stakeholders’ interests with respect to the uncertain
environment, we maximise their satisfaction levels which are modelled using membership
functions. The aggregation of preferences is covered in terms of an a priori approach which
combines the different objectives into one. This approach can be extended to an interactive
procedure as described in Werners (1987a) if additional preference information is available.
However, this extension is beyond the scope of this publication. Several approaches exist
to combine multiple criteria into a single objective function. The weighted sum approach
is well-know and is used in this context to combine the suggested membership functions
if compensation is required. Due to the described normalisation of the objective functions,
averaging of the membership functions equals a weighted sum approach with weights of
equally normalised importance for the goals. Another well-known approach in multi-criteria
decision making is the minimisation of the maximal distance to a predefined ideal. This
approach does not allow compensation between different goals. An equivalent fuzzy sets
approach is to maximise minimal membership of goal attainment where normalisationmeans
an additional weighting of objectives. For multi-criteria models with partially compensating

123



Ann Oper Res (2017) 251:325–350 337

goals the fuzzy-and is suggested which is also a well-known approach (cf. Mehrbod et al.
2012; Werners 1988).

We extend the mentioned ways of aggregating objective functions to an uncertain envi-
ronment in order to merge multi-criteria optimisation and handling of stochastic model
parameters. In this case, theweighted sumapproach can be seen as an expected value approach
and the maxmin approach is, in fact, a robust approach. We apply the fuzzy-and-operator
which is a convex combination of the weighted sum approach and the maxmin approach (cf.
Werners 1988) and extend it to a new scenario-based planning approach. The idea ofmaximis-
ing the average level of goal achievement is similar to the idea of an expected value approach
but new in terms of a fuzzy sets approach. In fact this means to assign implicit weights to the
objective functions in terms of the normalisation as described above. The approachminimises
the expected value of the weighted objectives because the model focuses on minimisation of
objective functions. In terms of αks ∈ [0, 1] we measure the level of goal achievement for
a goal in a particular scenario regarding a schedule ξS . We aim to maximise this level by
maximising αks .

Robustness with respect to the considered goals means to ensure a basic level of goal
achievement over all scenarios. This is covered in terms of a maxmin approach which max-
imises the lowest level of membership λS . It is well known that this type of approach does not
guarantee Pareto-efficiency of an optimal solution. Hence, additional constraints ensure that
the basic level of achievement which is valid for all goals and scenarios can be individually
exceeded. We indicate this surplus using λks ≥ 0. Finally, the term λS +λks = αks measures
the relative distance to the individually optimal solution given a particular goal k and sce-
nario s. In terms of αks a stakeholder’s satisfaction with a given schedule ξS is represented.
Maximising a basic level of goal achievement λS and considering positive values for λks is,
in fact, a robust optimisation approach. The following optimisation model allows to integrate
both aggregation concepts (maxmin and weighted sum) in terms of the parameter γ ∈ [0, 1]
(see Tables 6, 7 for reference).

γ · λS + (1 − γ )
1

|K| · |S|
∑

s∈S

∑

k∈K
αks → max

subject to

αks = μk(ξ
S) = z̄k − zk(ξS)

z̄k − zk
∀k, s

z1(ξ
S) =

∑

i∈I

⎛

⎝
∑

j∈J

T+1∑

t=ai

t · xi j t − ai

⎞

⎠

z2(ξ
S) =

∑

j∈J

∑

t∈T
η+
j t,s ∀s

z3(ξ
S) =

∑

i∈I

∑

j∈J
xi j (T+1)

λS ≤ αks ∀k, s
0 ≤ λS , αks ≤ 1 ∀k, s
ξS ∈ XS

(24)

For γ = 1 the approach (24) leads to the maxmin approach and γ = 0 is a weighted
sum approach. In order to ensure efficiency of the solution, we choose γ < 1, yet close
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to 1. In this approach the maximum relative distance to a particular goal’s lower bound is
considered as a regret. Robustness with respect to the given goals is achieved if the maximum
regret is minimised. For a detailed description of the applied concept see Rachuba and
Werners (2014). In fact, formulation (24) is a two-stage optimisation approach which allows
to determine assignments for elective surgeries together with emergency reservations in
advance. It also provides the best possible scenario-dependent adjustments of the capacities
which are calculated depending on the considered scenarios s ∈ S (cf. Sect. 2.5).

In addition, the concept offers supportive features for the considered application. First,
the calculated lower and upper bounds for acceptable objective function values are based on
scenarios which happen very seldom. It is not likely that all random variables simultaneously
take values significantly lower (or higher) than their mean value. By using the suggested,
partly extreme, scenarios the result is an admissible solution. The good quality of this solution
will be shown in thorough simulation studies in Sect. 4. Even if real world data differs from
the assumed scenarios, the proposed approach implicitly covers a large number of possible
scenarios which can occur between the chosen limitations for high and low demand. The
second important aspect is that stakeholders’ preferences can be adequately aggregated. This
means that especially in uncertain situations at least a certain degree of satisfaction can be
guaranteed for each stakeholder. Finally, our approach enables the decision maker to fix
the assignments of elective patients and emergency reservations in advance for the planning
period. It also allows for tolerated deviations from block and room time which might become
necessary as a reaction to the outcomes of the stochastic model parameters. Fixing a subset
of variables for all scenarios and allowing some variables to change following a scenario
realisation is a typical robust approach (cf. Mulvey et al. 1995). It is to be noted that the
presented concept in general is very conservative. Depending on the chosen scenarios, this
can lead to significant opportunity losses in comparison to the optimal solution of a wait and
see approach (cf. Bertsimas and Sim 2004 or Gülpinar et al. 2013 for a wider discussion of
opportunity losses). Apart from the considered application in this paper, the approach is also
suitable for other areas of application in which some decision variables need to be fixed in
advance over a given period of time and where there are adjustments of capacities possible.
The approach can also be extended to apply different techniques to derive lower and upper
bounds or to interactively adjust them once they have been identified.

In the following chapter we demonstrate implications of this robust multi-objective
approach on stakeholders’ preferences and other more general performance measures. We
discuss the different approaches (γ ≈ 1 vs. γ = 0) and the balancing effects on the overall
satisfaction levels. In particular, the configuration of a maxmin approach is very conservative
and ensures feasibility for all chosen scenarios because it does not exceed the maximum tol-
erated workload. This is likely to come at a price of fewer scheduled surgeries. In addition to
this, we illustrate consequences for patients waiting time, staff’s workload and the utilisation
of the operating rooms if a robust approach is used.

4 Evaluation of robust schedules

In this chapter, the proposed fuzzy sets approach is evaluated using historical data records
from a mid-size hospital in Germany. These data records are used to randomly generate
surgery durations and emergency demand in order to simulate the performance of a com-
puted schedule. Table 2 shows basic characteristics of the following analysis. We consider a
planning horizon of 2weeks (which equals 10 working days) and 4 equally equipped oper-
ating rooms. These rooms are available 8h a day allowing not more than 3h of planned
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Table 2 Data setting for
computational study

Input parameters Characteristics

Length of planning horizon 2weeks

Number of operating rooms 4 (parallel)

Working time regular (maximum) 8 (11) h/day

Number of surgical specialities 5 (identical size)

Length of surgical blocks 4/8 h

Number of elective patients 100

Durations for elective surgery [0.5, 6] h

Time for emergency surgery [0, 4] h/day

overtime. Five surgical specialities share the available operating rooms and have either 4 or
8h of operating room time allocated in a particular room on a particular day. The patient data
set consists of 100 elective patients whose surgeries have expected durations between 0.5 and
6h. The daily amount of time which is demanded for emergency surgeries varies between 0
and 4h. Recall that all patients have to be scheduled at once for the entire planning period.

Figure 2 summarises the steps described in the previous section and depicts the analysis
within the following subsections. The set of elective patients is crucial for the following
calculations. We randomly generate a first possible date for surgery and an expected value
for the duration of their surgery. In general, surgery times for elective patients can be specified
using either the surgeons knowledge or historical data records. Recall that the uncertainmodel
parameters will be represented in terms of scenarios which is common practice with robust
optimisation approaches (cf.Mulvey et al. 1995).However, an increasing number of scenarios
causes long computation times in order to solve the respective models to optimality. In the
interest of keeping the number of scenarios low, we focus on three scenarios. They represent
the negative deviation from the expected duration (s = 1), the expected duration itself (s = 2)
and positive deviations with regard to the expected times (s = 3). Accordingly, we consider
time required for emergency demand which is considered at an average level (s = 2) as well
as at a lower (s = 1) and higher (s = 3) level.

In a first step, computing a robust compromise schedule following the decision maker’s
assumptions requires to solve every objective function for every scenario—which in fact
means solving 9 different optimisation models. The resulting objective values are used to
determine bounds as specified in (21) and (22) which are valid for all scenarios. These
bounds allow to construct the membership functions which are required to solve model (24).
Finally, the decision maker chooses the parameter γ according to his preferences regarding
compensation which is required to solve the model (24).

The performance of the computed robust schedules will be evaluated using multiple ran-
domly generated surgery times and emergency demands. Putting a single realisation of
surgery times and emergency demand together, we refer to this being an evaluation sce-
nario. These evaluation scenarios are used instead of the planning parameters in terms of a
simulation study. Elective surgery times are simulated following a log-normal distribution
(cf. Strum et al. 2000) and the demand for emergency surgeries is modelled in terms of a
Poisson distribution (cf. Cayirli and Veral 2003). Besides, we will analyse levels of absolute
and relative goal achievement. This requires to optimally solve all evaluation scenarios in
order to determine what would be lower and upper limitations for the objectives in every of
the scenarios given full information would be available (which is similar to a wait and see
approach). This finally allows to determine relative and absolute distances of the objective
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Fig. 2 Determination and
evaluation of a robust
compromise schedule

functions to the scenario-dependent optimal objective function values regarding the computed
robust schedule.

Threemajor aspectswill be covered in our analysis. First, we compare themaxmin (γ ≈ 1)
and the weighted sum approach (γ = 0) and evaluate the overall performance of a robust
compromise schedule (as obtained by solving (24)) in terms of absolute values. Second,
the levels of goal achievements are compared for both approaches. Third, we conduct a
sensitivity analysis to evaluate how the performance of the schedule changes if different
assumptions are made regarding the stochastic model parameter. All optimisation models
were implemented in Mosel and solved with FICO XPress 7.3. We generated the required
distributions and evaluation scenarios to evaluate computed schedules using the Excel Add-
In @RISK 5.5 which is part of the Palisade Decision Tools Suite. Both applications run on a
standard desktop PC with IntelCore i5-2500 3.3 GHz processor with 8GB RAM. All models
were solved within reasonable time.

4.1 Simulation study to evaluate stakeholders’ goal achievements

In order to evaluate the performance of the robust schedules which are determined by the two-
stage model SBM2, 1000 realisations of every patient’s surgery time and additional 1000
realisations describing the demand for emergency surgery are simulated. These realisation
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are randomly combined to evaluation scenarios which represent surgery durations for both
elective and emergency patients. We solve each of these simulated evaluation scenarios to
optimality and calculate gaps between the maxmin or weighted sum approach’s solution and
the optimal solution in terms of the three objectives.

First, we investigate the daily amount of overtime, because the absolute performance of
this goal changes according to outcomes of the stochastic model parameters. The cumulative
probability distribution of the average daily amount of overtime is compared for two schedules
that have been computed using the weighted sum approach and the maxmin approach. The
left graph in Fig. 3 indicates an increase of overtime of about 15 min per day for a less
conservative planning approach (weighted sum). For both approaches, the maximum amount
of overtime is below 1 h in all scenarios. In some particular settings the obtained robust
compromise schedule might not be feasible which means that staff would be required to
work more overtime then usually tolerated. However, for the data set used in this paper this
occurred for less then 1% of the scenarios which underlines the conservativeness of our
approach. Further implications of this planning approach are shown in terms of resulting
levels of goal achievement for the objective minimise overtime (see right graph in Fig. 3).
The values for overtime in the scenarios are very close to the optimal solutions. Thus, both
approaches provide acceptable schedules according to the stakeholders’ preferences. Relative
levels of overtime for each of the computed evaluation scenarios regarding lower and upper
bounds (right graph in Fig. 3) strengthen the good evaluation. We found that the resulting
values for overtime are close to the optimal solutions applying the maxmin and the weighted
sum approach. Using amaxmin approach, 40% of the optimal solution value is achieved even
for the worst case. Moreover, in half of the evaluated scenarios, the degree of satisfaction is
at least 0.7. Because overtime is higher for the weighted sum approach, the resulting degree
of satisfaction is lower for this approach, accordingly. Note that a level of goal achievement
of 0 only indicates that the non-acceptance level is reached. There are solutions below these
limitations, yet the corresponding schedules are not accepted.

Accordingly, within half of the scenarios, the average amount of idle time is at least 45min
and at most 60min (weighted sum). For the maxmin approach, these values increase by
approximately 15min. Thus, the price for a slightly more conservative planning approach is
a higher level of idle time per day compared to the weighted sum approach. Both approaches
guarantee that the schedule can be executed without any postponements or cancellations
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even for evaluation scenarios with very high demand. In both cases, the amount of idle time
implicitly indicates opportunity costs. On the other hand, the actual levels of average daily
overtime indicate that a less conservative approach leads to an increase of daily overtime. It
can be concluded that with the weighted sum approach the actual utilisation of the operating
rooms is significantly higher than using the maxmin approach. Hence, the maxmin approach
is slightly more conservative and leads to a lower amount of daily workload yet it can cause
more idle time.

In a next step,we evaluate the average timebetween thedayof hospitalisation and the actual
day of surgery. This describes the patients’ satisfaction with a particular schedule. Again,
we compare the same two schedules which have been evaluated above. A robust schedule in
general leads to a low amount of patients scheduled and thus patients’ waiting time increases
intuitively. There are different reasons for this. On the one hand this happens because surgery
days are fixed in advance but on the other hand this is also affected by the scenario-dependent
benchmark for waiting time itself. Examining the number of patients who do not wait longer
than a given number of days, it becomes apparent that for both approaches 50%of the patients
can be treated within the first two admissible days (Fig. 4). The amount of waiting time for
elective patients is correlated to the number of deferred patients. Table 4 indicates that the
number of deferrals is slightly higher using the maxmin approach. Another price for a robust
schedule is that quite a number of surgeries are postponed to the following planning period
which results in idle time as discussed above. Again, the actual levels of satisfaction for the
achievement of the goals waiting time and deferred patients are jointly analysed because their
absolute values do not change in case of different scenario realisations. Table 3 shows that
the two schedules are very close to the scenario-dependent optimal solutions. Thus, these
schedules adequately incorporate the two goals.

The weighted sum approach clearly tends to produce solutions closer to the scenario-
dependent optima as the percentage for values within the interval 0.8–0.9 is always higher
compared to themaxmin approach. In general, in 75%of the evaluation scenarios the schedule
using the weighted sum (maxmin) approach achieves at least 85% (81%) of the stakeholders’
individually optimal solution. Despite the very conservative planning approach this is a
remarkable result. Finally, a comparison of the relative levels for overtime on the one hand
and for waiting time and deferrals on the other hand points at a trade-off between the two
approaches. A slight increase in the degree of satisfaction for the goals waiting time and
deferrals due to the weighted sum or the maxmin approach causes a significantly larger
decrease in the level of satisfaction for overtime (and vice versa).
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Table 3 Percentages of evaluation scenarios in which a robust schedules achieves a goal to a certain level
and spreads of levels of goal achievement

Intervals for levels of goal
achievement

Waiting time Deferrals

weighted sum maxmin weighted sum maxmin

<0.6 – – – –

0.6 – 0.7 – 0.1% – 9.6%

0.7 – 0.8 8.0% 61.5% 30.4% 55.5%

0.8 – 0.9 92.0% 38.4% 69.0% 34.9%

0.9 – 1.0 – – 0.6% –

Minimum level 0.756 0.700 0.710 0.643

Maximum level 0.898 0.857 0.920 0.880

4.2 Different variants and trade-offs

Using the maxmin approach, we now investigate how the performance of a robust schedule
changes if different assumptions on patients’ surgery times and the demand for emergency
surgeries have to be considered. This allows to further investigate consequences on the trade-
offs between two goals if the assumptions regarding the stochastic parameters are changed.
We allow that the decision maker wants to investigate different assumptions on the planned
surgeries deviations with respect to the above mentioned sample sets of elective patients.
Recall that the decision maker’s planning is based on scenarios for every patient’s surgery
durations rather than considering the (unknown) probability distribution. We will denote
these assumptions in terms of variants 1 through 4 which are specified below. Variants 1
and 2 assume that surgery times for elective patients vary symmetrically around an expected
duration. In particular, we distinguish between very little (1) and larger or normal (2) devi-
ations from expected durations. In addition we also investigate two sets of elective patients
considering non-symmetrical deviations. In terms of variants 3 and 4 is is assumed that
patients’ surgery durations tend to be shorter (3) or longer (4) than the expected surgery
durations, e. g. with variant 3 it is assumed that there are more surgeries that take less time
than expected and only few ones taking longer than expected (and vice versa). We consider
respective settings for emergency demand according to the proposed variants 1 through 4.
Beginning with an average amount of emergency demand for a regular day we assume that
similar deviations as stated with elective surgeries are taken into account. Figure 5 depicts
how the previous analysis is amended in order to account for the four different variants. Note,
that the very first part planning information is not changed. The respective steps to compute
a robust compromise solution and to evaluate this schedule and its emergency reservation
are according to the previous studies in this chapter.

The number of patients being scheduled within the planning period and the average util-
isation of the operating rooms alongside with the average waiting time are characteristic
aspects of an operating room schedule. Note, that in terms of planned utilisation we con-
sider the workload if every surgery takes its expected time to finish. These figures are shown
in Table 4 and indicate the high level of overall quality of the schedules. For the compared
approaches the results are very closewithin the different variants. Theweighted sumapproach
systematically schedules at least the same number of patients and provides slight benefits
regarding patient waiting times. This underlines that the maxmin approach in general incor-
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Fig. 5 Analysing changes in decision maker’s assumptions in terms of different variants

Table 4 Number of patients scheduled and average level of planned utilisation compared in terms of variants
1 – 4 using the approaches weighted sum and maxmin

Variants Avg waiting time (days) # surgeries scheduled Planned utilisation (%)

Weighted sum Maxmin Weighted sum Maxmin Weighted sum Maxmin

1 2.69 2.79 88 87 100.10 98.38

2 2.91 3.01 86 84 99.97 98.66

3 2.70 2.70 90 89 105.13 103.00

4 3.24 3.21 83 83 91.82 91.12

porates a higher degree of conservatism which is especially indicated in terms of a lower
amount of planned utilisation. The weighted sum approach provides a higher level of toler-
ance towards violations of the capacity limitations. The maxmin approach supports a lower
risk of overtime and schedules fewer surgeries. However, the conservative way of planning
covered by the maxmin approach provides a high degree of flexibility which is a major fea-
ture of this concept. This flexibility guarantees that a plan is executable with a very low risk
of violating the capacity limitations. For the given application this allows to handle longer
elective surgeries or a higher amount of emergencies. In general, focusing on maximising the
minimum level of goal achievement rather than maximising the average leads to a smaller
spread within the values of all objective functions.

First, the impact of these changes is demonstrated for the level of overtime. Applying
variant 3 we assume that surgery durations are significantly longer, e. g. surgeries are more
complicated and require more time than expected. In this case the amount of daily overtime
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Fig. 6 Comparing two variants with respect to cumulative probabilities for overtime

Table 5 Comparing number of additional waiting days (on average) and number of additionally deferred
surgeries (maxmin, variant 1) – frequencies in %

Average additional
waiting time (in days)

Number of additional deferrals Cumulated

2–4 4–6 6–8 8–10

0.00–0.25 1.375 17.625 3.375% 0.000 22.375

0.25–0.50 1.500 41.000 34.000 1.125 77.625

Cumulated 2.875 58.625 37.375 1.125 100.000

in minutes significantly increases (Fig. 6). Connecting this result to the number of scheduled
patients (see Table 4 for reference) we see that the planned nominal workload is higher
and thus the risk of overtime increases with variant 3. Accordingly, the amount of idle time
decreases significantly. Apparently, this shift is caused by a less conservative attitude towards
realisations of the stochastic parameters. We observe similar changes if the weighted sum
approach is applied and the absolute values differ accordingly. Similar results also occur
if surgery durations are significantly shorter and the described shifts happen in opposite
directions. It is interesting that for the case of different variants no major changes in waiting
times can be concluded. The majority of patients has to wait not more than 2days referring
to the first possible date. Note that the hospitalisation date does not imply that the patient
stays at the hospital.

In a next step, we analyse trade-offs between two goals focusing on the maxmin approach.
We compare both absolute levels of goals and subsequently their potential to achieve the
optimal solution. First, the trade-off between the average waiting time of patients and the
number of patients treated/deferred is investigated. Additionally, we indicate impacts if dif-
ferent variants are applied. Table 5 compares absolute values for average waiting time and
the resulting changes if fewer surgeries are planned. The robust solutions focus on scenarios
with high waiting times and low numbers of patients to be scheduled. For an exemplary
robust schedule (maxmin, variant 1) it indicates that an average increase in waiting time of
0.5days is tolerated which means that every second patient has to wait 1day longer than
expected. In more than 90% of the evaluation scenarios, the robust approach additionally
postpones between 4 and 8 patients according to the optimal number of deferrals. These
deferrals lead to an increase of average waiting time which is in 20% of all scenarios below
0.25 days and thus very small. According to the absolute values, the relative deviations and
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Fig. 7 Trade-Off between changes in averagewaiting time and overtime (left) and between changes in average
number of deferrals and overtime (right)

thus the stakeholder’s satisfaction with a solution are very close to the optimal solutions.
This underlines the good results described in the table above, yet there are slight decreases
with shorter surgery durations (maxmin, variant 4). In the latter case, the planning is too
conservative because the number of patients scheduled is smaller than apparently neces-
sary. Thus, waiting time increases significantly compared to the optimal amount of waiting
time.

Investigating the impact of changes in waiting time or deferrals for the actual level of
overtime strengthens our previous findings. The left graph in Fig. 7 indicates that in terms
of absolute deviations an increase in waiting time is also combined with higher overtime
(which is the same with relative deviations). An increasing amount of additional waiting
time (compared to variant 1) occurs if the actual surgery durations are shorter and thus the
workload increases only slightly. It can also be concluded that due to the fixed surgery dates
there is a large spread especially within the achievement of the goal overtime minimisation.
In general, shorter surgeries lead to a higher level of goal achievement for overtime. For
longer surgeries the level of goal achievement decreases accordingly. The trade-off between
overtime and the number of deferrals shows that the amount of overtime decreases with
fewer patients being scheduled. In addition to this, the right graph in Fig. 7 shows that shorter
surgery durations cause a higher number of patients being scheduled. Thus, the number of
deferrals decreases compared to variant 1 but obviously the increase in overtime compared to
variant 1 is lower. Finally, the acceptance for the management’s goal is high but the amount
of overtime is also high. These effects become less intensive with surgeries being shorter as
with variant 4.

The presented approach incorporates robustness and fairness aspects and provides two
major beneficial features. First, due to the normalisation of the objective function values, the
final performance measured in absolute values is most acceptable. The results are close to the
optimal solutions measured in terms of relative and absolute deviations regarding different
stakeholders’ goals. Fixing surgery dates at the beginning of the planning period requires to
plan a certain amount of slack time. The required amount of slack increases with a higher
degree of conservatism. Subsequently, the resulting risk of idle time leads to opportunity
losses. This approach enables the decision maker to balance the degree of conservatism
according to his attitude towards risk. In general, the results of this computational study show
that this approach is able to find solutions which are feasible for a large number of uncertainty
settings given this particular area of application. High quality robust compromise solutions
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can be identified even if only a small number of scenarios is considered. Recall that the degree
of conflict among the objectives as well as the width of the interval between best and worst
accepted individual solutions influence the solutions. Besides, the chosen scenarios and their
number also influence the quality of the robust compromise solution. However, given that the
proposed concept is very conservative in terms of integrating both multiple preferences and
uncertain planning parameters it is very well adaptable for other areas of application which
face similar decision problems. Especially evaluating a robust compromise solution using
scenarios different from those chosen to obtain the robust compromise solution makes this
approach beneficial for risk-averse decision makers.

5 Conclusions

We presented an approach which simultaneously minimises relative distances to scenario-
optimal solutions and individually optimal solutions. Decision making in hospitals affects
multiple stakeholders’ interests which was discussed focussing on the operating room
scheduling problem. At an intermediate level between tactical and offline operational plan-
ning, patients were allocated to a given block schedule in order to meet three conflicting
goals. We demonstrated that only small changes in the absolute levels of the stakeholder’s
goals are necessary in order to find an acceptable solution. The presented approach is able
to balance the stakeholders’ interests at fair levels. Furthermore, we showed that the robust
compromise solutions are very close to scenario-dependent individually optimal solutions
measured in terms of relative deviations. Additional specifications of a stakeholder’s pref-
erences can be integrated into the presented approach by interactive adjustments of the
membership functions. The proposed robust compromise may also be used as a starting
point for negotiations among the involved stakeholders. Finally, the presented approach is
beneficial in order to reduce the risk of re-planning which is achieved by some opportu-
nity losses due to the robustness of the solution. Integrating the proposed approach into a
dynamic approach is considered a promising extension since it allows to develop additional
scheduling policies in order to support the multiple stakeholder operating room scheduling
problem.
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6 Appendix

Table 6 Sets, parameters and decision variables

Sets

I Set of elective patients, with I = {
1, 2, . . . , Imax}

I� Sub-set of patients from a sub-speciality, with I� = {
1, 2, . . . Imax

�

}

J Set of operating rooms, with J = {1, 2, . . . , J }
K Set of objective functions, with K = {1, 2, . . . , K }
L Set of medical specialities, with L = {1, 2, . . . , L}
S Set of scenarios, with S = {1, 2, . . . , S}
T Set of days (including deferrals), with T = {1, 2, . . . , T, T + 1}

Parameters

ai First possible day for surgery

C j t /C
max
j t Regularly/maximum available time in an operating room (in hrs)

duri Duration for surgery (in hrs)

Et Daily amount of emergency demand (in hrs)

Imax /Imax
�

Number of elective patients (overall and in speciality �)

J Number of operating rooms

K Number of objective functions

L Number of surgical specialities

M Sufficiently large number (Big M)

rmax Maximum number of rooms to allocate emergency reservations to

RC�j t /MC�j t Regularly/maximum available time in an speciality time slot (in hrs)

S Number of scenarios

T Number of days to schedule patients (excluding deferrals)

T + 1 Indicating a day after the planning period used to label deferrals

Decision variables

δ+
�j t , δ

−
�j t ≥ 0 Over time/idle time for block � in room j on day t

η+
j t , η

−
j t ≥ 0 Over time/idle time for room j on day t

e j t ≥ 0 Amount of time reserved for emergencies in room j on day t

r j t ∈ {0; 1} Counting number of rooms to allocate emergency reservations

xi j t ∈ {0; 1} Assignment of patient i to room j on day t

xi j (T+1) ∈ {0; 1} Deferral of patient i to week after planning period
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Table 7 Feasible solutions and membership functions

Feasible solutions

X Set of solutions for basic model (BM)

Xs Set of solutions for scenario-based extension (SBM 1)

XS Set of solutions for SBM 2 (amended version of SBM 1)

ξ Variables denoting feasible solutions for X :
ξ consists of r j t , e jt , xi j t and δ+

�j t , δ
−
�j t and η+

j t , η
−
j t

ξs Variables denoting feasible solutions for Xs (model SBM 1):
ξs consists of r j t , e jt , xi j t and scenario-dependent values for

δ+
�j t , δ

−
�j t and η+

j t , η
−
j t (Only one scenario is considered)

ξS Variables denoting feasible solutions for XS (model SBM 2)
ξS consists of r j t , e jt , xi j t and δ+

�j t,s , δ
−
�j t,s and η+

j t,s , η
−
j t,s ∀s ∈ S

(Note that a set of scenarios is considered here)

ξk,s Scenario-dependent individually optimal solution
for goal k used to determine upper and lower
bounds for objective values

Membership functions

αks ≥ 0 Degree of membership for goal k in scenario s

γ ∈ [0, 1] Optimisation parameter

λS ≥ 0 Minimum degree of membership

λks ≥ 0 Surplus exceeding minimum degree of membership, with αks = λS + λks

μk Membership function for goal k

zk Objective function, used in models BM, SBM 1, SBM 2 and (24)

z̄k Upper bound for objective function values

zk Lower bound for objective function values
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