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Abstract This paper deals with the supply chain network design and planning for a multi-
commodity and multi-layer network over a planning horizon with multiple periods in which
demands of customer zones are considered to be price dependent. These prices determine the
demands using plausible price–demand relationships of customer zones. The net income of
the supply chain is maximized, while satisfying budget constraints for investment in network
design. In addition, a new approach is considered for capacity planning to make the problem
more realistic. In this regard, when production plants are opened and expanded, capacity
options are taken into account for manufacturing operations. Furthermore, several aspects
relevant to real world applications are captured in the problem. Different interconnected
time periods in the planning horizon are considered for strategic and tactical decisions in
the problem and then, a mixed-integer linear programming (MILP) model is developed. The
performance and applications of the model are investigated by several test problems with
reasonable sizes. The numerical results illustrate that obtained solutions after solving the
MILP model by using CPLEX solver are acceptable. Moreover, using an alternative pricing
approach, a tight upper bound is provided for the problem. In addition, a deep sensitivity
analysis is conducted to show the validity and performance of the proposed model.

Keywords Supply chain network design · Strategic and tactical decisions · Capacity
expansion · Mixed-integer linear programming · Dynamic pricing approach

1 Introduction

During almost a century, facility location (FL) problem has been studied as amain areawithin
Operation Research. ReVelle et al. (2008) categorized various developed locationmodels into
four categories, namely analytic, continuous, network and discrete location models. Supply
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chain network design (SCND)belongs to discrete locationmodels and is a suitable application
for FL problems. To create long-term strategies for designing and planning supply chains, it
is important to take into account the possibility of creating future adjustments in the network
configuration. Therefore, a planning horizon with several time periods is typically considered
inmany SCND studies (Melo et al. 2009). These are usually called dynamic SCNDproblems.

Decisions related to the strategic level should be integrated with the tactical level decisions
to achieve a global and integrated system (Goetschalckx et al. 2002). In this paper, a dynamic
SCND problem for making strategic and tactical decisions is described. The problem con-
siders two different interconnected time periods including tactical and strategic periods in
the planning horizon with a novel time modeling approach. This approach may produce sig-
nificant benefits for a company, but, there are a few studies in the literature (see Salema et al.
2010; Badri et al. 2013; Bashiri et al. 2012) that have addressed this issue.

As a new contribution of this paper in the class of dynamic FL problems, demands of
customer zones are considered as price-sensitive. The fact that demands depend on price
decisions is an important feature, which is not modeled by previous studies in this field.
In the optimization problem, price decisions must be dynamically made as tactical level
decisions to maximize the net income of the supply chain. Traditionally, most of studies in
this area assume demands as input parameters that should be satisfied completely tominimize
the total costs of supply chain (see Hinojosa et al. 2008; Melo et al. 2012, 2014). In a few
studies such as Badri et al. (2013) and Nickel et al. (2012), the given demands of customers
could be satisfied partially or completely tomaximize the profit of the supply chain.Although,
demand management and revenue management issues have been much attracted in several
industries, but their impacts on supply chain network design and planning have not yet been
investigated in the related literature. In this paper, different price–demand relationships are
considered for multiple products at each time period to model behavior of each customer
zone to prices of products. The integrated price, location and capacity decisions should be
made in a dynamic SCND problem. Figure 1 illustrates the relations between the strategic
and tactical decisions in the problem.

This paper also proposes a novel approach for capacity planning in a SCND problem. In
previous studies such as Badri et al. (2013), Correia et al. (2013), and Tang et al. (2013),
manufacturing processes of different products are not considered for capacity planning in
a supply chain network. Here, to cope with this issue, capacity options for manufacturing
operations of production plants are taken into consideration and expansion capacity planning
is assumed in a multi-commodity supply chain. Therefore, production plants are flexible to
produce different types of products, considering their manufacturing processes. For example,
if operation A should be performed to produce a specific product, only production plants with
available capacities on operation A can produce this product. This approach for the capacity
planning has high potential to model various practical situations.

In addition, some practical aspects of SCND problems have been considered that have
not yet been simultaneously assumed in previous studies. These aspects include: available
capital for supply chain network investment, opening, closing, and reopening some facilities
in the supply chain, flows of products through the facilities in the same layer of the supply
chain network (Intra-layer flows), capacitated product flows through the network, and travel
times between supply chain entities.

In this paper, price levels are obtained for products based on price–demand relationships
of customer zones in each tactical period using a generic method. Then, an MILP model
is developed for the problem. Afterward, using an alternative pricing approach, an upper
bound is proposed for the problem. These two pricing approaches are compared to each
other in the computational results part. To the best of our knowledge, this paper is the first
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Fig. 1 Model’s decisions framework

research study that attempts to make the demands of customer zones dependent on prices of
products in designing and planning a supply chain network over a multi-period horizon. In
addition, the MILP model considers several practical features that have not been addressed
simultaneously in the literature. By implementing a deep sensitivity analysis and solving
several test problems, our goals in this research are to:

– Identify the relations between location, capacity, and price decisions in SCND,
– Investigate the applicability of the proposed capacity planning approach,
– Study the effect of available capital for network design investment on net income of the

supply chain,
– Compare the static and dynamic pricing approaches in terms of supply chain revenue,
– Assess the performance and applications of the model.

This paper is structured as follows: An overview on the existing literature related to this
study is presented in Sect. 2. The problem and its characteristics are defined in Sect. 3 in
details. The proposed genericMILPmodel for the problem is presented in Sect. 4. To evaluate
the performance of the mathematical model, computational results for several test problems
using CPLEX solver is presented in Sect. 5. Section 6 provides a sensitivity analysis in order
to assess the impact of significant parameters on the supply chain structure. Finally, Sect. 7
concludes the paper and suggests guidelines for further research.

2 Literature review

Here, a literature review is presented in two subsections according to the scope of the paper.
In the first subsection, the main studies in the context of dynamic SCND problems in terms
of essential aspects and decisions are investigated. In the second part, FL problems with price
decisions are reviewed.
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2.1 Dynamic supply chain network design problems

ReVelle et al. (2008) presented a review paper on discrete location models and a survey on
SCND studies is presented by Melo et al. (2009). In contrast to static (i.e., single-period) FL
problems, fewer researches have been addressed dynamic (i.e., multi-period) ones. In this
paper, the main studies related to dynamic SCND problems are reviewed. Ballou (1968) pre-
sented the first study in this area for a single FL problem and the extension of the problem for
multiple facilities was proposed by Scott (1971). Pioneering papers in the context of dynamic
FL problems such as Galvao and Santibanez-Gonzalez (1992) and Chardaire et al. (1996)
considered the un-capacitated case and then, several researchers extended the capacitated
version of the problem. SCND in a multi-period context have been mostly studied to create a
new supply chain network or to redesign an existing one. Recently, there has been a growing
attention to this area (see, for example, Pimentel et al. 2013; Nickel et al. 2012; Melo et al.
2014; Badri et al. 2013; Wilhelm et al. 2013).

A comprehensive mathematical modeling framework for redesigning a supply chain net-
work over a multi-period horizon is proposed by Melo et al. (2006). They investigated main
capacity planning approaches in a generic supply chain network.Moreover, they assumed the
possibility of facility relocation over the time horizon with gradual capacity transfers from
existing locations to new sites. It is worth mentioning that the authors attempted to solve
the problem using Tabu Search Algorithm and a linear relaxation-based heuristic in Melo
et al. (2012) and Melo et al. (2014), successively. Thanh et al. (2008) presented an MILP
model for determining strategic and tactical decisions in a four-echelon, multi-commodity,
and multi-period production-distribution network. They also considered supplier selection
decisions and the bill of materials of products in the problem. In Thanh et al. (2010), they
proposed a linear-relaxation-based heuristic for solving the large-sized test problems.

Some authors assumed a supply chain network with complex product flows in this area.
The possibility of direct product flow from upper layers to customers were considered by
many authors such as Canel et al. (2001), Melo et al. (2006), and Vila et al. (2006). Moreover,
many studies such as Melo et al. (2006), Vila et al. (2006), and Aghezzaf (2005) addressed
the problem with intra-layer product flows through the network. Recently, Salema et al.
(2010) presented a dynamic SCND model in which they embedded the needed time units
for product flows through a supply chain network in their proposed model. Table 2 specifies
network structure of the main studies in the related literature. In Table 2, some symbols
have been used that are provided by Akçalı et al. (2009) and their descriptions are available
in Table 1. Furthermore, as it is illustrated in Table 2, several decisions such as supplier
selection, transportation, inventory, and production decisions have been imbedded into the
problem. In our case, price of multiple products should be also determined dynamically for
the first time.

A planning horizon divided into strategic time units (i.e. periods) is usually assumed
in multi-period SCND problems (see Dias et al. 2007; Hinojosa et al. 2000). However,
there are several papers such as Longinidis and Georgiadis (2011), Schütz et al. (2009)
and Georgiadis et al. (2011) that have assumed operational/tactical periods over a planning
horizon. Recently, Esmaeilikia et al. (2014) presented a review in the area of tactical supply
chain planning models. Salema et al. (2010) taken into account interconnected strategic and
tactical time units for a dynamic SCND model to integrate strategic and tactical planning
decisions. Afterwards, Bashiri et al. (2012) and Badri et al. (2013) applied this approach in
the problem addressed by Thanh et al. (2008).

There are many practical aspects corresponding to dynamic SCND problems. Several
studies assumed that facilities can be opened, closed, or reopened more than once in a supply
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Table 1 Definition of symbols Symbol Definition

A network’s layer with known locations and
demand/supply/capacity constraint

A network’s layer with known locations and without
demand/supply/capacity constraint

A network’s layer with unknown locations and
demand/supply/capacity constraint

A network’s layer with unknown locations and without
demand/supply/capacity constraint

Forward/ receive flow from a single node

Forward/ receive flow from multiple nodes

Single item flow

Multiple items flow

Intra layer flow

chain network. Furthermore, reducing, expanding, or relocating of facilities’ capacities is
also considered for dynamic SCND. In Table 2, main dynamic SCND models in terms
of these aspects are also investigated. In addition, the available investment budget for the
establishment of new facilities or redesign of a network is usually limited in each strategic
period. To cope with this issue, a predetermined budget for investment is considered byMelo
et al. (2006) in each period. Recently, Bashiri et al. (2012) and Badri et al. (2013) considered
that the cumulative net income after reduction of the tax and stakeholders’ share can be added
to the accessible budget for the investment in their problems.

2.2 Facility location problems with price-sensitive demand

Profit maximization FL problems have been categorized the into three main groups by
Ahmadi-Javid and Ghandali (2014). In the first group, the main goal is to find an equilibrium
price and locations of new facilities that enter into a competitive environment. Problems in
which demands of customers are not dependent to price decisions have been addressed by
the second group. In a few studies of this group such as Zhang (2001) and Shen (2006), price
only affects a customer’s decision on whether or not to receive service from the supply chain.
Finally, in the third group, profit maximization FL problems where demands of customers
are sensitive to price decisions such as our problem have been addressed. Therefore, facil-
ity location and price decisions should be simultaneously made. Unfortunately, because of
the complexity of corresponding integrated optimization problems, there are few works to
address this issue. Hansen et al. (1997), Hanjoul et al. (1990), Ahmadi-Javid and Hoseinpour
(2015), Hansen et al. (1981), Ahmadi-Javid and Ghandali (2014), and Wagner and Falkson
(1975) addressed FL problems with price-sensitive demands in which location decisions
should be taken for a single layer of a network in a single period FL problem. To the best
of our knowledge, in the class of dynamic FL problems this paper addresses a problem with
price-sensitive demands for the first time.

The following conclusions can be driven from the presented literature review:

– In recent years, many studies have addressed dynamic SCND problems and this indicates
that this area has gained considerable attention in both practice and academia.
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– Developing applicable capacity planning approaches for expanding facilities over a long-
termplanning horizon is still necessary in SCND.The existing approaches do not consider
manufacturing processes of the products.

– The presented dynamic SCND models have assumed that the demands of the customers
are predefined as input parameters. However, prices of supply chain products affect
meaningfully the demands of customers in real supply chains and these important tactical
decisions have not yet been considered in the related literature.

– Integrating location, capacity, and price decisions may produce significant benefits for a
company and to the best of our knowledge; it has not yet been addressed in the related
literature on planning and design of supply chain networks.

– There are many practical aspects relevant to dynamic SCND problems that have not
received sufficient attention in the literature. It is essential to present a generic mathe-
matical model in which these aspects are simultaneously taken into account.

In this paper, a comprehensive model for integrated strategic and tactical planning of a
multi-echelon, multi-period, and multi-product supply chain network is presented in which
customers have price-sensitive demands. In addition, we do our best to address the previously
mentioned gaps in the literature.

3 Problem definition

In this paper, amulti-period,multi-commodity, andmulti-layer network including production
plants and two types of warehouses is considered. The supply chain network’s structure is
generally shown in Fig. 2.

The first layer of the supply chain network consists of a set of potential production plants
whose location are to be determined. In addition, two types of capacity are considered for
production plants: (1) storage capacity, (2) manufacturing capacity. The storage capacity of
each production plant for final products is limited. However, the manufacturing capacity of
each plant should be determined and could be expanded over a planning horizon. In this paper,
a set of capacity options is considered for different manufacturing operations in the case of
locating a production plant and there is also another set of capacity options to expand the

Fig. 2 Supply chain network’s structure
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Fig. 3 Structure of the planning horizon in the optimization problem

capacity of each manufacturing operation. Moreover, by considering manufacturing process
of the products, production plants are flexible to produce different products.

In the second layer, based on what was initially proposed by Thanh et al. (2008), two
types of warehouses are assumed: (1) private warehouses, (2) public warehouses. The private
warehouses as company’s property can be opened only one time.However, publicwarehouses
which are hired or rented by the company can be closed or reopened over a given planning
horizon. Warehouses are also limited in holding and forwarding final products in accordance
to warehouses’ maximum storage and operating capacity, subsequently. In addition, final
products can be transferred between warehouses to make the network structure more flexible.

Customer zones which are geographically dispersed are located at the third echelon of the
supply chain network and their demands are price sensitive. In this paper, each customer zone
has differentwillingness to pays and potential demands formultiple products. Therefore, each
product demand for each customer zone should be determined based on the price decisions
of the problem. The integrated price, location and capacity decisions should be made in the
optimization problem.

3.1 Time modeling

The proposed optimization problem considers two main levels of decisions: the tactical
and the strategic decisions. The strategic decisions should be taken for a given period of
time, under the assumption that the supply chain structure remains unchanged. The number,
location and capacity of facilities should be determined as strategic decisions in our problem.
The tactical level includes a more detailed time description. Here, the inventory, production,
price and transportation decisions are tactical decisions. Therefore, two-interconnected time
periods are considered within the planning horizon.

Figure 3 illustrates the interconnection between these two time periods consist of tactical
and strategic periods. Consider p ∈ P and t ∈ T as an element of strategic periods’ set and
tactical periods’ set, successively. In addition, for each element p ∈ P , NT elements are in
T .

Consider the current time example is (p, t) in which p ∈ P and t ∈ T . Here, an operator
� is defined to obtain the values of p′ and t ′ for time unit

(
p′, t ′

)
that has occurred τ tactical

periods before the current time (p, t). Here, f (p, t) is a linear function that is equal to
NT × p + t and mod(a, b) is modulo operation. In computing, this operation finds the
reminder of Euclidian division of a by b.

� (p, t − τ) = (
p′, t ′

)
and

{
t ′ = mod( f (p, t − τ) − 1, NT ) + 1
p′ = (

f (p, t − τ) − t ′
) /

NT
(1)

For example, let P = {1, 2, . . . , 12} and T = {1, 2, 3, 4}, and assume that the current
time is strategic period 3 and tactical period 3 (i.e. (p, t) = (3, 3)). Consider τ is equal to
5 then � (3, 3 − 5) = (

p′, t ′
)
in which t ′ = mod(4 × 3 + 3 − 5 − 1, 4) + 1 = 2 and p′ =
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(4 × 3 + 3 − 5 − 2) /4 = 2. Assume now that τ is equal to 2 then � (3, 3 − 2) = (
p′, t ′

)
in

which t ′ = mod(4 × 3 + 3 − 2 − 1, 4) + 1 = 1 and p′ = (4 × 3 + 3 − 2 − 1) /4 = 3.

4 Model formulation

In this section, an MILP model is proposed for the dynamic supply chain network design
with capacity expansion planning, production–distribution planning, and dynamic pricing of
multiple products.

4.1 Notations

Sets

P
(
p, p′ ∈ P; p, p′ = 0, 1, . . . , N P

)
Set of strategic periods of the planning horizon,

T
(
t, t ′ ∈ T ; t, t ′ = 1, . . . , NT

)
Set of tactical periods of the planning horizon,

I
(
i, j, j ′ ∈ I

)
Set of all entities in the network consist of potential
locations for production plants, potential locations
for private and public warehouses, and customer
zones,

M (M ⊂ I ) Set of potential locations for production plants,
W (W ⊂ I ) Set of potential locations for private and public

warehouses,
WP

(
WP ⊂ W

)
Set of potential locations for private warehouses,

WH
(
WH ⊂ W

)
Set of potential locations for public warehouses,

C (C ⊂ I ) Set of customer zones,
O (o ∈ O) Set of manufacturing operations,
K (k ∈ K ) Set of products,
L (l ∈ L) Set of price levels,
U (u ∈ U ) Set of capacity levels for manufacturing opera-

tions at the time of opening a production plant,
E (e ∈ E) Set of capacity levels for manufacturing opera-

tions to expand an existing production plan.

Costs

COMi,p Fixed cost of opening a plant in period p and in possible location i that should
be charged in period p − 1, i ∈ M, p ∈ P\ {0},

COPi,p Fixed cost of opening a private warehouse in period p and in possible location i
that should be charged in period p − 1, i ∈ WP , p ∈ P\ {0},

COHi,p Fixed cost of using a public warehouse in period p and in possible location i that
should be charged in period p − 1, i ∈ WH , p ∈ P\ {0} ,

CCHi,p Fixed cost of closing a public warehouse in period p and in possible location i
that should be charged in period p − 1, i ∈ WH , p ∈ P\ {0} ,

CUMi,p Fixed operation cost of a plant in strategic period p and in possible location
i, i ∈ M, p ∈ P\ {0},

CUPi,p Fixed operation cost of a private warehouse in period p and in possible location
i , i ∈ WP , p ∈ P\ {0},

CUHi,p Fixed operation cost of a public warehouse in period p and in possible location
i , i ∈ WH , p ∈ P\ {0},
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CIUi,u,o,p Fixed cost of installing capacity level u of manufacturing operation o for possible
location i , in period p that should be charged in period p−1, i ∈ M, u ∈ U, o ∈
O, p ∈ P\ {0},

CAEi,e,o,p Fixed cost for adding capacity level e of manufacturing operation o to existing
plant i , in period p that should be charged in period p − 1, i ∈ M, e ∈ E, o ∈
O, p ∈ P\ {0},

COUi,u,o,pFixed operation cost for capacity level u of manufacturing operation o for plant
i , in period p, i ∈ M, u ∈ U, o ∈ O, p ∈ P\ {0},

COEi,e,o,p Fixed operation cost for capacity level e of manufacturing operation o for plant
i , in period p, i ∈ M, e ∈ E, o ∈ O, p ∈ P\ {0},

CTRi, j,k Transportation cost per unit of product k from entity i to entity j , i, j ∈ I, k ∈ K ,
the possible entities i and j are : (i ∈ M ∧ j ∈ W ) ∨ (i ∈ W ∧ j ∈ W\ {i}) ∨
(i ∈ W ∧ j ∈ C)

CHMi,k Storage cost per unit of product k in production plant i , i ∈ M, k ∈ K ,
CHWi,k Storage cost per unit of product k in warehouse i , i ∈ W, k ∈ K ,
CMPi,k,o Cost of manufacturing operation o to produce per unit of product k in production

plant i , i ∈ M, k ∈ K , o ∈ O , if any manufacturing operation o should not be
used in the production process of each product k, the corresponding cost is equal
to zero.

CSOi,k Penalization cost of non-satisfied per unit of product k for customer zone i ,
i ∈ C, k ∈ K .

Other input parameters

SMi Storage capacity of production plant i, i ∈ M,

OWi Operating capacity of warehouse i , i ∈ W,

SWi Storage capacity of warehouse i , i ∈ W,

MIi Maximum installable capacity for manufacturing operations in production plant
i, i ∈ M,

CAIi,o,u Amount of capacity level u for manufacturing operation o at the time of opening
production plant i, i ∈ M, u ∈ U, o ∈ O,

CAAi,o,e Amount of capacity level e for manufacturing operation o to establish in plant
i , i ∈ M, e ∈ E, o ∈ O,

PRk,l,p,t Selling price level l for per unit of product k in strategic period p and tactical
period t, k ∈ K , l ∈ L , p ∈ P\ {0} , t ∈ T,

Di,k,l,p,t Demand of customer zone i for product k with price level l in strategic period
p and tactical period t , i ∈ C, k ∈ K , l ∈ L , p ∈ P\ {0} , t ∈ T,

μSW
k Consumption factor of storage capacity in a warehouse to stock per unit of

product k, k ∈ K ,

μPW
k Consumption factor of processing capacity in a warehouse to forward per unit

of product k, k ∈ K ,

μSM
k Consumption factor of storage capacity in a production plant to stock per unit

of product k, k ∈ K ,

μMO
o Consumption factor of available capacity in a production plant to install per unit

capacity of manufacturing operation o, o ∈ O,

μOP
o,k Consumption factor for capacity of manufacturing operation o to produce per

unit of product k, k ∈ K , o ∈ O,

τi j Travel times for transportation between entities i and j , i, j ∈ I,
UFMi Maximum capacity of each products’ flow leaving plant i , i ∈ M,

UFWi Maximum capacity of each products’ flow leaving warehouse i , i ∈ W ,
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μF
k Consumption factor of flows’ capacity to forward per unit of product k, k ∈ K ,

Bp Available investment budget in period p, p ∈ P\ {N P} ,

IRp Unit return factor on capital not expended in period p, p ∈ P,

MUi,o Maximal rate of utilizing manufacturing operation o in production plant i , i ∈
M, o ∈ O,

NUi,o Minimal rate of utilizing manufacturing operation o in production plant i , i ∈
M, o ∈ O.

Binary variables

x P
i,p 1 if a plant is open in possible location i and in strategic period p, i ∈ M, p ∈

P\ {0} ,

xWi,p 1 if a private/public warehouse is open in possible location i and in strategic period
p, i ∈ W, p ∈ P\ {0} ,

yP I
i,u,o,p 1 if capacity level u for manufacturing operation o is established in strategic period

p for plant i, i ∈ M, u ∈ U, o ∈ O, p ∈ P\ {0} ,

yPE
i,e,o,p 1 if a capacity level e for manufacturing operation o is added in strategic period p

to plant i , i ∈ M, e ∈ E, o ∈ O, p ∈ P\ {0} ,

δl,k,p,t 1 if price level l is chosen for per unit of product k in strategic period p and tactical
period t .

Continuous variables

ncp Total investment cost expensed to design/redesign the network in strategic
period p, p ∈ P\ {N P} ,

ξp Unspent budget in strategic period p, p ∈ P,

fi, j,k,p,t Quantity of product k shipped in strategic period p and tactical period t from
entity i to entity j , k ∈ K , p ∈ P\ {0} , t ∈ T, the possible entities i and j are:
(i ∈ M ∧ j ∈ W ) ∨ (i ∈ W ∧ j ∈ W\ {i}) ∨ (i ∈ W ∧ j ∈ C)

sPi,k,p,t Quantity of product k held in plant i in strategic period p and tactical period t ,
i ∈ M, k ∈ K , p ∈ P\ {0} , t ∈ T,

sWi,k,p,t Quantity of product k held in private/public warehouse i in strategic period p
and tactical period t , i ∈ W, k ∈ K , p ∈ P\ {0} , t ∈ T,

qi,k,p,t Quantity of product k produced in plant i in strategic period p and tactical
period t , i ∈ M, k ∈ K , p ∈ P\ {0} , t ∈ T,

gi,o,p Capacity quantity of manufacturing operation o in plant i in strategic period p,
i ∈ M, o ∈ O, p ∈ P\ {0} ,

ui,l,k,p,t Quantity of product k not satisfied for customer zone i in price level l, strategic
period p and tactical period t , i ∈ C, k ∈ K , l ∈ L , p ∈ P\ {0} , t ∈ T,

owci,p A continuous variable equal to cost of opening public warehouse i , in period p,
if the warehouse is opened in period p; otherwise, it equals to zero, i ∈ Wh, p ∈
P\ {0} ,

cwci,p A continuous variable equal to cost of closing public warehouse i , in period p,
if the warehouse is closed in period p; otherwise, it equals to zero, i ∈ Wh, p ∈
P\ {0} .

4.2 Constraints

qi,k,p,t + sPi,k,�(p,t−1)

= sPi,k,p,t +
∑

j∈W
fi, j,k,p,t i ∈ M, k ∈ K , p ∈ P\ {0} , t ∈ T, (p �= 1 ∨ t �= 1) (2)
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qi,k,p,t = sPi,k,p,t +
∑

j∈W
fi, j,k,p,t i ∈ M, k ∈ K , (p = 1 ∧ t = 1) (3)

Constraints (2) and (3) guarantee that in each tactical period, in any production plant,
and for each product, the quantity of the product that is held at the previous period plus the
production amount of the product should be equal to total quantity of the product that is
shipped to warehouses plus the quantity of the product that is stored at the end of the current
tactical period.

sWi,k,�(p,t−1) +
∑

j∈M
f j,i,k,�(p,t−τ j i) +

∑

j∈W\{i}
f j,i,k,�(p,t−τ j i) = sWi,k,p,t +

∑

j ′∈C
fi, j ′,k,p,t

+
∑

j ′∈W\{i}
fi, j ′,k,p,t i ∈ W, k ∈ K , p ∈ P\ {0} , t ∈ T, (p �= 1 ∨ t �= 1) (4)

∑

j∈M
f j,i,k,�(p,t−τ j i) +

∑

j∈W\{i}
f j,i,k,�(p,t−τ j i)

= sWi,k,p,t +
∑

j ′∈C
fi, j ′,k,p,t +

∑

j ′∈W\{i}
fi, j ′,k,p,t i ∈ W, k ∈ K , (p = 1 ∧ t = 1) (5)

Constraints (4) and (5) are balance constraints at warehouses. In each tactical period,
in each public/private warehouse, and for each product, the delivered flows of the product
plus the product amount that is held at the end of the previous period is equivalent to the
output flows of the product plus the product amount that is held at the end of the period. In
accordance to these constraints, for any warehouse, the intra-layer flows are also assumed in
the supply chain network.

∑

k∈K
μF
k fi, j,k,p,t ≤ UFMi x

W
j,p i ∈ M, j ∈ W, p ∈ P\ {0} , t ∈ T, (6)

∑

k∈K
μF
k fi, j,k,p,t ≤ UFWi x

W
j,p i ∈ W, j ∈ W\ {i} , p ∈ P\ {0} , t ∈ T, (7)

∑

k∈K
μF
k fi, j,k,p,t ≤ UFWi i ∈ W, j ∈ C, p ∈ P\ {0} , t ∈ T . (8)

Constraints (6–8) are flow constraints. In each tactical period, if warehouse j is opened in
the supply chain network, constraints (6) consider a maximum capacity for each products’
flow that may be shipped from plant i to warehouse j . Constraints (7) are the same as
constraints (6) in which products’ flows form each warehouse to another warehouse are
taken into account. Flows of the products that may be shipped from warehouses to customer
zones are considered by constraints (8).

∑

l∈L
δl,k,p,t = 1 k ∈ K , p ∈ P\ {0} , t ∈ T, (9)

ui,l,k,p,t ≤ δl,k,p,tDi,k,l,p,t i ∈ C, l ∈ L , k ∈ K , p ∈ P\ {0} , t ∈ T, (10)
∑

i∈W
fi, j,k,�(p,t−τi j ) +

∑

l∈L
u j,l,k,p,t

=
∑

l∈L
δl,k,p,tD j,k,l,p,t j ∈ C, k ∈ K , p ∈ P\ {0} , t ∈ T . (11)

Constraints (9) ensure that in each tactical period and for each product, one level of price
should be selected. According to constraints (9), the same price levels for all customer zones
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must be selected for a product in each time period to avoid cannibalization and arbitrage
opportunity. In accordance to constraints (10), in each time period, for each customer zone
and product, and for each price level, if that price level is selected, the stock-out amount of the
product should be equal or less than the customer zone’s demand; otherwise, the respective
amount should be equivalent to zero. Constraints (11) are the equations for the demand. For
each customer zone and product, demand value that is calculated according to the selected
price level can be entirely or partially satisfied in each period time. In “Appendix 1”, more
details are provided about the generated parameters for price levels of products and their
corresponding demand in each customer zone and each time period.

xWi,p ≥ xWi,p−1 i ∈ W P , p ∈ P\ {0} , (12)
∑

k∈K
μSW
k sWi,k,p,t ≤ SWi x

W
i,p i ∈ W, p ∈ P\ {0} , t ∈ T, (13)

∑

j∈C

∑

k∈K
μPW
k fi, j,k,p,t +

∑

j∈W/{i}

∑

k∈K
μPW
k fi, j,k,p,t ≤ OWi x

W
i,p i ∈ W, p ∈ P\ {0} , t ∈ T .

(14)

Constraints (12) prevent each opened private warehouse from being closed during next
strategic periods. Constraints (13) ensure thatwarehouses cannot storemore than their storage
capacities. In addition, warehouses in each time period are limited not to process more than
their processing capacities by constraints (14).

owci,p ≥ COHi,p

(
xWi,p − xWi,p−1

)
i ∈ WH , p ∈ P\ {0} , (15)

cwci,p ≥ CCHi,p

(
xWi,p−1 − xWi,p

)
i ∈ WH , p ∈ P\ {0} . (16)

In each period p, if public warehouse i is opened, constraints (15) enforce non-negative
variable owci,p to be greater than fixed cost of opening the warehouse (COHi,p). Therefore,
as the objective function of the mathematical model tries to minimize the cost of network
design, owci,p becomes equal to COHi,p in the case of opening warehouse i in period p and
otherwise; it becomes zero. Same as constraints (15), constraints (16) are to calculate the
cost of closing any public warehouse in each period.

x Pi,p ≥ x P
i,p−1 i ∈ M, p ∈ P\ {0} , (17)

∑

k∈K
μSM
k sPi,k,p,t ≤ SMi x

P
i,p i ∈ M, p ∈ P\ {0} , t ∈ T, (18)

∑

u∈U
yPIi,u,o,p ≤ x P

i,p − x P
i,p−1 i ∈ M, o ∈ O, p ∈ P\ {0} , (19)

∑

e∈E
yPEi,e,o,p ≤ x P

i,p−1 i ∈ M, o ∈ O, p ∈ P\ {0} . (20)

Constraints (17) are the same as constraints (12) in which each opened production plant
cannot be closed in the next strategic periods. Constraints (18) state that in each period
time, total amount of stored products at each production plant could not be more than its
storage capacity. In each strategic period, constraints (19) guarantee that if a production
plant is opened at that period, only one capacity level can be installed for each manufacturing
operation at the production plant. Constraints (20) ensure that capacity expansion can occur
for a production plant, if it has been opened for at least one strategic period. In addition, only
one capacity level can be added to each production plant for each manufacturing operation,
in each strategic period.
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gi,o,p =
∑

p′:p′≤p

∑

u∈U
yPIi,u,o,p′CAIi,o,u +

∑

p′:p′≤p

∑

e∈E
yPEi,e,o,p′CAAi,o,e

i ∈ M, o ∈ O, p ∈ P\ {0} , (21)
∑

k∈K
μOP
o,kqi,k,p,t ≤ MUi,ogi,o,p i ∈ M, o ∈ O, p ∈ P\ {0} , t ∈ T, (22)

∑

k∈K
μOP
o,kqi,k,p,t ≥ NUi,ogi,o,p i ∈ M, o ∈ O, p ∈ P\ {0} , t ∈ T, (23)

∑

o∈O
μMO
o gi,o,p ≤ MIi x

P
i,p i ∈ M, p ∈ P\ {0} . (24)

Available capacity for each manufacturing operation in any production plant is calculated
by constraints (21) for each strategic period. Constraints (22) and (23) prevent a produc-
tion plant from employing manufacturing operations above their maximum or under their
minimum utilization rates, respectively. By considering the consumption factor of each man-
ufacturing operation for using plants’ capacity, a maximal installable capacity in each plant
and in each strategic period is considered by constraints (24).

ncp =
∑

i∈M
COMi,p+1

(
x Pi,p+1 − x P

i,p

)
+

∑

i∈W P

COPi,p+1

(
xWi,p+1 − xWi,p

)

+
∑

i∈M

∑

o∈O

∑

u∈U
CIUi,u,o,p+1y

P I
i,u,o,p+1 +

∑

i∈M

∑

o∈O

∑

e∈E
CAEi,e,o,p+1y

PE
i,e,o,p+1

+
∑

i∈WH

owci,p+1 +
∑

i∈WH

cwci,p+1 p ∈ P\ {N P} . (25)

In each strategic period p(p ∈ P\ {N P}), total investment costs that are expensed to
modify the supply chain network configuration in period p+ 1, are calculated by constraints
(25). In our problem, opening new production plants and private warehouses, opening or
closing public warehouses, installing manufacturing operations’ capacities at the time of
opening a production plant, and expanding capacities of manufacturing operations could be
performed for the supply chain network design/redesign.

ncp + ξp = Bp p = 0, (26)

ncp + ξp = Bp + IRp−1ξp−1 p ∈ P\ {0, N P} , (27)

ξp = IRp−1ξp−1 p = N P. (28)

Constraints (26–28) are budget constraints. Here, to model practical situations, it is
assumed that if we want to modify the supply chain network in strategic period p, the needed
capital should be spent at strategic period p − 1. Therefore, strategic period 0 is taken into
account as a virtual period before the planning horizon to model budget constraints in the
problem. The allowed investment for designing supply chain network in period 0 is limited
by an available budget in constraint (26). In other strategic periods except the last, constraints
(27) indicate that the capital expenditure should not be more than the available capital for the
corresponding strategic period plus unspent capital from the previous period by considering
its return factor. It is worth mentioning that the investment for the last strategic period is not
allowed.

x P
i,p ∈ {0, 1} i ∈ M, p ∈ P\ {0} , (29)

xWi,p ∈ {0, 1} i ∈ W, p ∈ P\ {0} , (30)
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yP I
i,u,o,p ∈ {0, 1} i ∈ M, u ∈ U, o ∈ O, p ∈ P\ {0} , (31)

yPE
i,e,o,p ∈ {0, 1} i ∈ M, e ∈ E, o ∈ O, p ∈ P\ {0} , (32)

δl,k,p,t ∈ {0, 1} l ∈ L , k ∈ K , p ∈ P\ {0} , t ∈ T, (33)

ncp ≥ 0 p ∈ P\ {N P} , (34)

ξp ≥ 0 p ∈ P (35)

fi, j,k,p,t ≥ 0 k ∈ K , p ∈ P\ {0} , t ∈ T and

(i ∈ M ∧ j ∈ W ) ∨ (i ∈ W ∧ j ∈ W\ {i})
∨ (i ∈ W ∧ j ∈ C) (36)

sPi,k,p,t ≥ 0 i ∈ M, k ∈ K , p ∈ P\ {0} , t ∈ T, (37)

sWi,k,p,t ≥ 0 i ∈ W, k ∈ K , p ∈ P\ {0} , t ∈ T, (38)

qi,k,p,t ≥ 0 i ∈ M, k ∈ K , p ∈ P\ {0} , t ∈ T, (39)

gi,o,p ≥ 0 i ∈ M, o ∈ O, p ∈ P\ {0} , (40)

ui,l,k,p,t ≥ 0 i ∈ C, k ∈ K , l ∈ L , p ∈ P\ {0} , t ∈ T, (41)

owci,p ≥ 0 i ∈ WH , p ∈ P\ {0} , (42)

cwci,p ≥ 0 i ∈ WH , p ∈ P\ {0} . (43)

Constraints (29–43) represent non-negativity and integrality conditions on the problem’s
variables.

4.3 Objective function

The objective function of the problem is to maximize the supply chain’s cumulative net
income in the planning horizon and the remained capital at the end of the planning horizon.

The supply chain’s revenue from selling the products in the time horizon is computed by
mathematical expression (44).

∑

p∈P\{0}

∑

t∈T

(
∑

i∈C

∑

k∈K

∑

l∈L
PRk,l,p,tDi,k,l,p,tδl,k,p,t −

∑

i∈C

∑

k∈K

∑

l∈L
PRk,l,p,t ui,l,k,p,t

)

(44)

Moreover, mathematical expression (45) computes the total tactical costs of the supply
chain network. It is worth mentioning that tactical costs consist of production, transportation,
storage costs, and penalization costs for non-satisfied customer zones. Here, to calculate
the production cost for per unit of each product, the cost of corresponding manufacturing
operations are considered.

∑

p∈P\{0}

∑

t∈T

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∑

i∈M
∑

k∈K
qi,k,p,t

(
∑

o∈O
CMPi,k,o

)

+ ∑

i∈M
∑

j∈W
∑

k∈K
CTRi, j,k fi, j,k,p,t + ∑

i∈W
∑

j∈W
∑

k∈K
CTRi, j,k fi, j,k,p,t

+ ∑

i∈W
∑

j∈C
∑

k∈K
CTRi, j,k fi, j,k,p,t

+ ∑

i∈M
∑

k∈K
CHMi,ks Pi,k,p,t + ∑

i∈W
∑

k∈K
CHWi,ksWi,k,p,t

+ ∑

i∈C
∑

k∈K
∑

l∈L
CSOi,kui,l,k,p,t

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(45)
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Total fixed costs for operating facilities in the network over the planning horizon are
computed using mathematical expression (46).

∑

p∈P\{0}

⎛

⎜
⎝

∑

i∈M
∑

o∈O
∑

p′:p′≤p

∑

u∈U
yP I
i,u,o,p′COUi,u,o,p+ ∑

i∈M
∑

o∈O
∑

p′:p′≤p

∑

e∈E
yPE
i,e,o,p′COEi,e,o,p

+ ∑

i∈M
CUMi,px P

i,p + ∑

i∈W P

CUPi,pxWi,p + ∑

i∈WH

CUHi,pxWi,p

⎞

⎟
⎠

(46)

Therefore, the objective function of the problem is represented as following:

Max : Total Revenue − Total Costs of operating facilities

−Total Tactical Costs + IR′N P ′ξ′N P ′ (47)

5 Computational results

This section consists of two subsections. In the first, a hypothetical example is solved and
investigated. In the second subsection, the efficiency of the mathematical model in solving
different test problems is examined. The parameters of the example problemand test problems
are generated randomly using the uniform distributions specified in Table 7 (see “Appendix
2”). In this section, the presented model is solved by commercial software GAMS 24.1 using
CPLEX solver. A personal computer with Core i7-640 M CPU (2.6GHz), with 4.00 GB of
RAM, is used for all implementations.

5.1 Application of the proposed model

In order to illustrate the applications of the proposed model, an example is generated. Here,
|M | = 5,

∣∣WP
∣∣ = 6,

∣∣WH
∣∣ = 4, |C | = 12, |O| = 5, |K | = 4, |L| = 5, |U | = 4, |E | =

3, N P = 4, NT = 4 are considered for the example.
By solving themathematicalmodel, the obtained objective function equals to 5.9544E+07.

A discussion about the final decisions obtained through solving the respective model con-
structed for the example problem is provided. Figure 4 demonstrates the available budget
in each strategic period and Fig. 5 illustrates the supply chain network planning in terms
of opening /closing facilities. It is worth mentioning that different scenarios for investment
budgets could be analyzed for the supply chain network planning using the mathematical
model.

In themathematical model, in order to produce different products, different manufacturing
operations are needed. In this example, to produce per unit product k, Table 3 illustrates the
usage capacity consumption factor of each manufacturing operation o. Our model deploys
capacity of manufacturing operations on the production plants at each strategic period. In
addition, there must be sufficient capacity to cover customers’ demands that are sensitive
to price decisions. Therefore, the optimization model combined with pricing and capacity
planning is developed to maximize the net income of the supply chain over the planning
horizon. Figure 6 illustrates the capacity of manufacturing operations in each strategic period
obtained by solving the optimization model. Moreover, the average amount of production
for each product in tactical periods of each strategic period is depicted in Fig. 7.

In this paper, the presented capacity planning approach enables us to model various prac-
tical situations. Here, plants are quite flexible to produce different types of products with
consideration of their manufacturing processes. As it is shown in Fig. 6,manufacturing oper-
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Fig. 4 The available budget in each strategic period

Fig. 5 Network entities

Table 3 Usage consumption factors for capacity of manufacturing operations

Manufacturing
operation 1

Manufacturing
operation 2

Manufacturing
operation 3

Manufacturing
operation 4

Manufacturing
operation 5

Product 1 0 1.10 1.25 1.01 1.12

Product 2 1.02 0 0 0 1.05

Product 3 1.16 1.08 0 1.02 0

Product 4 1.05 1.21 1.06 1.06 0

ation 1 and 3 have maximum and minimum cumulative capacity in the production plants in
each strategic period, consequently. These results confirm the usage amounts of these oper-
ations in manufacturing processes of the products (see Table 3). Moreover, as it is illustrated
in Fig. 7, the production amounts of product 2 are more than other products. It shows that
product 2 is more profitable than other products for the supply chain.
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Fig. 6 Capacities of manufacturing operations

Fig. 7 The average amount of productions in different time periods

In the proposed optimization model, price level for each product should be determined in
each time period. In addition, the price levels could be changed over the planning horizon by
considering the available capacity of supply chain network. Figure 8 illustrates how the prices
of products change over the planning horizon. Furthermore, obtained cumulative demands
of customer zones, in each time period and for each product is shown in Fig. 9.

In each time period, the relations between price levels and customers’ demands are
obtained using price response function of each customer zone for each product. The method
for generating pricing parameters is explained in details in “Appendix 1”. As are shown in
Figs. 8 and 9, by expanding the supply chain over the planning horizon, the price for each
product decreases and thus, cumulative customers’ demands for each product increase, rela-
tively. As it is illustrated before in Fig. 1, when demands for multiple products increase, the
supply chain should have sufficient capacities for demands’ fulfillment. Figure 6 shows how
capacities of manufacturing operations increase over the planning horizon. We can conclude
from the obtained results that there is a strong relation between price and capacity decisions
in supply chain networks.
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Fig. 8 Price of products in different time periods

Fig. 9 Cumulative demand of products in different time periods

5.2 Assessing the performance of the mathematical model

To evaluate the performance of the optimization model, several test problems in different
classes are considered in this section. Table 4 shows the structure of test problems. The
generated test problems are designed in three classes with six test problems (P1–P6) in small
class (S), three test problems (P7–P9) in medium class (M), and two test problems (P10–P11)
in large class (L). All test problems include four strategic periods, four tactical periods within
each strategic period, and five price levels for each product. In addition, for each test problem
with specific characteristics, three instances are generated and solved to reduce the effect of
test data.

Generally, number of binary variables and continuous variables in the mathematical
model are equal to N P (|M | + |W | + |O| × |M | × (|U | + |E |) + |L| × |K | × NT ), and
N P × NT × |K | (|M | |W | + |W | (|W | − 1) + |W | |C |) + 2N P + N P |M | |O| + N P ×
NT (2 |M | |K | + |W | |K | + |C | |K | |L|)+2

∣∣WH
∣∣ N P+1, consequently. InTable 5, for each
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Table 4 The structure of test problems

Class Test
problem

∣∣M
∣∣

∣∣
∣WP

∣∣
∣

∣∣
∣WH

∣∣
∣

∣∣C
∣∣ ∣∣O

∣∣ ∣∣K
∣∣ N P NT

∣∣U
∣∣ ∣∣E

∣∣ ∣∣L
∣∣

S P1 3 2 4 8 4 3 4 4 3 3 5

P2 3 4 4 9 4 3 4 4 3 3 5

P3 5 4 5 10 4 3 4 4 4 3 5

P4 5 4 5 12 5 4 4 4 4 3 5

P5 6 5 6 14 5 4 4 4 4 4 5

P6 6 6 6 15 5 4 4 4 5 4 5

M P7 6 8 10 16 6 4 4 4 5 5 5

P8 8 8 12 18 6 5 4 4 5 5 5

P9 8 10 12 20 6 5 4 4 5 5 5

L P10 10 12 12 24 6 5 4 4 5 5 5

P11 15 12 16 28 6 6 4 4 6 5 5

test problem, these numbers and number of constraints are reported. In addition, computa-
tional time and the relative gap of CPLEX solver are illustrated. Upper limit of computational
times for small-class test problems and for medium /large-class test problems are set to 6
hours and 8h, successively.

As shown in Table 5 in the small-class test problems, the optimal solutions are obtained in
a reasonable computational time. In medium-class test problems, the obtained solutions have
acceptable qualities in terms of CPLEX gap. However, the combined mathematical model
for pricing and capacity planning is not efficient to solve large-class test problems in 8 hours.
In CPLEX solver using Branch and Cut algorithm, the reported relative gap is just based on
the lower and upper bounds of solution which does not mean the diversion from the optimal
solution. For more information about relative gaps in exact solution methods such as Branch
& Bound and Branch & Cut algorithms one can refer to Abouei Ardakan et al. (2013) and
Zarandi et al. (2013).

Generally, we can observe that when the sizes of instances increase, the computational
time of CPLEX solver and its relative gap increase too. It is worth mentioning that efficient
heuristic has to be designed to reduce solution time and increase the solution quality for
large-class test instances. However, it is left for future research studies.

5.2.1 An upper bound for the problem by alternative pricing approach

In this subsection, binary variables δl,k,p,t are relaxed to be continuous between 0 and 1.
This approach makes an upper bound for the problem objective function. In addition, we
overcome the difficulty from discretization of the prices by relaxing the problem to allow the
use of convex combinations of the discrete price levels.

In the relaxed optimization model,
∑

l∈L
δl,k,p,tD j,k,l,p,t for each product and customer

zone and in each time period is equal to the demand of the customer zone. The vector(
δ1,k,p,t , δ2,k,p,t , . . . , δ|L|,k,p,t

)
in which

∑

l∈L
δl,k,p,t = 1 and 0 ≤ δl,k,p,t ≤ 1 could be

interpreted as convex weights of discrete price levels and corresponding demands. This
approach is well known in dynamic pricing literature and one can refer to Talluri and Ryzin
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Fig. 10 Comparison between the first and second pricing approach in terms of objective function and com-
putational time

(2006) for more information about this issue. In the obtained results of solving the relaxed
mathematical model, only one of the discrete prices have been used in most periods; in
the remaining periods, the solution has the interpretation of allocating a fraction of time to
each of several prices. Table 6 illustrates the results from solving the model and the relaxed
optimization model by this pricing approach. The closeness between objective function of
the optimization model (OFP1) and the relaxed model with alternative pricing approach
(OFP2) is calculated as follows:

Closeness (%) = OFP1

OFP2
× 100 (48)

As shown in Table 6, the average closeness between optimal solutions of the relaxed math-
ematical model with alternative pricing approach and the mathematical model is 99.4%.
In addition, the CPU time for solving the relaxed model decreases. Figure 10 shows the
relative improvements in objective function and CPU time of second pricing approach
in comparison with first one for several test problems in which optimal solutions are
obtained. The relative improvement of the objective, λ0, and the CPU time, λt , are defined
as λ0 = OFP2−OFP1

OFP1
× 100% and λt = T1−T2

T1
× 100%, consequently. Here, T1 and

T2 are the CPU times of the CPLEX solver for the first and second pricing approach,
successively.

6 Sensitivity analysis

In order to validate the mathematical model, the sensitivity analysis is conducted on the main
parameters of the problem. One of the substantial parameters that has a strong effect on
the network’s structure is available capital in each strategic period of the planning horizon.
Here, a multiplier coefficient is considered for the available budget values in test problems 1
and 2 and change coefficient values. Figure 11 illustrates the sensitivity of optimal objective
function values to available budgets in test problems 1 and 2.

As it is illustrated in Fig. 11, available budget for investing on supply chain network design/
redesign has direct effect on the optimal net income of the supply chain. As it was expected,
when available budgets increase, the optimal objective value of the problem increases too.
Here, the importance of embedding budget constraints in the mathematical model can be
observed.
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Fig. 11 The sensitivity of optimal objectives to available budgets in test problems 1 and 2

Fig. 12 The sensitivity of objective function value to travel times

In contrast to most previous studies, travel times between supply chain entities are con-
sidered. To investigate the effect of travel times in the model objective function, a sensitivity
analysis is presented. Here, travel times are equal to f loor (αU [0, 1.5]) in which α should
be changed to produce different values for travel times. Figure 12 illustrates the sensitivity
of objective function to travel times for a generated test problem.

As it shown in Fig. 12, when travel times between entities increase, the net income of
the supply chain decreases. These results confirm the effect of travel times on supply chain
tactical costs. When travel times increase, the amounts of production and inventory in the
supply chain usually increase in order to satisfy the demands of customer zones at each
tactical period. Moreover, several low-cost transportation links between supply chain entities
cannot be used for transportation flows because of their long travel times.

6.1 Sensitivity analysis on pricing parameters

Some supply chains based on their business conditions want to prevent dramatic changes of
price decisions in subsequent time periods (Keyvanshokooh et al. 2013). Constraints (49) can
be embedded into the optimization model for such conditions. Here, ρ is the possible maxi-
mum change in prices between subsequent time periods. Figure 13 illustrates the sensitivity
of objective function to ρ in test problem 1 with |L| = 8.
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Fig. 13 The sensitivity of objective function to ρ in test problem 1

Fig. 14 The sensitivity of objective function to parameter DMAX

∣∣∣∣∣

∑

l∈L
δl,k,p,tPRk,l,p,t −

∑

l∈L
δl,k,�(p,t−1)PRk,l,�(p,t−1)

∣∣∣∣∣
≤ ρ k ∈ K , p ∈ P\ {0} , t ∈ T .

(49)
When the possiblemaximumchange in prices between subsequent time periods decreases,

the pricing approach become closer to static pricing approach in which the price decisions
should be the same in different time periods for each product. It is evident from Fig. 13;
dynamic pricing is superior to static pricing approach in terms of the objective function
value. It is worth noting that the difference between these two pricing approaches would be
more significant in larger test problems.

As it is explained in details in “Appendix 1”, the pricing parameters consist of
DMAXi,k,p,t , ai,k,p,t , and bi,k,p,t . In the randomly generated test problems,U (500, 1200),
U (140, 150), and U (190, 200) are assumed as uniform distributions for generating the
values of these parameters, consequently. The sensitivities of the problem objective func-
tion value to these parameters in test problem 1 with |L| = 8 are illustrated in Figs. 14,
15 and 16, successively. Here, multiplier coefficients for the parameters’ distributions are
considered.
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Fig. 15 The sensitivity of objective function to parameter a

Fig. 16 The sensitivity of objective function to parameter b

As it is shown in these figures, when these pricing parameters increase, the optimal objec-
tive function value of the problem increases, too. However, parameter a among different
pricing parameters has the most effect on the problem objective function value.

7 Conclusion

This paper introduced combined supply chain network design and multi-period pricing. A
novelmixed integer programmingmodel was proposed for designing and expansion planning
of a multi-stage and multi-product supply chain network in which customers’ demands were
price sensitive. Furthermore, for capacity planning, a new approach based on capacities of
manufacturing operations in production plants was presented. Moreover, different intercon-
nected time units in the planning horizon were considered for strategic and tactical decisions
in the optimization model with a novel time modeling approach.
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Several features of real supply chains were also embedded into the optimization model:
Intra-layer flows, travel times of supply chain flows, budget constraints for investment expen-
diture and possibility of closing/reopening some facilities.

The applications of the proposedmodel were investigated using a hypothetical example. In
addition, the model was solved for several test problems using CPLEX solver. Computational
results demonstrated the effectiveness of the optimization model in small- and medium-sized
test problems. An alternative pricing approach was also used in the paper to determine an
upper bound for the problem. The numerical results revealed the efficiency of the upper bound
in terms of its closeness to the optimal solution. Sensitivity analysis on the main parameters
was performed to validate the proposed model.

Since, computational time of CPLEX solver increases when the size of the problem
increases, extending an exact or heuristic solution algorithm can be the next step of this
research. Furthermore, in addition to investment decisions, several financial factors that
have a strong impact on the supply chain network can be embedded into the optimization
problem. Many revenue management issues are still scarce in the related literature of the
SCND and there are opportunities to extend other pricing strategies such as regional pric-
ing for the problem. In addition, the mathematical model can be extended to the stochastic
environment.

Appendix 1: Pricing parameters

In the pricing framework, in each tactical period, each customer zone has a willingness to
pay distribution function for each product. Therefore, a price–demand relation is assumed for
any customer in each time period and for each product. The relation between price (Pi,k,p,t )
and demand (Di,k,p,t ) can be generally illustrated as in Fig. 17. This price response function
is a special case of logit function. For more detailed explanations, one can refer to Phillips
(2005) and Talluri and Ryzin (2006).

In the test problems, DMAXi,k,p,t , ai,k,p,t , and bi,k,p,t are generated as DMAXi,k,p,t ∼
U (500, 1200), ai,k,p,t ∼ U (140, 150), and bi,k,p,t ∼ U (190, 200), successively. Since a
unique price for all customers is considered in the optimization problem to avoid cannibal-
ization and arbitrage opportunity, the assumed price levels for all customers are the similar
in each time period. Therefore, in each time period and for each product, the price level l is
obtained as follows:

PRk,l,p,t =
∑

i∈C ai,k,p,t
|C | + (l − 1)

(|L| − 1)

(∑
i∈C bi,k,p,t

|C | −
∑

i∈C ai,k,p,t
|C |

)

l ∈ L , k ∈ K , p ∈ P/ {0} , t ∈ T, (50)

Fig. 17 The price-response
function
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Fig. 18 The levels of price and
demand

In each time period, the customer product demand for every price level should be obtained
using the corresponding price-response function. Figure 18 shows the levels of price and
demand for customer i and product k in strategic period p and tactical period t .

Appendix 2

See Table 7.
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